forked from mirrors/linux
		
	We already have a generic implementation of alloc/free up to P4D level, as
well as pgd_free().  Let's finish the work and add a generic PGD-level
alloc helper as well.
Unlike at lower levels, almost all architectures need some specific magic
at PGD level (typically initialising PGD entries), so introducing a
generic pgd_alloc() isn't worth it.  Instead we introduce two new helpers,
__pgd_alloc() and __pgd_free(), and make use of them in the arch-specific
pgd_alloc() and pgd_free() wherever possible.  To accommodate as many arch
as possible, __pgd_alloc() takes a page allocation order.
Because pagetable_alloc() allocates zeroed pages, explicit zeroing in
pgd_alloc() becomes redundant and we can get rid of it.  Some trivial
implementations of pgd_free() also become unnecessary once __pgd_alloc()
is used; remove them.
Another small improvement is consistent accounting of PGD pages by using
GFP_PGTABLE_{USER,KERNEL} as appropriate.
Not all PGD allocations can be handled by the generic helpers.  In
particular, multiple architectures allocate PGDs from a kmem_cache, and
those PGDs may not be page-sized.
Link: https://lkml.kernel.org/r/20250103184415.2744423-6-kevin.brodsky@arm.com
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			949 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			949 lines
		
	
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <asm/pgalloc.h>
 | 
						|
#include <asm/tlb.h>
 | 
						|
#include <asm/fixmap.h>
 | 
						|
#include <asm/mtrr.h>
 | 
						|
 | 
						|
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
 | 
						|
phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
 | 
						|
EXPORT_SYMBOL(physical_mask);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_HIGHPTE
 | 
						|
#define PGTABLE_HIGHMEM __GFP_HIGHMEM
 | 
						|
#else
 | 
						|
#define PGTABLE_HIGHMEM 0
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef CONFIG_PARAVIRT
 | 
						|
#ifndef CONFIG_PT_RECLAIM
 | 
						|
static inline
 | 
						|
void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
 | 
						|
{
 | 
						|
	struct ptdesc *ptdesc = (struct ptdesc *)table;
 | 
						|
 | 
						|
	pagetable_dtor(ptdesc);
 | 
						|
	tlb_remove_page(tlb, ptdesc_page(ptdesc));
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline
 | 
						|
void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
 | 
						|
{
 | 
						|
	tlb_remove_table(tlb, table);
 | 
						|
}
 | 
						|
#endif /* !CONFIG_PT_RECLAIM */
 | 
						|
#endif /* !CONFIG_PARAVIRT */
 | 
						|
 | 
						|
gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
 | 
						|
 | 
						|
pgtable_t pte_alloc_one(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	return __pte_alloc_one(mm, __userpte_alloc_gfp);
 | 
						|
}
 | 
						|
 | 
						|
static int __init setup_userpte(char *arg)
 | 
						|
{
 | 
						|
	if (!arg)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * "userpte=nohigh" disables allocation of user pagetables in
 | 
						|
	 * high memory.
 | 
						|
	 */
 | 
						|
	if (strcmp(arg, "nohigh") == 0)
 | 
						|
		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
 | 
						|
	else
 | 
						|
		return -EINVAL;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("userpte", setup_userpte);
 | 
						|
 | 
						|
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
 | 
						|
{
 | 
						|
	paravirt_release_pte(page_to_pfn(pte));
 | 
						|
	paravirt_tlb_remove_table(tlb, page_ptdesc(pte));
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_PGTABLE_LEVELS > 2
 | 
						|
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
 | 
						|
{
 | 
						|
	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
 | 
						|
	/*
 | 
						|
	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
 | 
						|
	 * entries need a full cr3 reload to flush.
