forked from mirrors/linux
		
	The non-inline min heap API can result in an indirect function call to the custom swap function. This becomes particularly costly when CONFIG_MITIGATION_RETPOLINE is enabled, as indirect function calls are expensive in this case. To address this, copy the code from lib/sort.c and provide a default builtin swap implementation that performs element swaps based on the element size. This change allows most users to avoid the overhead of indirect function calls, improving efficiency. Link: https://lkml.kernel.org/r/20241020040200.939973-4-visitorckw@gmail.com Signed-off-by: Kuan-Wei Chiu <visitorckw@gmail.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ching-Chun (Jim) Huang <jserv@ccns.ncku.edu.tw> Cc: Coly Li <colyli@suse.de> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: "Liang, Kan" <kan.liang@linux.intel.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Sakai <msakai@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			457 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			457 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_MIN_HEAP_H
 | |
| #define _LINUX_MIN_HEAP_H
 | |
| 
 | |
| #include <linux/bug.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| /**
 | |
|  * Data structure to hold a min-heap.
 | |
|  * @nr: Number of elements currently in the heap.
 | |
|  * @size: Maximum number of elements that can be held in current storage.
 | |
|  * @data: Pointer to the start of array holding the heap elements.
 | |
|  * @preallocated: Start of the static preallocated array holding the heap elements.
 | |
|  */
 | |
| #define MIN_HEAP_PREALLOCATED(_type, _name, _nr)	\
 | |
| struct _name {	\
 | |
| 	int nr;	\
 | |
| 	int size;	\
 | |
| 	_type *data;	\
 | |
| 	_type preallocated[_nr];	\
 | |
| }
 | |
| 
 | |
| #define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0)
 | |
| 
 | |
| typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char;
 | |
| 
 | |
| #define __minheap_cast(_heap)		(typeof((_heap)->data[0]) *)
 | |
| #define __minheap_obj_size(_heap)	sizeof((_heap)->data[0])
 | |
| 
 | |
| /**
 | |
|  * struct min_heap_callbacks - Data/functions to customise the min_heap.
 | |
|  * @less: Partial order function for this heap.
 | |
|  * @swp: Swap elements function.
 | |
|  */
 | |
| struct min_heap_callbacks {
 | |
| 	bool (*less)(const void *lhs, const void *rhs, void *args);
 | |
| 	void (*swp)(void *lhs, void *rhs, void *args);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * is_aligned - is this pointer & size okay for word-wide copying?
 | |
|  * @base: pointer to data
 | |
|  * @size: size of each element
 | |
|  * @align: required alignment (typically 4 or 8)
 | |
|  *
 | |
|  * Returns true if elements can be copied using word loads and stores.
 | |
|  * The size must be a multiple of the alignment, and the base address must
 | |
|  * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
 | |
|  *
 | |
|  * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
 | |
|  * to "if ((a | b) & mask)", so we do that by hand.
 | |
|  */
 | |
| __attribute_const__ __always_inline
 | |
| static bool is_aligned(const void *base, size_t size, unsigned char align)
 | |
| {
 | |
| 	unsigned char lsbits = (unsigned char)size;
 | |
| 
 | |
| 	(void)base;
 | |
| #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 | |
| 	lsbits |= (unsigned char)(uintptr_t)base;
 | |
| #endif
 | |
| 	return (lsbits & (align - 1)) == 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_words_32 - swap two elements in 32-bit chunks
 | |
|  * @a: pointer to the first element to swap
 | |
|  * @b: pointer to the second element to swap
 | |
|  * @n: element size (must be a multiple of 4)
 | |
|  *
 | |
|  * Exchange the two objects in memory.  This exploits base+index addressing,
 | |
|  * which basically all CPUs have, to minimize loop overhead computations.
 | |
|  *
 | |
|  * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
 | |
|  * bottom of the loop, even though the zero flag is still valid from the
 | |
|  * subtract (since the intervening mov instructions don't alter the flags).
 | |
|  * Gcc 8.1.0 doesn't have that problem.
