forked from mirrors/linux
		
	 ce2ea89ba1
			
		
	
	
		ce2ea89ba1
		
	
	
	
	
		
			
			GFP_ZONETYPES calculate from GFP_ZONEMASK GFP_ZONETYPES's value is directly related to the value of GFP_ZONEMASK. It takes one of two forms depending whether the top bit of GFP_ZONEMASK is a 'loner'. Supply both forms, enabling the loner. Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			654 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			654 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _LINUX_MMZONE_H
 | |
| #define _LINUX_MMZONE_H
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| #include <linux/config.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/numa.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/seqlock.h>
 | |
| #include <asm/atomic.h>
 | |
| 
 | |
| /* Free memory management - zoned buddy allocator.  */
 | |
| #ifndef CONFIG_FORCE_MAX_ZONEORDER
 | |
| #define MAX_ORDER 11
 | |
| #else
 | |
| #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
 | |
| #endif
 | |
| 
 | |
| struct free_area {
 | |
| 	struct list_head	free_list;
 | |
| 	unsigned long		nr_free;
 | |
| };
 | |
| 
 | |
| struct pglist_data;
 | |
| 
 | |
| /*
 | |
|  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 | |
|  * So add a wild amount of padding here to ensure that they fall into separate
 | |
|  * cachelines.  There are very few zone structures in the machine, so space
 | |
|  * consumption is not a concern here.
 | |
|  */
 | |
| #if defined(CONFIG_SMP)
 | |
| struct zone_padding {
 | |
| 	char x[0];
 | |
| } ____cacheline_internodealigned_in_smp;
 | |
| #define ZONE_PADDING(name)	struct zone_padding name;
 | |
| #else
 | |
| #define ZONE_PADDING(name)
 | |
| #endif
 | |
| 
 | |
| struct per_cpu_pages {
 | |
| 	int count;		/* number of pages in the list */
 | |
| 	int high;		/* high watermark, emptying needed */
 | |
| 	int batch;		/* chunk size for buddy add/remove */
 | |
| 	struct list_head list;	/* the list of pages */
 | |
| };
 | |
| 
 | |
| struct per_cpu_pageset {
 | |
| 	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
 | |
| #ifdef CONFIG_NUMA
 | |
| 	unsigned long numa_hit;		/* allocated in intended node */
 | |
| 	unsigned long numa_miss;	/* allocated in non intended node */
 | |
| 	unsigned long numa_foreign;	/* was intended here, hit elsewhere */
 | |
| 	unsigned long interleave_hit; 	/* interleaver prefered this zone */
 | |
| 	unsigned long local_node;	/* allocation from local node */
 | |
| 	unsigned long other_node;	/* allocation from other node */
 | |
| #endif
 | |
| } ____cacheline_aligned_in_smp;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
 | |
| #else
 | |
| #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
 | |
| #endif
 | |
| 
 | |
| #define ZONE_DMA		0
 | |
| #define ZONE_DMA32		1
 | |
| #define ZONE_NORMAL		2
 | |
| #define ZONE_HIGHMEM		3
 | |
| 
 | |
| #define MAX_NR_ZONES		4	/* Sync this with ZONES_SHIFT */
 | |
| #define ZONES_SHIFT		2	/* ceil(log2(MAX_NR_ZONES)) */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * When a memory allocation must conform to specific limitations (such
 | |
|  * as being suitable for DMA) the caller will pass in hints to the
 | |
|  * allocator in the gfp_mask, in the zone modifier bits.  These bits
 | |
|  * are used to select a priority ordered list of memory zones which
 | |
|  * match the requested limits.  GFP_ZONEMASK defines which bits within
 | |
|  * the gfp_mask should be considered as zone modifiers.  Each valid
 | |
|  * combination of the zone modifier bits has a corresponding list
 | |
|  * of zones (in node_zonelists).  Thus for two zone modifiers there
 | |
|  * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
 | |
|  * be 8 (2 ** 3) zonelists.  GFP_ZONETYPES defines the number of possible
 | |
|  * combinations of zone modifiers in "zone modifier space".
 | |
|  *
 | |
|  * As an optimisation any zone modifier bits which are only valid when
 | |
|  * no other zone modifier bits are set (loners) should be placed in
 | |
|  * the highest order bits of this field.  This allows us to reduce the
 | |
|  * extent of the zonelists thus saving space.  For example in the case
 | |
|  * of three zone modifier bits, we could require up to eight zonelists.
