forked from mirrors/linux
		
	The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
        kmalloc(a * b, gfp)
with:
        kmalloc_array(a * b, gfp)
as well as handling cases of:
        kmalloc(a * b * c, gfp)
with:
        kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
        kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
        kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
		
	
			
		
			
				
	
	
		
			335 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			335 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 *  linux/fs/hpfs/map.c
 | 
						|
 *
 | 
						|
 *  Mikulas Patocka (mikulas@artax.karlin.mff.cuni.cz), 1998-1999
 | 
						|
 *
 | 
						|
 *  mapping structures to memory with some minimal checks
 | 
						|
 */
 | 
						|
 | 
						|
#include "hpfs_fn.h"
 | 
						|
 | 
						|
__le32 *hpfs_map_dnode_bitmap(struct super_block *s, struct quad_buffer_head *qbh)
 | 
						|
{
 | 
						|
	return hpfs_map_4sectors(s, hpfs_sb(s)->sb_dmap, qbh, 0);
 | 
						|
}
 | 
						|
 | 
						|
__le32 *hpfs_map_bitmap(struct super_block *s, unsigned bmp_block,
 | 
						|
			 struct quad_buffer_head *qbh, char *id)
 | 
						|
{
 | 
						|
	secno sec;
 | 
						|
	__le32 *ret;
 | 
						|
	unsigned n_bands = (hpfs_sb(s)->sb_fs_size + 0x3fff) >> 14;
 | 
						|
	if (hpfs_sb(s)->sb_chk) if (bmp_block >= n_bands) {
 | 
						|
		hpfs_error(s, "hpfs_map_bitmap called with bad parameter: %08x at %s", bmp_block, id);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	sec = le32_to_cpu(hpfs_sb(s)->sb_bmp_dir[bmp_block]);
 | 
						|
	if (!sec || sec > hpfs_sb(s)->sb_fs_size-4) {
 | 
						|
		hpfs_error(s, "invalid bitmap block pointer %08x -> %08x at %s", bmp_block, sec, id);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	ret = hpfs_map_4sectors(s, sec, qbh, 4);
 | 
						|
	if (ret) hpfs_prefetch_bitmap(s, bmp_block + 1);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void hpfs_prefetch_bitmap(struct super_block *s, unsigned bmp_block)
 | 
						|
{
 | 
						|
	unsigned to_prefetch, next_prefetch;
 | 
						|
	unsigned n_bands = (hpfs_sb(s)->sb_fs_size + 0x3fff) >> 14;
 | 
						|
	if (unlikely(bmp_block >= n_bands))
 | 
						|
		return;
 | 
						|
	to_prefetch = le32_to_cpu(hpfs_sb(s)->sb_bmp_dir[bmp_block]);
 | 
						|
	if (unlikely(bmp_block + 1 >= n_bands))
 | 
						|
		next_prefetch = 0;
 | 
						|
	else
 | 
						|
		next_prefetch = le32_to_cpu(hpfs_sb(s)->sb_bmp_dir[bmp_block + 1]);
 | 
						|
	hpfs_prefetch_sectors(s, to_prefetch, 4 + 4 * (to_prefetch + 4 == next_prefetch));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Load first code page into kernel memory, return pointer to 256-byte array,
 | 
						|
 * first 128 bytes are uppercasing table for chars 128-255, next 128 bytes are
 | 
						|
 * lowercasing table
 | 
						|
 */
 | 
						|
 | 
						|
unsigned char *hpfs_load_code_page(struct super_block *s, secno cps)
 | 
						|
{
 | 
						|
	struct buffer_head *bh;
 | 
						|
	secno cpds;
 | 
						|
	unsigned cpi;
 | 
						|
	unsigned char *ptr;
 | 
						|
	unsigned char *cp_table;
 | 
						|
	int i;
 | 
						|
	struct code_page_data *cpd;
 | 
						|
	struct code_page_directory *cp = hpfs_map_sector(s, cps, &bh, 0);
 | 
						|
	if (!cp) return NULL;
 | 
						|
	if (le32_to_cpu(cp->magic) != CP_DIR_MAGIC) {
 | 
						|
		pr_err("Code page directory magic doesn't match (magic = %08x)\n",
 | 
						|
			le32_to_cpu(cp->magic));
 | 
						|
		brelse(bh);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if (!le32_to_cpu(cp->n_code_pages)) {
 | 
						|
		pr_err("n_code_pages == 0\n");
 | 
						|
		brelse(bh);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	cpds = le32_to_cpu(cp->array[0].code_page_data);
 | 
						|
	cpi = le16_to_cpu(cp->array[0].index);
 | 
						|
	brelse(bh);
 | 
						|
 | 
						|
	if (cpi >= 3) {
 | 
						|
		pr_err("Code page index out of array\n");
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (!(cpd = hpfs_map_sector(s, cpds, &bh, 0))) return NULL;
 | 
						|
	if (le16_to_cpu(cpd->offs[cpi]) > 0x178) {
 | 
						|
		pr_err("Code page index out of sector\n");
 | 
						|
		brelse(bh);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	ptr = (unsigned char *)cpd + le16_to_cpu(cpd->offs[cpi]) + 6;
 | 
						|
	if (!(cp_table = kmalloc(256, GFP_KERNEL))) {
 | 
						|
		pr_err("out of memory for code page table\n");
 | 
						|
		brelse(bh);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	memcpy(cp_table, ptr, 128);
 | 
						|
	brelse(bh);
 | 
						|
 | 
						|
	/* Try to build lowercasing table from uppercasing one */
 | 
						|
 | 
						|
	for (i=128; i<256; i++) cp_table[i]=i;
 | 
						|
	for (i=128; i<256; i++) if (cp_table[i-128]!=i && cp_table[i-128]>=128)
 | 
						|
		cp_table[cp_table[i-128]] = i;
 | 
						|
	