 | |
|  */
 | |
| static __always_inline
 | |
| void swap_words_32(void *a, void *b, size_t n)
 | |
| {
 | |
| 	do {
 | |
| 		u32 t = *(u32 *)(a + (n -= 4));
 | |
| 		*(u32 *)(a + n) = *(u32 *)(b + n);
 | |
| 		*(u32 *)(b + n) = t;
 | |
| 	} while (n);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_words_64 - swap two elements in 64-bit chunks
 | |
|  * @a: pointer to the first element to swap
 | |
|  * @b: pointer to the second element to swap
 | |
|  * @n: element size (must be a multiple of 8)
 | |
|  *
 | |
|  * Exchange the two objects in memory.  This exploits base+index
 | |
|  * addressing, which basically all CPUs have, to minimize loop overhead
 | |
|  * computations.
 | |
|  *
 | |
|  * We'd like to use 64-bit loads if possible.  If they're not, emulating
 | |
|  * one requires base+index+4 addressing which x86 has but most other
 | |
|  * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
 | |
|  * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
 | |
|  * x32 ABI).  Are there any cases the kernel needs to worry about?
 | |
|  */
 | |
| static __always_inline
 | |
| void swap_words_64(void *a, void *b, size_t n)
 | |
| {
 | |
| 	do {
 | |
| #ifdef CONFIG_64BIT
 | |
| 		u64 t = *(u64 *)(a + (n -= 8));
 | |
| 		*(u64 *)(a + n) = *(u64 *)(b + n);
 | |
| 		*(u64 *)(b + n) = t;
 | |
| #else
 | |
| 		/* Use two 32-bit transfers to avoid base+index+4 addressing */
 | |
| 		u32 t = *(u32 *)(a + (n -= 4));
 | |
| 		*(u32 *)(a + n) = *(u32 *)(b + n);
 | |
| 		*(u32 *)(b + n) = t;
 | |
| 
 | |
| 		t = *(u32 *)(a + (n -= 4));
 | |
| 		*(u32 *)(a + n) = *(u32 *)(b + n);
 | |
| 		*(u32 *)(b + n) = t;
 | |
| #endif
 | |
| 	} while (n);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_bytes - swap two elements a byte at a time
 | |
|  * @a: pointer to the first element to swap
 | |
|  * @b: pointer to the second element to swap
 | |
|  * @n: element size
 | |
|  *
 | |
|  * This is the fallback if alignment doesn't allow using larger chunks.
 | |
|  */
 | |
| static __always_inline
 | |
| void swap_bytes(void *a, void *b, size_t n)
 | |
| {
 | |
| 	do {
 | |
| 		char t = ((char *)a)[--n];
 | |
| 		((char *)a)[n] = ((char *)b)[n];
 | |
| 		((char *)b)[n] = t;
 | |
| 	} while (n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The values are arbitrary as long as they can't be confused with
 | |
|  * a pointer, but small integers make for the smallest compare
 | |
|  * instructions.
 | |
|  */
 | |
| #define SWAP_WORDS_64 ((void (*)(void *, void *, void *))0)
 | |
| #define SWAP_WORDS_32 ((void (*)(void *, void *, void *))1)
 | |
| #define SWAP_BYTES    ((void (*)(void *, void *, void *))2)
 | |
| 
 | |
| /*
 | |
|  * Selects the appropriate swap function based on the element size.
 | |
|  */
 | |
| static __always_inline
 | |
| void *select_swap_func(const void *base, size_t size)
 | |
| {
 | |
| 	if (is_aligned(base, size, 8))
 | |
| 		return SWAP_WORDS_64;
 | |
| 	else if (is_aligned(base, size, 4))
 | |
| 		return SWAP_WORDS_32;
 | |
| 	else
 | |
| 		return SWAP_BYTES;
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void do_swap(void *a, void *b, size_t size, void (*swap_func)(void *lhs, void *rhs, void *args),
 | |
| 	     void *priv)
 | |
| {
 | |
| 	if (swap_func == SWAP_WORDS_64)
 | |
| 		swap_words_64(a, b, size);
 | |
| 	else if (swap_func == SWAP_WORDS_32)
 | |
| 		swap_words_32(a, b, size);
 | |
| 	else if (swap_func == SWAP_BYTES)
 | |
| 		swap_bytes(a, b, size);
 | |
| 	else
 | |
| 		swap_func(a, b, priv);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * parent - given the offset of the child, find the offset of the parent.