 | |
|  * If the left most zone modifier is a "loner" then the highest valid
 | |
|  * zonelist would be four allowing us to allocate only five zonelists.
 | |
|  * Use the first form for GFP_ZONETYPES when the left most bit is not
 | |
|  * a "loner", otherwise use the second.
 | |
|  *
 | |
|  * NOTE! Make sure this matches the zones in <linux/gfp.h>
 | |
|  */
 | |
| #define GFP_ZONEMASK	0x07
 | |
| /* #define GFP_ZONETYPES       (GFP_ZONEMASK + 1) */           /* Non-loner */
 | |
| #define GFP_ZONETYPES  ((GFP_ZONEMASK + 1) / 2 + 1)            /* Loner */
 | |
| 
 | |
| /*
 | |
|  * On machines where it is needed (eg PCs) we divide physical memory
 | |
|  * into multiple physical zones. On a 32bit PC we have 4 zones:
 | |
|  *
 | |
|  * ZONE_DMA	  < 16 MB	ISA DMA capable memory
 | |
|  * ZONE_DMA32	     0 MB 	Empty
 | |
|  * ZONE_NORMAL	16-896 MB	direct mapped by the kernel
 | |
|  * ZONE_HIGHMEM	 > 896 MB	only page cache and user processes
 | |
|  */
 | |
| 
 | |
| struct zone {
 | |
| 	/* Fields commonly accessed by the page allocator */
 | |
| 	unsigned long		free_pages;
 | |
| 	unsigned long		pages_min, pages_low, pages_high;
 | |
| 	/*
 | |
| 	 * We don't know if the memory that we're going to allocate will be freeable
 | |
| 	 * or/and it will be released eventually, so to avoid totally wasting several
 | |
| 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
 | |
| 	 * to run OOM on the lower zones despite there's tons of freeable ram
 | |
| 	 * on the higher zones). This array is recalculated at runtime if the
 | |
| 	 * sysctl_lowmem_reserve_ratio sysctl changes.
 | |
| 	 */
 | |
| 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	struct per_cpu_pageset	*pageset[NR_CPUS];
 | |
| #else
 | |
| 	struct per_cpu_pageset	pageset[NR_CPUS];
 | |
| #endif
 | |
| 	/*
 | |
| 	 * free areas of different sizes
 | |
| 	 */
 | |
| 	spinlock_t		lock;
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| 	/* see spanned/present_pages for more description */
 | |
| 	seqlock_t		span_seqlock;
 | |
| #endif
 | |
| 	struct free_area	free_area[MAX_ORDER];
 | |
| 
 | |
| 
 | |
| 	ZONE_PADDING(_pad1_)
 | |
| 
 | |
| 	/* Fields commonly accessed by the page reclaim scanner */
 | |
| 	spinlock_t		lru_lock;	
 | |
| 	struct list_head	active_list;
 | |
| 	struct list_head	inactive_list;
 | |
| 	unsigned long		nr_scan_active;
 | |
| 	unsigned long		nr_scan_inactive;
 | |
| 	unsigned long		nr_active;
 | |
| 	unsigned long		nr_inactive;
 | |
| 	unsigned long		pages_scanned;	   /* since last reclaim */
 | |
| 	int			all_unreclaimable; /* All pages pinned */
 | |
| 
 | |
| 	/* A count of how many reclaimers are scanning this zone */
 | |
| 	atomic_t		reclaim_in_progress;
 | |
| 
 | |
| 	/*
 | |
| 	 * timestamp (in jiffies) of the last zone reclaim that did not
 | |
| 	 * result in freeing of pages. This is used to avoid repeated scans
 | |
| 	 * if all memory in the zone is in use.
 | |
| 	 */
 | |
| 	unsigned long		last_unsuccessful_zone_reclaim;
 | |
| 
 | |
| 	/*
 | |
| 	 * prev_priority holds the scanning priority for this zone.  It is
 | |
| 	 * defined as the scanning priority at which we achieved our reclaim
 | |
| 	 * target at the previous try_to_free_pages() or balance_pgdat()
 | |
| 	 * invokation.
 | |
| 	 *
 | |
| 	 * We use prev_priority as a measure of how much stress page reclaim is
 | |
| 	 * under - it drives the swappiness decision: whether to unmap mapped
 | |
| 	 * pages.