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_X86_PAE
 | 
						|
	tlb->need_flush_all = 1;
 | 
						|
#endif
 | 
						|
	paravirt_tlb_remove_table(tlb, virt_to_ptdesc(pmd));
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_PGTABLE_LEVELS > 3
 | 
						|
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
 | 
						|
{
 | 
						|
	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
 | 
						|
	paravirt_tlb_remove_table(tlb, virt_to_ptdesc(pud));
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_PGTABLE_LEVELS > 4
 | 
						|
void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
 | 
						|
{
 | 
						|
	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
 | 
						|
	paravirt_tlb_remove_table(tlb, virt_to_ptdesc(p4d));
 | 
						|
}
 | 
						|
#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
 | 
						|
#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
 | 
						|
#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
 | 
						|
 | 
						|
static inline void pgd_list_add(pgd_t *pgd)
 | 
						|
{
 | 
						|
	struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
 | 
						|
 | 
						|
	list_add(&ptdesc->pt_list, &pgd_list);
 | 
						|
}
 | 
						|
 | 
						|
static inline void pgd_list_del(pgd_t *pgd)
 | 
						|
{
 | 
						|
	struct ptdesc *ptdesc = virt_to_ptdesc(pgd);
 | 
						|
 | 
						|
	list_del(&ptdesc->pt_list);
 | 
						|
}
 | 
						|
 | 
						|
#define UNSHARED_PTRS_PER_PGD				\
 | 
						|
	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
 | 
						|
#define MAX_UNSHARED_PTRS_PER_PGD			\
 | 
						|
	MAX_T(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
 | 
						|
 | 
						|
 | 
						|
static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
 | 
						|
{
 | 
						|
	virt_to_ptdesc(pgd)->pt_mm = mm;
 | 
						|
}
 | 
						|
 | 
						|
struct mm_struct *pgd_page_get_mm(struct page *page)
 | 
						|
{
 | 
						|
	return page_ptdesc(page)->pt_mm;
 | 
						|
}
 | 
						|
 | 
						|
static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
 | 
						|
{
 | 
						|
	/* If the pgd points to a shared pagetable level (either the
 | 
						|
	   ptes in non-PAE, or shared PMD in PAE), then just copy the
 | 
						|
	   references from swapper_pg_dir. */
 | 
						|
	if (CONFIG_PGTABLE_LEVELS == 2 ||
 | 
						|
	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
 | 
						|
	    CONFIG_PGTABLE_LEVELS >= 4) {
 | 
						|
		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
 | 
						|
				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
 | 
						|
				KERNEL_PGD_PTRS);
 | 
						|
	}
 | 
						|
 | 
						|
	/* list required to sync kernel mapping updates */
 | 
						|
	if (!SHARED_KERNEL_PMD) {
 | 
						|
		pgd_set_mm(pgd, mm);
 | 
						|
		pgd_list_add(pgd);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void pgd_dtor(pgd_t *pgd)
 | 
						|
{
 | 
						|
	if (SHARED_KERNEL_PMD)
 | 
						|
		return;
 | 
						|
 | 
						|
	spin_lock(&pgd_lock);
 | 
						|
	pgd_list_del(pgd);
 | 
						|
	spin_unlock(&pgd_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * List of all pgd's needed for non-PAE so it can invalidate entries
 | 
						|
 * in both cached and uncached pgd's; not needed for PAE since the
 | 
						|
 * kernel pmd is shared. If PAE were not to share the pmd a similar
 | 
						|
 * tactic would be needed. This is essentially codepath-based locking
 | 
						|
 * against pageattr.c; it is the unique case in which a valid change
 | 
						|
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 | 
						|
 * vmalloc faults work because attached pagetables are never freed.
 | 
						|
 * -- nyc
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_X86_PAE
 | 
						|
/*
 | 
						|
 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
 | 
						|
 * updating the top-level pagetable entries to guarantee the
 | 
						|
 * processor notices the update.  Since this is expensive, and
 | 
						|
 * all 4 top-level entries are used almost immediately in a
 | 
						|
 * new process's life, we just pre-populate them here.
 | 
						|
 *
 | 
						|
 * Also, if we're in a paravirt environment where the kernel pmd is
 | 
						|
 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
 | 
						|
 * and initialize the kernel pmds here.
 | 
						|
 */
 | 
						|
#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
 | 
						|
#define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
 | 
						|
 | 
						|
/*
 | 
						|
 * We allocate separate PMDs for the kernel part of the user page-table
 | 
						|
 * when PTI is enabled. We need them to map the per-process LDT into the
 | 
						|
 * user-space page-table.
