forked from mirrors/linux
		
	Improve static type checking by using the new blk_opf_t type for variables that represent request flags. Acked-by: Song Liu <song@kernel.org> Signed-off-by: Bart Van Assche <bvanassche@acm.org> Link: https://lore.kernel.org/r/20220714180729.1065367-35-bvanassche@acm.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
		
			
				
	
	
		
			3422 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3422 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 * raid1.c : Multiple Devices driver for Linux
 | 
						|
 *
 | 
						|
 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
 | 
						|
 *
 | 
						|
 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 | 
						|
 *
 | 
						|
 * RAID-1 management functions.
 | 
						|
 *
 | 
						|
 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
 | 
						|
 *
 | 
						|
 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
 | 
						|
 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
 | 
						|
 *
 | 
						|
 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
 | 
						|
 * bitmapped intelligence in resync:
 | 
						|
 *
 | 
						|
 *      - bitmap marked during normal i/o
 | 
						|
 *      - bitmap used to skip nondirty blocks during sync
 | 
						|
 *
 | 
						|
 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
 | 
						|
 * - persistent bitmap code
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/ratelimit.h>
 | 
						|
#include <linux/interval_tree_generic.h>
 | 
						|
 | 
						|
#include <trace/events/block.h>
 | 
						|
 | 
						|
#include "md.h"
 | 
						|
#include "raid1.h"
 | 
						|
#include "md-bitmap.h"
 | 
						|
 | 
						|
#define UNSUPPORTED_MDDEV_FLAGS		\
 | 
						|
	((1L << MD_HAS_JOURNAL) |	\
 | 
						|
	 (1L << MD_JOURNAL_CLEAN) |	\
 | 
						|
	 (1L << MD_HAS_PPL) |		\
 | 
						|
	 (1L << MD_HAS_MULTIPLE_PPLS))
 | 
						|
 | 
						|
static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
 | 
						|
static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
 | 
						|
 | 
						|
#define raid1_log(md, fmt, args...)				\
 | 
						|
	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
 | 
						|
 | 
						|
#include "raid1-10.c"
 | 
						|
 | 
						|
#define START(node) ((node)->start)
 | 
						|
#define LAST(node) ((node)->last)
 | 
						|
INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
 | 
						|
		     START, LAST, static inline, raid1_rb);
 | 
						|
 | 
						|
static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
 | 
						|
				struct serial_info *si, int idx)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
	sector_t lo = r1_bio->sector;
 | 
						|
	sector_t hi = lo + r1_bio->sectors;
 | 
						|
	struct serial_in_rdev *serial = &rdev->serial[idx];
 | 
						|
 | 
						|
	spin_lock_irqsave(&serial->serial_lock, flags);
 | 
						|
	/* collision happened */
 | 
						|
	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
 | 
						|
		ret = -EBUSY;
 | 
						|
	else {
 | 
						|
		si->start = lo;
 | 
						|
		si->last = hi;
 | 
						|
		raid1_rb_insert(si, &serial->serial_rb);
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&serial->serial_lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct mddev *mddev = rdev->mddev;
 | 
						|
	struct serial_info *si;
 | 
						|
	int idx = sector_to_idx(r1_bio->sector);
 | 
						|
	struct serial_in_rdev *serial = &rdev->serial[idx];
 | 
						|
 | 
						|
	if (WARN_ON(!mddev->serial_info_pool))
 | 
						|
		return;
 | 
						|
	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
 | 
						|
	wait_event(serial->serial_io_wait,
 | 
						|
		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
 | 
						|
}
 | 
						|
 | 
						|
static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
 | 
						|
{
 | 
						|
	struct serial_info *si;
 | 
						|
	unsigned long flags;
 | 
						|
	int found = 0;
 | 
						|
	struct mddev *mddev = rdev->mddev;
 | 
						|
	int idx = sector_to_idx(lo);
 | 
						|
	struct serial_in_rdev *serial = &rdev->serial[idx];
 | 
						|
 | 
						|
	spin_lock_irqsave(&serial->serial_lock, flags);
 | 
						|
	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
 | 
						|
	     si; si = raid1_rb_iter_next(si, lo, hi)) {
 | 
						|
		if (si->start == lo && si->last == hi) {
 | 
						|
			raid1_rb_remove(si, &serial->serial_rb);
 | 
						|
			mempool_free(si, mddev->serial_info_pool);
 | 
						|
			found = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!found)
 | 
						|
		WARN(1, "The write IO is not recorded for serialization\n");
 | 
						|
	spin_unlock_irqrestore(&serial->serial_lock, flags);
 | 
						|
	wake_up(&serial->serial_io_wait);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * for resync bio, r1bio pointer can be retrieved from the per-bio
 | 
						|
 * 'struct resync_pages'.
 | 
						|
 */
 | 
						|
static inline struct r1bio *get_resync_r1bio(struct bio *bio)
 | 
						|
{
 | 
						|
	return get_resync_pages(bio)->raid_bio;
 | 
						|
}
 | 
						|
 | 
						|
static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
 | 
						|
{
 | 
						|
	struct pool_info *pi = data;
 | 
						|
	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
 | 
						|
 | 
						|
	/* allocate a r1bio with room for raid_disks entries in the bios array */
 | 
						|
	return kzalloc(size, gfp_flags);
 | 
						|
}
 | 
						|
 | 
						|
#define RESYNC_DEPTH 32
 | 
						|
#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 | 
						|
#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 | 
						|
#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 | 
						|
#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 | 
						|
#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 | 
						|
 | 
						|
static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 | 
						|
{
 | 
						|
	struct pool_info *pi = data;
 | 
						|
	struct r1bio *r1_bio;
 | 
						|
	struct bio *bio;
 | 
						|
	int need_pages;
 | 
						|
	int j;
 | 
						|
	struct resync_pages *rps;
 | 
						|
 | 
						|
	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 | 
						|
	if (!r1_bio)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
 | 
						|
			    gfp_flags);
 | 
						|
	if (!rps)
 | 
						|
		goto out_free_r1bio;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate bios : 1 for reading, n-1 for writing
 | 
						|
	 */
 | 
						|
	for (j = pi->raid_disks ; j-- ; ) {
 | 
						|
		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 | 
						|
		if (!bio)
 | 
						|
			goto out_free_bio;
 | 
						|
		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 | 
						|
		r1_bio->bios[j] = bio;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Allocate RESYNC_PAGES data pages and attach them to
 | 
						|
	 * the first bio.
 | 
						|
	 * If this is a user-requested check/repair, allocate
 | 
						|
	 * RESYNC_PAGES for each bio.
 | 
						|
	 */
 | 
						|
	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 | 
						|
		need_pages = pi->raid_disks;
 | 
						|
	else
 | 
						|
		need_pages = 1;
 | 
						|
	for (j = 0; j < pi->raid_disks; j++) {
 | 
						|
		struct resync_pages *rp = &rps[j];
 | 
						|
 | 
						|
		bio = r1_bio->bios[j];
 | 
						|
 | 
						|
		if (j < need_pages) {
 | 
						|
			if (resync_alloc_pages(rp, gfp_flags))
 | 
						|
				goto out_free_pages;
 | 
						|
		} else {
 | 
						|
			memcpy(rp, &rps[0], sizeof(*rp));
 | 
						|
			resync_get_all_pages(rp);
 | 
						|
		}
 | 
						|
 | 
						|
		rp->raid_bio = r1_bio;
 | 
						|
		bio->bi_private = rp;
 | 
						|
	}
 | 
						|
 | 
						|
	r1_bio->master_bio = NULL;
 | 
						|
 | 
						|
	return r1_bio;
 | 
						|
 | 
						|
out_free_pages:
 | 
						|
	while (--j >= 0)
 | 
						|
		resync_free_pages(&rps[j]);
 | 
						|
 | 
						|
out_free_bio:
 | 
						|
	while (++j < pi->raid_disks) {
 | 
						|
		bio_uninit(r1_bio->bios[j]);
 | 
						|
		kfree(r1_bio->bios[j]);
 | 
						|
	}
 | 
						|
	kfree(rps);
 | 
						|
 | 
						|
out_free_r1bio:
 | 
						|
	rbio_pool_free(r1_bio, data);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void r1buf_pool_free(void *__r1_bio, void *data)
 | 
						|
{
 | 
						|
	struct pool_info *pi = data;
 | 
						|
	int i;
 | 
						|
	struct r1bio *r1bio = __r1_bio;
 | 
						|
	struct resync_pages *rp = NULL;
 | 
						|
 | 
						|
	for (i = pi->raid_disks; i--; ) {
 | 
						|
		rp = get_resync_pages(r1bio->bios[i]);
 | 
						|
		resync_free_pages(rp);
 | 
						|
		bio_uninit(r1bio->bios[i]);
 | 
						|
		kfree(r1bio->bios[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* resync pages array stored in the 1st bio's .bi_private */
 | 
						|
	kfree(rp);
 | 
						|
 | 
						|
	rbio_pool_free(r1bio, data);
 | 
						|
}
 | 
						|
 | 
						|
static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < conf->raid_disks * 2; i++) {
 | 
						|
		struct bio **bio = r1_bio->bios + i;
 | 
						|
		if (!BIO_SPECIAL(*bio))
 | 
						|
			bio_put(*bio);
 | 
						|
		*bio = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void free_r1bio(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct r1conf *conf = r1_bio->mddev->private;
 | 
						|
 | 
						|
	put_all_bios(conf, r1_bio);
 | 
						|
	mempool_free(r1_bio, &conf->r1bio_pool);
 | 
						|
}
 | 
						|
 | 
						|
static void put_buf(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct r1conf *conf = r1_bio->mddev->private;
 | 
						|
	sector_t sect = r1_bio->sector;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < conf->raid_disks * 2; i++) {
 | 
						|
		struct bio *bio = r1_bio->bios[i];
 | 
						|
		if (bio->bi_end_io)
 | 
						|
			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 | 
						|
	}
 | 
						|
 | 
						|
	mempool_free(r1_bio, &conf->r1buf_pool);
 | 
						|
 | 
						|
	lower_barrier(conf, sect);
 | 
						|
}
 | 
						|
 | 
						|
static void reschedule_retry(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	struct mddev *mddev = r1_bio->mddev;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	idx = sector_to_idx(r1_bio->sector);
 | 
						|
	spin_lock_irqsave(&conf->device_lock, flags);
 | 
						|
	list_add(&r1_bio->retry_list, &conf->retry_list);
 | 
						|
	atomic_inc(&conf->nr_queued[idx]);
 | 
						|
	spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
 | 
						|
	wake_up(&conf->wait_barrier);
 | 
						|
	md_wakeup_thread(mddev->thread);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * raid_end_bio_io() is called when we have finished servicing a mirrored
 | 
						|
 * operation and are ready to return a success/failure code to the buffer
 | 
						|
 * cache layer.
 | 
						|
 */
 | 
						|
static void call_bio_endio(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct bio *bio = r1_bio->master_bio;
 | 
						|
 | 
						|
	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 | 
						|
		bio->bi_status = BLK_STS_IOERR;
 | 
						|
 | 
						|
	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 | 
						|
		bio_end_io_acct(bio, r1_bio->start_time);
 | 
						|
	bio_endio(bio);
 | 
						|
}
 | 
						|
 | 
						|
static void raid_end_bio_io(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct bio *bio = r1_bio->master_bio;
 | 
						|
	struct r1conf *conf = r1_bio->mddev->private;
 | 
						|
 | 
						|
	/* if nobody has done the final endio yet, do it now */
 | 
						|
	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 | 
						|
		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 | 
						|
			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 | 
						|
			 (unsigned long long) bio->bi_iter.bi_sector,
 | 
						|
			 (unsigned long long) bio_end_sector(bio) - 1);
 | 
						|
 | 
						|
		call_bio_endio(r1_bio);
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * Wake up any possible resync thread that waits for the device
 | 
						|
	 * to go idle.  All I/Os, even write-behind writes, are done.
 | 
						|
	 */
 | 
						|
	allow_barrier(conf, r1_bio->sector);
 | 
						|
 | 
						|
	free_r1bio(r1_bio);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update disk head position estimator based on IRQ completion info.
 | 
						|
 */
 | 
						|
static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct r1conf *conf = r1_bio->mddev->private;
 | 
						|
 | 
						|
	conf->mirrors[disk].head_position =
 | 
						|
		r1_bio->sector + (r1_bio->sectors);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the disk number which triggered given bio
 | 
						|
 */
 | 
						|
static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 | 
						|
{
 | 
						|
	int mirror;
 | 
						|
	struct r1conf *conf = r1_bio->mddev->private;
 | 
						|
	int raid_disks = conf->raid_disks;
 | 
						|
 | 
						|
	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 | 
						|
		if (r1_bio->bios[mirror] == bio)
 | 
						|
			break;
 | 
						|
 | 
						|
	BUG_ON(mirror == raid_disks * 2);
 | 
						|
	update_head_pos(mirror, r1_bio);
 | 
						|
 | 
						|
	return mirror;
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_end_read_request(struct bio *bio)
 | 
						|
{
 | 
						|
	int uptodate = !bio->bi_status;
 | 
						|
	struct r1bio *r1_bio = bio->bi_private;
 | 
						|
	struct r1conf *conf = r1_bio->mddev->private;
 | 
						|
	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * this branch is our 'one mirror IO has finished' event handler:
 | 
						|
	 */
 | 
						|
	update_head_pos(r1_bio->read_disk, r1_bio);
 | 
						|
 | 
						|
	if (uptodate)
 | 
						|
		set_bit(R1BIO_Uptodate, &r1_bio->state);
 | 
						|
	else if (test_bit(FailFast, &rdev->flags) &&
 | 
						|
		 test_bit(R1BIO_FailFast, &r1_bio->state))
 | 
						|
		/* This was a fail-fast read so we definitely
 | 
						|
		 * want to retry */
 | 
						|
		;
 | 
						|
	else {
 | 
						|
		/* If all other devices have failed, we want to return
 | 
						|
		 * the error upwards rather than fail the last device.
 | 
						|
		 * Here we redefine "uptodate" to mean "Don't want to retry"
 | 
						|
		 */
 | 
						|
		unsigned long flags;
 | 
						|
		spin_lock_irqsave(&conf->device_lock, flags);
 | 
						|
		if (r1_bio->mddev->degraded == conf->raid_disks ||
 | 
						|
		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 | 
						|
		     test_bit(In_sync, &rdev->flags)))
 | 
						|
			uptodate = 1;
 | 
						|
		spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
	}
 | 
						|
 | 
						|
	if (uptodate) {
 | 
						|
		raid_end_bio_io(r1_bio);
 | 
						|
		rdev_dec_pending(rdev, conf->mddev);
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * oops, read error:
 | 
						|
		 */
 | 
						|
		pr_err_ratelimited("md/raid1:%s: %pg: rescheduling sector %llu\n",
 | 
						|
				   mdname(conf->mddev),
 | 
						|
				   rdev->bdev,
 | 
						|
				   (unsigned long long)r1_bio->sector);
 | 
						|
		set_bit(R1BIO_ReadError, &r1_bio->state);
 | 
						|
		reschedule_retry(r1_bio);
 | 
						|
		/* don't drop the reference on read_disk yet */
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void close_write(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	/* it really is the end of this request */
 | 
						|
	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 | 
						|
		bio_free_pages(r1_bio->behind_master_bio);
 | 
						|
		bio_put(r1_bio->behind_master_bio);
 | 
						|
		r1_bio->behind_master_bio = NULL;
 | 
						|
	}
 | 
						|
	/* clear the bitmap if all writes complete successfully */
 | 
						|
	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 | 
						|
			   r1_bio->sectors,
 | 
						|
			   !test_bit(R1BIO_Degraded, &r1_bio->state),
 | 
						|
			   test_bit(R1BIO_BehindIO, &r1_bio->state));
 | 
						|
	md_write_end(r1_bio->mddev);
 | 
						|
}
 | 
						|
 | 
						|
static void r1_bio_write_done(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	if (!atomic_dec_and_test(&r1_bio->remaining))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | 
						|
		reschedule_retry(r1_bio);
 | 
						|
	else {
 | 
						|
		close_write(r1_bio);
 | 
						|
		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 | 
						|
			reschedule_retry(r1_bio);
 | 
						|
		else
 | 
						|
			raid_end_bio_io(r1_bio);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_end_write_request(struct bio *bio)
 | 
						|
{
 | 
						|
	struct r1bio *r1_bio = bio->bi_private;
 | 
						|
	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 | 
						|
	struct r1conf *conf = r1_bio->mddev->private;
 | 
						|
	struct bio *to_put = NULL;
 | 
						|
	int mirror = find_bio_disk(r1_bio, bio);
 | 
						|
	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 | 
						|
	bool discard_error;
 | 
						|
	sector_t lo = r1_bio->sector;
 | 
						|
	sector_t hi = r1_bio->sector + r1_bio->sectors;
 | 
						|
 | 
						|
	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 'one mirror IO has finished' event handler:
 | 
						|
	 */
 | 
						|
	if (bio->bi_status && !discard_error) {
 | 
						|
		set_bit(WriteErrorSeen,	&rdev->flags);
 | 
						|
		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | 
						|
			set_bit(MD_RECOVERY_NEEDED, &
 | 
						|
				conf->mddev->recovery);
 | 
						|
 | 
						|
		if (test_bit(FailFast, &rdev->flags) &&
 | 
						|
		    (bio->bi_opf & MD_FAILFAST) &&
 | 
						|
		    /* We never try FailFast to WriteMostly devices */
 | 
						|
		    !test_bit(WriteMostly, &rdev->flags)) {
 | 
						|
			md_error(r1_bio->mddev, rdev);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When the device is faulty, it is not necessary to
 | 
						|
		 * handle write error.