 | |
| 	 *
 | |
| 	 * temp_priority is used to remember the scanning priority at which
 | |
| 	 * this zone was successfully refilled to free_pages == pages_high.
 | |
| 	 *
 | |
| 	 * Access to both these fields is quite racy even on uniprocessor.  But
 | |
| 	 * it is expected to average out OK.
 | |
| 	 */
 | |
| 	int temp_priority;
 | |
| 	int prev_priority;
 | |
| 
 | |
| 
 | |
| 	ZONE_PADDING(_pad2_)
 | |
| 	/* Rarely used or read-mostly fields */
 | |
| 
 | |
| 	/*
 | |
| 	 * wait_table		-- the array holding the hash table
 | |
| 	 * wait_table_size	-- the size of the hash table array
 | |
| 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
 | |
| 	 *
 | |
| 	 * The purpose of all these is to keep track of the people
 | |
| 	 * waiting for a page to become available and make them
 | |
| 	 * runnable again when possible. The trouble is that this
 | |
| 	 * consumes a lot of space, especially when so few things
 | |
| 	 * wait on pages at a given time. So instead of using
 | |
| 	 * per-page waitqueues, we use a waitqueue hash table.
 | |
| 	 *
 | |
| 	 * The bucket discipline is to sleep on the same queue when
 | |
| 	 * colliding and wake all in that wait queue when removing.
 | |
| 	 * When something wakes, it must check to be sure its page is
 | |
| 	 * truly available, a la thundering herd. The cost of a
 | |
| 	 * collision is great, but given the expected load of the
 | |
| 	 * table, they should be so rare as to be outweighed by the
 | |
| 	 * benefits from the saved space.
 | |
| 	 *
 | |
| 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 | |
| 	 * primary users of these fields, and in mm/page_alloc.c
 | |
| 	 * free_area_init_core() performs the initialization of them.
 | |
| 	 */
 | |
| 	wait_queue_head_t	* wait_table;
 | |
| 	unsigned long		wait_table_size;
 | |
| 	unsigned long		wait_table_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * Discontig memory support fields.
 | |
| 	 */
 | |
| 	struct pglist_data	*zone_pgdat;
 | |
| 	struct page		*zone_mem_map;
 | |
| 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 | |
| 	unsigned long		zone_start_pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * zone_start_pfn, spanned_pages and present_pages are all
 | |
| 	 * protected by span_seqlock.  It is a seqlock because it has
 | |
| 	 * to be read outside of zone->lock, and it is done in the main
 | |
| 	 * allocator path.  But, it is written quite infrequently.
 | |
| 	 *
 | |
| 	 * The lock is declared along with zone->lock because it is
 | |
| 	 * frequently read in proximity to zone->lock.  It's good to
 | |
| 	 * give them a chance of being in the same cacheline.
 | |
| 	 */
 | |
| 	unsigned long		spanned_pages;	/* total size, including holes */
 | |
| 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
 | |
| 
 | |
| 	/*
 | |
| 	 * rarely used fields:
 | |
| 	 */
 | |
| 	char			*name;
 | |
| } ____cacheline_internodealigned_in_smp;
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The "priority" of VM scanning is how much of the queues we will scan in one
 | |
|  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 | |
|  * queues ("queue_length >> 12") during an aging round.
 | |
|  */
 | |
| #define DEF_PRIORITY 12
 | |
| 
 | |
| /*
 | |
|  * One allocation request operates on a zonelist. A zonelist
 | |
|  * is a list of zones, the first one is the 'goal' of the
 | |
|  * allocation, the other zones are fallback zones, in decreasing
 | |
|  * priority.
 | |
|  *
 | |
|  * Right now a zonelist takes up less than a cacheline. We never
 | |
|  * modify it apart from boot-up, and only a few indices are used,
 | |
|  * so despite the zonelist table being relatively big, the cache
 | |
|  * footprint of this construct is very small.
 | |
|  */
 | |
| struct zonelist {
 | |
| 	struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 | |
|  * (mostly NUMA machines?) to denote a higher-level memory zone than the
 | |
|  * zone denotes.
 | |
|  *
 | |
|  * On NUMA machines, each NUMA node would have a pg_data_t to describe
 | |
|  * it's memory layout.