 | 
						|
 */
 | 
						|
#define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
 | 
						|
					KERNEL_PGD_PTRS : 0)
 | 
						|
#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
 | 
						|
 | 
						|
void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
 | 
						|
{
 | 
						|
	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
 | 
						|
 | 
						|
	/* Note: almost everything apart from _PAGE_PRESENT is
 | 
						|
	   reserved at the pmd (PDPT) level. */
 | 
						|
	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * According to Intel App note "TLBs, Paging-Structure Caches,
 | 
						|
	 * and Their Invalidation", April 2007, document 317080-001,
 | 
						|
	 * section 8.1: in PAE mode we explicitly have to flush the
 | 
						|
	 * TLB via cr3 if the top-level pgd is changed...
 | 
						|
	 */
 | 
						|
	flush_tlb_mm(mm);
 | 
						|
}
 | 
						|
#else  /* !CONFIG_X86_PAE */
 | 
						|
 | 
						|
/* No need to prepopulate any pagetable entries in non-PAE modes. */
 | 
						|
#define PREALLOCATED_PMDS	0
 | 
						|
#define MAX_PREALLOCATED_PMDS	0
 | 
						|
#define PREALLOCATED_USER_PMDS	 0
 | 
						|
#define MAX_PREALLOCATED_USER_PMDS 0
 | 
						|
#endif	/* CONFIG_X86_PAE */
 | 
						|
 | 
						|
static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct ptdesc *ptdesc;
 | 
						|
 | 
						|
	for (i = 0; i < count; i++)
 | 
						|
		if (pmds[i]) {
 | 
						|
			ptdesc = virt_to_ptdesc(pmds[i]);
 | 
						|
 | 
						|
			pagetable_dtor(ptdesc);
 | 
						|
			pagetable_free(ptdesc);
 | 
						|
			mm_dec_nr_pmds(mm);
 | 
						|
		}
 | 
						|
}
 | 
						|
 | 
						|
static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	bool failed = false;
 | 
						|
	gfp_t gfp = GFP_PGTABLE_USER;
 | 
						|
 | 
						|
	if (mm == &init_mm)
 | 
						|
		gfp &= ~__GFP_ACCOUNT;
 | 
						|
	gfp &= ~__GFP_HIGHMEM;
 | 
						|
 | 
						|
	for (i = 0; i < count; i++) {
 | 
						|
		pmd_t *pmd = NULL;
 | 
						|
		struct ptdesc *ptdesc = pagetable_alloc(gfp, 0);
 | 
						|
 | 
						|
		if (!ptdesc)
 | 
						|
			failed = true;
 | 
						|
		if (ptdesc && !pagetable_pmd_ctor(ptdesc)) {
 | 
						|
			pagetable_free(ptdesc);
 | 
						|
			ptdesc = NULL;
 | 
						|
			failed = true;
 | 
						|
		}
 | 
						|
		if (ptdesc) {
 | 
						|
			mm_inc_nr_pmds(mm);
 | 
						|
			pmd = ptdesc_address(ptdesc);
 | 
						|
		}
 | 
						|
 | 
						|
		pmds[i] = pmd;
 | 
						|
	}
 | 
						|
 | 
						|
	if (failed) {
 | 
						|
		free_pmds(mm, pmds, count);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Mop up any pmd pages which may still be attached to the pgd.
 | 
						|
 * Normally they will be freed by munmap/exit_mmap, but any pmd we
 | 
						|
 * preallocate which never got a corresponding vma will need to be
 | 
						|
 * freed manually.