 | |
|  * @i: the offset of the heap element whose parent is sought.  Non-zero.
 | |
|  * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
 | |
|  * @size: size of each element
 | |
|  *
 | |
|  * In terms of array indexes, the parent of element j = @i/@size is simply
 | |
|  * (j-1)/2.  But when working in byte offsets, we can't use implicit
 | |
|  * truncation of integer divides.
 | |
|  *
 | |
|  * Fortunately, we only need one bit of the quotient, not the full divide.
 | |
|  * @size has a least significant bit.  That bit will be clear if @i is
 | |
|  * an even multiple of @size, and set if it's an odd multiple.
 | |
|  *
 | |
|  * Logically, we're doing "if (i & lsbit) i -= size;", but since the
 | |
|  * branch is unpredictable, it's done with a bit of clever branch-free
 | |
|  * code instead.
 | |
|  */
 | |
| __attribute_const__ __always_inline
 | |
| static size_t parent(size_t i, unsigned int lsbit, size_t size)
 | |
| {
 | |
| 	i -= size;
 | |
| 	i -= size & -(i & lsbit);
 | |
| 	return i / 2;
 | |
| }
 | |
| 
 | |
| /* Initialize a min-heap. */
 | |
| static __always_inline
 | |
| void __min_heap_init_inline(min_heap_char *heap, void *data, int size)
 | |
| {
 | |
| 	heap->nr = 0;
 | |
| 	heap->size = size;
 | |
| 	if (data)
 | |
| 		heap->data = data;
 | |
| 	else
 | |
| 		heap->data = heap->preallocated;
 | |
| }
 | |
| 
 | |
| #define min_heap_init_inline(_heap, _data, _size)	\
 | |
| 	__min_heap_init_inline((min_heap_char *)_heap, _data, _size)
 | |
| 
 | |
| /* Get the minimum element from the heap. */
 | |
| static __always_inline
 | |
| void *__min_heap_peek_inline(struct min_heap_char *heap)
 | |
| {
 | |
| 	return heap->nr ? heap->data : NULL;
 | |
| }
 | |
| 
 | |
| #define min_heap_peek_inline(_heap)	\
 | |
| 	(__minheap_cast(_heap) __min_heap_peek_inline((min_heap_char *)_heap))
 | |
| 
 | |
| /* Check if the heap is full. */
 | |
| static __always_inline
 | |
| bool __min_heap_full_inline(min_heap_char *heap)
 | |
| {
 | |
| 	return heap->nr == heap->size;
 | |
| }
 | |
| 
 | |
| #define min_heap_full_inline(_heap)	\
 | |
| 	__min_heap_full_inline((min_heap_char *)_heap)
 | |
| 
 | |
| /* Sift the element at pos down the heap. */
 | |
| static __always_inline
 | |
| void __min_heap_sift_down_inline(min_heap_char *heap, int pos, size_t elem_size,
 | |
| 				 const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	const unsigned long lsbit = elem_size & -elem_size;
 | |
| 	void *data = heap->data;
 | |
| 	void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
 | |
| 	/* pre-scale counters for performance */
 | |
| 	size_t a = pos * elem_size;
 | |
| 	size_t b, c, d;
 | |
| 	size_t n = heap->nr * elem_size;
 | |
| 
 | |
| 	if (!swp)
 | |
| 		swp = select_swap_func(data, elem_size);
 | |
| 
 | |
| 	/* Find the sift-down path all the way to the leaves. */
 | |
| 	for (b = a; c = 2 * b + elem_size, (d = c + elem_size) < n;)
 | |
| 		b = func->less(data + c, data + d, args) ? c : d;
 | |
| 
 | |
| 	/* Special case for the last leaf with no sibling. */
 | |
| 	if (d == n)
 | |
