forked from mirrors/linux
		
	The object size sanity checking macros that uaccess.h and uio.h use have been living in thread_info.h for historical reasons. Needing to use jump labels for these checks, however, introduces a header include loop under certain conditions. The dependencies for the object checking macros are very limited, but they are used by separate header files, so introduce a new header that can be used directly by uaccess.h and uio.h. As a result, this also means thread_info.h (which is rather large) and be removed from those headers. Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202502281153.TG2XK5SI-lkp@intel.com/ Signed-off-by: Kees Cook <kees@kernel.org>
		
			
				
	
	
		
			576 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			576 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* SPDX-License-Identifier: GPL-2.0 */
 | 
						|
#ifndef __LINUX_UACCESS_H__
 | 
						|
#define __LINUX_UACCESS_H__
 | 
						|
 | 
						|
#include <linux/fault-inject-usercopy.h>
 | 
						|
#include <linux/instrumented.h>
 | 
						|
#include <linux/minmax.h>
 | 
						|
#include <linux/nospec.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/ucopysize.h>
 | 
						|
 | 
						|
#include <asm/uaccess.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Architectures that support memory tagging (assigning tags to memory regions,
 | 
						|
 * embedding these tags into addresses that point to these memory regions, and
 | 
						|
 * checking that the memory and the pointer tags match on memory accesses)
 | 
						|
 * redefine this macro to strip tags from pointers.
 | 
						|
 *
 | 
						|
 * Passing down mm_struct allows to define untagging rules on per-process
 | 
						|
 * basis.
 | 
						|
 *
 | 
						|
 * It's defined as noop for architectures that don't support memory tagging.
 | 
						|
 */
 | 
						|
#ifndef untagged_addr
 | 
						|
#define untagged_addr(addr) (addr)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef untagged_addr_remote
 | 
						|
#define untagged_addr_remote(mm, addr)	({		\
 | 
						|
	mmap_assert_locked(mm);				\
 | 
						|
	untagged_addr(addr);				\
 | 
						|
})
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef masked_user_access_begin
 | 
						|
 #define can_do_masked_user_access() 1
 | 
						|
#else
 | 
						|
 #define can_do_masked_user_access() 0
 | 
						|
 #define masked_user_access_begin(src) NULL
 | 
						|
 #define mask_user_address(src) (src)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Architectures should provide two primitives (raw_copy_{to,from}_user())
 | 
						|
 * and get rid of their private instances of copy_{to,from}_user() and
 | 
						|
 * __copy_{to,from}_user{,_inatomic}().
 | 
						|
 *
 | 
						|
 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
 | 
						|
 * return the amount left to copy.  They should assume that access_ok() has
 | 
						|
 * already been checked (and succeeded); they should *not* zero-pad anything.
 | 
						|
 * No KASAN or object size checks either - those belong here.
 | 
						|
 *
 | 
						|
 * Both of these functions should attempt to copy size bytes starting at from
 | 
						|
 * into the area starting at to.  They must not fetch or store anything
 | 
						|
 * outside of those areas.  Return value must be between 0 (everything
 | 
						|
 * copied successfully) and size (nothing copied).
 | 
						|
 *
 | 
						|
 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
 | 
						|
 * at to must become equal to the bytes fetched from the corresponding area
 | 
						|
 * starting at from.  All data past to + size - N must be left unmodified.
 | 
						|
 *
 | 
						|
 * If copying succeeds, the return value must be 0.  If some data cannot be
 | 
						|
 * fetched, it is permitted to copy less than had been fetched; the only
 | 
						|
 * hard requirement is that not storing anything at all (i.e. returning size)
 | 
						|
 * should happen only when nothing could be copied.  In other words, you don't
 | 
						|
 * have to squeeze as much as possible - it is allowed, but not necessary.
 | 
						|
 *
 | 
						|
 * For raw_copy_from_user() to always points to kernel memory and no faults
 | 
						|
 * on store should happen.  Interpretation of from is affected by set_fs().
 | 
						|
 * For raw_copy_to_user() it's the other way round.
 | 
						|
 *
 | 
						|
 * Both can be inlined - it's up to architectures whether it wants to bother
 | 
						|
 * with that.  They should not be used directly; they are used to implement
 | 
						|
 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
 | 
						|
 * that are used instead.  Out of those, __... ones are inlined.  Plain
 | 
						|
 * copy_{to,from}_user() might or might not be inlined.  If you want them
 | 
						|
 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
 | 
						|
 *
 | 
						|
 * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
 | 
						|
 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
 | 
						|
 * at all; their callers absolutely must check the return value.