 | 
						|
 */
 | 
						|
static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
 | 
						|
{
 | 
						|
	pgd_t pgd = *pgdp;
 | 
						|
 | 
						|
	if (pgd_val(pgd) != 0) {
 | 
						|
		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
 | 
						|
 | 
						|
		pgd_clear(pgdp);
 | 
						|
 | 
						|
		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
 | 
						|
		pmd_free(mm, pmd);
 | 
						|
		mm_dec_nr_pmds(mm);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < PREALLOCATED_PMDS; i++)
 | 
						|
		mop_up_one_pmd(mm, &pgdp[i]);
 | 
						|
 | 
						|
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
 | 
						|
 | 
						|
	if (!boot_cpu_has(X86_FEATURE_PTI))
 | 
						|
		return;
 | 
						|
 | 
						|
	pgdp = kernel_to_user_pgdp(pgdp);
 | 
						|
 | 
						|
	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
 | 
						|
		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
 | 
						|
{
 | 
						|
	p4d_t *p4d;
 | 
						|
	pud_t *pud;
 | 
						|
	int i;
 | 
						|
 | 
						|
	p4d = p4d_offset(pgd, 0);
 | 
						|
	pud = pud_offset(p4d, 0);
 | 
						|
 | 
						|
	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
 | 
						|
		pmd_t *pmd = pmds[i];
 | 
						|
 | 
						|
		if (i >= KERNEL_PGD_BOUNDARY)
 | 
						|
			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
 | 
						|
			       sizeof(pmd_t) * PTRS_PER_PMD);
 | 
						|
 | 
						|
		pud_populate(mm, pud, pmd);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MITIGATION_PAGE_TABLE_ISOLATION
 | 
						|
static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
 | 
						|
				     pgd_t *k_pgd, pmd_t *pmds[])
 | 
						|
{
 | 
						|
	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
 | 
						|
	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
 | 
						|
	p4d_t *u_p4d;
 | 
						|
	pud_t *u_pud;
 | 
						|
	int i;
 | 
						|
 | 
						|
	u_p4d = p4d_offset(u_pgd, 0);
 | 
						|
	u_pud = pud_offset(u_p4d, 0);
 | 
						|
 | 
						|
	s_pgd += KERNEL_PGD_BOUNDARY;
 | 
						|
	u_pud += KERNEL_PGD_BOUNDARY;
 | 
						|
 | 
						|
	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
 | 
						|
		pmd_t *pmd = pmds[i];
 | 
						|
 | 
						|
		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
 | 
						|
		       sizeof(pmd_t) * PTRS_PER_PMD);
 | 
						|
 | 
						|
		pud_populate(mm, u_pud, pmd);
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
#else
 | 
						|
static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
 | 
						|
				     pgd_t *k_pgd, pmd_t *pmds[])
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*
 | 
						|
 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
 | 
						|
 * assumes that pgd should be in one page.
 | 
						|
 *
 | 
						|
 * But kernel with PAE paging that is not running as a Xen domain
 | 
						|
 * only needs to allocate 32 bytes for pgd instead of one page.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_X86_PAE
 | 
						|
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
 | 
						|
#define PGD_ALIGN	32
 | 
						|
 | 
						|
static struct kmem_cache *pgd_cache;
 | 
						|
 | 
						|
void __init pgtable_cache_init(void)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * When PAE kernel is running as a Xen domain, it does not use
 | 
						|
	 * shared kernel pmd. And this requires a whole page for pgd.
 | 
						|
	 */
 | 
						|
	if (!SHARED_KERNEL_PMD)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * when PAE kernel is not running as a Xen domain, it uses
 | 
						|
	 * shared kernel pmd. Shared kernel pmd does not require a whole
 | 
						|
	 * page for pgd. We are able to just allocate a 32-byte for pgd.
 | 
						|
	 * During boot time, we create a 32-byte slab for pgd table allocation.
 | 
						|
	 */
 | 
						|
	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
 | 
						|
				      SLAB_PANIC, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static inline pgd_t *_pgd_alloc(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
 | 
						|
	 * We allocate one page for pgd.
 | 
						|
	 */
 | 
						|
	if (!SHARED_KERNEL_PMD)
 | 
						|
		return __pgd_alloc(mm, PGD_ALLOCATION_ORDER);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now PAE kernel is not running as a Xen domain. We can allocate
 | 
						|
	 * a 32-byte slab for pgd to save memory space.