| 		b = c;
 | |
| 
 | |
| 	/* Backtrack to the correct location. */
 | |
| 	while (b != a && func->less(data + a, data + b, args))
 | |
| 		b = parent(b, lsbit, elem_size);
 | |
| 
 | |
| 	/* Shift the element into its correct place. */
 | |
| 	c = b;
 | |
| 	while (b != a) {
 | |
| 		b = parent(b, lsbit, elem_size);
 | |
| 		do_swap(data + b, data + c, elem_size, swp, args);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define min_heap_sift_down_inline(_heap, _pos, _func, _args)	\
 | |
| 	__min_heap_sift_down_inline((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap),	\
 | |
| 				    _func, _args)
 | |
| 
 | |
| /* Sift up ith element from the heap, O(log2(nr)). */
 | |
| static __always_inline
 | |
| void __min_heap_sift_up_inline(min_heap_char *heap, size_t elem_size, size_t idx,
 | |
| 			       const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	const unsigned long lsbit = elem_size & -elem_size;
 | |
| 	void *data = heap->data;
 | |
| 	void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
 | |
| 	/* pre-scale counters for performance */
 | |
| 	size_t a = idx * elem_size, b;
 | |
| 
 | |
| 	if (!swp)
 | |
| 		swp = select_swap_func(data, elem_size);
 | |
| 
 | |
| 	while (a) {
 | |
| 		b = parent(a, lsbit, elem_size);
 | |
| 		if (func->less(data + b, data + a, args))
 | |
| 			break;
 | |
| 		do_swap(data + a, data + b, elem_size, swp, args);
 | |
| 		a = b;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define min_heap_sift_up_inline(_heap, _idx, _func, _args)	\
 | |
| 	__min_heap_sift_up_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx,	\
 | |
| 				  _func, _args)
 | |
| 
 | |
| /* Floyd's approach to heapification that is O(nr). */
 | |
| static __always_inline
 | |
| void __min_heapify_all_inline(min_heap_char *heap, size_t elem_size,
 | |
| 			      const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = heap->nr / 2 - 1; i >= 0; i--)
 | |
| 		__min_heap_sift_down_inline(heap, i, elem_size, func, args);
 | |
| }
 | |
| 
 | |
| #define min_heapify_all_inline(_heap, _func, _args)	\
 | |
| 	__min_heapify_all_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
 | |
| 
 | |
| /* Remove minimum element from the heap, O(log2(nr)). */
 | |
| static __always_inline
 | |
| bool __min_heap_pop_inline(min_heap_char *heap, size_t elem_size,
 | |
| 			   const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	void *data = heap->data;
 | |
| 
 | |
| 	if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Place last element at the root (position 0) and then sift down. */
 | |
| 	heap->nr--;
 | |
| 	memcpy(data, data + (heap->nr * elem_size), elem_size);
 | |
| 	__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define min_heap_pop_inline(_heap, _func, _args)	\
 | |
| 	__min_heap_pop_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
 | |
| 
 | |
| /*
 | |
|  * Remove the minimum element and then push the given element. The
 | |
|  * implementation performs 1 sift (O(log2(nr))) and is therefore more
 | |
|  * efficient than a pop followed by a push that does 2.