 | |
|  *
 | |
|  * Memory statistics and page replacement data structures are maintained on a
 | |
|  * per-zone basis.
 | |
|  */
 | |
| struct bootmem_data;
 | |
| typedef struct pglist_data {
 | |
| 	struct zone node_zones[MAX_NR_ZONES];
 | |
| 	struct zonelist node_zonelists[GFP_ZONETYPES];
 | |
| 	int nr_zones;
 | |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP
 | |
| 	struct page *node_mem_map;
 | |
| #endif
 | |
| 	struct bootmem_data *bdata;
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| 	/*
 | |
| 	 * Must be held any time you expect node_start_pfn, node_present_pages
 | |
| 	 * or node_spanned_pages stay constant.  Holding this will also
 | |
| 	 * guarantee that any pfn_valid() stays that way.
 | |
| 	 *
 | |
| 	 * Nests above zone->lock and zone->size_seqlock.
 | |
| 	 */
 | |
| 	spinlock_t node_size_lock;
 | |
| #endif
 | |
| 	unsigned long node_start_pfn;
 | |
| 	unsigned long node_present_pages; /* total number of physical pages */
 | |
| 	unsigned long node_spanned_pages; /* total size of physical page
 | |
| 					     range, including holes */
 | |
| 	int node_id;
 | |
| 	struct pglist_data *pgdat_next;
 | |
| 	wait_queue_head_t kswapd_wait;
 | |
| 	struct task_struct *kswapd;
 | |
| 	int kswapd_max_order;
 | |
| } pg_data_t;
 | |
| 
 | |
| #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
 | |
| #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
 | |
| #ifdef CONFIG_FLAT_NODE_MEM_MAP
 | |
| #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
 | |
| #else
 | |
| #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 | |
| #endif
 | |
| #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
 | |
| 
 | |
| #include <linux/memory_hotplug.h>
 | |
| 
 | |
| extern struct pglist_data *pgdat_list;
 | |
| 
 | |
| void __get_zone_counts(unsigned long *active, unsigned long *inactive,
 | |
| 			unsigned long *free, struct pglist_data *pgdat);
 | |
| void get_zone_counts(unsigned long *active, unsigned long *inactive,
 | |
| 			unsigned long *free);
 | |
| void build_all_zonelists(void);
 | |
| void wakeup_kswapd(struct zone *zone, int order);
 | |
| int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 | |
| 		int classzone_idx, int alloc_flags);
 | |
| 
 | |
| #ifdef CONFIG_HAVE_MEMORY_PRESENT
 | |
| void memory_present(int nid, unsigned long start, unsigned long end);
 | |
| #else
 | |
| static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 | |
| unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 | |
|  */
 | |
| #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
 | |
| 
 | |
| /**
 | |
|  * for_each_pgdat - helper macro to iterate over all nodes
 | |
|  * @pgdat - pointer to a pg_data_t variable
 | |
|  *
 | |
|  * Meant to help with common loops of the form
 | |
|  * pgdat = pgdat_list;
 | |
|  * while(pgdat) {
 | |
|  * 	...
 | |
|  * 	pgdat = pgdat->pgdat_next;
 | |
|  * }
 | |
|  */
 | |
| #define for_each_pgdat(pgdat) \
 | |
| 	for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
 | |
| 
 | |
| /*
 | |
|  * next_zone - helper magic for for_each_zone()
 | |
|  * Thanks to William Lee Irwin III for this piece of ingenuity.
 | |
|  */
 | |
| static inline struct zone *next_zone(struct zone *zone)
 | |
| {
 | |
| 	pg_data_t *pgdat = zone->zone_pgdat;
 | |
| 
 | |
| 	if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
 | |
| 		zone++;
 | |
| 	else if (pgdat->pgdat_next) {
 | |
| 		pgdat = pgdat->pgdat_next;
 | |
| 		zone = pgdat->node_zones;
 | |
| 	} else
 | |
| 		zone = NULL;
 | |
| 
 | |
| 	return zone;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * for_each_zone - helper macro to iterate over all memory zones
 | |
|  * @zone - pointer to struct zone variable
 | |
|  *
 | |
|  * The user only needs to declare the zone variable, for_each_zone
 | |
|  * fills it in. This basically means for_each_zone() is an
 | |
|  * easier to read version of this piece of code:
 | |
|  *
 | |
|  * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
 | |
|  * 	for (i = 0; i < MAX_NR_ZONES; ++i) {
 | |
|  * 		struct zone * z = pgdat->node_zones + i;
 | |
|  * 		...