 | 
						|
 *
 | 
						|
 * Biarch ones should also provide raw_copy_in_user() - similar to the above,
 | 
						|
 * but both source and destination are __user pointers (affected by set_fs()
 | 
						|
 * as usual) and both source and destination can trigger faults.
 | 
						|
 */
 | 
						|
 | 
						|
static __always_inline __must_check unsigned long
 | 
						|
__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
 | 
						|
{
 | 
						|
	unsigned long res;
 | 
						|
 | 
						|
	instrument_copy_from_user_before(to, from, n);
 | 
						|
	check_object_size(to, n, false);
 | 
						|
	res = raw_copy_from_user(to, from, n);
 | 
						|
	instrument_copy_from_user_after(to, from, n, res);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline __must_check unsigned long
 | 
						|
__copy_from_user(void *to, const void __user *from, unsigned long n)
 | 
						|
{
 | 
						|
	unsigned long res;
 | 
						|
 | 
						|
	might_fault();
 | 
						|
	instrument_copy_from_user_before(to, from, n);
 | 
						|
	if (should_fail_usercopy())
 | 
						|
		return n;
 | 
						|
	check_object_size(to, n, false);
 | 
						|
	res = raw_copy_from_user(to, from, n);
 | 
						|
	instrument_copy_from_user_after(to, from, n, res);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
 | 
						|
 * @to:   Destination address, in user space.
 | 
						|
 * @from: Source address, in kernel space.
 | 
						|
 * @n:    Number of bytes to copy.
 | 
						|
 *
 | 
						|
 * Context: User context only.
 | 
						|
 *
 | 
						|
 * Copy data from kernel space to user space.  Caller must check
 | 
						|
 * the specified block with access_ok() before calling this function.
 | 
						|
 * The caller should also make sure he pins the user space address
 | 
						|
 * so that we don't result in page fault and sleep.
 | 
						|
 */
 | 
						|
static __always_inline __must_check unsigned long
 | 
						|
__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
 | 
						|
{
 | 
						|
	if (should_fail_usercopy())
 | 
						|
		return n;
 | 
						|
	instrument_copy_to_user(to, from, n);
 | 
						|
	check_object_size(from, n, true);
 | 
						|
	return raw_copy_to_user(to, from, n);
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline __must_check unsigned long
 | 
						|
__copy_to_user(void __user *to, const void *from, unsigned long n)
 | 
						|
{
 | 
						|
	might_fault();
 | 
						|
	if (should_fail_usercopy())
 | 
						|
		return n;
 | 
						|
	instrument_copy_to_user(to, from, n);
 | 
						|
	check_object_size(from, n, true);
 | 
						|
	return raw_copy_to_user(to, from, n);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Architectures that #define INLINE_COPY_TO_USER use this function
 | 
						|
 * directly in the normal copy_to/from_user(), the other ones go
 | 
						|
 * through an extern _copy_to/from_user(), which expands the same code
 | 
						|
 * here.
 | 
						|
 *
 | 
						|
 * Rust code always uses the extern definition.