 | 
						|
	return cp_table;
 | 
						|
}
 | 
						|
 | 
						|
__le32 *hpfs_load_bitmap_directory(struct super_block *s, secno bmp)
 | 
						|
{
 | 
						|
	struct buffer_head *bh;
 | 
						|
	int n = (hpfs_sb(s)->sb_fs_size + 0x200000 - 1) >> 21;
 | 
						|
	int i;
 | 
						|
	__le32 *b;
 | 
						|
	if (!(b = kmalloc_array(n, 512, GFP_KERNEL))) {
 | 
						|
		pr_err("can't allocate memory for bitmap directory\n");
 | 
						|
		return NULL;
 | 
						|
	}	
 | 
						|
	for (i=0;i<n;i++) {
 | 
						|
		__le32 *d = hpfs_map_sector(s, bmp+i, &bh, n - i - 1);
 | 
						|
		if (!d) {
 | 
						|
			kfree(b);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
		memcpy((char *)b + 512 * i, d, 512);
 | 
						|
		brelse(bh);
 | 
						|
	}
 | 
						|
	return b;
 | 
						|
}
 | 
						|
 | 
						|
void hpfs_load_hotfix_map(struct super_block *s, struct hpfs_spare_block *spareblock)
 | 
						|
{
 | 
						|
	struct quad_buffer_head qbh;
 | 
						|
	__le32 *directory;
 | 
						|
	u32 n_hotfixes, n_used_hotfixes;
 | 
						|
	unsigned i;
 | 
						|
 | 
						|
	n_hotfixes = le32_to_cpu(spareblock->n_spares);
 | 
						|
	n_used_hotfixes = le32_to_cpu(spareblock->n_spares_used);
 | 
						|
 | 
						|
	if (n_hotfixes > 256 || n_used_hotfixes > n_hotfixes) {
 | 
						|
		hpfs_error(s, "invalid number of hotfixes: %u, used: %u", n_hotfixes, n_used_hotfixes);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	if (!(directory = hpfs_map_4sectors(s, le32_to_cpu(spareblock->hotfix_map), &qbh, 0))) {
 | 
						|
		hpfs_error(s, "can't load hotfix map");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	for (i = 0; i < n_used_hotfixes; i++) {
 | 
						|
		hpfs_sb(s)->hotfix_from[i] = le32_to_cpu(directory[i]);
 | 
						|
		hpfs_sb(s)->hotfix_to[i] = le32_to_cpu(directory[n_hotfixes + i]);
 | 
						|
	}
 | 
						|
	hpfs_sb(s)->n_hotfixes = n_used_hotfixes;
 | 
						|
	hpfs_brelse4(&qbh);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Load fnode to memory
 | 
						|
 */
 | 
						|
 | 
						|
struct fnode *hpfs_map_fnode(struct super_block *s, ino_t ino, struct buffer_head **bhp)
 | 
						|
{
 | 
						|
	struct fnode *fnode;
 | 
						|
	if (hpfs_sb(s)->sb_chk) if (hpfs_chk_sectors(s, ino, 1, "fnode")) {
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	if ((fnode = hpfs_map_sector(s, ino, bhp, FNODE_RD_AHEAD))) {
 | 
						|
		if (hpfs_sb(s)->sb_chk) {
 | 
						|
			struct extended_attribute *ea;
 | 
						|
			struct extended_attribute *ea_end;
 | 
						|
			if (le32_to_cpu(fnode->magic) != FNODE_MAGIC) {
 | 
						|
				hpfs_error(s, "bad magic on fnode %08lx",
 | 
						|
					(unsigned long)ino);
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			if (!fnode_is_dir(fnode)) {
 | 
						|
				if ((unsigned)fnode->btree.n_used_nodes + (unsigned)fnode->btree.n_free_nodes !=
 | 
						|
				    (bp_internal(&fnode->btree) ? 12 : 8)) {
 | 
						|
					hpfs_error(s,
 | 
						|
					   "bad number of nodes in fnode %08lx",
 | 
						|
					    (unsigned long)ino);
 | 
						|
					goto bail;
 | 
						|
				}
 | 
						|
				if (le16_to_cpu(fnode->btree.first_free) !=
 | 
						|
				    8 + fnode->btree.n_used_nodes * (bp_internal(&fnode->btree) ? 8 : 12)) {
 | 
						|
					hpfs_error(s,
 | 
						|
					    "bad first_free pointer in fnode %08lx",
 | 
						|
					    (unsigned long)ino);
 | 
						|
					goto bail;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (le16_to_cpu(fnode->ea_size_s) && (le16_to_cpu(fnode->ea_offs) < 0xc4 ||
 | 
						|
			   le16_to_cpu(fnode->ea_offs) + le16_to_cpu(fnode->acl_size_s) + le16_to_cpu(fnode->ea_size_s) > 0x200)) {
 | 
						|
				hpfs_error(s,
 | 
						|
					"bad EA info in fnode %08lx: ea_offs == %04x ea_size_s == %04x",
 | 
						|
					(unsigned long)ino,
 | 
						|
					le16_to_cpu(fnode->ea_offs), le16_to_cpu(fnode->ea_size_s));
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			ea = fnode_ea(fnode);
 | 
						|
			ea_end = fnode_end_ea(fnode);
 | 
						|
			while (ea != ea_end) {
 | 
						|
				if (ea > ea_end) {
 | 
						|
					hpfs_error(s, "bad EA in fnode %08lx",
 | 
						|
						(unsigned long)ino);
 | 
						|