 | |
|  * 	}
 | |
|  * }
 | |
|  */
 | |
| #define for_each_zone(zone) \
 | |
| 	for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
 | |
| 
 | |
| static inline int populated_zone(struct zone *zone)
 | |
| {
 | |
| 	return (!!zone->present_pages);
 | |
| }
 | |
| 
 | |
| static inline int is_highmem_idx(int idx)
 | |
| {
 | |
| 	return (idx == ZONE_HIGHMEM);
 | |
| }
 | |
| 
 | |
| static inline int is_normal_idx(int idx)
 | |
| {
 | |
| 	return (idx == ZONE_NORMAL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_highmem - helper function to quickly check if a struct zone is a 
 | |
|  *              highmem zone or not.  This is an attempt to keep references
 | |
|  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 | |
|  * @zone - pointer to struct zone variable
 | |
|  */
 | |
| static inline int is_highmem(struct zone *zone)
 | |
| {
 | |
| 	return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
 | |
| }
 | |
| 
 | |
| static inline int is_normal(struct zone *zone)
 | |
| {
 | |
| 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
 | |
| }
 | |
| 
 | |
| static inline int is_dma32(struct zone *zone)
 | |
| {
 | |
| 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
 | |
| }
 | |
| 
 | |
| static inline int is_dma(struct zone *zone)
 | |
| {
 | |
| 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
 | |
| }
 | |
| 
 | |
| /* These two functions are used to setup the per zone pages min values */
 | |
| struct ctl_table;
 | |
| struct file;
 | |
| int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 
 | |
| 					void __user *, size_t *, loff_t *);
 | |
| extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 | |
| int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
 | |
| 					void __user *, size_t *, loff_t *);
 | |
| int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
 | |
| 					void __user *, size_t *, loff_t *);
 | |
| 
 | |
| #include <linux/topology.h>
 | |
| /* Returns the number of the current Node. */
 | |
| #ifndef numa_node_id
 | |
| #define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES
 | |
| 
 | |
| extern struct pglist_data contig_page_data;
 | |
| #define NODE_DATA(nid)		(&contig_page_data)
 | |
| #define NODE_MEM_MAP(nid)	mem_map
 | |
| #define MAX_NODES_SHIFT		1
 | |
| 
 | |
| #else /* CONFIG_NEED_MULTIPLE_NODES */
 | |
| 
 | |
| #include <asm/mmzone.h>
 | |
| 
 | |
| #endif /* !CONFIG_NEED_MULTIPLE_NODES */
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| #include <asm/sparsemem.h>
 | |
| #endif
 | |
| 
 | |
| #if BITS_PER_LONG == 32
 | |
| /*
 | |
|  * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
 | |
|  * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
 | |
|  */
 | |
| #define FLAGS_RESERVED		9
 | |
| 
 | |
| #elif BITS_PER_LONG == 64
 | |
| /*
 | |
|  * with 64 bit flags field, there's plenty of room.
 | |
|  */
 | |
| #define FLAGS_RESERVED		32
 | |
| 
 | |
| #else
 | |
| 
 | |
| #error BITS_PER_LONG not defined
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
 | |
| #define early_pfn_to_nid(nid)  (0UL)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FLATMEM
 | |
| #define pfn_to_nid(pfn)		(0)
 | |
| #endif
 | |
| 
 | |
| #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
 | |
| #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM
 | |
| 
 | |
| /*
 | |
|  * SECTION_SHIFT    		#bits space required to store a section #
 | |
|  *
 | |
|  * PA_SECTION_SHIFT		physical address to/from section number
 | |
|  * PFN_SECTION_SHIFT		pfn to/from section number
 | |
|  */
 | |
| #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
 | |
| 
 | |
| #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
 | |
| #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
 | |
| 
 | |
| #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
 | |
| 
 | |
| #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
 | |
| #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
 | |
| 
 | |
| #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
 | |
| #error Allocator MAX_ORDER exceeds SECTION_SIZE
 | |
| #endif
 | |
| 
 | |
| struct page;
 | |
| struct mem_section {
 | |
| 	/*
 | |
| 	 * This is, logically, a pointer to an array of struct
 | |
| 	 * pages.  However, it is stored with some other magic.