 | 
						|
 */
 | 
						|
static inline __must_check unsigned long
 | 
						|
_inline_copy_from_user(void *to, const void __user *from, unsigned long n)
 | 
						|
{
 | 
						|
	unsigned long res = n;
 | 
						|
	might_fault();
 | 
						|
	if (should_fail_usercopy())
 | 
						|
		goto fail;
 | 
						|
	if (can_do_masked_user_access())
 | 
						|
		from = mask_user_address(from);
 | 
						|
	else {
 | 
						|
		if (!access_ok(from, n))
 | 
						|
			goto fail;
 | 
						|
		/*
 | 
						|
		 * Ensure that bad access_ok() speculation will not
 | 
						|
		 * lead to nasty side effects *after* the copy is
 | 
						|
		 * finished:
 | 
						|
		 */
 | 
						|
		barrier_nospec();
 | 
						|
	}
 | 
						|
	instrument_copy_from_user_before(to, from, n);
 | 
						|
	res = raw_copy_from_user(to, from, n);
 | 
						|
	instrument_copy_from_user_after(to, from, n, res);
 | 
						|
	if (likely(!res))
 | 
						|
		return 0;
 | 
						|
fail:
 | 
						|
	memset(to + (n - res), 0, res);
 | 
						|
	return res;
 | 
						|
}
 | 
						|
extern __must_check unsigned long
 | 
						|
_copy_from_user(void *, const void __user *, unsigned long);
 | 
						|
 | 
						|
static inline __must_check unsigned long
 | 
						|
_inline_copy_to_user(void __user *to, const void *from, unsigned long n)
 | 
						|
{
 | 
						|
	might_fault();
 | 
						|
	if (should_fail_usercopy())
 | 
						|
		return n;
 | 
						|
	if (access_ok(to, n)) {
 | 
						|
		instrument_copy_to_user(to, from, n);
 | 
						|
		n = raw_copy_to_user(to, from, n);
 | 
						|
	}
 | 
						|
	return n;
 | 
						|
}
 | 
						|
extern __must_check unsigned long
 | 
						|
_copy_to_user(void __user *, const void *, unsigned long);
 | 
						|
 | 
						|
static __always_inline unsigned long __must_check
 | 
						|
copy_from_user(void *to, const void __user *from, unsigned long n)
 | 
						|
{
 | 
						|
	if (!check_copy_size(to, n, false))
 | 
						|
		return n;
 | 
						|
#ifdef INLINE_COPY_FROM_USER
 | 
						|
	return _inline_copy_from_user(to, from, n);
 | 
						|
#else
 | 
						|
	return _copy_from_user(to, from, n);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline unsigned long __must_check
 | 
						|
copy_to_user(void __user *to, const void *from, unsigned long n)
 | 
						|
{
 | 
						|
	if (!check_copy_size(from, n, true))
 | 
						|
		return n;
 | 
						|
 | 
						|
#ifdef INLINE_COPY_TO_USER
 | 
						|
	return _inline_copy_to_user(to, from, n);
 | 
						|
#else
 | 
						|
	return _copy_to_user(to, from, n);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#ifndef copy_mc_to_kernel
 | 
						|
/*
 | 
						|
 * Without arch opt-in this generic copy_mc_to_kernel() will not handle
 | 
						|
 * #MC (or arch equivalent) during source read.
 | 
						|
 */
 | 
						|
static inline unsigned long __must_check
 | 
						|
copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
 | 
						|
{
 | 
						|
	memcpy(dst, src, cnt);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static __always_inline void pagefault_disabled_inc(void)
 | 
						|
{
 | 
						|
	current->pagefault_disabled++;
 | 
						|
}
 | 
						|
 | 
						|
static __always_inline void pagefault_disabled_dec(void)
 | 
						|
{
 | 
						|
	current->pagefault_disabled--;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * These routines enable/disable the pagefault handler. If disabled, it will
 | 
						|
 * not take any locks and go straight to the fixup table.
 | 
						|
 *
 | 
						|
 * User access methods will not sleep when called from a pagefault_disabled()
 | 
						|
 * environment.
 | 
						|
 */
 | 
						|
static inline void pagefault_disable(void)
 | 
						|
{
 | 
						|
	pagefault_disabled_inc();
 | 
						|
	/*
 | 
						|
	 * make sure to have issued the store before a pagefault
 | 
						|
	 * can hit.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
}
 | 
						|
 | 
						|
static inline void pagefault_enable(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * make sure to issue those last loads/stores before enabling
 | 
						|
	 * the pagefault handler again.
 | 
						|
	 */
 | 
						|
	barrier();
 | 
						|
	pagefault_disabled_dec();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Is the pagefault handler disabled? If so, user access methods will not sleep.
 | 
						|
 */
 | 
						|
static inline bool pagefault_disabled(void)
 | 
						|
{
 | 
						|
	return current->pagefault_disabled != 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The pagefault handler is in general disabled by pagefault_disable() or
 | 
						|
 * when in irq context (via in_atomic()).
 | 
						|
 *
 | 
						|
 * This function should only be used by the fault handlers. Other users should
 | 
						|
 * stick to pagefault_disabled().
 | 
						|
 * Please NEVER use preempt_disable() to disable the fault handler. With
 | 
						|
 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
 | 
						|
 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
 | 
						|
 */
 | 
						|
#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
 | 
						|
 | 
						|
#ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
 | 
						|
 | 
						|
/**
 | 
						|
 * probe_subpage_writeable: probe the user range for write faults at sub-page
 | 
						|
 *			    granularity (e.g. arm64 MTE)
 | 
						|
 * @uaddr: start of address range
 | 
						|
 * @size: size of address range
 | 
						|
 *
 | 
						|
 * Returns 0 on success, the number of bytes not probed on fault.
