forked from mirrors/linux
		
	 a9ee6cf5c6
			
		
	
	
		a9ee6cf5c6
		
	
	
	
	
		
			
			After removal of DISCINTIGMEM the NEED_MULTIPLE_NODES and NUMA configuration options are equivalent. Drop CONFIG_NEED_MULTIPLE_NODES and use CONFIG_NUMA instead. Done with $ sed -i 's/CONFIG_NEED_MULTIPLE_NODES/CONFIG_NUMA/' \ $(git grep -wl CONFIG_NEED_MULTIPLE_NODES) $ sed -i 's/NEED_MULTIPLE_NODES/NUMA/' \ $(git grep -wl NEED_MULTIPLE_NODES) with manual tweaks afterwards. [rppt@linux.ibm.com: fix arm boot crash] Link: https://lkml.kernel.org/r/YMj9vHhHOiCVN4BF@linux.ibm.com Link: https://lkml.kernel.org/r/20210608091316.3622-9-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: David Hildenbrand <david@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matt Turner <mattst88@gmail.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			3282 lines
		
	
	
	
		
			103 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3282 lines
		
	
	
	
		
			103 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_MM_H
 | |
| #define _LINUX_MM_H
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| 
 | |
| #ifdef __KERNEL__
 | |
| 
 | |
| #include <linux/mmdebug.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/bug.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/debug_locks.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/mmap_lock.h>
 | |
| #include <linux/range.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/percpu-refcount.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/shrinker.h>
 | |
| #include <linux/resource.h>
 | |
| #include <linux/page_ext.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/page_ref.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/overflow.h>
 | |
| #include <linux/sizes.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/pgtable.h>
 | |
| #include <linux/kasan.h>
 | |
| 
 | |
| struct mempolicy;
 | |
| struct anon_vma;
 | |
| struct anon_vma_chain;
 | |
| struct file_ra_state;
 | |
| struct user_struct;
 | |
| struct writeback_control;
 | |
| struct bdi_writeback;
 | |
| struct pt_regs;
 | |
| 
 | |
| extern int sysctl_page_lock_unfairness;
 | |
| 
 | |
| void init_mm_internals(void);
 | |
| 
 | |
| #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
 | |
| extern unsigned long max_mapnr;
 | |
| 
 | |
| static inline void set_max_mapnr(unsigned long limit)
 | |
| {
 | |
| 	max_mapnr = limit;
 | |
| }
 | |
| #else
 | |
| static inline void set_max_mapnr(unsigned long limit) { }
 | |
| #endif
 | |
| 
 | |
| extern atomic_long_t _totalram_pages;
 | |
| static inline unsigned long totalram_pages(void)
 | |
| {
 | |
| 	return (unsigned long)atomic_long_read(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_inc(void)
 | |
| {
 | |
| 	atomic_long_inc(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_dec(void)
 | |
| {
 | |
| 	atomic_long_dec(&_totalram_pages);
 | |
| }
 | |
| 
 | |
| static inline void totalram_pages_add(long count)
 | |
| {
 | |
| 	atomic_long_add(count, &_totalram_pages);
 | |
| }
 | |
| 
 | |
| extern void * high_memory;
 | |
| extern int page_cluster;
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| extern int sysctl_legacy_va_layout;
 | |
| #else
 | |
| #define sysctl_legacy_va_layout 0
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
 | |
| extern const int mmap_rnd_bits_min;
 | |
| extern const int mmap_rnd_bits_max;
 | |
| extern int mmap_rnd_bits __read_mostly;
 | |
| #endif
 | |
| #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
 | |
| extern const int mmap_rnd_compat_bits_min;
 | |
| extern const int mmap_rnd_compat_bits_max;
 | |
| extern int mmap_rnd_compat_bits __read_mostly;
 | |
| #endif
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/processor.h>
 | |
| 
 | |
| /*
 | |
|  * Architectures that support memory tagging (assigning tags to memory regions,
 | |
|  * embedding these tags into addresses that point to these memory regions, and
 | |
|  * checking that the memory and the pointer tags match on memory accesses)
 | |
|  * redefine this macro to strip tags from pointers.
 | |
|  * It's defined as noop for architectures that don't support memory tagging.
 | |
|  */
 | |
| #ifndef untagged_addr
 | |
| #define untagged_addr(addr) (addr)
 | |
| #endif
 | |
| 
 | |
| #ifndef __pa_symbol
 | |
| #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
 | |
| #endif
 | |
| 
 | |
| #ifndef page_to_virt
 | |
| #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
 | |
| #endif
 | |
| 
 | |
| #ifndef lm_alias
 | |
| #define lm_alias(x)	__va(__pa_symbol(x))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
 | |
|  * instrumented C code with jump table addresses. Architectures that
 | |
|  * support CFI can define this macro to return the actual function address
 | |
|  * when needed.