 | 
						|
	 */
 | 
						|
	return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
 | 
						|
}
 | 
						|
 | 
						|
static inline void _pgd_free(struct mm_struct *mm, pgd_t *pgd)
 | 
						|
{
 | 
						|
	if (!SHARED_KERNEL_PMD)
 | 
						|
		__pgd_free(mm, pgd);
 | 
						|
	else
 | 
						|
		kmem_cache_free(pgd_cache, pgd);
 | 
						|
}
 | 
						|
#else
 | 
						|
 | 
						|
static inline pgd_t *_pgd_alloc(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	return __pgd_alloc(mm, PGD_ALLOCATION_ORDER);
 | 
						|
}
 | 
						|
 | 
						|
static inline void _pgd_free(struct mm_struct *mm, pgd_t *pgd)
 | 
						|
{
 | 
						|
	__pgd_free(mm, pgd);
 | 
						|
}
 | 
						|
#endif /* CONFIG_X86_PAE */
 | 
						|
 | 
						|
pgd_t *pgd_alloc(struct mm_struct *mm)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
 | 
						|
	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
 | 
						|
 | 
						|
	pgd = _pgd_alloc(mm);
 | 
						|
 | 
						|
	if (pgd == NULL)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	mm->pgd = pgd;
 | 
						|
 | 
						|
	if (sizeof(pmds) != 0 &&
 | 
						|
			preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
 | 
						|
		goto out_free_pgd;
 | 
						|
 | 
						|
	if (sizeof(u_pmds) != 0 &&
 | 
						|
			preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
 | 
						|
		goto out_free_pmds;
 | 
						|
 | 
						|
	if (paravirt_pgd_alloc(mm) != 0)
 | 
						|
		goto out_free_user_pmds;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure that pre-populating the pmds is atomic with
 | 
						|
	 * respect to anything walking the pgd_list, so that they
 | 
						|
	 * never see a partially populated pgd.
 | 
						|
	 */
 | 
						|
	spin_lock(&pgd_lock);
 | 
						|
 | 
						|
	pgd_ctor(mm, pgd);
 | 
						|
	if (sizeof(pmds) != 0)
 | 
						|
		pgd_prepopulate_pmd(mm, pgd, pmds);
 | 
						|
 | 
						|
	if (sizeof(u_pmds) != 0)
 | 
						|
		pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
 | 
						|
 | 
						|
	spin_unlock(&pgd_lock);
 | 
						|
 | 
						|
	return pgd;
 | 
						|
 | 
						|
out_free_user_pmds:
 | 
						|
	if (sizeof(u_pmds) != 0)
 | 
						|
		free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
 | 
						|
out_free_pmds:
 | 
						|
	if (sizeof(pmds) != 0)
 | 
						|
		free_pmds(mm, pmds, PREALLOCATED_PMDS);
 | 
						|
out_free_pgd:
 | 
						|
	_pgd_free(mm, pgd);
 | 
						|
out:
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
 | 
						|
{
 | 
						|
	pgd_mop_up_pmds(mm, pgd);
 | 
						|
	pgd_dtor(pgd);
 | 
						|
	paravirt_pgd_free(mm, pgd);
 | 
						|
	_pgd_free(mm, pgd);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to set accessed or dirty bits in the page table entries
 | 
						|
 * on other architectures. On x86, the accessed and dirty bits
 | 
						|
 * are tracked by hardware. However, do_wp_page calls this function
 | 
						|
 * to also make the pte writeable at the same time the dirty bit is
 | 
						|
 * set. In that case we do actually need to write the PTE.
 | 
						|
 */
 | 
						|
int ptep_set_access_flags(struct vm_area_struct *vma,
 | 
						|
			  unsigned long address, pte_t *ptep,
 | 
						|
			  pte_t entry, int dirty)
 | 
						|
{
 | 
						|
	int changed = !pte_same(*ptep, entry);
 | 
						|
 | 
						|
	if (changed && dirty)
 | 
						|
		set_pte(ptep, entry);
 | 
						|
 | 
						|
	return changed;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
int pmdp_set_access_flags(struct vm_area_struct *vma,
 | 
						|
			  unsigned long address, pmd_t *pmdp,
 | 
						|
			  pmd_t entry, int dirty)
 | 
						|
{
 | 
						|
	int changed = !pmd_same(*pmdp, entry);
 | 
						|
 | 
						|
	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | 
						|
 | 
						|
	if (changed && dirty) {
 | 
						|
		set_pmd(pmdp, entry);
 | 
						|
		/*
 | 
						|
		 * We had a write-protection fault here and changed the pmd
 | 
						|
		 * to to more permissive. No need to flush the TLB for that,
 | 
						|
		 * #PF is architecturally guaranteed to do that and in the
 | 
						|
		 * worst-case we'll generate a spurious fault.