 | 
						|
		 */
 | 
						|
		if (!test_bit(Faulty, &rdev->flags))
 | 
						|
			set_bit(R1BIO_WriteError, &r1_bio->state);
 | 
						|
		else {
 | 
						|
			/* Fail the request */
 | 
						|
			set_bit(R1BIO_Degraded, &r1_bio->state);
 | 
						|
			/* Finished with this branch */
 | 
						|
			r1_bio->bios[mirror] = NULL;
 | 
						|
			to_put = bio;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		/*
 | 
						|
		 * Set R1BIO_Uptodate in our master bio, so that we
 | 
						|
		 * will return a good error code for to the higher
 | 
						|
		 * levels even if IO on some other mirrored buffer
 | 
						|
		 * fails.
 | 
						|
		 *
 | 
						|
		 * The 'master' represents the composite IO operation
 | 
						|
		 * to user-side. So if something waits for IO, then it
 | 
						|
		 * will wait for the 'master' bio.
 | 
						|
		 */
 | 
						|
		sector_t first_bad;
 | 
						|
		int bad_sectors;
 | 
						|
 | 
						|
		r1_bio->bios[mirror] = NULL;
 | 
						|
		to_put = bio;
 | 
						|
		/*
 | 
						|
		 * Do not set R1BIO_Uptodate if the current device is
 | 
						|
		 * rebuilding or Faulty. This is because we cannot use
 | 
						|
		 * such device for properly reading the data back (we could
 | 
						|
		 * potentially use it, if the current write would have felt
 | 
						|
		 * before rdev->recovery_offset, but for simplicity we don't
 | 
						|
		 * check this here.
 | 
						|
		 */
 | 
						|
		if (test_bit(In_sync, &rdev->flags) &&
 | 
						|
		    !test_bit(Faulty, &rdev->flags))
 | 
						|
			set_bit(R1BIO_Uptodate, &r1_bio->state);
 | 
						|
 | 
						|
		/* Maybe we can clear some bad blocks. */
 | 
						|
		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 | 
						|
				&first_bad, &bad_sectors) && !discard_error) {
 | 
						|
			r1_bio->bios[mirror] = IO_MADE_GOOD;
 | 
						|
			set_bit(R1BIO_MadeGood, &r1_bio->state);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (behind) {
 | 
						|
		if (test_bit(CollisionCheck, &rdev->flags))
 | 
						|
			remove_serial(rdev, lo, hi);
 | 
						|
		if (test_bit(WriteMostly, &rdev->flags))
 | 
						|
			atomic_dec(&r1_bio->behind_remaining);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In behind mode, we ACK the master bio once the I/O
 | 
						|
		 * has safely reached all non-writemostly
 | 
						|
		 * disks. Setting the Returned bit ensures that this
 | 
						|
		 * gets done only once -- we don't ever want to return
 | 
						|
		 * -EIO here, instead we'll wait
 | 
						|
		 */
 | 
						|
		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 | 
						|
		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 | 
						|
			/* Maybe we can return now */
 | 
						|
			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 | 
						|
				struct bio *mbio = r1_bio->master_bio;
 | 
						|
				pr_debug("raid1: behind end write sectors"
 | 
						|
					 " %llu-%llu\n",
 | 
						|
					 (unsigned long long) mbio->bi_iter.bi_sector,
 | 
						|
					 (unsigned long long) bio_end_sector(mbio) - 1);
 | 
						|
				call_bio_endio(r1_bio);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else if (rdev->mddev->serialize_policy)
 | 
						|
		remove_serial(rdev, lo, hi);
 | 
						|
	if (r1_bio->bios[mirror] == NULL)
 | 
						|
		rdev_dec_pending(rdev, conf->mddev);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Let's see if all mirrored write operations have finished
 | 
						|
	 * already.
 | 
						|
	 */
 | 
						|
	r1_bio_write_done(r1_bio);
 | 
						|
 | 
						|
	if (to_put)
 | 
						|
		bio_put(to_put);
 | 
						|
}
 | 
						|
 | 
						|
static sector_t align_to_barrier_unit_end(sector_t start_sector,
 | 
						|
					  sector_t sectors)
 | 
						|
{
 | 
						|
	sector_t len;
 | 
						|
 | 
						|
	WARN_ON(sectors == 0);
 | 
						|
	/*
 | 
						|
	 * len is the number of sectors from start_sector to end of the
 | 
						|
	 * barrier unit which start_sector belongs to.
 | 
						|
	 */
 | 
						|
	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 | 
						|
	      start_sector;
 | 
						|
 | 
						|
	if (len > sectors)
 | 
						|
		len = sectors;
 | 
						|
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine returns the disk from which the requested read should
 | 
						|
 * be done. There is a per-array 'next expected sequential IO' sector
 | 
						|
 * number - if this matches on the next IO then we use the last disk.
 | 
						|
 * There is also a per-disk 'last know head position' sector that is
 | 
						|
 * maintained from IRQ contexts, both the normal and the resync IO
 | 
						|
 * completion handlers update this position correctly. If there is no
 | 
						|
 * perfect sequential match then we pick the disk whose head is closest.
 | 
						|
 *
 | 
						|
 * If there are 2 mirrors in the same 2 devices, performance degrades
 | 
						|
 * because position is mirror, not device based.
 | 
						|
 *
 | 
						|
 * The rdev for the device selected will have nr_pending incremented.
 | 
						|
 */
 | 
						|
static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 | 
						|
{
 | 
						|
	const sector_t this_sector = r1_bio->sector;
 | 
						|
	int sectors;
 | 
						|
	int best_good_sectors;
 | 
						|
	int best_disk, best_dist_disk, best_pending_disk;
 | 
						|
	int has_nonrot_disk;
 | 
						|
	int disk;
 | 
						|
	sector_t best_dist;
 | 
						|
	unsigned int min_pending;
 | 
						|
	struct md_rdev *rdev;
 | 
						|
	int choose_first;
 | 
						|
	int choose_next_idle;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	/*
 | 
						|
	 * Check if we can balance. We can balance on the whole
 | 
						|
	 * device if no resync is going on, or below the resync window.
 | 
						|
	 * We take the first readable disk when above the resync window.
 | 
						|
	 */
 | 
						|
 retry:
 | 
						|
	sectors = r1_bio->sectors;
 | 
						|
	best_disk = -1;
 | 
						|
	best_dist_disk = -1;
 | 
						|
	best_dist = MaxSector;
 | 
						|
	best_pending_disk = -1;
 | 
						|
	min_pending = UINT_MAX;
 | 
						|
	best_good_sectors = 0;
 | 
						|
	has_nonrot_disk = 0;
 | 
						|
	choose_next_idle = 0;
 | 
						|
	clear_bit(R1BIO_FailFast, &r1_bio->state);
 | 
						|
 | 
						|
	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 | 
						|
	    (mddev_is_clustered(conf->mddev) &&
 | 
						|
	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 | 
						|
		    this_sector + sectors)))
 | 
						|
		choose_first = 1;
 | 
						|
	else
 | 
						|
		choose_first = 0;
 | 
						|
 | 
						|
	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 | 
						|
		sector_t dist;
 | 
						|
		sector_t first_bad;
 | 
						|
		int bad_sectors;
 | 
						|
		unsigned int pending;
 | 
						|
		bool nonrot;
 | 
						|
 | 
						|
		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 | 
						|
		if (r1_bio->bios[disk] == IO_BLOCKED
 | 
						|
		    || rdev == NULL
 | 
						|
		    || test_bit(Faulty, &rdev->flags))
 | 
						|
			continue;
 | 
						|
		if (!test_bit(In_sync, &rdev->flags) &&
 | 
						|
		    rdev->recovery_offset < this_sector + sectors)
 | 
						|
			continue;
 | 
						|
		if (test_bit(WriteMostly, &rdev->flags)) {
 | 
						|
			/* Don't balance among write-mostly, just
 | 
						|
			 * use the first as a last resort */
 | 
						|
			if (best_dist_disk < 0) {
 | 
						|
				if (is_badblock(rdev, this_sector, sectors,
 | 
						|
						&first_bad, &bad_sectors)) {
 | 
						|
					if (first_bad <= this_sector)
 | 
						|
						/* Cannot use this */
 | 
						|
						continue;
 | 
						|
					best_good_sectors = first_bad - this_sector;
 | 
						|
				} else
 | 
						|
					best_good_sectors = sectors;
 | 
						|
				best_dist_disk = disk;
 | 
						|
				best_pending_disk = disk;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		/* This is a reasonable device to use.  It might
 | 
						|
		 * even be best.
 | 
						|
		 */
 | 
						|
		if (is_badblock(rdev, this_sector, sectors,
 | 
						|
				&first_bad, &bad_sectors)) {
 | 
						|
			if (best_dist < MaxSector)
 | 
						|
				/* already have a better device */
 | 
						|
				continue;
 | 
						|
			if (first_bad <= this_sector) {
 | 
						|
				/* cannot read here. If this is the 'primary'
 | 
						|
				 * device, then we must not read beyond
 | 
						|
				 * bad_sectors from another device..
 | 
						|
				 */
 | 
						|
				bad_sectors -= (this_sector - first_bad);
 | 
						|
				if (choose_first && sectors > bad_sectors)
 | 
						|
					sectors = bad_sectors;
 | 
						|
				if (best_good_sectors > sectors)
 | 
						|
					best_good_sectors = sectors;
 | 
						|
 | 
						|
			} else {
 | 
						|
				sector_t good_sectors = first_bad - this_sector;
 | 
						|
				if (good_sectors > best_good_sectors) {
 | 
						|
					best_good_sectors = good_sectors;
 | 
						|
					best_disk = disk;
 | 
						|
				}
 | 
						|
				if (choose_first)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			continue;
 | 
						|
		} else {
 | 
						|
			if ((sectors > best_good_sectors) && (best_disk >= 0))
 | 
						|
				best_disk = -1;
 | 
						|
			best_good_sectors = sectors;
 | 
						|
		}
 | 
						|
 | 
						|
		if (best_disk >= 0)
 | 
						|
			/* At least two disks to choose from so failfast is OK */
 | 
						|
			set_bit(R1BIO_FailFast, &r1_bio->state);
 | 
						|
 | 
						|
		nonrot = bdev_nonrot(rdev->bdev);
 | 
						|
		has_nonrot_disk |= nonrot;
 | 
						|
		pending = atomic_read(&rdev->nr_pending);
 | 
						|
		dist = abs(this_sector - conf->mirrors[disk].head_position);
 | 
						|
		if (choose_first) {
 | 
						|
			best_disk = disk;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/* Don't change to another disk for sequential reads */
 | 
						|
		if (conf->mirrors[disk].next_seq_sect == this_sector
 | 
						|
		    || dist == 0) {
 | 
						|
			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 | 
						|
			struct raid1_info *mirror = &conf->mirrors[disk];
 | 
						|
 | 
						|
			best_disk = disk;
 | 
						|
			/*
 | 
						|
			 * If buffered sequential IO size exceeds optimal
 | 
						|
			 * iosize, check if there is idle disk. If yes, choose
 | 
						|
			 * the idle disk. read_balance could already choose an
 | 
						|
			 * idle disk before noticing it's a sequential IO in
 | 
						|
			 * this disk. This doesn't matter because this disk
 | 
						|
			 * will idle, next time it will be utilized after the
 | 
						|
			 * first disk has IO size exceeds optimal iosize. In
 | 
						|
			 * this way, iosize of the first disk will be optimal
 | 
						|
			 * iosize at least. iosize of the second disk might be
 | 
						|
			 * small, but not a big deal since when the second disk
 | 
						|
			 * starts IO, the first disk is likely still busy.
 | 
						|
			 */
 | 
						|
			if (nonrot && opt_iosize > 0 &&
 | 
						|
			    mirror->seq_start != MaxSector &&
 | 
						|
			    mirror->next_seq_sect > opt_iosize &&
 | 
						|
			    mirror->next_seq_sect - opt_iosize >=
 | 
						|
			    mirror->seq_start) {
 | 
						|
				choose_next_idle = 1;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (choose_next_idle)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (min_pending > pending) {
 | 
						|
			min_pending = pending;
 | 
						|
			best_pending_disk = disk;
 | 
						|
		}
 | 
						|
 | 
						|
		if (dist < best_dist) {
 | 
						|
			best_dist = dist;
 | 
						|
			best_dist_disk = disk;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If all disks are rotational, choose the closest disk. If any disk is
 | 
						|
	 * non-rotational, choose the disk with less pending request even the
 | 
						|
	 * disk is rotational, which might/might not be optimal for raids with
 | 
						|
	 * mixed ratation/non-rotational disks depending on workload.
 | 
						|
	 */
 | 
						|
	if (best_disk == -1) {
 | 
						|
		if (has_nonrot_disk || min_pending == 0)
 | 
						|
			best_disk = best_pending_disk;
 | 
						|
		else
 | 
						|
			best_disk = best_dist_disk;
 | 
						|
	}
 | 
						|
 | 
						|
	if (best_disk >= 0) {
 | 
						|
		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 | 
						|
		if (!rdev)
 | 
						|
			goto retry;
 | 
						|
		atomic_inc(&rdev->nr_pending);
 | 
						|
		sectors = best_good_sectors;
 | 
						|
 | 
						|
		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 | 
						|
			conf->mirrors[best_disk].seq_start = this_sector;
 | 
						|
 | 
						|
		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	*max_sectors = sectors;
 | 
						|
 | 
						|
	return best_disk;
 | 
						|
}
 | 
						|
 | 
						|
static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 | 
						|
{
 | 
						|
	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 | 
						|
	md_bitmap_unplug(conf->mddev->bitmap);
 | 
						|
	wake_up(&conf->wait_barrier);
 | 
						|
 | 
						|
	while (bio) { /* submit pending writes */
 | 
						|
		struct bio *next = bio->bi_next;
 | 
						|
		struct md_rdev *rdev = (void *)bio->bi_bdev;
 | 
						|
		bio->bi_next = NULL;
 | 
						|
		bio_set_dev(bio, rdev->bdev);
 | 
						|
		if (test_bit(Faulty, &rdev->flags)) {
 | 
						|
			bio_io_error(bio);
 | 
						|
		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 | 
						|
				    !bdev_max_discard_sectors(bio->bi_bdev)))
 | 
						|
			/* Just ignore it */
 | 
						|
			bio_endio(bio);
 | 
						|
		else
 | 
						|
			submit_bio_noacct(bio);
 | 
						|
		bio = next;
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void flush_pending_writes(struct r1conf *conf)
 | 
						|
{
 | 
						|
	/* Any writes that have been queued but are awaiting
 | 
						|
	 * bitmap updates get flushed here.
 | 
						|
	 */
 | 
						|
	spin_lock_irq(&conf->device_lock);
 | 
						|
 | 
						|
	if (conf->pending_bio_list.head) {
 | 
						|
		struct blk_plug plug;
 | 
						|
		struct bio *bio;
 | 
						|
 | 
						|
		bio = bio_list_get(&conf->pending_bio_list);
 | 
						|
		spin_unlock_irq(&conf->device_lock);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * As this is called in a wait_event() loop (see freeze_array),
 | 
						|
		 * current->state might be TASK_UNINTERRUPTIBLE which will
 | 
						|
		 * cause a warning when we prepare to wait again.  As it is
 | 
						|
		 * rare that this path is taken, it is perfectly safe to force
 | 
						|
		 * us to go around the wait_event() loop again, so the warning
 | 
						|
		 * is a false-positive.  Silence the warning by resetting
 | 
						|
		 * thread state
 | 
						|
		 */
 | 
						|
		__set_current_state(TASK_RUNNING);
 | 
						|
		blk_start_plug(&plug);
 | 
						|
		flush_bio_list(conf, bio);
 | 
						|
		blk_finish_plug(&plug);
 | 
						|
	} else
 | 
						|
		spin_unlock_irq(&conf->device_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Barriers....
 | 
						|
 * Sometimes we need to suspend IO while we do something else,
 | 
						|
 * either some resync/recovery, or reconfigure the array.
 | 
						|
 * To do this we raise a 'barrier'.
 | 
						|
 * The 'barrier' is a counter that can be raised multiple times
 | 
						|
 * to count how many activities are happening which preclude
 | 
						|
 * normal IO.
 | 
						|
 * We can only raise the barrier if there is no pending IO.
 | 
						|
 * i.e. if nr_pending == 0.
 | 
						|
 * We choose only to raise the barrier if no-one is waiting for the
 | 
						|
 * barrier to go down.  This means that as soon as an IO request
 | 
						|
 * is ready, no other operations which require a barrier will start
 | 
						|
 * until the IO request has had a chance.
 | 
						|
 *
 | 
						|
 * So: regular IO calls 'wait_barrier'.  When that returns there
 | 
						|
 *    is no backgroup IO happening,  It must arrange to call
 | 
						|
 *    allow_barrier when it has finished its IO.
 | 
						|
 * backgroup IO calls must call raise_barrier.  Once that returns
 | 
						|
 *    there is no normal IO happeing.  It must arrange to call
 | 
						|
 *    lower_barrier when the particular background IO completes.
 | 
						|
 *
 | 
						|
 * If resync/recovery is interrupted, returns -EINTR;
 | 
						|
 * Otherwise, returns 0.