 | |
|  */
 | |
| #ifndef function_nocfi
 | |
| #define function_nocfi(x) (x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * To prevent common memory management code establishing
 | |
|  * a zero page mapping on a read fault.
 | |
|  * This macro should be defined within <asm/pgtable.h>.
 | |
|  * s390 does this to prevent multiplexing of hardware bits
 | |
|  * related to the physical page in case of virtualization.
 | |
|  */
 | |
| #ifndef mm_forbids_zeropage
 | |
| #define mm_forbids_zeropage(X)	(0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * On some architectures it is expensive to call memset() for small sizes.
 | |
|  * If an architecture decides to implement their own version of
 | |
|  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
 | |
|  * define their own version of this macro in <asm/pgtable.h>
 | |
|  */
 | |
| #if BITS_PER_LONG == 64
 | |
| /* This function must be updated when the size of struct page grows above 80
 | |
|  * or reduces below 56. The idea that compiler optimizes out switch()
 | |
|  * statement, and only leaves move/store instructions. Also the compiler can
 | |
|  * combine write statments if they are both assignments and can be reordered,
 | |
|  * this can result in several of the writes here being dropped.
 | |
|  */
 | |
| #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
 | |
| static inline void __mm_zero_struct_page(struct page *page)
 | |
| {
 | |
| 	unsigned long *_pp = (void *)page;
 | |
| 
 | |
| 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
 | |
| 	BUILD_BUG_ON(sizeof(struct page) & 7);
 | |
| 	BUILD_BUG_ON(sizeof(struct page) < 56);
 | |
| 	BUILD_BUG_ON(sizeof(struct page) > 80);
 | |
| 
 | |
| 	switch (sizeof(struct page)) {
 | |
| 	case 80:
 | |
| 		_pp[9] = 0;
 | |
| 		fallthrough;
 | |
| 	case 72:
 | |
| 		_pp[8] = 0;
 | |
| 		fallthrough;
 | |
| 	case 64:
 | |
| 		_pp[7] = 0;
 | |
| 		fallthrough;
 | |
| 	case 56:
 | |
| 		_pp[6] = 0;
 | |
| 		_pp[5] = 0;
 | |
| 		_pp[4] = 0;
 | |
| 		_pp[3] = 0;
 | |
| 		_pp[2] = 0;
 | |
| 		_pp[1] = 0;
 | |
| 		_pp[0] = 0;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Default maximum number of active map areas, this limits the number of vmas
 | |
|  * per mm struct. Users can overwrite this number by sysctl but there is a
 | |
|  * problem.
 | |
|  *
 | |
|  * When a program's coredump is generated as ELF format, a section is created
 | |
|  * per a vma. In ELF, the number of sections is represented in unsigned short.
 | |
|  * This means the number of sections should be smaller than 65535 at coredump.
 | |
|  * Because the kernel adds some informative sections to a image of program at
 | |
|  * generating coredump, we need some margin. The number of extra sections is
 | |
|  * 1-3 now and depends on arch. We use "5" as safe margin, here.
 | |
|  *
 | |
|  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
 | |
|  * not a hard limit any more. Although some userspace tools can be surprised by
 | |
|  * that.
 | |
|  */
 | |
| #define MAPCOUNT_ELF_CORE_MARGIN	(5)
 | |
| #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
 | |
| 
 | |
| extern int sysctl_max_map_count;
 | |
| 
 | |
| extern unsigned long sysctl_user_reserve_kbytes;
 | |
| extern unsigned long sysctl_admin_reserve_kbytes;
 | |
| 
 | |
| extern int sysctl_overcommit_memory;
 | |
| extern int sysctl_overcommit_ratio;
 | |
| extern unsigned long sysctl_overcommit_kbytes;
 | |
| 
 | |
| int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
 | |
| 		loff_t *);
 | |
| int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
 | |
| 		loff_t *);
 | |
| int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
 | |
| 		loff_t *);
 | |
| /*
 | |
|  * Any attempt to mark this function as static leads to build failure
 | |
|  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
 | |
|  * is referred to by BPF code. This must be visible for error injection.
 | |
|  */
 | |
| int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 | |
| 		pgoff_t index, gfp_t gfp, void **shadowp);
 | |
| 
 | |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 | |
| #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
 | |
| #else
 | |
| #define nth_page(page,n) ((page) + (n))
 | |
| #endif
 | |
| 
 | |
| /* to align the pointer to the (next) page boundary */
 | |
| #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
 | |
| 
 | |
| /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
 | |
| #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
 | |
| 
 | |
| #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
 | |
| 
 | |
| /*
 | |
|  * Linux kernel virtual memory manager primitives.