 | 
						|
 *
 | 
						|
 * It is expected that the caller checked for the write permission of each
 | 
						|
 * page in the range either by put_user() or GUP. The architecture port can
 | 
						|
 * implement a more efficient get_user() probing if the same sub-page faults
 | 
						|
 * are triggered by either a read or a write.
 | 
						|
 */
 | 
						|
static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
 | 
						|
 | 
						|
#ifndef ARCH_HAS_NOCACHE_UACCESS
 | 
						|
 | 
						|
static inline __must_check unsigned long
 | 
						|
__copy_from_user_inatomic_nocache(void *to, const void __user *from,
 | 
						|
				  unsigned long n)
 | 
						|
{
 | 
						|
	return __copy_from_user_inatomic(to, from, n);
 | 
						|
}
 | 
						|
 | 
						|
#endif		/* ARCH_HAS_NOCACHE_UACCESS */
 | 
						|
 | 
						|
extern __must_check int check_zeroed_user(const void __user *from, size_t size);
 | 
						|
 | 
						|
/**
 | 
						|
 * copy_struct_from_user: copy a struct from userspace
 | 
						|
 * @dst:   Destination address, in kernel space. This buffer must be @ksize
 | 
						|
 *         bytes long.
 | 
						|
 * @ksize: Size of @dst struct.
 | 
						|
 * @src:   Source address, in userspace.
 | 
						|
 * @usize: (Alleged) size of @src struct.
 | 
						|
 *
 | 
						|
 * Copies a struct from userspace to kernel space, in a way that guarantees
 | 
						|
 * backwards-compatibility for struct syscall arguments (as long as future
 | 
						|
 * struct extensions are made such that all new fields are *appended* to the
 | 
						|
 * old struct, and zeroed-out new fields have the same meaning as the old
 | 
						|
 * struct).
 | 
						|
 *
 | 
						|
 * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
 | 
						|
 * The recommended usage is something like the following:
 | 
						|
 *
 | 
						|
 *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
 | 
						|
 *   {
 | 
						|
 *      int err;
 | 
						|
 *      struct foo karg = {};
 | 
						|
 *
 | 
						|
 *      if (usize > PAGE_SIZE)
 | 
						|
 *        return -E2BIG;
 | 
						|
 *      if (usize < FOO_SIZE_VER0)
 | 
						|
 *        return -EINVAL;
 | 
						|
 *
 | 
						|
 *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
 | 
						|
 *      if (err)
 | 
						|
 *        return err;
 | 
						|
 *
 | 
						|
 *      // ...
 | 
						|
 *   }
 | 
						|
 *
 | 
						|
 * There are three cases to consider:
 | 
						|
 *  * If @usize == @ksize, then it's copied verbatim.
 | 
						|
 *  * If @usize < @ksize, then the userspace has passed an old struct to a
 | 
						|
 *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
 | 
						|
 *    are to be zero-filled.
 | 
						|
 *  * If @usize > @ksize, then the userspace has passed a new struct to an
 | 
						|
 *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
 | 
						|
 *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
 | 
						|
 *
 | 
						|
 * Returns (in all cases, some data may have been copied):
 | 
						|
 *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
 | 
						|
 *  * -EFAULT: access to userspace failed.
 | 
						|
 */
 | 
						|
static __always_inline __must_check int
 | 
						|
copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
 | 
						|
		      size_t usize)
 | 
						|
{
 | 
						|
	size_t size = min(ksize, usize);
 | 
						|
	size_t rest = max(ksize, usize) - size;
 | 
						|
 | 
						|
	/* Double check if ksize is larger than a known object size. */
 | 
						|
	if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1)))
 | 
						|
		return -E2BIG;
 | 
						|
 | 
						|
	/* Deal with trailing bytes. */
 | 
						|
	if (usize < ksize) {
 | 
						|
		memset(dst + size, 0, rest);
 | 
						|
	} else if (usize > ksize) {
 | 
						|
		int ret = check_zeroed_user(src + size, rest);
 | 
						|
		if (ret <= 0)
 | 
						|
			return ret ?: -E2BIG;
 | 
						|
	}
 | 
						|
	/* Copy the interoperable parts of the struct. */
 | 
						|
	if (copy_from_user(dst, src, size))
 | 
						|
		return -EFAULT;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * copy_struct_to_user: copy a struct to userspace
 | 
						|
 * @dst:   Destination address, in userspace. This buffer must be @ksize
 | 
						|
 *         bytes long.