 | 
						|
 */
 | 
						|
static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
 | 
						|
{
 | 
						|
	int idx = sector_to_idx(sector_nr);
 | 
						|
 | 
						|
	spin_lock_irq(&conf->resync_lock);
 | 
						|
 | 
						|
	/* Wait until no block IO is waiting */
 | 
						|
	wait_event_lock_irq(conf->wait_barrier,
 | 
						|
			    !atomic_read(&conf->nr_waiting[idx]),
 | 
						|
			    conf->resync_lock);
 | 
						|
 | 
						|
	/* block any new IO from starting */
 | 
						|
	atomic_inc(&conf->barrier[idx]);
 | 
						|
	/*
 | 
						|
	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 | 
						|
	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 | 
						|
	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 | 
						|
	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 | 
						|
	 * be fetched before conf->barrier[idx] is increased. Otherwise
 | 
						|
	 * there will be a race between raise_barrier() and _wait_barrier().
 | 
						|
	 */
 | 
						|
	smp_mb__after_atomic();
 | 
						|
 | 
						|
	/* For these conditions we must wait:
 | 
						|
	 * A: while the array is in frozen state
 | 
						|
	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 | 
						|
	 *    existing in corresponding I/O barrier bucket.
 | 
						|
	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 | 
						|
	 *    max resync count which allowed on current I/O barrier bucket.
 | 
						|
	 */
 | 
						|
	wait_event_lock_irq(conf->wait_barrier,
 | 
						|
			    (!conf->array_frozen &&
 | 
						|
			     !atomic_read(&conf->nr_pending[idx]) &&
 | 
						|
			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 | 
						|
				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 | 
						|
			    conf->resync_lock);
 | 
						|
 | 
						|
	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 | 
						|
		atomic_dec(&conf->barrier[idx]);
 | 
						|
		spin_unlock_irq(&conf->resync_lock);
 | 
						|
		wake_up(&conf->wait_barrier);
 | 
						|
		return -EINTR;
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_inc(&conf->nr_sync_pending);
 | 
						|
	spin_unlock_irq(&conf->resync_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 | 
						|
{
 | 
						|
	int idx = sector_to_idx(sector_nr);
 | 
						|
 | 
						|
	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 | 
						|
 | 
						|
	atomic_dec(&conf->barrier[idx]);
 | 
						|
	atomic_dec(&conf->nr_sync_pending);
 | 
						|
	wake_up(&conf->wait_barrier);
 | 
						|
}
 | 
						|
 | 
						|
static bool _wait_barrier(struct r1conf *conf, int idx, bool nowait)
 | 
						|
{
 | 
						|
	bool ret = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We need to increase conf->nr_pending[idx] very early here,
 | 
						|
	 * then raise_barrier() can be blocked when it waits for
 | 
						|
	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 | 
						|
	 * conf->resync_lock when there is no barrier raised in same
 | 
						|
	 * barrier unit bucket. Also if the array is frozen, I/O
 | 
						|
	 * should be blocked until array is unfrozen.
 | 
						|
	 */
 | 
						|
	atomic_inc(&conf->nr_pending[idx]);
 | 
						|
	/*
 | 
						|
	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 | 
						|
	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 | 
						|
	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 | 
						|
	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 | 
						|
	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 | 
						|
	 * will be a race between _wait_barrier() and raise_barrier().
 | 
						|
	 */
 | 
						|
	smp_mb__after_atomic();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't worry about checking two atomic_t variables at same time
 | 
						|
	 * here. If during we check conf->barrier[idx], the array is
 | 
						|
	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 | 
						|
	 * 0, it is safe to return and make the I/O continue. Because the
 | 
						|
	 * array is frozen, all I/O returned here will eventually complete
 | 
						|
	 * or be queued, no race will happen. See code comment in
 | 
						|
	 * frozen_array().
 | 
						|
	 */
 | 
						|
	if (!READ_ONCE(conf->array_frozen) &&
 | 
						|
	    !atomic_read(&conf->barrier[idx]))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * After holding conf->resync_lock, conf->nr_pending[idx]
 | 
						|
	 * should be decreased before waiting for barrier to drop.
 | 
						|
	 * Otherwise, we may encounter a race condition because
 | 
						|
	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 | 
						|
	 * to be 0 at same time.
 | 
						|
	 */
 | 
						|
	spin_lock_irq(&conf->resync_lock);
 | 
						|
	atomic_inc(&conf->nr_waiting[idx]);
 | 
						|
	atomic_dec(&conf->nr_pending[idx]);
 | 
						|
	/*
 | 
						|
	 * In case freeze_array() is waiting for
 | 
						|
	 * get_unqueued_pending() == extra
 | 
						|
	 */
 | 
						|
	wake_up(&conf->wait_barrier);
 | 
						|
	/* Wait for the barrier in same barrier unit bucket to drop. */
 | 
						|
 | 
						|
	/* Return false when nowait flag is set */
 | 
						|
	if (nowait) {
 | 
						|
		ret = false;
 | 
						|
	} else {
 | 
						|
		wait_event_lock_irq(conf->wait_barrier,
 | 
						|
				!conf->array_frozen &&
 | 
						|
				!atomic_read(&conf->barrier[idx]),
 | 
						|
				conf->resync_lock);
 | 
						|
		atomic_inc(&conf->nr_pending[idx]);
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_dec(&conf->nr_waiting[idx]);
 | 
						|
	spin_unlock_irq(&conf->resync_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool wait_read_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 | 
						|
{
 | 
						|
	int idx = sector_to_idx(sector_nr);
 | 
						|
	bool ret = true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Very similar to _wait_barrier(). The difference is, for read
 | 
						|
	 * I/O we don't need wait for sync I/O, but if the whole array
 | 
						|
	 * is frozen, the read I/O still has to wait until the array is
 | 
						|
	 * unfrozen. Since there is no ordering requirement with
 | 
						|
	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
 | 
						|
	 */
 | 
						|
	atomic_inc(&conf->nr_pending[idx]);
 | 
						|
 | 
						|
	if (!READ_ONCE(conf->array_frozen))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	spin_lock_irq(&conf->resync_lock);
 | 
						|
	atomic_inc(&conf->nr_waiting[idx]);
 | 
						|
	atomic_dec(&conf->nr_pending[idx]);
 | 
						|
	/*
 | 
						|
	 * In case freeze_array() is waiting for
 | 
						|
	 * get_unqueued_pending() == extra
 | 
						|
	 */
 | 
						|
	wake_up(&conf->wait_barrier);
 | 
						|
	/* Wait for array to be unfrozen */
 | 
						|
 | 
						|
	/* Return false when nowait flag is set */
 | 
						|
	if (nowait) {
 | 
						|
		/* Return false when nowait flag is set */
 | 
						|
		ret = false;
 | 
						|
	} else {
 | 
						|
		wait_event_lock_irq(conf->wait_barrier,
 | 
						|
				!conf->array_frozen,
 | 
						|
				conf->resync_lock);
 | 
						|
		atomic_inc(&conf->nr_pending[idx]);
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_dec(&conf->nr_waiting[idx]);
 | 
						|
	spin_unlock_irq(&conf->resync_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool wait_barrier(struct r1conf *conf, sector_t sector_nr, bool nowait)
 | 
						|
{
 | 
						|
	int idx = sector_to_idx(sector_nr);
 | 
						|
 | 
						|
	return _wait_barrier(conf, idx, nowait);
 | 
						|
}
 | 
						|
 | 
						|
static void _allow_barrier(struct r1conf *conf, int idx)
 | 
						|
{
 | 
						|
	atomic_dec(&conf->nr_pending[idx]);
 | 
						|
	wake_up(&conf->wait_barrier);
 | 
						|
}
 | 
						|
 | 
						|
static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
 | 
						|
{
 | 
						|
	int idx = sector_to_idx(sector_nr);
 | 
						|
 | 
						|
	_allow_barrier(conf, idx);
 | 
						|
}
 | 
						|
 | 
						|
/* conf->resync_lock should be held */
 | 
						|
static int get_unqueued_pending(struct r1conf *conf)
 | 
						|
{
 | 
						|
	int idx, ret;
 | 
						|
 | 
						|
	ret = atomic_read(&conf->nr_sync_pending);
 | 
						|
	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
 | 
						|
		ret += atomic_read(&conf->nr_pending[idx]) -
 | 
						|
			atomic_read(&conf->nr_queued[idx]);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void freeze_array(struct r1conf *conf, int extra)
 | 
						|
{
 | 
						|
	/* Stop sync I/O and normal I/O and wait for everything to
 | 
						|
	 * go quiet.
 | 
						|
	 * This is called in two situations:
 | 
						|
	 * 1) management command handlers (reshape, remove disk, quiesce).
 | 
						|
	 * 2) one normal I/O request failed.
 | 
						|
 | 
						|
	 * After array_frozen is set to 1, new sync IO will be blocked at
 | 
						|
	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
 | 
						|
	 * or wait_read_barrier(). The flying I/Os will either complete or be
 | 
						|
	 * queued. When everything goes quite, there are only queued I/Os left.
 | 
						|
 | 
						|
	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
 | 
						|
	 * barrier bucket index which this I/O request hits. When all sync and
 | 
						|
	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
 | 
						|
	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
 | 
						|
	 * in handle_read_error(), we may call freeze_array() before trying to
 | 
						|
	 * fix the read error. In this case, the error read I/O is not queued,
 | 
						|
	 * so get_unqueued_pending() == 1.
 | 
						|
	 *
 | 
						|
	 * Therefore before this function returns, we need to wait until
 | 
						|
	 * get_unqueued_pendings(conf) gets equal to extra. For
 | 
						|
	 * normal I/O context, extra is 1, in rested situations extra is 0.
 | 
						|
	 */
 | 
						|
	spin_lock_irq(&conf->resync_lock);
 | 
						|
	conf->array_frozen = 1;
 | 
						|
	raid1_log(conf->mddev, "wait freeze");
 | 
						|
	wait_event_lock_irq_cmd(
 | 
						|
		conf->wait_barrier,
 | 
						|
		get_unqueued_pending(conf) == extra,
 | 
						|
		conf->resync_lock,
 | 
						|
		flush_pending_writes(conf));
 | 
						|
	spin_unlock_irq(&conf->resync_lock);
 | 
						|
}
 | 
						|
static void unfreeze_array(struct r1conf *conf)
 | 
						|
{
 | 
						|
	/* reverse the effect of the freeze */
 | 
						|
	spin_lock_irq(&conf->resync_lock);
 | 
						|
	conf->array_frozen = 0;
 | 
						|
	spin_unlock_irq(&conf->resync_lock);
 | 
						|
	wake_up(&conf->wait_barrier);
 | 
						|
}
 | 
						|
 | 
						|
static void alloc_behind_master_bio(struct r1bio *r1_bio,
 | 
						|
					   struct bio *bio)
 | 
						|
{
 | 
						|
	int size = bio->bi_iter.bi_size;
 | 
						|
	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | 
						|
	int i = 0;
 | 
						|
	struct bio *behind_bio = NULL;
 | 
						|
 | 
						|
	behind_bio = bio_alloc_bioset(NULL, vcnt, 0, GFP_NOIO,
 | 
						|
				      &r1_bio->mddev->bio_set);
 | 
						|
	if (!behind_bio)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* discard op, we don't support writezero/writesame yet */
 | 
						|
	if (!bio_has_data(bio)) {
 | 
						|
		behind_bio->bi_iter.bi_size = size;
 | 
						|
		goto skip_copy;
 | 
						|
	}
 | 
						|
 | 
						|
	while (i < vcnt && size) {
 | 
						|
		struct page *page;
 | 
						|
		int len = min_t(int, PAGE_SIZE, size);
 | 
						|
 | 
						|
		page = alloc_page(GFP_NOIO);
 | 
						|
		if (unlikely(!page))
 | 
						|
			goto free_pages;
 | 
						|
 | 
						|
		bio_add_page(behind_bio, page, len, 0);
 | 
						|
 | 
						|
		size -= len;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
 | 
						|
	bio_copy_data(behind_bio, bio);
 | 
						|
skip_copy:
 | 
						|
	r1_bio->behind_master_bio = behind_bio;
 | 
						|
	set_bit(R1BIO_BehindIO, &r1_bio->state);
 | 
						|
 | 
						|
	return;
 | 
						|
 | 
						|
free_pages:
 | 
						|
	pr_debug("%dB behind alloc failed, doing sync I/O\n",
 | 
						|
		 bio->bi_iter.bi_size);
 | 
						|
	bio_free_pages(behind_bio);
 | 
						|
	bio_put(behind_bio);
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | 
						|
{
 | 
						|
	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
 | 
						|
						  cb);
 | 
						|
	struct mddev *mddev = plug->cb.data;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	struct bio *bio;
 | 
						|
 | 
						|
	if (from_schedule || current->bio_list) {
 | 
						|
		spin_lock_irq(&conf->device_lock);
 | 
						|
		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 | 
						|
		spin_unlock_irq(&conf->device_lock);
 | 
						|
		wake_up(&conf->wait_barrier);
 | 
						|
		md_wakeup_thread(mddev->thread);
 | 
						|
		kfree(plug);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* we aren't scheduling, so we can do the write-out directly. */
 | 
						|
	bio = bio_list_get(&plug->pending);
 | 
						|
	flush_bio_list(conf, bio);
 | 
						|
	kfree(plug);
 | 
						|
}
 | 
						|
 | 
						|
static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
 | 
						|
{
 | 
						|
	r1_bio->master_bio = bio;
 | 
						|
	r1_bio->sectors = bio_sectors(bio);
 | 
						|
	r1_bio->state = 0;
 | 
						|
	r1_bio->mddev = mddev;
 | 
						|
	r1_bio->sector = bio->bi_iter.bi_sector;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct r1bio *
 | 
						|
alloc_r1bio(struct mddev *mddev, struct bio *bio)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	struct r1bio *r1_bio;
 | 
						|
 | 
						|
	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
 | 
						|
	/* Ensure no bio records IO_BLOCKED */
 | 
						|
	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
 | 
						|
	init_r1bio(r1_bio, mddev, bio);
 | 
						|
	return r1_bio;
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_read_request(struct mddev *mddev, struct bio *bio,
 | 
						|
			       int max_read_sectors, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	struct raid1_info *mirror;
 | 
						|
	struct bio *read_bio;
 | 
						|
	struct bitmap *bitmap = mddev->bitmap;
 | 
						|
	const enum req_op op = bio_op(bio);
 | 
						|
	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
 | 
						|
	int max_sectors;
 | 
						|
	int rdisk;
 | 
						|
	bool r1bio_existed = !!r1_bio;
 | 
						|
	char b[BDEVNAME_SIZE];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If r1_bio is set, we are blocking the raid1d thread
 | 
						|
	 * so there is a tiny risk of deadlock.  So ask for
 | 
						|
	 * emergency memory if needed.
 | 
						|
	 */
 | 
						|
	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
 | 
						|
 | 
						|
	if (r1bio_existed) {
 | 
						|
		/* Need to get the block device name carefully */
 | 
						|
		struct md_rdev *rdev;
 | 
						|
		rcu_read_lock();
 | 
						|
		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
 | 
						|
		if (rdev)
 | 
						|
			snprintf(b, sizeof(b), "%pg", rdev->bdev);
 | 
						|
		else
 | 
						|
			strcpy(b, "???");
 | 
						|
		rcu_read_unlock();
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Still need barrier for READ in case that whole
 | 
						|
	 * array is frozen.
 | 
						|
	 */
 | 
						|
	if (!wait_read_barrier(conf, bio->bi_iter.bi_sector,
 | 
						|
				bio->bi_opf & REQ_NOWAIT)) {
 | 
						|
		bio_wouldblock_error(bio);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!r1_bio)
 | 
						|
		r1_bio = alloc_r1bio(mddev, bio);
 | 
						|
	else
 | 
						|
		init_r1bio(r1_bio, mddev, bio);
 | 
						|
	r1_bio->sectors = max_read_sectors;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * make_request() can abort the operation when read-ahead is being
 | 
						|
	 * used and no empty request is available.