 | 
						|
		 */
 | 
						|
	}
 | 
						|
 | 
						|
	return changed;
 | 
						|
}
 | 
						|
 | 
						|
int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
 | 
						|
			  pud_t *pudp, pud_t entry, int dirty)
 | 
						|
{
 | 
						|
	int changed = !pud_same(*pudp, entry);
 | 
						|
 | 
						|
	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
 | 
						|
 | 
						|
	if (changed && dirty) {
 | 
						|
		set_pud(pudp, entry);
 | 
						|
		/*
 | 
						|
		 * We had a write-protection fault here and changed the pud
 | 
						|
		 * to to more permissive. No need to flush the TLB for that,
 | 
						|
		 * #PF is architecturally guaranteed to do that and in the
 | 
						|
		 * worst-case we'll generate a spurious fault.
 | 
						|
		 */
 | 
						|
	}
 | 
						|
 | 
						|
	return changed;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int ptep_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
			      unsigned long addr, pte_t *ptep)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (pte_young(*ptep))
 | 
						|
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
 | 
						|
					 (unsigned long *) &ptep->pte);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
 | 
						|
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
			      unsigned long addr, pmd_t *pmdp)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (pmd_young(*pmdp))
 | 
						|
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
 | 
						|
					 (unsigned long *)pmdp);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
int pudp_test_and_clear_young(struct vm_area_struct *vma,
 | 
						|
			      unsigned long addr, pud_t *pudp)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (pud_young(*pudp))
 | 
						|
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
 | 
						|
					 (unsigned long *)pudp);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int ptep_clear_flush_young(struct vm_area_struct *vma,
 | 
						|
			   unsigned long address, pte_t *ptep)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * On x86 CPUs, clearing the accessed bit without a TLB flush
 | 
						|
	 * doesn't cause data corruption. [ It could cause incorrect
 | 
						|
	 * page aging and the (mistaken) reclaim of hot pages, but the
 | 
						|
	 * chance of that should be relatively low. ]
 | 
						|
	 *
 | 
						|
	 * So as a performance optimization don't flush the TLB when
 | 
						|
	 * clearing the accessed bit, it will eventually be flushed by
 | 
						|
	 * a context switch or a VM operation anyway. [ In the rare
 | 
						|
	 * event of it not getting flushed for a long time the delay
 | 
						|
	 * shouldn't really matter because there's no real memory
 | 
						|
	 * pressure for swapout to react to. ]
 | 
						|
	 */
 | 
						|
	return ptep_test_and_clear_young(vma, address, ptep);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | 
						|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
 | 
						|
			   unsigned long address, pmd_t *pmdp)
 | 
						|
{
 | 
						|
	int young;
 | 
						|
 | 
						|
	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | 
						|
 | 
						|
	young = pmdp_test_and_clear_young(vma, address, pmdp);
 | 
						|
	if (young)
 | 
						|
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 | 
						|
 | 
						|
	return young;
 | 
						|
}
 | 
						|
 | 
						|
pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
 | 
						|
			 pmd_t *pmdp)
 | 
						|
{
 | 
						|
	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * No flush is necessary. Once an invalid PTE is established, the PTE's
 | 
						|
	 * access and dirty bits cannot be updated.
 | 
						|
	 */
 | 
						|
	return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
 | 
						|
	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
 | 
						|
pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
 | 
						|
		     pud_t *pudp)
 | 
						|
{
 | 
						|
	VM_WARN_ON_ONCE(!pud_present(*pudp));
 | 
						|
	pud_t old = pudp_establish(vma, address, pudp, pud_mkinvalid(*pudp));
 | 
						|
	flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
 | 
						|
	return old;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * reserve_top_address - reserves a hole in the top of kernel address space
 | 
						|
 * @reserve - size of hole to reserve
 | 
						|
 *
 | 
						|
 * Can be used to relocate the fixmap area and poke a hole in the top
 | 
						|
 * of kernel address space to make room for a hypervisor.
 | 
						|
 */
 | 
						|
void __init reserve_top_address(unsigned long reserve)
 | 
						|
{
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	BUG_ON(fixmaps_set > 0);
 | 
						|
	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
 | 
						|
	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
 | 
						|
	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
int fixmaps_set;
 | 
						|
 | 
						|
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
 | 
						|
{
 | 
						|
	unsigned long address = __fix_to_virt(idx);
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
       /*
 | 
						|
	* Ensure that the static initial page tables are covering the
 | 
						|
	* fixmap completely.