 | 
						|
 * @usize: (Alleged) size of @dst struct.
 | 
						|
 * @src:   Source address, in kernel space.
 | 
						|
 * @ksize: Size of @src struct.
 | 
						|
 * @ignored_trailing: Set to %true if there was a non-zero byte in @src that
 | 
						|
 * userspace cannot see because they are using an smaller struct.
 | 
						|
 *
 | 
						|
 * Copies a struct from kernel space to userspace, in a way that guarantees
 | 
						|
 * backwards-compatibility for struct syscall arguments (as long as future
 | 
						|
 * struct extensions are made such that all new fields are *appended* to the
 | 
						|
 * old struct, and zeroed-out new fields have the same meaning as the old
 | 
						|
 * struct).
 | 
						|
 *
 | 
						|
 * Some syscalls may wish to make sure that userspace knows about everything in
 | 
						|
 * the struct, and if there is a non-zero value that userspce doesn't know
 | 
						|
 * about, they want to return an error (such as -EMSGSIZE) or have some other
 | 
						|
 * fallback (such as adding a "you're missing some information" flag). If
 | 
						|
 * @ignored_trailing is non-%NULL, it will be set to %true if there was a
 | 
						|
 * non-zero byte that could not be copied to userspace (ie. was past @usize).
 | 
						|
 *
 | 
						|
 * While unconditionally returning an error in this case is the simplest
 | 
						|
 * solution, for maximum backward compatibility you should try to only return
 | 
						|
 * -EMSGSIZE if the user explicitly requested the data that couldn't be copied.
 | 
						|
 * Note that structure sizes can change due to header changes and simple
 | 
						|
 * recompilations without code changes(!), so if you care about
 | 
						|
 * @ignored_trailing you probably want to make sure that any new field data is
 | 
						|
 * associated with a flag. Otherwise you might assume that a program knows
 | 
						|
 * about data it does not.
 | 
						|
 *
 | 
						|
 * @ksize is just sizeof(*src), and @usize should've been passed by userspace.
 | 
						|
 * The recommended usage is something like the following:
 | 
						|
 *
 | 
						|
 *   SYSCALL_DEFINE2(foobar, struct foo __user *, uarg, size_t, usize)
 | 
						|
 *   {
 | 
						|
 *      int err;
 | 
						|
 *      bool ignored_trailing;
 | 
						|
 *      struct foo karg = {};
 | 
						|
 *
 | 
						|
 *      if (usize > PAGE_SIZE)
 | 
						|
 *		return -E2BIG;
 | 
						|
 *      if (usize < FOO_SIZE_VER0)
 | 
						|
 *		return -EINVAL;
 | 
						|
 *
 | 
						|
 *      // ... modify karg somehow ...
 | 
						|
 *
 | 
						|
 *      err = copy_struct_to_user(uarg, usize, &karg, sizeof(karg),
 | 
						|
 *				  &ignored_trailing);
 | 
						|
 *      if (err)
 | 
						|
 *		return err;
 | 
						|
 *      if (ignored_trailing)
 | 
						|
 *		return -EMSGSIZE:
 | 
						|
 *
 | 
						|
 *      // ...
 | 
						|
 *   }
 | 
						|
 *
 | 
						|
 * There are three cases to consider:
 | 
						|
 *  * If @usize == @ksize, then it's copied verbatim.
 | 
						|
 *  * If @usize < @ksize, then the kernel is trying to pass userspace a newer
 | 
						|
 *    struct than it supports. Thus we only copy the interoperable portions
 | 
						|
 *    (@usize) and ignore the rest (but @ignored_trailing is set to %true if
 | 
						|
 *    any of the trailing (@ksize - @usize) bytes are non-zero).
 | 
						|
 *  * If @usize > @ksize, then the kernel is trying to pass userspace an older
 | 
						|
 *    struct than userspace supports. In order to make sure the
 | 
						|
 *    unknown-to-the-kernel fields don't contain garbage values, we zero the
 | 
						|
 *    trailing (@usize - @ksize) bytes.