 | |
|  * The idea being to have a "virtual" mm in the same way
 | |
|  * we have a virtual fs - giving a cleaner interface to the
 | |
|  * mm details, and allowing different kinds of memory mappings
 | |
|  * (from shared memory to executable loading to arbitrary
 | |
|  * mmap() functions).
 | |
|  */
 | |
| 
 | |
| struct vm_area_struct *vm_area_alloc(struct mm_struct *);
 | |
| struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
 | |
| void vm_area_free(struct vm_area_struct *);
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| extern struct rb_root nommu_region_tree;
 | |
| extern struct rw_semaphore nommu_region_sem;
 | |
| 
 | |
| extern unsigned int kobjsize(const void *objp);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * vm_flags in vm_area_struct, see mm_types.h.
 | |
|  * When changing, update also include/trace/events/mmflags.h
 | |
|  */
 | |
| #define VM_NONE		0x00000000
 | |
| 
 | |
| #define VM_READ		0x00000001	/* currently active flags */
 | |
| #define VM_WRITE	0x00000002
 | |
| #define VM_EXEC		0x00000004
 | |
| #define VM_SHARED	0x00000008
 | |
| 
 | |
| /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
 | |
| #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
 | |
| #define VM_MAYWRITE	0x00000020
 | |
| #define VM_MAYEXEC	0x00000040
 | |
| #define VM_MAYSHARE	0x00000080
 | |
| 
 | |
| #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
 | |
| #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
 | |
| #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
 | |
| #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
 | |
| #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
 | |
| 
 | |
| #define VM_LOCKED	0x00002000
 | |
| #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
 | |
| 
 | |
| 					/* Used by sys_madvise() */
 | |
| #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
 | |
| #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
 | |
| 
 | |
| #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
 | |
| #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
 | |
| #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
 | |
| #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
 | |
| #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
 | |
| #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
 | |
| #define VM_SYNC		0x00800000	/* Synchronous page faults */
 | |
| #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
 | |
| #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
 | |
| #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
 | |
| 
 | |
| #ifdef CONFIG_MEM_SOFT_DIRTY
 | |
| # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
 | |
| #else
 | |
| # define VM_SOFTDIRTY	0
 | |
| #endif
 | |
| 
 | |
| #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
 | |
| #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
 | |
| #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
 | |
| #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
 | |
| #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
 | |
| #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
 | |
| #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
 | |
| #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
 | |
| #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
 | |
| #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
 | |
| #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_PKEYS
 | |
| # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
 | |
| # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
 | |
| # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
 | |
| # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
 | |
| # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
 | |
| #ifdef CONFIG_PPC
 | |
| # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
 | |
| #else
 | |
| # define VM_PKEY_BIT4  0
 | |
| #endif
 | |
| #endif /* CONFIG_ARCH_HAS_PKEYS */
 | |
| 
 | |
| #if defined(CONFIG_X86)
 | |
| # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
 | |
| #elif defined(CONFIG_PPC)
 | |
| # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
 | |
| #elif defined(CONFIG_PARISC)
 | |
| # define VM_GROWSUP	VM_ARCH_1
 | |
| #elif defined(CONFIG_IA64)
 | |
| # define VM_GROWSUP	VM_ARCH_1
 | |
| #elif defined(CONFIG_SPARC64)
 | |
| # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
 | |
| # define VM_ARCH_CLEAR	VM_SPARC_ADI
 | |
| #elif defined(CONFIG_ARM64)
 | |
| # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
 | |
| # define VM_ARCH_CLEAR	VM_ARM64_BTI
 | |
| #elif !defined(CONFIG_MMU)
 | |
| # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_ARM64_MTE)
 | |
| # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
 | |
| # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
 | |
| #else
 | |
| # define VM_MTE		VM_NONE
 | |
| # define VM_MTE_ALLOWED	VM_NONE
 | |
| #endif
 | |
| 
 | |
| #ifndef VM_GROWSUP
 | |
| # define VM_GROWSUP	VM_NONE
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 | |
| # define VM_UFFD_MINOR_BIT	37
 | |
| # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
 | |
| #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
 | |
| # define VM_UFFD_MINOR		VM_NONE
 | |
| #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
 | |
| 
 | |
| /* Bits set in the VMA until the stack is in its final location */
 | |
| #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
 | |
| 
 | |
| #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
 | |
| 
 | |
| /* Common data flag combinations */
 | |
| #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
 | |
| 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 | |
| #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
 | |
| 				 VM_MAYWRITE | VM_MAYEXEC)
 | |
| #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
 | |
| 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 | |
| 
 | |
| #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
 | |
| #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
 | |
| #endif
 | |
| 
 | |
| #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
 | |
| #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_STACK_GROWSUP
 | |
| #define VM_STACK	VM_GROWSUP
 | |
| #else
 | |
| #define VM_STACK	VM_GROWSDOWN
 | |
| #endif
 | |
| 
 | |
| #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
 | |
| 
 | |
| /* VMA basic access permission flags */
 | |
| #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Special vmas that are non-mergable, non-mlock()able.