 | 
						|
	 */
 | 
						|
	rdisk = read_balance(conf, r1_bio, &max_sectors);
 | 
						|
 | 
						|
	if (rdisk < 0) {
 | 
						|
		/* couldn't find anywhere to read from */
 | 
						|
		if (r1bio_existed) {
 | 
						|
			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
 | 
						|
					    mdname(mddev),
 | 
						|
					    b,
 | 
						|
					    (unsigned long long)r1_bio->sector);
 | 
						|
		}
 | 
						|
		raid_end_bio_io(r1_bio);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	mirror = conf->mirrors + rdisk;
 | 
						|
 | 
						|
	if (r1bio_existed)
 | 
						|
		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %pg\n",
 | 
						|
				    mdname(mddev),
 | 
						|
				    (unsigned long long)r1_bio->sector,
 | 
						|
				    mirror->rdev->bdev);
 | 
						|
 | 
						|
	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 | 
						|
	    bitmap) {
 | 
						|
		/*
 | 
						|
		 * Reading from a write-mostly device must take care not to
 | 
						|
		 * over-take any writes that are 'behind'
 | 
						|
		 */
 | 
						|
		raid1_log(mddev, "wait behind writes");
 | 
						|
		wait_event(bitmap->behind_wait,
 | 
						|
			   atomic_read(&bitmap->behind_writes) == 0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (max_sectors < bio_sectors(bio)) {
 | 
						|
		struct bio *split = bio_split(bio, max_sectors,
 | 
						|
					      gfp, &conf->bio_split);
 | 
						|
		bio_chain(split, bio);
 | 
						|
		submit_bio_noacct(bio);
 | 
						|
		bio = split;
 | 
						|
		r1_bio->master_bio = bio;
 | 
						|
		r1_bio->sectors = max_sectors;
 | 
						|
	}
 | 
						|
 | 
						|
	r1_bio->read_disk = rdisk;
 | 
						|
 | 
						|
	if (!r1bio_existed && blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 | 
						|
		r1_bio->start_time = bio_start_io_acct(bio);
 | 
						|
 | 
						|
	read_bio = bio_alloc_clone(mirror->rdev->bdev, bio, gfp,
 | 
						|
				   &mddev->bio_set);
 | 
						|
 | 
						|
	r1_bio->bios[rdisk] = read_bio;
 | 
						|
 | 
						|
	read_bio->bi_iter.bi_sector = r1_bio->sector +
 | 
						|
		mirror->rdev->data_offset;
 | 
						|
	read_bio->bi_end_io = raid1_end_read_request;
 | 
						|
	bio_set_op_attrs(read_bio, op, do_sync);
 | 
						|
	if (test_bit(FailFast, &mirror->rdev->flags) &&
 | 
						|
	    test_bit(R1BIO_FailFast, &r1_bio->state))
 | 
						|
	        read_bio->bi_opf |= MD_FAILFAST;
 | 
						|
	read_bio->bi_private = r1_bio;
 | 
						|
 | 
						|
	if (mddev->gendisk)
 | 
						|
	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
 | 
						|
				      r1_bio->sector);
 | 
						|
 | 
						|
	submit_bio_noacct(read_bio);
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_write_request(struct mddev *mddev, struct bio *bio,
 | 
						|
				int max_write_sectors)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	struct r1bio *r1_bio;
 | 
						|
	int i, disks;
 | 
						|
	struct bitmap *bitmap = mddev->bitmap;
 | 
						|
	unsigned long flags;
 | 
						|
	struct md_rdev *blocked_rdev;
 | 
						|
	struct blk_plug_cb *cb;
 | 
						|
	struct raid1_plug_cb *plug = NULL;
 | 
						|
	int first_clone;
 | 
						|
	int max_sectors;
 | 
						|
	bool write_behind = false;
 | 
						|
 | 
						|
	if (mddev_is_clustered(mddev) &&
 | 
						|
	     md_cluster_ops->area_resyncing(mddev, WRITE,
 | 
						|
		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
 | 
						|
 | 
						|
		DEFINE_WAIT(w);
 | 
						|
		if (bio->bi_opf & REQ_NOWAIT) {
 | 
						|
			bio_wouldblock_error(bio);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		for (;;) {
 | 
						|
			prepare_to_wait(&conf->wait_barrier,
 | 
						|
					&w, TASK_IDLE);
 | 
						|
			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
 | 
						|
							bio->bi_iter.bi_sector,
 | 
						|
							bio_end_sector(bio)))
 | 
						|
				break;
 | 
						|
			schedule();
 | 
						|
		}
 | 
						|
		finish_wait(&conf->wait_barrier, &w);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Register the new request and wait if the reconstruction
 | 
						|
	 * thread has put up a bar for new requests.
 | 
						|
	 * Continue immediately if no resync is active currently.
 | 
						|
	 */
 | 
						|
	if (!wait_barrier(conf, bio->bi_iter.bi_sector,
 | 
						|
				bio->bi_opf & REQ_NOWAIT)) {
 | 
						|
		bio_wouldblock_error(bio);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	r1_bio = alloc_r1bio(mddev, bio);
 | 
						|
	r1_bio->sectors = max_write_sectors;
 | 
						|
 | 
						|
	/* first select target devices under rcu_lock and
 | 
						|
	 * inc refcount on their rdev.  Record them by setting
 | 
						|
	 * bios[x] to bio
 | 
						|
	 * If there are known/acknowledged bad blocks on any device on
 | 
						|
	 * which we have seen a write error, we want to avoid writing those
 | 
						|
	 * blocks.
 | 
						|
	 * This potentially requires several writes to write around
 | 
						|
	 * the bad blocks.  Each set of writes gets it's own r1bio
 | 
						|
	 * with a set of bios attached.
 | 
						|
	 */
 | 
						|
 | 
						|
	disks = conf->raid_disks * 2;
 | 
						|
 retry_write:
 | 
						|
	blocked_rdev = NULL;
 | 
						|
	rcu_read_lock();
 | 
						|
	max_sectors = r1_bio->sectors;
 | 
						|
	for (i = 0;  i < disks; i++) {
 | 
						|
		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The write-behind io is only attempted on drives marked as
 | 
						|
		 * write-mostly, which means we could allocate write behind
 | 
						|
		 * bio later.
 | 
						|
		 */
 | 
						|
		if (rdev && test_bit(WriteMostly, &rdev->flags))
 | 
						|
			write_behind = true;
 | 
						|
 | 
						|
		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 | 
						|
			atomic_inc(&rdev->nr_pending);
 | 
						|
			blocked_rdev = rdev;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		r1_bio->bios[i] = NULL;
 | 
						|
		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 | 
						|
			if (i < conf->raid_disks)
 | 
						|
				set_bit(R1BIO_Degraded, &r1_bio->state);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		atomic_inc(&rdev->nr_pending);
 | 
						|
		if (test_bit(WriteErrorSeen, &rdev->flags)) {
 | 
						|
			sector_t first_bad;
 | 
						|
			int bad_sectors;
 | 
						|
			int is_bad;
 | 
						|
 | 
						|
			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 | 
						|
					     &first_bad, &bad_sectors);
 | 
						|
			if (is_bad < 0) {
 | 
						|
				/* mustn't write here until the bad block is
 | 
						|
				 * acknowledged*/
 | 
						|
				set_bit(BlockedBadBlocks, &rdev->flags);
 | 
						|
				blocked_rdev = rdev;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (is_bad && first_bad <= r1_bio->sector) {
 | 
						|
				/* Cannot write here at all */
 | 
						|
				bad_sectors -= (r1_bio->sector - first_bad);
 | 
						|
				if (bad_sectors < max_sectors)
 | 
						|
					/* mustn't write more than bad_sectors
 | 
						|
					 * to other devices yet
 | 
						|
					 */
 | 
						|
					max_sectors = bad_sectors;
 | 
						|
				rdev_dec_pending(rdev, mddev);
 | 
						|
				/* We don't set R1BIO_Degraded as that
 | 
						|
				 * only applies if the disk is
 | 
						|
				 * missing, so it might be re-added,
 | 
						|
				 * and we want to know to recover this
 | 
						|
				 * chunk.
 | 
						|
				 * In this case the device is here,
 | 
						|
				 * and the fact that this chunk is not
 | 
						|
				 * in-sync is recorded in the bad
 | 
						|
				 * block log
 | 
						|
				 */
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			if (is_bad) {
 | 
						|
				int good_sectors = first_bad - r1_bio->sector;
 | 
						|
				if (good_sectors < max_sectors)
 | 
						|
					max_sectors = good_sectors;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		r1_bio->bios[i] = bio;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	if (unlikely(blocked_rdev)) {
 | 
						|
		/* Wait for this device to become unblocked */
 | 
						|
		int j;
 | 
						|
 | 
						|
		for (j = 0; j < i; j++)
 | 
						|
			if (r1_bio->bios[j])
 | 
						|
				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
 | 
						|
		r1_bio->state = 0;
 | 
						|
		allow_barrier(conf, bio->bi_iter.bi_sector);
 | 
						|
 | 
						|
		if (bio->bi_opf & REQ_NOWAIT) {
 | 
						|
			bio_wouldblock_error(bio);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
 | 
						|
		md_wait_for_blocked_rdev(blocked_rdev, mddev);
 | 
						|
		wait_barrier(conf, bio->bi_iter.bi_sector, false);
 | 
						|
		goto retry_write;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When using a bitmap, we may call alloc_behind_master_bio below.
 | 
						|
	 * alloc_behind_master_bio allocates a copy of the data payload a page
 | 
						|
	 * at a time and thus needs a new bio that can fit the whole payload
 | 
						|
	 * this bio in page sized chunks.
 | 
						|
	 */
 | 
						|
	if (write_behind && bitmap)
 | 
						|
		max_sectors = min_t(int, max_sectors,
 | 
						|
				    BIO_MAX_VECS * (PAGE_SIZE >> 9));
 | 
						|
	if (max_sectors < bio_sectors(bio)) {
 | 
						|
		struct bio *split = bio_split(bio, max_sectors,
 | 
						|
					      GFP_NOIO, &conf->bio_split);
 | 
						|
		bio_chain(split, bio);
 | 
						|
		submit_bio_noacct(bio);
 | 
						|
		bio = split;
 | 
						|
		r1_bio->master_bio = bio;
 | 
						|
		r1_bio->sectors = max_sectors;
 | 
						|
	}
 | 
						|
 | 
						|
	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 | 
						|
		r1_bio->start_time = bio_start_io_acct(bio);
 | 
						|
	atomic_set(&r1_bio->remaining, 1);
 | 
						|
	atomic_set(&r1_bio->behind_remaining, 0);
 | 
						|
 | 
						|
	first_clone = 1;
 | 
						|
 | 
						|
	for (i = 0; i < disks; i++) {
 | 
						|
		struct bio *mbio = NULL;
 | 
						|
		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | 
						|
		if (!r1_bio->bios[i])
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (first_clone) {
 | 
						|
			/* do behind I/O ?
 | 
						|
			 * Not if there are too many, or cannot
 | 
						|
			 * allocate memory, or a reader on WriteMostly
 | 
						|
			 * is waiting for behind writes to flush */
 | 
						|
			if (bitmap &&
 | 
						|
			    test_bit(WriteMostly, &rdev->flags) &&
 | 
						|
			    (atomic_read(&bitmap->behind_writes)
 | 
						|
			     < mddev->bitmap_info.max_write_behind) &&
 | 
						|
			    !waitqueue_active(&bitmap->behind_wait)) {
 | 
						|
				alloc_behind_master_bio(r1_bio, bio);
 | 
						|
			}
 | 
						|
 | 
						|
			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
 | 
						|
					     test_bit(R1BIO_BehindIO, &r1_bio->state));
 | 
						|
			first_clone = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		if (r1_bio->behind_master_bio) {
 | 
						|
			mbio = bio_alloc_clone(rdev->bdev,
 | 
						|
					       r1_bio->behind_master_bio,
 | 
						|
					       GFP_NOIO, &mddev->bio_set);
 | 
						|
			if (test_bit(CollisionCheck, &rdev->flags))
 | 
						|
				wait_for_serialization(rdev, r1_bio);
 | 
						|
			if (test_bit(WriteMostly, &rdev->flags))
 | 
						|
				atomic_inc(&r1_bio->behind_remaining);
 | 
						|
		} else {
 | 
						|
			mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
 | 
						|
					       &mddev->bio_set);
 | 
						|
 | 
						|
			if (mddev->serialize_policy)
 | 
						|
				wait_for_serialization(rdev, r1_bio);
 | 
						|
		}
 | 
						|
 | 
						|
		r1_bio->bios[i] = mbio;
 | 
						|
 | 
						|
		mbio->bi_iter.bi_sector	= (r1_bio->sector + rdev->data_offset);
 | 
						|
		mbio->bi_end_io	= raid1_end_write_request;
 | 
						|
		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
 | 
						|
		if (test_bit(FailFast, &rdev->flags) &&
 | 
						|
		    !test_bit(WriteMostly, &rdev->flags) &&
 | 
						|
		    conf->raid_disks - mddev->degraded > 1)
 | 
						|
			mbio->bi_opf |= MD_FAILFAST;
 | 
						|
		mbio->bi_private = r1_bio;
 | 
						|
 | 
						|
		atomic_inc(&r1_bio->remaining);
 | 
						|
 | 
						|
		if (mddev->gendisk)
 | 
						|
			trace_block_bio_remap(mbio, disk_devt(mddev->gendisk),
 | 
						|
					      r1_bio->sector);
 | 
						|
		/* flush_pending_writes() needs access to the rdev so...*/
 | 
						|
		mbio->bi_bdev = (void *)rdev;
 | 
						|
 | 
						|
		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
 | 
						|
		if (cb)
 | 
						|
			plug = container_of(cb, struct raid1_plug_cb, cb);
 | 
						|
		else
 | 
						|
			plug = NULL;
 | 
						|
		if (plug) {
 | 
						|
			bio_list_add(&plug->pending, mbio);
 | 
						|
		} else {
 | 
						|
			spin_lock_irqsave(&conf->device_lock, flags);
 | 
						|
			bio_list_add(&conf->pending_bio_list, mbio);
 | 
						|
			spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
			md_wakeup_thread(mddev->thread);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	r1_bio_write_done(r1_bio);
 | 
						|
 | 
						|
	/* In case raid1d snuck in to freeze_array */
 | 
						|
	wake_up(&conf->wait_barrier);
 | 
						|
}
 | 
						|
 | 
						|
static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
 | 
						|
{
 | 
						|
	sector_t sectors;
 | 
						|
 | 
						|
	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
 | 
						|
	    && md_flush_request(mddev, bio))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There is a limit to the maximum size, but
 | 
						|
	 * the read/write handler might find a lower limit
 | 
						|
	 * due to bad blocks.  To avoid multiple splits,
 | 
						|
	 * we pass the maximum number of sectors down
 | 
						|
	 * and let the lower level perform the split.
 | 
						|
	 */
 | 
						|
	sectors = align_to_barrier_unit_end(
 | 
						|
		bio->bi_iter.bi_sector, bio_sectors(bio));
 | 
						|
 | 
						|
	if (bio_data_dir(bio) == READ)
 | 
						|
		raid1_read_request(mddev, bio, sectors, NULL);
 | 
						|
	else {
 | 
						|
		if (!md_write_start(mddev,bio))
 | 
						|
			return false;
 | 
						|
		raid1_write_request(mddev, bio, sectors);
 | 
						|
	}
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_status(struct seq_file *seq, struct mddev *mddev)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	int i;
 | 
						|
 | 
						|
	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
 | 
						|
		   conf->raid_disks - mddev->degraded);
 | 
						|
	rcu_read_lock();
 | 
						|
	for (i = 0; i < conf->raid_disks; i++) {
 | 
						|
		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | 
						|
		seq_printf(seq, "%s",
 | 
						|
			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	seq_printf(seq, "]");
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * raid1_error() - RAID1 error handler.
 | 
						|
 * @mddev: affected md device.
 | 
						|
 * @rdev: member device to fail.
 | 
						|
 *
 | 
						|
 * The routine acknowledges &rdev failure and determines new @mddev state.
 | 
						|
 * If it failed, then:
 | 
						|
 *	- &MD_BROKEN flag is set in &mddev->flags.
 | 
						|
 *	- recovery is disabled.
 | 
						|
 * Otherwise, it must be degraded:
 | 
						|
 *	- recovery is interrupted.
 | 
						|
 *	- &mddev->degraded is bumped.
 | 
						|
 *
 | 
						|
 * @rdev is marked as &Faulty excluding case when array is failed and
 | 
						|
 * &mddev->fail_last_dev is off.
 | 
						|
 */
 | 
						|
static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&conf->device_lock, flags);
 | 
						|
 | 
						|
	if (test_bit(In_sync, &rdev->flags) &&
 | 
						|
	    (conf->raid_disks - mddev->degraded) == 1) {
 | 
						|
		set_bit(MD_BROKEN, &mddev->flags);
 | 
						|
 | 
						|
		if (!mddev->fail_last_dev) {
 | 
						|
			conf->recovery_disabled = mddev->recovery_disabled;
 | 
						|
			spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	set_bit(Blocked, &rdev->flags);
 | 
						|
	if (test_and_clear_bit(In_sync, &rdev->flags))
 | 
						|
		mddev->degraded++;
 | 
						|
	set_bit(Faulty, &rdev->flags);
 | 
						|
	spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
	/*
 | 
						|
	 * if recovery is running, make sure it aborts.
 | 
						|
	 */
 | 
						|
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | 
						|
	set_mask_bits(&mddev->sb_flags, 0,
 | 
						|
		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
 | 
						|
	pr_crit("md/raid1:%s: Disk failure on %pg, disabling device.\n"
 | 
						|
		"md/raid1:%s: Operation continuing on %d devices.\n",
 | 
						|
		mdname(mddev), rdev->bdev,
 | 
						|
		mdname(mddev), conf->raid_disks - mddev->degraded);
 | 
						|
}
 | 
						|
 | 
						|
static void print_conf(struct r1conf *conf)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	pr_debug("RAID1 conf printout:\n");
 | 
						|
	if (!conf) {
 | 
						|
		pr_debug("(!conf)\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
 | 
						|
		 conf->raid_disks);
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	for (i = 0; i < conf->raid_disks; i++) {
 | 
						|
		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 | 
						|
		if (rdev)
 | 
						|
			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
 | 
						|
				 i, !test_bit(In_sync, &rdev->flags),
 | 
						|
				 !test_bit(Faulty, &rdev->flags),
 | 
						|
				 rdev->bdev);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
static void close_sync(struct r1conf *conf)
 | 
						|
{
 | 
						|
	int idx;
 | 
						|
 | 
						|
	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
 | 
						|
		_wait_barrier(conf, idx, false);
 | 
						|
		_allow_barrier(conf, idx);
 | 
						|
	}
 | 
						|
 | 
						|
	mempool_exit(&conf->r1buf_pool);
 | 
						|
}
 | 
						|
 | 
						|
static int raid1_spare_active(struct mddev *mddev)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	int count = 0;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find all failed disks within the RAID1 configuration
 | 
						|
	 * and mark them readable.