 | |
|  */
 | |
| static __always_inline
 | |
| void __min_heap_pop_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
 | |
| 				const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	memcpy(heap->data, element, elem_size);
 | |
| 	__min_heap_sift_down_inline(heap, 0, elem_size, func, args);
 | |
| }
 | |
| 
 | |
| #define min_heap_pop_push_inline(_heap, _element, _func, _args)	\
 | |
| 	__min_heap_pop_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap),	\
 | |
| 				   _func, _args)
 | |
| 
 | |
| /* Push an element on to the heap, O(log2(nr)). */
 | |
| static __always_inline
 | |
| bool __min_heap_push_inline(min_heap_char *heap, const void *element, size_t elem_size,
 | |
| 			    const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	void *data = heap->data;
 | |
| 	int pos;
 | |
| 
 | |
| 	if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Place at the end of data. */
 | |
| 	pos = heap->nr;
 | |
| 	memcpy(data + (pos * elem_size), element, elem_size);
 | |
| 	heap->nr++;
 | |
| 
 | |
| 	/* Sift child at pos up. */
 | |
| 	__min_heap_sift_up_inline(heap, elem_size, pos, func, args);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define min_heap_push_inline(_heap, _element, _func, _args)	\
 | |
| 	__min_heap_push_inline((min_heap_char *)_heap, _element, __minheap_obj_size(_heap),	\
 | |
| 			       _func, _args)
 | |
| 
 | |
| /* Remove ith element from the heap, O(log2(nr)). */
 | |
| static __always_inline
 | |
| bool __min_heap_del_inline(min_heap_char *heap, size_t elem_size, size_t idx,
 | |
| 			   const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	void *data = heap->data;
 | |
| 	void (*swp)(void *lhs, void *rhs, void *args) = func->swp;
 | |
| 
 | |
| 	if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!swp)
 | |
| 		swp = select_swap_func(data, elem_size);
 | |
| 
 | |
| 	/* Place last element at the root (position 0) and then sift down. */
 | |
| 	heap->nr--;
 | |
| 	if (idx == heap->nr)
 | |
| 		return true;
 | |
| 	do_swap(data + (idx * elem_size), data + (heap->nr * elem_size), elem_size, swp, args);
 | |
| 	__min_heap_sift_up_inline(heap, elem_size, idx, func, args);
 | |
| 	__min_heap_sift_down_inline(heap, idx, elem_size, func, args);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define min_heap_del_inline(_heap, _idx, _func, _args)	\
 | |
| 	__min_heap_del_inline((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx,	\
 | |
| 			      _func, _args)
 | |
| 
 | |
| void __min_heap_init(min_heap_char *heap, void *data, int size);
 | |
| void *__min_heap_peek(struct min_heap_char *heap);
 | |
| bool __min_heap_full(min_heap_char *heap);
 | |
| void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size,
 | |
| 			  const struct min_heap_callbacks *func, void *args);
 | |
| void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
 | |
| 			const struct min_heap_callbacks *func, void *args);
 | |
| void __min_heapify_all(min_heap_char *heap, size_t elem_size,
 | |
| 		       const struct min_heap_callbacks *func, void *args);
 | |
| bool __min_heap_pop(min_heap_char *heap, size_t elem_size,
 | |
| 		    const struct min_heap_callbacks *func, void *args);
 | |
| void __min_heap_pop_push(min_heap_char *heap, const void *element, size_t elem_size,
 | |
| 			 const struct min_heap_callbacks *func, void *args);
 | |
| bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
 | |
| 		     const struct min_heap_callbacks *func, void *args);
 | |
| bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
 | |
| 		    const struct min_heap_callbacks *func, void *args);
 | |
| 
 | |
| #define min_heap_init(_heap, _data, _size)	\
 | |
| 	__min_heap_init((min_heap_char *)_heap, _data, _size)
 | |
| #define min_heap_peek(_heap)	\
 | |
| 	(__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap))
 | |
| #define min_heap_full(_heap)	\
 | |
| 	__min_heap_full((min_heap_char *)_heap)
 | |
| #define min_heap_sift_down(_heap, _pos, _func, _args)	\
 | |
| 	__min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args)
 | |
| #define min_heap_sift_up(_heap, _idx, _func, _args)	\
 | |
| 	__min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
 | |
| #define min_heapify_all(_heap, _func, _args)	\
 | |
| 	__min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
 | |
| #define min_heap_pop(_heap, _func, _args)	\
 | |
| 	__min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
 | |
| #define min_heap_pop_push(_heap, _element, _func, _args)	\
 | |
| 	__min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap),	\
 | |
| 			    _func, _args)
 | |
| #define min_heap_push(_heap, _element, _func, _args)	\
 | |
| 	__min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
 | |
| #define min_heap_del(_heap, _idx, _func, _args)	\
 | |
| 	__min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
 | |
| 
 | |
| #endif /* _LINUX_MIN_HEAP_H */
 |