 | |
|  */
 | |
| #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
 | |
| 
 | |
| /* This mask prevents VMA from being scanned with khugepaged */
 | |
| #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
 | |
| 
 | |
| /* This mask defines which mm->def_flags a process can inherit its parent */
 | |
| #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
 | |
| 
 | |
| /* This mask is used to clear all the VMA flags used by mlock */
 | |
| #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
 | |
| 
 | |
| /* Arch-specific flags to clear when updating VM flags on protection change */
 | |
| #ifndef VM_ARCH_CLEAR
 | |
| # define VM_ARCH_CLEAR	VM_NONE
 | |
| #endif
 | |
| #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
 | |
| 
 | |
| /*
 | |
|  * mapping from the currently active vm_flags protection bits (the
 | |
|  * low four bits) to a page protection mask..
 | |
|  */
 | |
| extern pgprot_t protection_map[16];
 | |
| 
 | |
| /**
 | |
|  * enum fault_flag - Fault flag definitions.
 | |
|  * @FAULT_FLAG_WRITE: Fault was a write fault.
 | |
|  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
 | |
|  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
 | |
|  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
 | |
|  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
 | |
|  * @FAULT_FLAG_TRIED: The fault has been tried once.
 | |
|  * @FAULT_FLAG_USER: The fault originated in userspace.
 | |
|  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
 | |
|  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
 | |
|  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
 | |
|  *
 | |
|  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
 | |
|  * whether we would allow page faults to retry by specifying these two
 | |
|  * fault flags correctly.  Currently there can be three legal combinations:
 | |
|  *
 | |
|  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
 | |
|  *                              this is the first try
 | |
|  *
 | |
|  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
 | |
|  *                              we've already tried at least once
 | |
|  *
 | |
|  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
 | |
|  *
 | |
|  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
 | |
|  * be used.  Note that page faults can be allowed to retry for multiple times,
 | |
|  * in which case we'll have an initial fault with flags (a) then later on
 | |
|  * continuous faults with flags (b).  We should always try to detect pending
 | |
|  * signals before a retry to make sure the continuous page faults can still be
 | |
|  * interrupted if necessary.
 | |
|  */
 | |
| enum fault_flag {
 | |
| 	FAULT_FLAG_WRITE =		1 << 0,
 | |
| 	FAULT_FLAG_MKWRITE =		1 << 1,
 | |
| 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
 | |
| 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
 | |
| 	FAULT_FLAG_KILLABLE =		1 << 4,
 | |
| 	FAULT_FLAG_TRIED = 		1 << 5,
 | |
| 	FAULT_FLAG_USER =		1 << 6,
 | |
| 	FAULT_FLAG_REMOTE =		1 << 7,
 | |
| 	FAULT_FLAG_INSTRUCTION =	1 << 8,
 | |
| 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The default fault flags that should be used by most of the
 | |
|  * arch-specific page fault handlers.
 | |
|  */
 | |
| #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
 | |
| 			     FAULT_FLAG_KILLABLE | \
 | |
| 			     FAULT_FLAG_INTERRUPTIBLE)
 | |
| 
 | |
| /**
 | |
|  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
 | |
|  * @flags: Fault flags.
 | |
|  *
 | |
|  * This is mostly used for places where we want to try to avoid taking
 | |
|  * the mmap_lock for too long a time when waiting for another condition
 | |
|  * to change, in which case we can try to be polite to release the
 | |
|  * mmap_lock in the first round to avoid potential starvation of other
 | |
|  * processes that would also want the mmap_lock.
 | |
|  *
 | |
|  * Return: true if the page fault allows retry and this is the first
 | |
|  * attempt of the fault handling; false otherwise.
 | |
|  */
 | |
| static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
 | |
| {
 | |
| 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
 | |
| 	    (!(flags & FAULT_FLAG_TRIED));
 | |
| }
 | |
| 
 | |
| #define FAULT_FLAG_TRACE \
 | |
| 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
 | |
| 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
 | |
| 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
 | |
| 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
 | |
| 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
 | |
| 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
 | |
| 	{ FAULT_FLAG_USER,		"USER" }, \
 | |
| 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
 | |
| 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
 | |
| 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
 | |
| 
 | |
| /*
 | |
|  * vm_fault is filled by the pagefault handler and passed to the vma's
 | |
|  * ->fault function. The vma's ->fault is responsible for returning a bitmask
 | |
|  * of VM_FAULT_xxx flags that give details about how the fault was handled.