 | |
| 	 * (see sparse.c::sparse_init_one_section())
 | |
| 	 *
 | |
| 	 * Making it a UL at least makes someone do a cast
 | |
| 	 * before using it wrong.
 | |
| 	 */
 | |
| 	unsigned long section_mem_map;
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_EXTREME
 | |
| #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
 | |
| #else
 | |
| #define SECTIONS_PER_ROOT	1
 | |
| #endif
 | |
| 
 | |
| #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
 | |
| #define NR_SECTION_ROOTS	(NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
 | |
| #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_EXTREME
 | |
| extern struct mem_section *mem_section[NR_SECTION_ROOTS];
 | |
| #else
 | |
| extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
 | |
| #endif
 | |
| 
 | |
| static inline struct mem_section *__nr_to_section(unsigned long nr)
 | |
| {
 | |
| 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
 | |
| 		return NULL;
 | |
| 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
 | |
| }
 | |
| extern int __section_nr(struct mem_section* ms);
 | |
| 
 | |
| /*
 | |
|  * We use the lower bits of the mem_map pointer to store
 | |
|  * a little bit of information.  There should be at least
 | |
|  * 3 bits here due to 32-bit alignment.
 | |
|  */
 | |
| #define	SECTION_MARKED_PRESENT	(1UL<<0)
 | |
| #define SECTION_HAS_MEM_MAP	(1UL<<1)
 | |
| #define SECTION_MAP_LAST_BIT	(1UL<<2)
 | |
| #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
 | |
| 
 | |
| static inline struct page *__section_mem_map_addr(struct mem_section *section)
 | |
| {
 | |
| 	unsigned long map = section->section_mem_map;
 | |
| 	map &= SECTION_MAP_MASK;
 | |
| 	return (struct page *)map;
 | |
| }
 | |
| 
 | |
| static inline int valid_section(struct mem_section *section)
 | |
| {
 | |
| 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
 | |
| }
 | |
| 
 | |
| static inline int section_has_mem_map(struct mem_section *section)
 | |
| {
 | |
| 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
 | |
| }
 | |
| 
 | |
| static inline int valid_section_nr(unsigned long nr)
 | |
| {
 | |
| 	return valid_section(__nr_to_section(nr));
 | |
| }
 | |
| 
 | |
| static inline struct mem_section *__pfn_to_section(unsigned long pfn)
 | |
| {
 | |
| 	return __nr_to_section(pfn_to_section_nr(pfn));
 | |
| }
 | |
| 
 | |
| #define pfn_to_page(pfn) 						\
 | |
| ({ 									\
 | |
| 	unsigned long __pfn = (pfn);					\
 | |
| 	__section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn;	\
 | |
| })
 | |
| #define page_to_pfn(page)						\
 | |
| ({									\
 | |
| 	page - __section_mem_map_addr(__nr_to_section(			\
 | |
| 		page_to_section(page)));				\
 | |
| })
 | |
| 
 | |
| static inline int pfn_valid(unsigned long pfn)
 | |
| {
 | |
| 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
 | |
| 		return 0;
 | |
| 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are _only_ used during initialisation, therefore they
 | |
|  * can use __initdata ...  They could have names to indicate
 | |
|  * this restriction.
 | |
|  */
 | |
| #ifdef CONFIG_NUMA
 | |
| #define pfn_to_nid(pfn)							\
 | |
| ({									\
 | |
| 	unsigned long __pfn_to_nid_pfn = (pfn);				\
 | |
| 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
 | |
| })
 | |
| #else
 | |
| #define pfn_to_nid(pfn)		(0)
 | |
| #endif
 | |
| 
 | |
| #define early_pfn_valid(pfn)	pfn_valid(pfn)
 | |
| void sparse_init(void);
 | |
| #else
 | |
| #define sparse_init()	do {} while (0)
 | |
| #define sparse_index_init(_sec, _nid)  do {} while (0)
 | |
| #endif /* CONFIG_SPARSEMEM */
 | |
| 
 | |
| #ifndef early_pfn_valid
 | |
| #define early_pfn_valid(pfn)	(1)
 | |
| #endif
 | |
| 
 | |
| void memory_present(int nid, unsigned long start, unsigned long end);
 | |
| unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| #endif /* __KERNEL__ */
 | |
| #endif /* _LINUX_MMZONE_H */
 |