 | 
						|
	 * Called under mddev lock, so rcu protection not needed.
 | 
						|
	 * device_lock used to avoid races with raid1_end_read_request
 | 
						|
	 * which expects 'In_sync' flags and ->degraded to be consistent.
 | 
						|
	 */
 | 
						|
	spin_lock_irqsave(&conf->device_lock, flags);
 | 
						|
	for (i = 0; i < conf->raid_disks; i++) {
 | 
						|
		struct md_rdev *rdev = conf->mirrors[i].rdev;
 | 
						|
		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
 | 
						|
		if (repl
 | 
						|
		    && !test_bit(Candidate, &repl->flags)
 | 
						|
		    && repl->recovery_offset == MaxSector
 | 
						|
		    && !test_bit(Faulty, &repl->flags)
 | 
						|
		    && !test_and_set_bit(In_sync, &repl->flags)) {
 | 
						|
			/* replacement has just become active */
 | 
						|
			if (!rdev ||
 | 
						|
			    !test_and_clear_bit(In_sync, &rdev->flags))
 | 
						|
				count++;
 | 
						|
			if (rdev) {
 | 
						|
				/* Replaced device not technically
 | 
						|
				 * faulty, but we need to be sure
 | 
						|
				 * it gets removed and never re-added
 | 
						|
				 */
 | 
						|
				set_bit(Faulty, &rdev->flags);
 | 
						|
				sysfs_notify_dirent_safe(
 | 
						|
					rdev->sysfs_state);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (rdev
 | 
						|
		    && rdev->recovery_offset == MaxSector
 | 
						|
		    && !test_bit(Faulty, &rdev->flags)
 | 
						|
		    && !test_and_set_bit(In_sync, &rdev->flags)) {
 | 
						|
			count++;
 | 
						|
			sysfs_notify_dirent_safe(rdev->sysfs_state);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mddev->degraded -= count;
 | 
						|
	spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
 | 
						|
	print_conf(conf);
 | 
						|
	return count;
 | 
						|
}
 | 
						|
 | 
						|
static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	int err = -EEXIST;
 | 
						|
	int mirror = 0;
 | 
						|
	struct raid1_info *p;
 | 
						|
	int first = 0;
 | 
						|
	int last = conf->raid_disks - 1;
 | 
						|
 | 
						|
	if (mddev->recovery_disabled == conf->recovery_disabled)
 | 
						|
		return -EBUSY;
 | 
						|
 | 
						|
	if (md_integrity_add_rdev(rdev, mddev))
 | 
						|
		return -ENXIO;
 | 
						|
 | 
						|
	if (rdev->raid_disk >= 0)
 | 
						|
		first = last = rdev->raid_disk;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * find the disk ... but prefer rdev->saved_raid_disk
 | 
						|
	 * if possible.
 | 
						|
	 */
 | 
						|
	if (rdev->saved_raid_disk >= 0 &&
 | 
						|
	    rdev->saved_raid_disk >= first &&
 | 
						|
	    rdev->saved_raid_disk < conf->raid_disks &&
 | 
						|
	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
 | 
						|
		first = last = rdev->saved_raid_disk;
 | 
						|
 | 
						|
	for (mirror = first; mirror <= last; mirror++) {
 | 
						|
		p = conf->mirrors + mirror;
 | 
						|
		if (!p->rdev) {
 | 
						|
			if (mddev->gendisk)
 | 
						|
				disk_stack_limits(mddev->gendisk, rdev->bdev,
 | 
						|
						  rdev->data_offset << 9);
 | 
						|
 | 
						|
			p->head_position = 0;
 | 
						|
			rdev->raid_disk = mirror;
 | 
						|
			err = 0;
 | 
						|
			/* As all devices are equivalent, we don't need a full recovery
 | 
						|
			 * if this was recently any drive of the array
 | 
						|
			 */
 | 
						|
			if (rdev->saved_raid_disk < 0)
 | 
						|
				conf->fullsync = 1;
 | 
						|
			rcu_assign_pointer(p->rdev, rdev);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (test_bit(WantReplacement, &p->rdev->flags) &&
 | 
						|
		    p[conf->raid_disks].rdev == NULL) {
 | 
						|
			/* Add this device as a replacement */
 | 
						|
			clear_bit(In_sync, &rdev->flags);
 | 
						|
			set_bit(Replacement, &rdev->flags);
 | 
						|
			rdev->raid_disk = mirror;
 | 
						|
			err = 0;
 | 
						|
			conf->fullsync = 1;
 | 
						|
			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	print_conf(conf);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	int err = 0;
 | 
						|
	int number = rdev->raid_disk;
 | 
						|
	struct raid1_info *p = conf->mirrors + number;
 | 
						|
 | 
						|
	if (rdev != p->rdev)
 | 
						|
		p = conf->mirrors + conf->raid_disks + number;
 | 
						|
 | 
						|
	print_conf(conf);
 | 
						|
	if (rdev == p->rdev) {
 | 
						|
		if (test_bit(In_sync, &rdev->flags) ||
 | 
						|
		    atomic_read(&rdev->nr_pending)) {
 | 
						|
			err = -EBUSY;
 | 
						|
			goto abort;
 | 
						|
		}
 | 
						|
		/* Only remove non-faulty devices if recovery
 | 
						|
		 * is not possible.
 | 
						|
		 */
 | 
						|
		if (!test_bit(Faulty, &rdev->flags) &&
 | 
						|
		    mddev->recovery_disabled != conf->recovery_disabled &&
 | 
						|
		    mddev->degraded < conf->raid_disks) {
 | 
						|
			err = -EBUSY;
 | 
						|
			goto abort;
 | 
						|
		}
 | 
						|
		p->rdev = NULL;
 | 
						|
		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
 | 
						|
			synchronize_rcu();
 | 
						|
			if (atomic_read(&rdev->nr_pending)) {
 | 
						|
				/* lost the race, try later */
 | 
						|
				err = -EBUSY;
 | 
						|
				p->rdev = rdev;
 | 
						|
				goto abort;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (conf->mirrors[conf->raid_disks + number].rdev) {
 | 
						|
			/* We just removed a device that is being replaced.
 | 
						|
			 * Move down the replacement.  We drain all IO before
 | 
						|
			 * doing this to avoid confusion.
 | 
						|
			 */
 | 
						|
			struct md_rdev *repl =
 | 
						|
				conf->mirrors[conf->raid_disks + number].rdev;
 | 
						|
			freeze_array(conf, 0);
 | 
						|
			if (atomic_read(&repl->nr_pending)) {
 | 
						|
				/* It means that some queued IO of retry_list
 | 
						|
				 * hold repl. Thus, we cannot set replacement
 | 
						|
				 * as NULL, avoiding rdev NULL pointer
 | 
						|
				 * dereference in sync_request_write and
 | 
						|
				 * handle_write_finished.
 | 
						|
				 */
 | 
						|
				err = -EBUSY;
 | 
						|
				unfreeze_array(conf);
 | 
						|
				goto abort;
 | 
						|
			}
 | 
						|
			clear_bit(Replacement, &repl->flags);
 | 
						|
			p->rdev = repl;
 | 
						|
			conf->mirrors[conf->raid_disks + number].rdev = NULL;
 | 
						|
			unfreeze_array(conf);
 | 
						|
		}
 | 
						|
 | 
						|
		clear_bit(WantReplacement, &rdev->flags);
 | 
						|
		err = md_integrity_register(mddev);
 | 
						|
	}
 | 
						|
abort:
 | 
						|
 | 
						|
	print_conf(conf);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static void end_sync_read(struct bio *bio)
 | 
						|
{
 | 
						|
	struct r1bio *r1_bio = get_resync_r1bio(bio);
 | 
						|
 | 
						|
	update_head_pos(r1_bio->read_disk, r1_bio);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we have read a block, now it needs to be re-written,
 | 
						|
	 * or re-read if the read failed.
 | 
						|
	 * We don't do much here, just schedule handling by raid1d
 | 
						|
	 */
 | 
						|
	if (!bio->bi_status)
 | 
						|
		set_bit(R1BIO_Uptodate, &r1_bio->state);
 | 
						|
 | 
						|
	if (atomic_dec_and_test(&r1_bio->remaining))
 | 
						|
		reschedule_retry(r1_bio);
 | 
						|
}
 | 
						|
 | 
						|
static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	sector_t sync_blocks = 0;
 | 
						|
	sector_t s = r1_bio->sector;
 | 
						|
	long sectors_to_go = r1_bio->sectors;
 | 
						|
 | 
						|
	/* make sure these bits don't get cleared. */
 | 
						|
	do {
 | 
						|
		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
 | 
						|
		s += sync_blocks;
 | 
						|
		sectors_to_go -= sync_blocks;
 | 
						|
	} while (sectors_to_go > 0);
 | 
						|
}
 | 
						|
 | 
						|
static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
 | 
						|
{
 | 
						|
	if (atomic_dec_and_test(&r1_bio->remaining)) {
 | 
						|
		struct mddev *mddev = r1_bio->mddev;
 | 
						|
		int s = r1_bio->sectors;
 | 
						|
 | 
						|
		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | 
						|
		    test_bit(R1BIO_WriteError, &r1_bio->state))
 | 
						|
			reschedule_retry(r1_bio);
 | 
						|
		else {
 | 
						|
			put_buf(r1_bio);
 | 
						|
			md_done_sync(mddev, s, uptodate);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void end_sync_write(struct bio *bio)
 | 
						|
{
 | 
						|
	int uptodate = !bio->bi_status;
 | 
						|
	struct r1bio *r1_bio = get_resync_r1bio(bio);
 | 
						|
	struct mddev *mddev = r1_bio->mddev;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	sector_t first_bad;
 | 
						|
	int bad_sectors;
 | 
						|
	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
 | 
						|
 | 
						|
	if (!uptodate) {
 | 
						|
		abort_sync_write(mddev, r1_bio);
 | 
						|
		set_bit(WriteErrorSeen, &rdev->flags);
 | 
						|
		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 | 
						|
			set_bit(MD_RECOVERY_NEEDED, &
 | 
						|
				mddev->recovery);
 | 
						|
		set_bit(R1BIO_WriteError, &r1_bio->state);
 | 
						|
	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 | 
						|
			       &first_bad, &bad_sectors) &&
 | 
						|
		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
 | 
						|
				r1_bio->sector,
 | 
						|
				r1_bio->sectors,
 | 
						|
				&first_bad, &bad_sectors)
 | 
						|
		)
 | 
						|
		set_bit(R1BIO_MadeGood, &r1_bio->state);
 | 
						|
 | 
						|
	put_sync_write_buf(r1_bio, uptodate);
 | 
						|
}
 | 
						|
 | 
						|
static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
 | 
						|
			   int sectors, struct page *page, int rw)
 | 
						|
{
 | 
						|
	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
 | 
						|
		/* success */
 | 
						|
		return 1;
 | 
						|
	if (rw == WRITE) {
 | 
						|
		set_bit(WriteErrorSeen, &rdev->flags);
 | 
						|
		if (!test_and_set_bit(WantReplacement,
 | 
						|
				      &rdev->flags))
 | 
						|
			set_bit(MD_RECOVERY_NEEDED, &
 | 
						|
				rdev->mddev->recovery);
 | 
						|
	}
 | 
						|
	/* need to record an error - either for the block or the device */
 | 
						|
	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
 | 
						|
		md_error(rdev->mddev, rdev);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int fix_sync_read_error(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	/* Try some synchronous reads of other devices to get
 | 
						|
	 * good data, much like with normal read errors.  Only
 | 
						|
	 * read into the pages we already have so we don't
 | 
						|
	 * need to re-issue the read request.
 | 
						|
	 * We don't need to freeze the array, because being in an
 | 
						|
	 * active sync request, there is no normal IO, and
 | 
						|
	 * no overlapping syncs.
 | 
						|
	 * We don't need to check is_badblock() again as we
 | 
						|
	 * made sure that anything with a bad block in range
 | 
						|
	 * will have bi_end_io clear.
 | 
						|
	 */
 | 
						|
	struct mddev *mddev = r1_bio->mddev;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 | 
						|
	struct page **pages = get_resync_pages(bio)->pages;
 | 
						|
	sector_t sect = r1_bio->sector;
 | 
						|
	int sectors = r1_bio->sectors;
 | 
						|
	int idx = 0;
 | 
						|
	struct md_rdev *rdev;
 | 
						|
 | 
						|
	rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | 
						|
	if (test_bit(FailFast, &rdev->flags)) {
 | 
						|
		/* Don't try recovering from here - just fail it
 | 
						|
		 * ... unless it is the last working device of course */
 | 
						|
		md_error(mddev, rdev);
 | 
						|
		if (test_bit(Faulty, &rdev->flags))
 | 
						|
			/* Don't try to read from here, but make sure
 | 
						|
			 * put_buf does it's thing
 | 
						|
			 */
 | 
						|
			bio->bi_end_io = end_sync_write;
 | 
						|
	}
 | 
						|
 | 
						|
	while(sectors) {
 | 
						|
		int s = sectors;
 | 
						|
		int d = r1_bio->read_disk;
 | 
						|
		int success = 0;
 | 
						|
		int start;
 | 
						|
 | 
						|
		if (s > (PAGE_SIZE>>9))
 | 
						|
			s = PAGE_SIZE >> 9;
 | 
						|
		do {
 | 
						|
			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
 | 
						|
				/* No rcu protection needed here devices
 | 
						|
				 * can only be removed when no resync is
 | 
						|
				 * active, and resync is currently active
 | 
						|
				 */
 | 
						|
				rdev = conf->mirrors[d].rdev;
 | 
						|
				if (sync_page_io(rdev, sect, s<<9,
 | 
						|
						 pages[idx],
 | 
						|
						 REQ_OP_READ, false)) {
 | 
						|
					success = 1;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			d++;
 | 
						|
			if (d == conf->raid_disks * 2)
 | 
						|
				d = 0;
 | 
						|
		} while (!success && d != r1_bio->read_disk);
 | 
						|
 | 
						|
		if (!success) {
 | 
						|
			int abort = 0;
 | 
						|
			/* Cannot read from anywhere, this block is lost.
 | 
						|
			 * Record a bad block on each device.  If that doesn't
 | 
						|
			 * work just disable and interrupt the recovery.
 | 
						|
			 * Don't fail devices as that won't really help.
 | 
						|
			 */
 | 
						|
			pr_crit_ratelimited("md/raid1:%s: %pg: unrecoverable I/O read error for block %llu\n",
 | 
						|
					    mdname(mddev), bio->bi_bdev,
 | 
						|
					    (unsigned long long)r1_bio->sector);
 | 
						|
			for (d = 0; d < conf->raid_disks * 2; d++) {
 | 
						|
				rdev = conf->mirrors[d].rdev;
 | 
						|
				if (!rdev || test_bit(Faulty, &rdev->flags))
 | 
						|
					continue;
 | 
						|
				if (!rdev_set_badblocks(rdev, sect, s, 0))
 | 
						|
					abort = 1;
 | 
						|
			}
 | 
						|
			if (abort) {
 | 
						|
				conf->recovery_disabled =
 | 
						|
					mddev->recovery_disabled;
 | 
						|
				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | 
						|
				md_done_sync(mddev, r1_bio->sectors, 0);
 | 
						|
				put_buf(r1_bio);
 | 
						|
				return 0;
 | 
						|
			}
 | 
						|
			/* Try next page */
 | 
						|
			sectors -= s;
 | 
						|
			sect += s;
 | 
						|
			idx++;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		start = d;
 | 
						|
		/* write it back and re-read */
 | 
						|
		while (d != r1_bio->read_disk) {
 | 
						|
			if (d == 0)
 | 
						|
				d = conf->raid_disks * 2;
 | 
						|
			d--;
 | 
						|
			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
 | 
						|
				continue;
 | 
						|
			rdev = conf->mirrors[d].rdev;
 | 
						|
			if (r1_sync_page_io(rdev, sect, s,
 | 
						|
					    pages[idx],
 | 
						|
					    WRITE) == 0) {
 | 
						|
				r1_bio->bios[d]->bi_end_io = NULL;
 | 
						|
				rdev_dec_pending(rdev, mddev);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		d = start;
 | 
						|
		while (d != r1_bio->read_disk) {
 | 
						|
			if (d == 0)
 | 
						|
				d = conf->raid_disks * 2;
 | 
						|
			d--;
 | 
						|
			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
 | 
						|
				continue;
 | 
						|
			rdev = conf->mirrors[d].rdev;
 | 
						|
			if (r1_sync_page_io(rdev, sect, s,
 | 
						|
					    pages[idx],
 | 
						|
					    READ) != 0)
 | 
						|
				atomic_add(s, &rdev->corrected_errors);
 | 
						|
		}
 | 
						|
		sectors -= s;
 | 
						|
		sect += s;
 | 
						|
		idx ++;
 | 
						|
	}
 | 
						|
	set_bit(R1BIO_Uptodate, &r1_bio->state);
 | 
						|
	bio->bi_status = 0;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void process_checks(struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	/* We have read all readable devices.  If we haven't
 | 
						|
	 * got the block, then there is no hope left.
 | 
						|
	 * If we have, then we want to do a comparison
 | 
						|
	 * and skip the write if everything is the same.