 | |
|  *
 | |
|  * MM layer fills up gfp_mask for page allocations but fault handler might
 | |
|  * alter it if its implementation requires a different allocation context.
 | |
|  *
 | |
|  * pgoff should be used in favour of virtual_address, if possible.
 | |
|  */
 | |
| struct vm_fault {
 | |
| 	const struct {
 | |
| 		struct vm_area_struct *vma;	/* Target VMA */
 | |
| 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
 | |
| 		pgoff_t pgoff;			/* Logical page offset based on vma */
 | |
| 		unsigned long address;		/* Faulting virtual address */
 | |
| 	};
 | |
| 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
 | |
| 					 * XXX: should really be 'const' */
 | |
| 	pmd_t *pmd;			/* Pointer to pmd entry matching
 | |
| 					 * the 'address' */
 | |
| 	pud_t *pud;			/* Pointer to pud entry matching
 | |
| 					 * the 'address'
 | |
| 					 */
 | |
| 	pte_t orig_pte;			/* Value of PTE at the time of fault */
 | |
| 
 | |
| 	struct page *cow_page;		/* Page handler may use for COW fault */
 | |
| 	struct page *page;		/* ->fault handlers should return a
 | |
| 					 * page here, unless VM_FAULT_NOPAGE
 | |
| 					 * is set (which is also implied by
 | |
| 					 * VM_FAULT_ERROR).
 | |
| 					 */
 | |
| 	/* These three entries are valid only while holding ptl lock */
 | |
| 	pte_t *pte;			/* Pointer to pte entry matching
 | |
| 					 * the 'address'. NULL if the page
 | |
| 					 * table hasn't been allocated.
 | |
| 					 */
 | |
| 	spinlock_t *ptl;		/* Page table lock.
 | |
| 					 * Protects pte page table if 'pte'
 | |
| 					 * is not NULL, otherwise pmd.
 | |
| 					 */
 | |
| 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
 | |
| 					 * vm_ops->map_pages() sets up a page
 | |
| 					 * table from atomic context.
 | |
| 					 * do_fault_around() pre-allocates
 | |
| 					 * page table to avoid allocation from
 | |
| 					 * atomic context.
 | |
| 					 */
 | |
| };
 | |
| 
 | |
| /* page entry size for vm->huge_fault() */
 | |
| enum page_entry_size {
 | |
| 	PE_SIZE_PTE = 0,
 | |
| 	PE_SIZE_PMD,
 | |
| 	PE_SIZE_PUD,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * These are the virtual MM functions - opening of an area, closing and
 | |
|  * unmapping it (needed to keep files on disk up-to-date etc), pointer
 | |
|  * to the functions called when a no-page or a wp-page exception occurs.
 | |
|  */
 | |
| struct vm_operations_struct {
 | |
| 	void (*open)(struct vm_area_struct * area);
 | |
| 	void (*close)(struct vm_area_struct * area);
 | |
| 	/* Called any time before splitting to check if it's allowed */
 | |
| 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
 | |
| 	int (*mremap)(struct vm_area_struct *area);
 | |
| 	/*
 | |
| 	 * Called by mprotect() to make driver-specific permission
 | |
| 	 * checks before mprotect() is finalised.   The VMA must not
 | |
| 	 * be modified.  Returns 0 if eprotect() can proceed.
 | |
| 	 */
 | |
| 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
 | |
| 			unsigned long end, unsigned long newflags);
 | |
| 	vm_fault_t (*fault)(struct vm_fault *vmf);
 | |
| 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
 | |
| 			enum page_entry_size pe_size);
 | |
| 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
 | |
| 			pgoff_t start_pgoff, pgoff_t end_pgoff);
 | |
| 	unsigned long (*pagesize)(struct vm_area_struct * area);
 | |
| 
 | |
| 	/* notification that a previously read-only page is about to become
 | |
| 	 * writable, if an error is returned it will cause a SIGBUS */
 | |
| 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
 | |
| 
 | |
| 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
 | |
| 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
 | |
| 
 | |
| 	/* called by access_process_vm when get_user_pages() fails, typically
 | |
| 	 * for use by special VMAs. See also generic_access_phys() for a generic
 | |
| 	 * implementation useful for any iomem mapping.
 | |
| 	 */
 | |
| 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		      void *buf, int len, int write);
 | |
| 
 | |
| 	/* Called by the /proc/PID/maps code to ask the vma whether it
 | |
| 	 * has a special name.  Returning non-NULL will also cause this
 | |
| 	 * vma to be dumped unconditionally. */
 | |
| 	const char *(*name)(struct vm_area_struct *vma);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	/*
 | |
| 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
 | |
| 	 * to hold the policy upon return.  Caller should pass NULL @new to
 | |
| 	 * remove a policy and fall back to surrounding context--i.e. do not
 | |
| 	 * install a MPOL_DEFAULT policy, nor the task or system default
 | |
| 	 * mempolicy.