 | 
						|
 *
 | 
						|
 * Returns (in all cases, some data may have been copied):
 | 
						|
 *  * -EFAULT: access to userspace failed.
 | 
						|
 */
 | 
						|
static __always_inline __must_check int
 | 
						|
copy_struct_to_user(void __user *dst, size_t usize, const void *src,
 | 
						|
		    size_t ksize, bool *ignored_trailing)
 | 
						|
{
 | 
						|
	size_t size = min(ksize, usize);
 | 
						|
	size_t rest = max(ksize, usize) - size;
 | 
						|
 | 
						|
	/* Double check if ksize is larger than a known object size. */
 | 
						|
	if (WARN_ON_ONCE(ksize > __builtin_object_size(src, 1)))
 | 
						|
		return -E2BIG;
 | 
						|
 | 
						|
	/* Deal with trailing bytes. */
 | 
						|
	if (usize > ksize) {
 | 
						|
		if (clear_user(dst + size, rest))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
	if (ignored_trailing)
 | 
						|
		*ignored_trailing = ksize < usize &&
 | 
						|
			memchr_inv(src + size, 0, rest) != NULL;
 | 
						|
	/* Copy the interoperable parts of the struct. */
 | 
						|
	if (copy_to_user(dst, src, size))
 | 
						|
		return -EFAULT;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
 | 
						|
 | 
						|
long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
 | 
						|
long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
 | 
						|
 | 
						|
long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
 | 
						|
long notrace copy_to_user_nofault(void __user *dst, const void *src,
 | 
						|
		size_t size);
 | 
						|
 | 
						|
long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
 | 
						|
		long count);
 | 
						|
 | 
						|
long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
 | 
						|
		long count);
 | 
						|
long strnlen_user_nofault(const void __user *unsafe_addr, long count);
 | 
						|
 | 
						|
#ifndef __get_kernel_nofault
 | 
						|
#define __get_kernel_nofault(dst, src, type, label)	\
 | 
						|
do {							\
 | 
						|
	type __user *p = (type __force __user *)(src);	\
 | 
						|
	type data;					\
 | 
						|
	if (__get_user(data, p))			\
 | 
						|
		goto label;				\
 | 
						|
	*(type *)dst = data;				\
 | 
						|
} while (0)
 | 
						|
 | 
						|
#define __put_kernel_nofault(dst, src, type, label)	\
 | 
						|
do {							\
 | 
						|
	type __user *p = (type __force __user *)(dst);	\
 | 
						|
	type data = *(type *)src;			\
 | 
						|
	if (__put_user(data, p))			\
 | 
						|
		goto label;				\
 | 
						|
} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * get_kernel_nofault(): safely attempt to read from a location
 | 
						|
 * @val: read into this variable
 | 
						|
 * @ptr: address to read from
 | 
						|
 *
 | 
						|
 * Returns 0 on success, or -EFAULT.
 | 
						|
 */
 | 
						|
#define get_kernel_nofault(val, ptr) ({				\
 | 
						|
	const typeof(val) *__gk_ptr = (ptr);			\
 | 
						|
	copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
 | 
						|
})
 | 
						|
 | 
						|
#ifndef user_access_begin
 | 
						|
#define user_access_begin(ptr,len) access_ok(ptr, len)
 | 
						|
#define user_access_end() do { } while (0)
 | 
						|
#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
 | 
						|
#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
 | 
						|
#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
 | 
						|
#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
 | 
						|
#define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
 | 
						|
static inline unsigned long user_access_save(void) { return 0UL; }
 | 
						|
static inline void user_access_restore(unsigned long flags) { }
 | 
						|
#endif
 | 
						|
#ifndef user_write_access_begin
 | 
						|
#define user_write_access_begin user_access_begin
 | 
						|
#define user_write_access_end user_access_end
 | 
						|
#endif
 | 
						|
#ifndef user_read_access_begin
 | 
						|
#define user_read_access_begin user_access_begin
 | 
						|
#define user_read_access_end user_access_end
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_HARDENED_USERCOPY
 | 
						|
void __noreturn usercopy_abort(const char *name, const char *detail,
 | 
						|
			       bool to_user, unsigned long offset,
 | 
						|
			       unsigned long len);
 | 
						|
#endif
 | 
						|
 | 
						|
#endif		/* __LINUX_UACCESS_H__ */
 |