 | 
						|
	 * If any blocks failed to read, then we need to
 | 
						|
	 * attempt an over-write
 | 
						|
	 */
 | 
						|
	struct mddev *mddev = r1_bio->mddev;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	int primary;
 | 
						|
	int i;
 | 
						|
	int vcnt;
 | 
						|
 | 
						|
	/* Fix variable parts of all bios */
 | 
						|
	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
 | 
						|
	for (i = 0; i < conf->raid_disks * 2; i++) {
 | 
						|
		blk_status_t status;
 | 
						|
		struct bio *b = r1_bio->bios[i];
 | 
						|
		struct resync_pages *rp = get_resync_pages(b);
 | 
						|
		if (b->bi_end_io != end_sync_read)
 | 
						|
			continue;
 | 
						|
		/* fixup the bio for reuse, but preserve errno */
 | 
						|
		status = b->bi_status;
 | 
						|
		bio_reset(b, conf->mirrors[i].rdev->bdev, REQ_OP_READ);
 | 
						|
		b->bi_status = status;
 | 
						|
		b->bi_iter.bi_sector = r1_bio->sector +
 | 
						|
			conf->mirrors[i].rdev->data_offset;
 | 
						|
		b->bi_end_io = end_sync_read;
 | 
						|
		rp->raid_bio = r1_bio;
 | 
						|
		b->bi_private = rp;
 | 
						|
 | 
						|
		/* initialize bvec table again */
 | 
						|
		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
 | 
						|
	}
 | 
						|
	for (primary = 0; primary < conf->raid_disks * 2; primary++)
 | 
						|
		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
 | 
						|
		    !r1_bio->bios[primary]->bi_status) {
 | 
						|
			r1_bio->bios[primary]->bi_end_io = NULL;
 | 
						|
			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	r1_bio->read_disk = primary;
 | 
						|
	for (i = 0; i < conf->raid_disks * 2; i++) {
 | 
						|
		int j = 0;
 | 
						|
		struct bio *pbio = r1_bio->bios[primary];
 | 
						|
		struct bio *sbio = r1_bio->bios[i];
 | 
						|
		blk_status_t status = sbio->bi_status;
 | 
						|
		struct page **ppages = get_resync_pages(pbio)->pages;
 | 
						|
		struct page **spages = get_resync_pages(sbio)->pages;
 | 
						|
		struct bio_vec *bi;
 | 
						|
		int page_len[RESYNC_PAGES] = { 0 };
 | 
						|
		struct bvec_iter_all iter_all;
 | 
						|
 | 
						|
		if (sbio->bi_end_io != end_sync_read)
 | 
						|
			continue;
 | 
						|
		/* Now we can 'fixup' the error value */
 | 
						|
		sbio->bi_status = 0;
 | 
						|
 | 
						|
		bio_for_each_segment_all(bi, sbio, iter_all)
 | 
						|
			page_len[j++] = bi->bv_len;
 | 
						|
 | 
						|
		if (!status) {
 | 
						|
			for (j = vcnt; j-- ; ) {
 | 
						|
				if (memcmp(page_address(ppages[j]),
 | 
						|
					   page_address(spages[j]),
 | 
						|
					   page_len[j]))
 | 
						|
					break;
 | 
						|
			}
 | 
						|
		} else
 | 
						|
			j = 0;
 | 
						|
		if (j >= 0)
 | 
						|
			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
 | 
						|
		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
 | 
						|
			      && !status)) {
 | 
						|
			/* No need to write to this device. */
 | 
						|
			sbio->bi_end_io = NULL;
 | 
						|
			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		bio_copy_data(sbio, pbio);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	int i;
 | 
						|
	int disks = conf->raid_disks * 2;
 | 
						|
	struct bio *wbio;
 | 
						|
 | 
						|
	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 | 
						|
		/* ouch - failed to read all of that. */
 | 
						|
		if (!fix_sync_read_error(r1_bio))
 | 
						|
			return;
 | 
						|
 | 
						|
	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
 | 
						|
		process_checks(r1_bio);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * schedule writes
 | 
						|
	 */
 | 
						|
	atomic_set(&r1_bio->remaining, 1);
 | 
						|
	for (i = 0; i < disks ; i++) {
 | 
						|
		wbio = r1_bio->bios[i];
 | 
						|
		if (wbio->bi_end_io == NULL ||
 | 
						|
		    (wbio->bi_end_io == end_sync_read &&
 | 
						|
		     (i == r1_bio->read_disk ||
 | 
						|
		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
 | 
						|
			continue;
 | 
						|
		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
 | 
						|
			abort_sync_write(mddev, r1_bio);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
 | 
						|
		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
 | 
						|
			wbio->bi_opf |= MD_FAILFAST;
 | 
						|
 | 
						|
		wbio->bi_end_io = end_sync_write;
 | 
						|
		atomic_inc(&r1_bio->remaining);
 | 
						|
		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
 | 
						|
 | 
						|
		submit_bio_noacct(wbio);
 | 
						|
	}
 | 
						|
 | 
						|
	put_sync_write_buf(r1_bio, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a kernel thread which:
 | 
						|
 *
 | 
						|
 *	1.	Retries failed read operations on working mirrors.
 | 
						|
 *	2.	Updates the raid superblock when problems encounter.
 | 
						|
 *	3.	Performs writes following reads for array synchronising.
 | 
						|
 */
 | 
						|
 | 
						|
static void fix_read_error(struct r1conf *conf, int read_disk,
 | 
						|
			   sector_t sect, int sectors)
 | 
						|
{
 | 
						|
	struct mddev *mddev = conf->mddev;
 | 
						|
	while(sectors) {
 | 
						|
		int s = sectors;
 | 
						|
		int d = read_disk;
 | 
						|
		int success = 0;
 | 
						|
		int start;
 | 
						|
		struct md_rdev *rdev;
 | 
						|
 | 
						|
		if (s > (PAGE_SIZE>>9))
 | 
						|
			s = PAGE_SIZE >> 9;
 | 
						|
 | 
						|
		do {
 | 
						|
			sector_t first_bad;
 | 
						|
			int bad_sectors;
 | 
						|
 | 
						|
			rcu_read_lock();
 | 
						|
			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | 
						|
			if (rdev &&
 | 
						|
			    (test_bit(In_sync, &rdev->flags) ||
 | 
						|
			     (!test_bit(Faulty, &rdev->flags) &&
 | 
						|
			      rdev->recovery_offset >= sect + s)) &&
 | 
						|
			    is_badblock(rdev, sect, s,
 | 
						|
					&first_bad, &bad_sectors) == 0) {
 | 
						|
				atomic_inc(&rdev->nr_pending);
 | 
						|
				rcu_read_unlock();
 | 
						|
				if (sync_page_io(rdev, sect, s<<9,
 | 
						|
					 conf->tmppage, REQ_OP_READ, false))
 | 
						|
					success = 1;
 | 
						|
				rdev_dec_pending(rdev, mddev);
 | 
						|
				if (success)
 | 
						|
					break;
 | 
						|
			} else
 | 
						|
				rcu_read_unlock();
 | 
						|
			d++;
 | 
						|
			if (d == conf->raid_disks * 2)
 | 
						|
				d = 0;
 | 
						|
		} while (!success && d != read_disk);
 | 
						|
 | 
						|
		if (!success) {
 | 
						|
			/* Cannot read from anywhere - mark it bad */
 | 
						|
			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
 | 
						|
			if (!rdev_set_badblocks(rdev, sect, s, 0))
 | 
						|
				md_error(mddev, rdev);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		/* write it back and re-read */
 | 
						|
		start = d;
 | 
						|
		while (d != read_disk) {
 | 
						|
			if (d==0)
 | 
						|
				d = conf->raid_disks * 2;
 | 
						|
			d--;
 | 
						|
			rcu_read_lock();
 | 
						|
			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | 
						|
			if (rdev &&
 | 
						|
			    !test_bit(Faulty, &rdev->flags)) {
 | 
						|
				atomic_inc(&rdev->nr_pending);
 | 
						|
				rcu_read_unlock();
 | 
						|
				r1_sync_page_io(rdev, sect, s,
 | 
						|
						conf->tmppage, WRITE);
 | 
						|
				rdev_dec_pending(rdev, mddev);
 | 
						|
			} else
 | 
						|
				rcu_read_unlock();
 | 
						|
		}
 | 
						|
		d = start;
 | 
						|
		while (d != read_disk) {
 | 
						|
			if (d==0)
 | 
						|
				d = conf->raid_disks * 2;
 | 
						|
			d--;
 | 
						|
			rcu_read_lock();
 | 
						|
			rdev = rcu_dereference(conf->mirrors[d].rdev);
 | 
						|
			if (rdev &&
 | 
						|
			    !test_bit(Faulty, &rdev->flags)) {
 | 
						|
				atomic_inc(&rdev->nr_pending);
 | 
						|
				rcu_read_unlock();
 | 
						|
				if (r1_sync_page_io(rdev, sect, s,
 | 
						|
						    conf->tmppage, READ)) {
 | 
						|
					atomic_add(s, &rdev->corrected_errors);
 | 
						|
					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %pg)\n",
 | 
						|
						mdname(mddev), s,
 | 
						|
						(unsigned long long)(sect +
 | 
						|
								     rdev->data_offset),
 | 
						|
						rdev->bdev);
 | 
						|
				}
 | 
						|
				rdev_dec_pending(rdev, mddev);
 | 
						|
			} else
 | 
						|
				rcu_read_unlock();
 | 
						|
		}
 | 
						|
		sectors -= s;
 | 
						|
		sect += s;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int narrow_write_error(struct r1bio *r1_bio, int i)
 | 
						|
{
 | 
						|
	struct mddev *mddev = r1_bio->mddev;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	struct md_rdev *rdev = conf->mirrors[i].rdev;
 | 
						|
 | 
						|
	/* bio has the data to be written to device 'i' where
 | 
						|
	 * we just recently had a write error.
 | 
						|
	 * We repeatedly clone the bio and trim down to one block,
 | 
						|
	 * then try the write.  Where the write fails we record
 | 
						|
	 * a bad block.
 | 
						|
	 * It is conceivable that the bio doesn't exactly align with
 | 
						|
	 * blocks.  We must handle this somehow.
 | 
						|
	 *
 | 
						|
	 * We currently own a reference on the rdev.
 | 
						|
	 */
 | 
						|
 | 
						|
	int block_sectors;
 | 
						|
	sector_t sector;
 | 
						|
	int sectors;
 | 
						|
	int sect_to_write = r1_bio->sectors;
 | 
						|
	int ok = 1;
 | 
						|
 | 
						|
	if (rdev->badblocks.shift < 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	block_sectors = roundup(1 << rdev->badblocks.shift,
 | 
						|
				bdev_logical_block_size(rdev->bdev) >> 9);
 | 
						|
	sector = r1_bio->sector;
 | 
						|
	sectors = ((sector + block_sectors)
 | 
						|
		   & ~(sector_t)(block_sectors - 1))
 | 
						|
		- sector;
 | 
						|
 | 
						|
	while (sect_to_write) {
 | 
						|
		struct bio *wbio;
 | 
						|
		if (sectors > sect_to_write)
 | 
						|
			sectors = sect_to_write;
 | 
						|
		/* Write at 'sector' for 'sectors'*/
 | 
						|
 | 
						|
		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 | 
						|
			wbio = bio_alloc_clone(rdev->bdev,
 | 
						|
					       r1_bio->behind_master_bio,
 | 
						|
					       GFP_NOIO, &mddev->bio_set);
 | 
						|
		} else {
 | 
						|
			wbio = bio_alloc_clone(rdev->bdev, r1_bio->master_bio,
 | 
						|
					       GFP_NOIO, &mddev->bio_set);
 | 
						|
		}
 | 
						|
 | 
						|
		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
 | 
						|
		wbio->bi_iter.bi_sector = r1_bio->sector;
 | 
						|
		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
 | 
						|
 | 
						|
		bio_trim(wbio, sector - r1_bio->sector, sectors);
 | 
						|
		wbio->bi_iter.bi_sector += rdev->data_offset;
 | 
						|
 | 
						|
		if (submit_bio_wait(wbio) < 0)
 | 
						|
			/* failure! */
 | 
						|
			ok = rdev_set_badblocks(rdev, sector,
 | 
						|
						sectors, 0)
 | 
						|
				&& ok;
 | 
						|
 | 
						|
		bio_put(wbio);
 | 
						|
		sect_to_write -= sectors;
 | 
						|
		sector += sectors;
 | 
						|
		sectors = block_sectors;
 | 
						|
	}
 | 
						|
	return ok;
 | 
						|
}
 | 
						|
 | 
						|
static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	int m;
 | 
						|
	int s = r1_bio->sectors;
 | 
						|
	for (m = 0; m < conf->raid_disks * 2 ; m++) {
 | 
						|
		struct md_rdev *rdev = conf->mirrors[m].rdev;
 | 
						|
		struct bio *bio = r1_bio->bios[m];
 | 
						|
		if (bio->bi_end_io == NULL)
 | 
						|
			continue;
 | 
						|
		if (!bio->bi_status &&
 | 
						|
		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
 | 
						|
			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
 | 
						|
		}
 | 
						|
		if (bio->bi_status &&
 | 
						|
		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
 | 
						|
			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
 | 
						|
				md_error(conf->mddev, rdev);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	put_buf(r1_bio);
 | 
						|
	md_done_sync(conf->mddev, s, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	int m, idx;
 | 
						|
	bool fail = false;
 | 
						|
 | 
						|
	for (m = 0; m < conf->raid_disks * 2 ; m++)
 | 
						|
		if (r1_bio->bios[m] == IO_MADE_GOOD) {
 | 
						|
			struct md_rdev *rdev = conf->mirrors[m].rdev;
 | 
						|
			rdev_clear_badblocks(rdev,
 | 
						|
					     r1_bio->sector,
 | 
						|
					     r1_bio->sectors, 0);
 | 
						|
			rdev_dec_pending(rdev, conf->mddev);
 | 
						|
		} else if (r1_bio->bios[m] != NULL) {
 | 
						|
			/* This drive got a write error.  We need to
 | 
						|
			 * narrow down and record precise write
 | 
						|
			 * errors.
 | 
						|
			 */
 | 
						|
			fail = true;
 | 
						|
			if (!narrow_write_error(r1_bio, m)) {
 | 
						|
				md_error(conf->mddev,
 | 
						|
					 conf->mirrors[m].rdev);
 | 
						|
				/* an I/O failed, we can't clear the bitmap */
 | 
						|
				set_bit(R1BIO_Degraded, &r1_bio->state);
 | 
						|
			}
 | 
						|
			rdev_dec_pending(conf->mirrors[m].rdev,
 | 
						|
					 conf->mddev);
 | 
						|
		}
 | 
						|
	if (fail) {
 | 
						|
		spin_lock_irq(&conf->device_lock);
 | 
						|
		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
 | 
						|
		idx = sector_to_idx(r1_bio->sector);
 | 
						|
		atomic_inc(&conf->nr_queued[idx]);
 | 
						|
		spin_unlock_irq(&conf->device_lock);
 | 
						|
		/*
 | 
						|
		 * In case freeze_array() is waiting for condition
 | 
						|
		 * get_unqueued_pending() == extra to be true.
 | 
						|
		 */
 | 
						|
		wake_up(&conf->wait_barrier);
 | 
						|
		md_wakeup_thread(conf->mddev->thread);
 | 
						|
	} else {
 | 
						|
		if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | 
						|
			close_write(r1_bio);
 | 
						|
		raid_end_bio_io(r1_bio);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
 | 
						|
{
 | 
						|
	struct mddev *mddev = conf->mddev;
 | 
						|
	struct bio *bio;
 | 
						|
	struct md_rdev *rdev;
 | 
						|
 | 
						|
	clear_bit(R1BIO_ReadError, &r1_bio->state);
 | 
						|
	/* we got a read error. Maybe the drive is bad.  Maybe just
 | 
						|
	 * the block and we can fix it.
 | 
						|
	 * We freeze all other IO, and try reading the block from
 | 
						|
	 * other devices.  When we find one, we re-write
 | 
						|
	 * and check it that fixes the read error.