					goto bail;
 | 
						|
				}
 | 
						|
				ea = next_ea(ea);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return fnode;
 | 
						|
	bail:
 | 
						|
	brelse(*bhp);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
struct anode *hpfs_map_anode(struct super_block *s, anode_secno ano, struct buffer_head **bhp)
 | 
						|
{
 | 
						|
	struct anode *anode;
 | 
						|
	if (hpfs_sb(s)->sb_chk) if (hpfs_chk_sectors(s, ano, 1, "anode")) return NULL;
 | 
						|
	if ((anode = hpfs_map_sector(s, ano, bhp, ANODE_RD_AHEAD)))
 | 
						|
		if (hpfs_sb(s)->sb_chk) {
 | 
						|
			if (le32_to_cpu(anode->magic) != ANODE_MAGIC) {
 | 
						|
				hpfs_error(s, "bad magic on anode %08x", ano);
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			if (le32_to_cpu(anode->self) != ano) {
 | 
						|
				hpfs_error(s, "self pointer invalid on anode %08x", ano);
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			if ((unsigned)anode->btree.n_used_nodes + (unsigned)anode->btree.n_free_nodes !=
 | 
						|
			    (bp_internal(&anode->btree) ? 60 : 40)) {
 | 
						|
				hpfs_error(s, "bad number of nodes in anode %08x", ano);
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			if (le16_to_cpu(anode->btree.first_free) !=
 | 
						|
			    8 + anode->btree.n_used_nodes * (bp_internal(&anode->btree) ? 8 : 12)) {
 | 
						|
				hpfs_error(s, "bad first_free pointer in anode %08x", ano);
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	return anode;
 | 
						|
	bail:
 | 
						|
	brelse(*bhp);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Load dnode to memory and do some checks
 | 
						|
 */
 | 
						|
 | 
						|
struct dnode *hpfs_map_dnode(struct super_block *s, unsigned secno,
 | 
						|
			     struct quad_buffer_head *qbh)
 | 
						|
{
 | 
						|
	struct dnode *dnode;
 | 
						|
	if (hpfs_sb(s)->sb_chk) {
 | 
						|
		if (hpfs_chk_sectors(s, secno, 4, "dnode")) return NULL;
 | 
						|
		if (secno & 3) {
 | 
						|
			hpfs_error(s, "dnode %08x not byte-aligned", secno);
 | 
						|
			return NULL;
 | 
						|
		}	
 | 
						|
	}
 | 
						|
	if ((dnode = hpfs_map_4sectors(s, secno, qbh, DNODE_RD_AHEAD)))
 | 
						|
		if (hpfs_sb(s)->sb_chk) {
 | 
						|
			unsigned p, pp = 0;
 | 
						|
			unsigned char *d = (unsigned char *)dnode;
 | 
						|
			int b = 0;
 | 
						|
			if (le32_to_cpu(dnode->magic) != DNODE_MAGIC) {
 | 
						|
				hpfs_error(s, "bad magic on dnode %08x", secno);
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			if (le32_to_cpu(dnode->self) != secno)
 | 
						|
				hpfs_error(s, "bad self pointer on dnode %08x self = %08x", secno, le32_to_cpu(dnode->self));
 | 
						|
			/* Check dirents - bad dirents would cause infinite
 | 
						|
			   loops or shooting to memory */
 | 
						|
			if (le32_to_cpu(dnode->first_free) > 2048) {
 | 
						|
				hpfs_error(s, "dnode %08x has first_free == %08x", secno, le32_to_cpu(dnode->first_free));
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			for (p = 20; p < le32_to_cpu(dnode->first_free); p += d[p] + (d[p+1] << 8)) {
 | 
						|
				struct hpfs_dirent *de = (struct hpfs_dirent *)((char *)dnode + p);
 | 
						|
				if (le16_to_cpu(de->length) > 292 || (le16_to_cpu(de->length) < 32) || (le16_to_cpu(de->length) & 3) || p + le16_to_cpu(de->length) > 2048) {
 | 
						|
					hpfs_error(s, "bad dirent size in dnode %08x, dirent %03x, last %03x", secno, p, pp);
 | 
						|
					goto bail;
 | 
						|
				}
 | 
						|
				if (((31 + de->namelen + de->down*4 + 3) & ~3) != le16_to_cpu(de->length)) {
 | 
						|
					if (((31 + de->namelen + de->down*4 + 3) & ~3) < le16_to_cpu(de->length) && s->s_flags & SB_RDONLY) goto ok;
 | 
						|
					hpfs_error(s, "namelen does not match dirent size in dnode %08x, dirent %03x, last %03x", secno, p, pp);
 | 
						|
					goto bail;
 | 
						|
				}
 | 
						|
				ok:
 | 
						|
				if (hpfs_sb(s)->sb_chk >= 2) b |= 1 << de->down;
 | 
						|
				if (de->down) if (de_down_pointer(de) < 0x10) {
 | 
						|
					hpfs_error(s, "bad down pointer in dnode %08x, dirent %03x, last %03x", secno, p, pp);
 | 
						|
					goto bail;
 | 
						|
				}
 | 
						|
				pp = p;
 | 
						|
				