 | 
						|
	*/
 | 
						|
	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
 | 
						|
		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
 | 
						|
#endif
 | 
						|
 | 
						|
	if (idx >= __end_of_fixed_addresses) {
 | 
						|
		BUG();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	set_pte_vaddr(address, pte);
 | 
						|
	fixmaps_set++;
 | 
						|
}
 | 
						|
 | 
						|
void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
 | 
						|
		       phys_addr_t phys, pgprot_t flags)
 | 
						|
{
 | 
						|
	/* Sanitize 'prot' against any unsupported bits: */
 | 
						|
	pgprot_val(flags) &= __default_kernel_pte_mask;
 | 
						|
 | 
						|
	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 | 
						|
#ifdef CONFIG_X86_5LEVEL
 | 
						|
/**
 | 
						|
 * p4d_set_huge - setup kernel P4D mapping
 | 
						|
 *
 | 
						|
 * No 512GB pages yet -- always return 0
 | 
						|
 */
 | 
						|
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * p4d_clear_huge - clear kernel P4D mapping when it is set
 | 
						|
 *
 | 
						|
 * No 512GB pages yet -- always return 0
 | 
						|
 */
 | 
						|
void p4d_clear_huge(p4d_t *p4d)
 | 
						|
{
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * pud_set_huge - setup kernel PUD mapping
 | 
						|
 *
 | 
						|
 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
 | 
						|
 * function sets up a huge page only if the complete range has the same MTRR
 | 
						|
 * caching mode.
 | 
						|
 *
 | 
						|
 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
 | 
						|
 * page mapping attempt fails.
 | 
						|
 *
 | 
						|
 * Returns 1 on success and 0 on failure.
 | 
						|
 */
 | 
						|
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	u8 uniform;
 | 
						|
 | 
						|
	mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
 | 
						|
	if (!uniform)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Bail out if we are we on a populated non-leaf entry: */
 | 
						|
	if (pud_present(*pud) && !pud_leaf(*pud))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	set_pte((pte_t *)pud, pfn_pte(
 | 
						|
		(u64)addr >> PAGE_SHIFT,
 | 
						|
		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pmd_set_huge - setup kernel PMD mapping
 | 
						|
 *
 | 
						|
 * See text over pud_set_huge() above.
 | 
						|
 *
 | 
						|
 * Returns 1 on success and 0 on failure.
 | 
						|
 */
 | 
						|
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
 | 
						|
{
 | 
						|
	u8 uniform;
 | 
						|
 | 
						|
	mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
 | 
						|
	if (!uniform) {
 | 
						|
		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
 | 
						|
			     __func__, addr, addr + PMD_SIZE);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Bail out if we are we on a populated non-leaf entry: */
 | 
						|
	if (pmd_present(*pmd) && !pmd_leaf(*pmd))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	set_pte((pte_t *)pmd, pfn_pte(
 | 
						|
		(u64)addr >> PAGE_SHIFT,
 | 
						|
		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pud_clear_huge - clear kernel PUD mapping when it is set
 | 
						|
 *
 | 
						|
 * Returns 1 on success and 0 on failure (no PUD map is found).
 | 
						|
 */
 | 
						|
int pud_clear_huge(pud_t *pud)
 | 
						|
{
 | 
						|
	if (pud_leaf(*pud)) {
 | 
						|
		pud_clear(pud);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pmd_clear_huge - clear kernel PMD mapping when it is set
 | 
						|
 *
 | 
						|
 * Returns 1 on success and 0 on failure (no PMD map is found).
 | 
						|
 */
 | 
						|
int pmd_clear_huge(pmd_t *pmd)
 | 
						|
{
 | 
						|
	if (pmd_leaf(*pmd)) {
 | 
						|
		pmd_clear(pmd);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_X86_64
 | 
						|
/**
 | 
						|
 * pud_free_pmd_page - Clear pud entry and free pmd page.
 | 
						|
 * @pud: Pointer to a PUD.
 | 
						|
 * @addr: Virtual address associated with pud.
 | 
						|
 *
 | 
						|
 * Context: The pud range has been unmapped and TLB purged.
 | 
						|
 * Return: 1 if clearing the entry succeeded. 0 otherwise.