 | 
						|
	 * This is all done synchronously while the array is
 | 
						|
	 * frozen
 | 
						|
	 */
 | 
						|
 | 
						|
	bio = r1_bio->bios[r1_bio->read_disk];
 | 
						|
	bio_put(bio);
 | 
						|
	r1_bio->bios[r1_bio->read_disk] = NULL;
 | 
						|
 | 
						|
	rdev = conf->mirrors[r1_bio->read_disk].rdev;
 | 
						|
	if (mddev->ro == 0
 | 
						|
	    && !test_bit(FailFast, &rdev->flags)) {
 | 
						|
		freeze_array(conf, 1);
 | 
						|
		fix_read_error(conf, r1_bio->read_disk,
 | 
						|
			       r1_bio->sector, r1_bio->sectors);
 | 
						|
		unfreeze_array(conf);
 | 
						|
	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
 | 
						|
		md_error(mddev, rdev);
 | 
						|
	} else {
 | 
						|
		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
 | 
						|
	}
 | 
						|
 | 
						|
	rdev_dec_pending(rdev, conf->mddev);
 | 
						|
	allow_barrier(conf, r1_bio->sector);
 | 
						|
	bio = r1_bio->master_bio;
 | 
						|
 | 
						|
	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
 | 
						|
	r1_bio->state = 0;
 | 
						|
	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
 | 
						|
}
 | 
						|
 | 
						|
static void raid1d(struct md_thread *thread)
 | 
						|
{
 | 
						|
	struct mddev *mddev = thread->mddev;
 | 
						|
	struct r1bio *r1_bio;
 | 
						|
	unsigned long flags;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	struct list_head *head = &conf->retry_list;
 | 
						|
	struct blk_plug plug;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	md_check_recovery(mddev);
 | 
						|
 | 
						|
	if (!list_empty_careful(&conf->bio_end_io_list) &&
 | 
						|
	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
 | 
						|
		LIST_HEAD(tmp);
 | 
						|
		spin_lock_irqsave(&conf->device_lock, flags);
 | 
						|
		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
 | 
						|
			list_splice_init(&conf->bio_end_io_list, &tmp);
 | 
						|
		spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
		while (!list_empty(&tmp)) {
 | 
						|
			r1_bio = list_first_entry(&tmp, struct r1bio,
 | 
						|
						  retry_list);
 | 
						|
			list_del(&r1_bio->retry_list);
 | 
						|
			idx = sector_to_idx(r1_bio->sector);
 | 
						|
			atomic_dec(&conf->nr_queued[idx]);
 | 
						|
			if (mddev->degraded)
 | 
						|
				set_bit(R1BIO_Degraded, &r1_bio->state);
 | 
						|
			if (test_bit(R1BIO_WriteError, &r1_bio->state))
 | 
						|
				close_write(r1_bio);
 | 
						|
			raid_end_bio_io(r1_bio);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	blk_start_plug(&plug);
 | 
						|
	for (;;) {
 | 
						|
 | 
						|
		flush_pending_writes(conf);
 | 
						|
 | 
						|
		spin_lock_irqsave(&conf->device_lock, flags);
 | 
						|
		if (list_empty(head)) {
 | 
						|
			spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
 | 
						|
		list_del(head->prev);
 | 
						|
		idx = sector_to_idx(r1_bio->sector);
 | 
						|
		atomic_dec(&conf->nr_queued[idx]);
 | 
						|
		spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
 | 
						|
		mddev = r1_bio->mddev;
 | 
						|
		conf = mddev->private;
 | 
						|
		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
 | 
						|
			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | 
						|
			    test_bit(R1BIO_WriteError, &r1_bio->state))
 | 
						|
				handle_sync_write_finished(conf, r1_bio);
 | 
						|
			else
 | 
						|
				sync_request_write(mddev, r1_bio);
 | 
						|
		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
 | 
						|
			   test_bit(R1BIO_WriteError, &r1_bio->state))
 | 
						|
			handle_write_finished(conf, r1_bio);
 | 
						|
		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
 | 
						|
			handle_read_error(conf, r1_bio);
 | 
						|
		else
 | 
						|
			WARN_ON_ONCE(1);
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
 | 
						|
			md_check_recovery(mddev);
 | 
						|
	}
 | 
						|
	blk_finish_plug(&plug);
 | 
						|
}
 | 
						|
 | 
						|
static int init_resync(struct r1conf *conf)
 | 
						|
{
 | 
						|
	int buffs;
 | 
						|
 | 
						|
	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
 | 
						|
	BUG_ON(mempool_initialized(&conf->r1buf_pool));
 | 
						|
 | 
						|
	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
 | 
						|
			    r1buf_pool_free, conf->poolinfo);
 | 
						|
}
 | 
						|
 | 
						|
static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
 | 
						|
{
 | 
						|
	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
 | 
						|
	struct resync_pages *rps;
 | 
						|
	struct bio *bio;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = conf->poolinfo->raid_disks; i--; ) {
 | 
						|
		bio = r1bio->bios[i];
 | 
						|
		rps = bio->bi_private;
 | 
						|
		bio_reset(bio, NULL, 0);
 | 
						|
		bio->bi_private = rps;
 | 
						|
	}
 | 
						|
	r1bio->master_bio = NULL;
 | 
						|
	return r1bio;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * perform a "sync" on one "block"
 | 
						|
 *
 | 
						|
 * We need to make sure that no normal I/O request - particularly write
 | 
						|
 * requests - conflict with active sync requests.
 | 
						|
 *
 | 
						|
 * This is achieved by tracking pending requests and a 'barrier' concept
 | 
						|
 * that can be installed to exclude normal IO requests.
 | 
						|
 */
 | 
						|
 | 
						|
static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
 | 
						|
				   int *skipped)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	struct r1bio *r1_bio;
 | 
						|
	struct bio *bio;
 | 
						|
	sector_t max_sector, nr_sectors;
 | 
						|
	int disk = -1;
 | 
						|
	int i;
 | 
						|
	int wonly = -1;
 | 
						|
	int write_targets = 0, read_targets = 0;
 | 
						|
	sector_t sync_blocks;
 | 
						|
	int still_degraded = 0;
 | 
						|
	int good_sectors = RESYNC_SECTORS;
 | 
						|
	int min_bad = 0; /* number of sectors that are bad in all devices */
 | 
						|
	int idx = sector_to_idx(sector_nr);
 | 
						|
	int page_idx = 0;
 | 
						|
 | 
						|
	if (!mempool_initialized(&conf->r1buf_pool))
 | 
						|
		if (init_resync(conf))
 | 
						|
			return 0;
 | 
						|
 | 
						|
	max_sector = mddev->dev_sectors;
 | 
						|
	if (sector_nr >= max_sector) {
 | 
						|
		/* If we aborted, we need to abort the
 | 
						|
		 * sync on the 'current' bitmap chunk (there will
 | 
						|
		 * only be one in raid1 resync.
 | 
						|
		 * We can find the current addess in mddev->curr_resync
 | 
						|
		 */
 | 
						|
		if (mddev->curr_resync < max_sector) /* aborted */
 | 
						|
			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
 | 
						|
					   &sync_blocks, 1);
 | 
						|
		else /* completed sync */
 | 
						|
			conf->fullsync = 0;
 | 
						|
 | 
						|
		md_bitmap_close_sync(mddev->bitmap);
 | 
						|
		close_sync(conf);
 | 
						|
 | 
						|
		if (mddev_is_clustered(mddev)) {
 | 
						|
			conf->cluster_sync_low = 0;
 | 
						|
			conf->cluster_sync_high = 0;
 | 
						|
		}
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (mddev->bitmap == NULL &&
 | 
						|
	    mddev->recovery_cp == MaxSector &&
 | 
						|
	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
 | 
						|
	    conf->fullsync == 0) {
 | 
						|
		*skipped = 1;
 | 
						|
		return max_sector - sector_nr;
 | 
						|
	}
 | 
						|
	/* before building a request, check if we can skip these blocks..
 | 
						|
	 * This call the bitmap_start_sync doesn't actually record anything
 | 
						|
	 */
 | 
						|
	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
 | 
						|
	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
 | 
						|
		/* We can skip this block, and probably several more */
 | 
						|
		*skipped = 1;
 | 
						|
		return sync_blocks;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there is non-resync activity waiting for a turn, then let it
 | 
						|
	 * though before starting on this new sync request.
 | 
						|
	 */
 | 
						|
	if (atomic_read(&conf->nr_waiting[idx]))
 | 
						|
		schedule_timeout_uninterruptible(1);
 | 
						|
 | 
						|
	/* we are incrementing sector_nr below. To be safe, we check against
 | 
						|
	 * sector_nr + two times RESYNC_SECTORS
 | 
						|
	 */
 | 
						|
 | 
						|
	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
 | 
						|
		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
 | 
						|
 | 
						|
 | 
						|
	if (raise_barrier(conf, sector_nr))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	r1_bio = raid1_alloc_init_r1buf(conf);
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	/*
 | 
						|
	 * If we get a correctably read error during resync or recovery,
 | 
						|
	 * we might want to read from a different device.  So we
 | 
						|
	 * flag all drives that could conceivably be read from for READ,
 | 
						|
	 * and any others (which will be non-In_sync devices) for WRITE.
 | 
						|
	 * If a read fails, we try reading from something else for which READ
 | 
						|
	 * is OK.
 | 
						|
	 */
 | 
						|
 | 
						|
	r1_bio->mddev = mddev;
 | 
						|
	r1_bio->sector = sector_nr;
 | 
						|
	r1_bio->state = 0;
 | 
						|
	set_bit(R1BIO_IsSync, &r1_bio->state);
 | 
						|
	/* make sure good_sectors won't go across barrier unit boundary */
 | 
						|
	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
 | 
						|
 | 
						|
	for (i = 0; i < conf->raid_disks * 2; i++) {
 | 
						|
		struct md_rdev *rdev;
 | 
						|
		bio = r1_bio->bios[i];
 | 
						|
 | 
						|
		rdev = rcu_dereference(conf->mirrors[i].rdev);
 | 
						|
		if (rdev == NULL ||
 | 
						|
		    test_bit(Faulty, &rdev->flags)) {
 | 
						|
			if (i < conf->raid_disks)
 | 
						|
				still_degraded = 1;
 | 
						|
		} else if (!test_bit(In_sync, &rdev->flags)) {
 | 
						|
			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 | 
						|
			bio->bi_end_io = end_sync_write;
 | 
						|
			write_targets ++;
 | 
						|
		} else {
 | 
						|
			/* may need to read from here */
 | 
						|
			sector_t first_bad = MaxSector;
 | 
						|
			int bad_sectors;
 | 
						|
 | 
						|
			if (is_badblock(rdev, sector_nr, good_sectors,
 | 
						|
					&first_bad, &bad_sectors)) {
 | 
						|
				if (first_bad > sector_nr)
 | 
						|
					good_sectors = first_bad - sector_nr;
 | 
						|
				else {
 | 
						|
					bad_sectors -= (sector_nr - first_bad);
 | 
						|
					if (min_bad == 0 ||
 | 
						|
					    min_bad > bad_sectors)
 | 
						|
						min_bad = bad_sectors;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (sector_nr < first_bad) {
 | 
						|
				if (test_bit(WriteMostly, &rdev->flags)) {
 | 
						|
					if (wonly < 0)
 | 
						|
						wonly = i;
 | 
						|
				} else {
 | 
						|
					if (disk < 0)
 | 
						|
						disk = i;
 | 
						|
				}
 | 
						|
				bio_set_op_attrs(bio, REQ_OP_READ, 0);
 | 
						|
				bio->bi_end_io = end_sync_read;
 | 
						|
				read_targets++;
 | 
						|
			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
 | 
						|
				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
 | 
						|
				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
 | 
						|
				/*
 | 
						|
				 * The device is suitable for reading (InSync),
 | 
						|
				 * but has bad block(s) here. Let's try to correct them,
 | 
						|
				 * if we are doing resync or repair. Otherwise, leave
 | 
						|
				 * this device alone for this sync request.
 | 
						|
				 */
 | 
						|
				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 | 
						|
				bio->bi_end_io = end_sync_write;
 | 
						|
				write_targets++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (rdev && bio->bi_end_io) {
 | 
						|
			atomic_inc(&rdev->nr_pending);
 | 
						|
			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
 | 
						|
			bio_set_dev(bio, rdev->bdev);
 | 
						|
			if (test_bit(FailFast, &rdev->flags))
 | 
						|
				bio->bi_opf |= MD_FAILFAST;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	if (disk < 0)
 | 
						|
		disk = wonly;
 | 
						|
	r1_bio->read_disk = disk;
 | 
						|
 | 
						|
	if (read_targets == 0 && min_bad > 0) {
 | 
						|
		/* These sectors are bad on all InSync devices, so we
 | 
						|
		 * need to mark them bad on all write targets
 | 
						|
		 */
 | 
						|
		int ok = 1;
 | 
						|
		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
 | 
						|
			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
 | 
						|
				struct md_rdev *rdev = conf->mirrors[i].rdev;
 | 
						|
				ok = rdev_set_badblocks(rdev, sector_nr,
 | 
						|
							min_bad, 0
 | 
						|
					) && ok;
 | 
						|
			}
 | 
						|
		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
 | 
						|
		*skipped = 1;
 | 
						|
		put_buf(r1_bio);
 | 
						|
 | 
						|
		if (!ok) {
 | 
						|
			/* Cannot record the badblocks, so need to
 | 
						|
			 * abort the resync.
 | 
						|
			 * If there are multiple read targets, could just
 | 
						|
			 * fail the really bad ones ???
 | 
						|
			 */
 | 
						|
			conf->recovery_disabled = mddev->recovery_disabled;
 | 
						|
			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 | 
						|
			return 0;
 | 
						|
		} else
 | 
						|
			return min_bad;
 | 
						|
 | 
						|
	}
 | 
						|
	if (min_bad > 0 && min_bad < good_sectors) {
 | 
						|
		/* only resync enough to reach the next bad->good
 | 
						|
		 * transition */
 | 
						|
		good_sectors = min_bad;
 | 
						|
	}
 | 
						|
 | 
						|
	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
 | 
						|
		/* extra read targets are also write targets */
 | 
						|
		write_targets += read_targets-1;
 | 
						|
 | 
						|
	if (write_targets == 0 || read_targets == 0) {
 | 
						|
		/* There is nowhere to write, so all non-sync
 | 
						|
		 * drives must be failed - so we are finished
 | 
						|
		 */
 | 
						|
		sector_t rv;
 | 
						|
		if (min_bad > 0)
 | 
						|
			max_sector = sector_nr + min_bad;
 | 
						|
		rv = max_sector - sector_nr;
 | 
						|
		*skipped = 1;
 | 
						|
		put_buf(r1_bio);
 | 
						|
		return rv;
 | 
						|
	}
 | 
						|
 | 
						|
	if (max_sector > mddev->resync_max)
 | 
						|
		max_sector = mddev->resync_max; /* Don't do IO beyond here */
 | 
						|
	if (max_sector > sector_nr + good_sectors)
 | 
						|
		max_sector = sector_nr + good_sectors;
 | 
						|
	nr_sectors = 0;
 | 
						|
	sync_blocks = 0;
 | 
						|
	do {
 | 
						|
		struct page *page;
 | 
						|
		int len = PAGE_SIZE;
 | 
						|
		if (sector_nr + (len>>9) > max_sector)
 | 
						|
			len = (max_sector - sector_nr) << 9;
 | 
						|
		if (len == 0)
 | 
						|
			break;
 | 
						|
		if (sync_blocks == 0) {
 | 
						|
			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
 | 
						|
						  &sync_blocks, still_degraded) &&
 | 
						|
			    !conf->fullsync &&
 | 
						|
			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
 | 
						|
				break;
 | 
						|
			if ((len >> 9) > sync_blocks)
 | 
						|
				len = sync_blocks<<9;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0 ; i < conf->raid_disks * 2; i++) {
 | 
						|
			struct resync_pages *rp;
 | 
						|
 | 
						|
			bio = r1_bio->bios[i];
 | 
						|
			rp = get_resync_pages(bio);
 | 
						|
			if (bio->bi_end_io) {
 | 
						|
				page = resync_fetch_page(rp, page_idx);
 | 
						|
 | 
						|
				/*
 | 
						|
				 * won't fail because the vec table is big
 | 
						|
				 * enough to hold all these pages
 | 
						|
				 */
 | 
						|
				bio_add_page(bio, page, len, 0);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		nr_sectors += len>>9;
 | 
						|
		sector_nr += len>>9;
 | 
						|
		sync_blocks -= (len>>9);
 | 
						|
	} while (++page_idx < RESYNC_PAGES);
 | 
						|
 | 
						|
	r1_bio->sectors = nr_sectors;
 | 
						|
 | 
						|
	if (mddev_is_clustered(mddev) &&
 | 
						|
			conf->cluster_sync_high < sector_nr + nr_sectors) {
 | 
						|
		conf->cluster_sync_low = mddev->curr_resync_completed;
 | 
						|
		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
 | 
						|
		/* Send resync message */
 | 
						|
		md_cluster_ops->resync_info_update(mddev,
 | 
						|
				conf->cluster_sync_low,
 | 
						|
				conf->cluster_sync_high);
 | 
						|
	}
 | 
						|
 | 
						|
	/* For a user-requested sync, we read all readable devices and do a
 | 
						|
	 * compare
 | 
						|
	 */
 | 
						|
	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
 | 
						|
		atomic_set(&r1_bio->remaining, read_targets);
 | 
						|
		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
 | 
						|
			bio = r1_bio->bios[i];
 | 
						|
			if (bio->bi_end_io == end_sync_read) {