 | |
| 	 */
 | |
| 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
 | |
| 
 | |
| 	/*
 | |
| 	 * get_policy() op must add reference [mpol_get()] to any policy at
 | |
| 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
 | |
| 	 * in mm/mempolicy.c will do this automatically.
 | |
| 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
 | |
| 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
 | |
| 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
 | |
| 	 * must return NULL--i.e., do not "fallback" to task or system default
 | |
| 	 * policy.
 | |
| 	 */
 | |
| 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
 | |
| 					unsigned long addr);
 | |
| #endif
 | |
| 	/*
 | |
| 	 * Called by vm_normal_page() for special PTEs to find the
 | |
| 	 * page for @addr.  This is useful if the default behavior
 | |
| 	 * (using pte_page()) would not find the correct page.
 | |
| 	 */
 | |
| 	struct page *(*find_special_page)(struct vm_area_struct *vma,
 | |
| 					  unsigned long addr);
 | |
| };
 | |
| 
 | |
| static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
 | |
| {
 | |
| 	static const struct vm_operations_struct dummy_vm_ops = {};
 | |
| 
 | |
| 	memset(vma, 0, sizeof(*vma));
 | |
| 	vma->vm_mm = mm;
 | |
| 	vma->vm_ops = &dummy_vm_ops;
 | |
| 	INIT_LIST_HEAD(&vma->anon_vma_chain);
 | |
| }
 | |
| 
 | |
| static inline void vma_set_anonymous(struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma->vm_ops = NULL;
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_anonymous(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return !vma->vm_ops;
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
 | |
| {
 | |
| 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
 | |
| 
 | |
| 	if (!maybe_stack)
 | |
| 		return false;
 | |
| 
 | |
| 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
 | |
| 						VM_STACK_INCOMPLETE_SETUP)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_foreign(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (!current->mm)
 | |
| 		return true;
 | |
| 
 | |
| 	if (current->mm != vma->vm_mm)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool vma_is_accessible(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return vma->vm_flags & VM_ACCESS_FLAGS;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SHMEM
 | |
| /*
 | |
|  * The vma_is_shmem is not inline because it is used only by slow
 | |
|  * paths in userfault.
 | |
|  */
 | |
| bool vma_is_shmem(struct vm_area_struct *vma);
 | |
| #else
 | |
| static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
 | |
| #endif
 | |
| 
 | |
| int vma_is_stack_for_current(struct vm_area_struct *vma);
 | |
| 
 | |
| /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
 | |
| #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
 | |
| 
 | |
| struct mmu_gather;
 | |
| struct inode;
 | |
| 
 | |
| #include <linux/huge_mm.h>
 | |
| 
 | |
| /*
 | |
|  * Methods to modify the page usage count.
 | |
|  *
 | |
|  * What counts for a page usage:
 | |
|  * - cache mapping   (page->mapping)
 | |
|  * - private data    (page->private)
 | |
|  * - page mapped in a task's page tables, each mapping
 | |
|  *   is counted separately
 | |
|  *
 | |
|  * Also, many kernel routines increase the page count before a critical
 | |
|  * routine so they can be sure the page doesn't go away from under them.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Drop a ref, return true if the refcount fell to zero (the page has no users)
 | |
|  */
 | |
| static inline int put_page_testzero(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
 | |
| 	return page_ref_dec_and_test(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to grab a ref unless the page has a refcount of zero, return false if
 | |
|  * that is the case.
 | |
|  * This can be called when MMU is off so it must not access
 | |
|  * any of the virtual mappings.
 | |
|  */
 | |
| static inline int get_page_unless_zero(struct page *page)
 | |
| {
 | |
| 	return page_ref_add_unless(page, 1, 0);
 | |
| }
 | |
| 
 | |
| extern int page_is_ram(unsigned long pfn);
 | |
| 
 | |
| enum {
 | |
| 	REGION_INTERSECTS,
 | |
| 	REGION_DISJOINT,
 | |
| 	REGION_MIXED,
 | |
| };
 | |
| 
 | |
| int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
 | |
| 		      unsigned long desc);
 | |
| 
 | |
| /* Support for virtually mapped pages */
 | |
| struct page *vmalloc_to_page(const void *addr);
 | |
| unsigned long vmalloc_to_pfn(const void *addr);
 | |
| 
 | |
| /*
 | |
|  * Determine if an address is within the vmalloc range
 | |
|  *
 | |
|  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 | |
|  * is no special casing required.