 | 
						|
 *
 | 
						|
 * NOTE: Callers must allow a single page allocation.
 | 
						|
 */
 | 
						|
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
 | 
						|
{
 | 
						|
	pmd_t *pmd, *pmd_sv;
 | 
						|
	pte_t *pte;
 | 
						|
	int i;
 | 
						|
 | 
						|
	pmd = pud_pgtable(*pud);
 | 
						|
	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
 | 
						|
	if (!pmd_sv)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	for (i = 0; i < PTRS_PER_PMD; i++) {
 | 
						|
		pmd_sv[i] = pmd[i];
 | 
						|
		if (!pmd_none(pmd[i]))
 | 
						|
			pmd_clear(&pmd[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	pud_clear(pud);
 | 
						|
 | 
						|
	/* INVLPG to clear all paging-structure caches */
 | 
						|
	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
 | 
						|
 | 
						|
	for (i = 0; i < PTRS_PER_PMD; i++) {
 | 
						|
		if (!pmd_none(pmd_sv[i])) {
 | 
						|
			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
 | 
						|
			free_page((unsigned long)pte);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	free_page((unsigned long)pmd_sv);
 | 
						|
 | 
						|
	pagetable_dtor(virt_to_ptdesc(pmd));
 | 
						|
	free_page((unsigned long)pmd);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pmd_free_pte_page - Clear pmd entry and free pte page.
 | 
						|
 * @pmd: Pointer to a PMD.
 | 
						|
 * @addr: Virtual address associated with pmd.
 | 
						|
 *
 | 
						|
 * Context: The pmd range has been unmapped and TLB purged.
 | 
						|
 * Return: 1 if clearing the entry succeeded. 0 otherwise.
 | 
						|
 */
 | 
						|
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
 | 
						|
{
 | 
						|
	pte_t *pte;
 | 
						|
 | 
						|
	pte = (pte_t *)pmd_page_vaddr(*pmd);
 | 
						|
	pmd_clear(pmd);
 | 
						|
 | 
						|
	/* INVLPG to clear all paging-structure caches */
 | 
						|
	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
 | 
						|
 | 
						|
	free_page((unsigned long)pte);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
#else /* !CONFIG_X86_64 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Disable free page handling on x86-PAE. This assures that ioremap()
 | 
						|
 * does not update sync'd pmd entries. See vmalloc_sync_one().
 | 
						|
 */
 | 
						|
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
 | 
						|
{
 | 
						|
	return pmd_none(*pmd);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_X86_64 */
 | 
						|
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
 | 
						|
 | 
						|
pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (vma->vm_flags & VM_SHADOW_STACK)
 | 
						|
		return pte_mkwrite_shstk(pte);
 | 
						|
 | 
						|
	pte = pte_mkwrite_novma(pte);
 | 
						|
 | 
						|
	return pte_clear_saveddirty(pte);
 | 
						|
}
 | 
						|
 | 
						|
pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if (vma->vm_flags & VM_SHADOW_STACK)
 | 
						|
		return pmd_mkwrite_shstk(pmd);
 | 
						|
 | 
						|
	pmd = pmd_mkwrite_novma(pmd);
 | 
						|
 | 
						|
	return pmd_clear_saveddirty(pmd);
 | 
						|
}
 | 
						|
 | 
						|
void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Hardware before shadow stack can (rarely) set Dirty=1
 | 
						|
	 * on a Write=0 PTE. So the below condition
 | 
						|
	 * only indicates a software bug when shadow stack is
 | 
						|
	 * supported by the HW. This checking is covered in
 | 
						|
	 * pte_shstk().
 | 
						|
	 */
 | 
						|
	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
 | 
						|
			pte_shstk(pte));
 | 
						|
}
 | 
						|
 | 
						|
void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd)
 | 
						|
{
 | 
						|
	/* See note in arch_check_zapped_pte() */
 | 
						|
	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) &&
 | 
						|
			pmd_shstk(pmd));
 | 
						|
}
 | 
						|
 | 
						|
void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
 | 
						|
{
 | 
						|
	/* See note in arch_check_zapped_pte() */
 | 
						|
	VM_WARN_ON_ONCE(!(vma->vm_flags & VM_SHADOW_STACK) && pud_shstk(pud));
 | 
						|
}
 |