 | 
						|
				read_targets--;
 | 
						|
				md_sync_acct_bio(bio, nr_sectors);
 | 
						|
				if (read_targets == 1)
 | 
						|
					bio->bi_opf &= ~MD_FAILFAST;
 | 
						|
				submit_bio_noacct(bio);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		atomic_set(&r1_bio->remaining, 1);
 | 
						|
		bio = r1_bio->bios[r1_bio->read_disk];
 | 
						|
		md_sync_acct_bio(bio, nr_sectors);
 | 
						|
		if (read_targets == 1)
 | 
						|
			bio->bi_opf &= ~MD_FAILFAST;
 | 
						|
		submit_bio_noacct(bio);
 | 
						|
	}
 | 
						|
	return nr_sectors;
 | 
						|
}
 | 
						|
 | 
						|
static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
 | 
						|
{
 | 
						|
	if (sectors)
 | 
						|
		return sectors;
 | 
						|
 | 
						|
	return mddev->dev_sectors;
 | 
						|
}
 | 
						|
 | 
						|
static struct r1conf *setup_conf(struct mddev *mddev)
 | 
						|
{
 | 
						|
	struct r1conf *conf;
 | 
						|
	int i;
 | 
						|
	struct raid1_info *disk;
 | 
						|
	struct md_rdev *rdev;
 | 
						|
	int err = -ENOMEM;
 | 
						|
 | 
						|
	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
 | 
						|
	if (!conf)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
 | 
						|
				   sizeof(atomic_t), GFP_KERNEL);
 | 
						|
	if (!conf->nr_pending)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
 | 
						|
				   sizeof(atomic_t), GFP_KERNEL);
 | 
						|
	if (!conf->nr_waiting)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
 | 
						|
				  sizeof(atomic_t), GFP_KERNEL);
 | 
						|
	if (!conf->nr_queued)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
 | 
						|
				sizeof(atomic_t), GFP_KERNEL);
 | 
						|
	if (!conf->barrier)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
 | 
						|
					    mddev->raid_disks, 2),
 | 
						|
				GFP_KERNEL);
 | 
						|
	if (!conf->mirrors)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	conf->tmppage = alloc_page(GFP_KERNEL);
 | 
						|
	if (!conf->tmppage)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
 | 
						|
	if (!conf->poolinfo)
 | 
						|
		goto abort;
 | 
						|
	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
 | 
						|
	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
 | 
						|
			   rbio_pool_free, conf->poolinfo);
 | 
						|
	if (err)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
 | 
						|
	if (err)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	conf->poolinfo->mddev = mddev;
 | 
						|
 | 
						|
	err = -EINVAL;
 | 
						|
	spin_lock_init(&conf->device_lock);
 | 
						|
	rdev_for_each(rdev, mddev) {
 | 
						|
		int disk_idx = rdev->raid_disk;
 | 
						|
		if (disk_idx >= mddev->raid_disks
 | 
						|
		    || disk_idx < 0)
 | 
						|
			continue;
 | 
						|
		if (test_bit(Replacement, &rdev->flags))
 | 
						|
			disk = conf->mirrors + mddev->raid_disks + disk_idx;
 | 
						|
		else
 | 
						|
			disk = conf->mirrors + disk_idx;
 | 
						|
 | 
						|
		if (disk->rdev)
 | 
						|
			goto abort;
 | 
						|
		disk->rdev = rdev;
 | 
						|
		disk->head_position = 0;
 | 
						|
		disk->seq_start = MaxSector;
 | 
						|
	}
 | 
						|
	conf->raid_disks = mddev->raid_disks;
 | 
						|
	conf->mddev = mddev;
 | 
						|
	INIT_LIST_HEAD(&conf->retry_list);
 | 
						|
	INIT_LIST_HEAD(&conf->bio_end_io_list);
 | 
						|
 | 
						|
	spin_lock_init(&conf->resync_lock);
 | 
						|
	init_waitqueue_head(&conf->wait_barrier);
 | 
						|
 | 
						|
	bio_list_init(&conf->pending_bio_list);
 | 
						|
	conf->recovery_disabled = mddev->recovery_disabled - 1;
 | 
						|
 | 
						|
	err = -EIO;
 | 
						|
	for (i = 0; i < conf->raid_disks * 2; i++) {
 | 
						|
 | 
						|
		disk = conf->mirrors + i;
 | 
						|
 | 
						|
		if (i < conf->raid_disks &&
 | 
						|
		    disk[conf->raid_disks].rdev) {
 | 
						|
			/* This slot has a replacement. */
 | 
						|
			if (!disk->rdev) {
 | 
						|
				/* No original, just make the replacement
 | 
						|
				 * a recovering spare
 | 
						|
				 */
 | 
						|
				disk->rdev =
 | 
						|
					disk[conf->raid_disks].rdev;
 | 
						|
				disk[conf->raid_disks].rdev = NULL;
 | 
						|
			} else if (!test_bit(In_sync, &disk->rdev->flags))
 | 
						|
				/* Original is not in_sync - bad */
 | 
						|
				goto abort;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!disk->rdev ||
 | 
						|
		    !test_bit(In_sync, &disk->rdev->flags)) {
 | 
						|
			disk->head_position = 0;
 | 
						|
			if (disk->rdev &&
 | 
						|
			    (disk->rdev->saved_raid_disk < 0))
 | 
						|
				conf->fullsync = 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	err = -ENOMEM;
 | 
						|
	conf->thread = md_register_thread(raid1d, mddev, "raid1");
 | 
						|
	if (!conf->thread)
 | 
						|
		goto abort;
 | 
						|
 | 
						|
	return conf;
 | 
						|
 | 
						|
 abort:
 | 
						|
	if (conf) {
 | 
						|
		mempool_exit(&conf->r1bio_pool);
 | 
						|
		kfree(conf->mirrors);
 | 
						|
		safe_put_page(conf->tmppage);
 | 
						|
		kfree(conf->poolinfo);
 | 
						|
		kfree(conf->nr_pending);
 | 
						|
		kfree(conf->nr_waiting);
 | 
						|
		kfree(conf->nr_queued);
 | 
						|
		kfree(conf->barrier);
 | 
						|
		bioset_exit(&conf->bio_split);
 | 
						|
		kfree(conf);
 | 
						|
	}
 | 
						|
	return ERR_PTR(err);
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_free(struct mddev *mddev, void *priv);
 | 
						|
static int raid1_run(struct mddev *mddev)
 | 
						|
{
 | 
						|
	struct r1conf *conf;
 | 
						|
	int i;
 | 
						|
	struct md_rdev *rdev;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (mddev->level != 1) {
 | 
						|
		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
 | 
						|
			mdname(mddev), mddev->level);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
	if (mddev->reshape_position != MaxSector) {
 | 
						|
		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
 | 
						|
			mdname(mddev));
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
	if (mddev_init_writes_pending(mddev) < 0)
 | 
						|
		return -ENOMEM;
 | 
						|
	/*
 | 
						|
	 * copy the already verified devices into our private RAID1
 | 
						|
	 * bookkeeping area. [whatever we allocate in run(),
 | 
						|
	 * should be freed in raid1_free()]
 | 
						|
	 */
 | 
						|
	if (mddev->private == NULL)
 | 
						|
		conf = setup_conf(mddev);
 | 
						|
	else
 | 
						|
		conf = mddev->private;
 | 
						|
 | 
						|
	if (IS_ERR(conf))
 | 
						|
		return PTR_ERR(conf);
 | 
						|
 | 
						|
	if (mddev->queue)
 | 
						|
		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
 | 
						|
 | 
						|
	rdev_for_each(rdev, mddev) {
 | 
						|
		if (!mddev->gendisk)
 | 
						|
			continue;
 | 
						|
		disk_stack_limits(mddev->gendisk, rdev->bdev,
 | 
						|
				  rdev->data_offset << 9);
 | 
						|
	}
 | 
						|
 | 
						|
	mddev->degraded = 0;
 | 
						|
	for (i = 0; i < conf->raid_disks; i++)
 | 
						|
		if (conf->mirrors[i].rdev == NULL ||
 | 
						|
		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
 | 
						|
		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
 | 
						|
			mddev->degraded++;
 | 
						|
	/*
 | 
						|
	 * RAID1 needs at least one disk in active
 | 
						|
	 */
 | 
						|
	if (conf->raid_disks - mddev->degraded < 1) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto abort;
 | 
						|
	}
 | 
						|
 | 
						|
	if (conf->raid_disks - mddev->degraded == 1)
 | 
						|
		mddev->recovery_cp = MaxSector;
 | 
						|
 | 
						|
	if (mddev->recovery_cp != MaxSector)
 | 
						|
		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
 | 
						|
			mdname(mddev));
 | 
						|
	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
 | 
						|
		mdname(mddev), mddev->raid_disks - mddev->degraded,
 | 
						|
		mddev->raid_disks);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Ok, everything is just fine now
 | 
						|
	 */
 | 
						|
	mddev->thread = conf->thread;
 | 
						|
	conf->thread = NULL;
 | 
						|
	mddev->private = conf;
 | 
						|
	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
 | 
						|
 | 
						|
	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
 | 
						|
 | 
						|
	ret = md_integrity_register(mddev);
 | 
						|
	if (ret) {
 | 
						|
		md_unregister_thread(&mddev->thread);
 | 
						|
		goto abort;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
abort:
 | 
						|
	raid1_free(mddev, conf);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_free(struct mddev *mddev, void *priv)
 | 
						|
{
 | 
						|
	struct r1conf *conf = priv;
 | 
						|
 | 
						|
	mempool_exit(&conf->r1bio_pool);
 | 
						|
	kfree(conf->mirrors);
 | 
						|
	safe_put_page(conf->tmppage);
 | 
						|
	kfree(conf->poolinfo);
 | 
						|
	kfree(conf->nr_pending);
 | 
						|
	kfree(conf->nr_waiting);
 | 
						|
	kfree(conf->nr_queued);
 | 
						|
	kfree(conf->barrier);
 | 
						|
	bioset_exit(&conf->bio_split);
 | 
						|
	kfree(conf);
 | 
						|
}
 | 
						|
 | 
						|
static int raid1_resize(struct mddev *mddev, sector_t sectors)
 | 
						|
{
 | 
						|
	/* no resync is happening, and there is enough space
 | 
						|
	 * on all devices, so we can resize.
 | 
						|
	 * We need to make sure resync covers any new space.
 | 
						|
	 * If the array is shrinking we should possibly wait until
 | 
						|
	 * any io in the removed space completes, but it hardly seems
 | 
						|
	 * worth it.
 | 
						|
	 */
 | 
						|
	sector_t newsize = raid1_size(mddev, sectors, 0);
 | 
						|
	if (mddev->external_size &&
 | 
						|
	    mddev->array_sectors > newsize)
 | 
						|
		return -EINVAL;
 | 
						|
	if (mddev->bitmap) {
 | 
						|
		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
	md_set_array_sectors(mddev, newsize);
 | 
						|
	if (sectors > mddev->dev_sectors &&
 | 
						|
	    mddev->recovery_cp > mddev->dev_sectors) {
 | 
						|
		mddev->recovery_cp = mddev->dev_sectors;
 | 
						|
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | 
						|
	}
 | 
						|
	mddev->dev_sectors = sectors;
 | 
						|
	mddev->resync_max_sectors = sectors;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int raid1_reshape(struct mddev *mddev)
 | 
						|
{
 | 
						|
	/* We need to:
 | 
						|
	 * 1/ resize the r1bio_pool
 | 
						|
	 * 2/ resize conf->mirrors
 | 
						|
	 *
 | 
						|
	 * We allocate a new r1bio_pool if we can.
 | 
						|
	 * Then raise a device barrier and wait until all IO stops.
 | 
						|
	 * Then resize conf->mirrors and swap in the new r1bio pool.
 | 
						|
	 *
 | 
						|
	 * At the same time, we "pack" the devices so that all the missing
 | 
						|
	 * devices have the higher raid_disk numbers.
 | 
						|
	 */
 | 
						|
	mempool_t newpool, oldpool;
 | 
						|
	struct pool_info *newpoolinfo;
 | 
						|
	struct raid1_info *newmirrors;
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
	int cnt, raid_disks;
 | 
						|
	unsigned long flags;
 | 
						|
	int d, d2;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	memset(&newpool, 0, sizeof(newpool));
 | 
						|
	memset(&oldpool, 0, sizeof(oldpool));
 | 
						|
 | 
						|
	/* Cannot change chunk_size, layout, or level */
 | 
						|
	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
 | 
						|
	    mddev->layout != mddev->new_layout ||
 | 
						|
	    mddev->level != mddev->new_level) {
 | 
						|
		mddev->new_chunk_sectors = mddev->chunk_sectors;
 | 
						|
		mddev->new_layout = mddev->layout;
 | 
						|
		mddev->new_level = mddev->level;
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!mddev_is_clustered(mddev))
 | 
						|
		md_allow_write(mddev);
 | 
						|
 | 
						|
	raid_disks = mddev->raid_disks + mddev->delta_disks;
 | 
						|
 | 
						|
	if (raid_disks < conf->raid_disks) {
 | 
						|
		cnt=0;
 | 
						|
		for (d= 0; d < conf->raid_disks; d++)
 | 
						|
			if (conf->mirrors[d].rdev)
 | 
						|
				cnt++;
 | 
						|
		if (cnt > raid_disks)
 | 
						|
			return -EBUSY;
 | 
						|
	}
 | 
						|
 | 
						|
	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
 | 
						|
	if (!newpoolinfo)
 | 
						|
		return -ENOMEM;
 | 
						|
	newpoolinfo->mddev = mddev;
 | 
						|
	newpoolinfo->raid_disks = raid_disks * 2;
 | 
						|
 | 
						|
	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
 | 
						|
			   rbio_pool_free, newpoolinfo);
 | 
						|
	if (ret) {
 | 
						|
		kfree(newpoolinfo);
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
 | 
						|
					 raid_disks, 2),
 | 
						|
			     GFP_KERNEL);
 | 
						|
	if (!newmirrors) {
 | 
						|
		kfree(newpoolinfo);
 | 
						|
		mempool_exit(&newpool);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	freeze_array(conf, 0);
 | 
						|
 | 
						|
	/* ok, everything is stopped */
 | 
						|
	oldpool = conf->r1bio_pool;
 | 
						|
	conf->r1bio_pool = newpool;
 | 
						|
 | 
						|
	for (d = d2 = 0; d < conf->raid_disks; d++) {
 | 
						|
		struct md_rdev *rdev = conf->mirrors[d].rdev;
 | 
						|
		if (rdev && rdev->raid_disk != d2) {
 | 
						|
			sysfs_unlink_rdev(mddev, rdev);
 | 
						|
			rdev->raid_disk = d2;
 | 
						|
			sysfs_unlink_rdev(mddev, rdev);
 | 
						|
			if (sysfs_link_rdev(mddev, rdev))
 | 
						|
				pr_warn("md/raid1:%s: cannot register rd%d\n",
 | 
						|
					mdname(mddev), rdev->raid_disk);
 | 
						|
		}
 | 
						|
		if (rdev)
 | 
						|
			newmirrors[d2++].rdev = rdev;
 | 
						|
	}
 | 
						|
	kfree(conf->mirrors);
 | 
						|
	conf->mirrors = newmirrors;
 | 
						|
	kfree(conf->poolinfo);
 | 
						|
	conf->poolinfo = newpoolinfo;
 | 
						|
 | 
						|
	spin_lock_irqsave(&conf->device_lock, flags);
 | 
						|
	mddev->degraded += (raid_disks - conf->raid_disks);
 | 
						|
	spin_unlock_irqrestore(&conf->device_lock, flags);
 | 
						|
	conf->raid_disks = mddev->raid_disks = raid_disks;
 | 
						|
	mddev->delta_disks = 0;
 | 
						|
 | 
						|
	unfreeze_array(conf);
 | 
						|
 | 
						|
	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
 | 
						|
	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
 | 
						|
	md_wakeup_thread(mddev->thread);
 | 
						|
 | 
						|
	mempool_exit(&oldpool);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void raid1_quiesce(struct mddev *mddev, int quiesce)
 | 
						|
{
 | 
						|
	struct r1conf *conf = mddev->private;
 | 
						|
 | 
						|
	if (quiesce)
 | 
						|
		freeze_array(conf, 0);
 | 
						|
	else
 | 
						|
		unfreeze_array(conf);
 | 
						|
}
 | 
						|
 | 
						|
static void *raid1_takeover(struct mddev *mddev)
 | 
						|
{
 | 
						|
	/* raid1 can take over:
 | 
						|
	 *  raid5 with 2 devices, any layout or chunk size
 | 
						|
	 */
 | 
						|
	if (mddev->level == 5 && mddev->raid_disks == 2) {
 | 
						|
		struct r1conf *conf;
 | 
						|
		mddev->new_level = 1;
 | 
						|
		mddev->new_layout = 0;
 | 
						|
		mddev->new_chunk_sectors = 0;
 | 
						|
		conf = setup_conf(mddev);
 | 
						|
		if (!IS_ERR(conf)) {
 | 
						|
			/* Array must appear to be quiesced */
 | 
						|
			conf->array_frozen = 1;
 | 
						|
			mddev_clear_unsupported_flags(mddev,
 | 
						|
				UNSUPPORTED_MDDEV_FLAGS);
 | 
						|
		}
 | 
						|
		return conf;
 | 
						|
	}
 | 
						|
	return ERR_PTR(-EINVAL);
 | 
						|
}
 | 
						|
 | 
						|
static struct md_personality raid1_personality =
 | 
						|
{
 | 
						|
	.name		= "raid1",
 | 
						|
	.level		= 1,
 | 
						|
	.owner		= THIS_MODULE,
 | 
						|
	.make_request	= raid1_make_request,
 | 
						|
	.run		= raid1_run,
 | 
						|
	.free		= raid1_free,
 | 
						|
	.status		= raid1_status,
 | 
						|
	.error_handler	= raid1_error,
 | 
						|
	.hot_add_disk	= raid1_add_disk,
 | 
						|
	.hot_remove_disk= raid1_remove_disk,
 | 
						|
	.spare_active	= raid1_spare_active,
 | 
						|
	.sync_request	= raid1_sync_request,
 | 
						|
	.resize		= raid1_resize,
 | 
						|
	.size		= raid1_size,
 | 
						|
	.check_reshape	= raid1_reshape,
 | 
						|
	.quiesce	= raid1_quiesce,
 | 
						|
	.takeover	= raid1_takeover,
 | 
						|
};
 | 
						|
 | 
						|
static int __init raid_init(void)
 | 
						|
{
 | 
						|
	return register_md_personality(&raid1_personality);
 | 
						|
}
 | 
						|
 | 
						|
static void raid_exit(void)
 | 
						|
{
 | 
						|
	unregister_md_personality(&raid1_personality);
 | 
						|
}
 | 
						|
 | 
						|
module_init(raid_init);
 | 
						|
module_exit(raid_exit);
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
 | 
						|
MODULE_ALIAS("md-personality-3"); /* RAID1 */
 | 
						|
MODULE_ALIAS("md-raid1");
 | 
						|
MODULE_ALIAS("md-level-1");
 |