 | |
|  */
 | |
| 
 | |
| #ifndef is_ioremap_addr
 | |
| #define is_ioremap_addr(x) is_vmalloc_addr(x)
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern bool is_vmalloc_addr(const void *x);
 | |
| extern int is_vmalloc_or_module_addr(const void *x);
 | |
| #else
 | |
| static inline bool is_vmalloc_addr(const void *x)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| static inline int is_vmalloc_or_module_addr(const void *x)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
 | |
| static inline void *kvmalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
 | |
| }
 | |
| static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
 | |
| }
 | |
| static inline void *kvzalloc(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc(size, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return kvmalloc(bytes, flags);
 | |
| }
 | |
| 
 | |
| static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
 | |
| }
 | |
| 
 | |
| extern void kvfree(const void *addr);
 | |
| extern void kvfree_sensitive(const void *addr, size_t len);
 | |
| 
 | |
| static inline int head_compound_mapcount(struct page *head)
 | |
| {
 | |
| 	return atomic_read(compound_mapcount_ptr(head)) + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mapcount of compound page as a whole, does not include mapped sub-pages.
 | |
|  *
 | |
|  * Must be called only for compound pages or any their tail sub-pages.
 | |
|  */
 | |
| static inline int compound_mapcount(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | |
| 	page = compound_head(page);
 | |
| 	return head_compound_mapcount(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The atomic page->_mapcount, starts from -1: so that transitions
 | |
|  * both from it and to it can be tracked, using atomic_inc_and_test
 | |
|  * and atomic_add_negative(-1).
 | |
|  */
 | |
| static inline void page_mapcount_reset(struct page *page)
 | |
| {
 | |
| 	atomic_set(&(page)->_mapcount, -1);
 | |
| }
 | |
| 
 | |
| int __page_mapcount(struct page *page);
 | |
| 
 | |
| /*
 | |
|  * Mapcount of 0-order page; when compound sub-page, includes
 | |
|  * compound_mapcount().
 | |
|  *
 | |
|  * Result is undefined for pages which cannot be mapped into userspace.
 | |
|  * For example SLAB or special types of pages. See function page_has_type().
 | |
|  * They use this place in struct page differently.
 | |
|  */
 | |
| static inline int page_mapcount(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageCompound(page)))
 | |
| 		return __page_mapcount(page);
 | |
| 	return atomic_read(&page->_mapcount) + 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| int total_mapcount(struct page *page);
 | |
| int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
 | |
| #else
 | |
| static inline int total_mapcount(struct page *page)
 | |
| {
 | |
| 	return page_mapcount(page);
 | |
| }
 | |
| static inline int page_trans_huge_mapcount(struct page *page,
 | |
| 					   int *total_mapcount)
 | |
| {
 | |
| 	int mapcount = page_mapcount(page);
 | |
| 	if (total_mapcount)
 | |
| 		*total_mapcount = mapcount;
 | |
| 	return mapcount;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline struct page *virt_to_head_page(const void *x)
 | |
| {
 | |
| 	struct page *page = virt_to_page(x);
 | |
| 
 | |
| 	return compound_head(page);
 | |
| }
 | |
| 
 | |
| void __put_page(struct page *page);
 | |
| 
 | |
| void put_pages_list(struct list_head *pages);
 | |
| 
 | |
| void split_page(struct page *page, unsigned int order);
 | |
| 
 | |
| /*
 | |
|  * Compound pages have a destructor function.  Provide a
 | |
|  * prototype for that function and accessor functions.
 | |
|  * These are _only_ valid on the head of a compound page.
 | |
|  */
 | |
| typedef void compound_page_dtor(struct page *);
 | |
| 
 | |
| /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
 | |
| enum compound_dtor_id {
 | |
| 	NULL_COMPOUND_DTOR,
 | |
| 	COMPOUND_PAGE_DTOR,
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 	HUGETLB_PAGE_DTOR,
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	TRANSHUGE_PAGE_DTOR,
 | |
| #endif
 | |
| 	NR_COMPOUND_DTORS,
 | |
| };
 | |
| extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
 | |
| 
 | |
| static inline void set_compound_page_dtor(struct page *page,
 | |
| 		enum compound_dtor_id compound_dtor)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
 | |
| 	page[1].compound_dtor = compound_dtor;
 | |
| }
 | |
| 
 | |
| static inline void destroy_compound_page(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
 | |
| 	compound_page_dtors[page[1].compound_dtor](page);
 | |
| }
 | |
| 
 | |
| static inline unsigned int compound_order(struct page *page)
 | |
| {
 | |
| 	if (!PageHead(page))
 | |
| 		return 0;
 | |
| 	return page[1].compound_order;
 | |
| }
 | |
| 
 | |
| static inline bool hpage_pincount_available(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * Can the page->hpage_pinned_refcount field be used? That field is in
 | |
| 	 * the 3rd page of the compound page, so the smallest (2-page) compound
 | |
| 	 * pages cannot support it.