 | 
						|
			}
 | 
						|
			if (p != le32_to_cpu(dnode->first_free)) {
 | 
						|
				hpfs_error(s, "size on last dirent does not match first_free; dnode %08x", secno);
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			if (d[pp + 30] != 1 || d[pp + 31] != 255) {
 | 
						|
				hpfs_error(s, "dnode %08x does not end with \\377 entry", secno);
 | 
						|
				goto bail;
 | 
						|
			}
 | 
						|
			if (b == 3)
 | 
						|
				pr_err("unbalanced dnode tree, dnode %08x; see hpfs.txt 4 more info\n",
 | 
						|
					secno);
 | 
						|
		}
 | 
						|
	return dnode;
 | 
						|
	bail:
 | 
						|
	hpfs_brelse4(qbh);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
dnode_secno hpfs_fnode_dno(struct super_block *s, ino_t ino)
 | 
						|
{
 | 
						|
	struct buffer_head *bh;
 | 
						|
	struct fnode *fnode;
 | 
						|
	dnode_secno dno;
 | 
						|
 | 
						|
	fnode = hpfs_map_fnode(s, ino, &bh);
 | 
						|
	if (!fnode)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	dno = le32_to_cpu(fnode->u.external[0].disk_secno);
 | 
						|
	brelse(bh);
 | 
						|
	return dno;
 | 
						|
}
 |