 | |
| 	 */
 | |
| 	page = compound_head(page);
 | |
| 	return PageCompound(page) && compound_order(page) > 1;
 | |
| }
 | |
| 
 | |
| static inline int head_compound_pincount(struct page *head)
 | |
| {
 | |
| 	return atomic_read(compound_pincount_ptr(head));
 | |
| }
 | |
| 
 | |
| static inline int compound_pincount(struct page *page)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
 | |
| 	page = compound_head(page);
 | |
| 	return head_compound_pincount(page);
 | |
| }
 | |
| 
 | |
| static inline void set_compound_order(struct page *page, unsigned int order)
 | |
| {
 | |
| 	page[1].compound_order = order;
 | |
| 	page[1].compound_nr = 1U << order;
 | |
| }
 | |
| 
 | |
| /* Returns the number of pages in this potentially compound page. */
 | |
| static inline unsigned long compound_nr(struct page *page)
 | |
| {
 | |
| 	if (!PageHead(page))
 | |
| 		return 1;
 | |
| 	return page[1].compound_nr;
 | |
| }
 | |
| 
 | |
| /* Returns the number of bytes in this potentially compound page. */
 | |
| static inline unsigned long page_size(struct page *page)
 | |
| {
 | |
| 	return PAGE_SIZE << compound_order(page);
 | |
| }
 | |
| 
 | |
| /* Returns the number of bits needed for the number of bytes in a page */
 | |
| static inline unsigned int page_shift(struct page *page)
 | |
| {
 | |
| 	return PAGE_SHIFT + compound_order(page);
 | |
| }
 | |
| 
 | |
| void free_compound_page(struct page *page);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| /*
 | |
|  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 | |
|  * servicing faults for write access.  In the normal case, do always want
 | |
|  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 | |
|  * that do not have writing enabled, when used by access_process_vm.
 | |
|  */
 | |
| static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (likely(vma->vm_flags & VM_WRITE))
 | |
| 		pte = pte_mkwrite(pte);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
 | |
| void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
 | |
| 
 | |
| vm_fault_t finish_fault(struct vm_fault *vmf);
 | |
| vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Multiple processes may "see" the same page. E.g. for untouched
 | |
|  * mappings of /dev/null, all processes see the same page full of
 | |
|  * zeroes, and text pages of executables and shared libraries have
 | |
|  * only one copy in memory, at most, normally.
 | |
|  *
 | |
|  * For the non-reserved pages, page_count(page) denotes a reference count.
 | |
|  *   page_count() == 0 means the page is free. page->lru is then used for
 | |
|  *   freelist management in the buddy allocator.
 | |
|  *   page_count() > 0  means the page has been allocated.
 | |
|  *
 | |
|  * Pages are allocated by the slab allocator in order to provide memory
 | |
|  * to kmalloc and kmem_cache_alloc. In this case, the management of the
 | |
|  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 | |
|  * unless a particular usage is carefully commented. (the responsibility of
 | |
|  * freeing the kmalloc memory is the caller's, of course).
 | |
|  *
 | |
|  * A page may be used by anyone else who does a __get_free_page().
 | |
|  * In this case, page_count still tracks the references, and should only
 | |
|  * be used through the normal accessor functions. The top bits of page->flags
 | |
|  * and page->virtual store page management information, but all other fields
 | |
|  * are unused and could be used privately, carefully. The management of this
 | |
|  * page is the responsibility of the one who allocated it, and those who have
 | |
|  * subsequently been given references to it.
 | |
|  *
 | |
|  * The other pages (we may call them "pagecache pages") are completely
 | |
|  * managed by the Linux memory manager: I/O, buffers, swapping etc.
 | |
|  * The following discussion applies only to them.
 | |
|  *
 | |
|  * A pagecache page contains an opaque `private' member, which belongs to the
 | |
|  * page's address_space. Usually, this is the address of a circular list of
 | |
|  * the page's disk buffers. PG_private must be set to tell the VM to call
 | |
|  * into the filesystem to release these pages.
 | |
|  *
 | |
|  * A page may belong to an inode's memory mapping. In this case, page->mapping
 | |
|  * is the pointer to the inode, and page->index is the file offset of the page,
 | |
|  * in units of PAGE_SIZE.
 | |
|  *
 | |
|  * If pagecache pages are not associated with an inode, they are said to be
 | |
|  * anonymous pages. These may become associated with the swapcache, and in that
 | |
|  * case PG_swapcache is set, and page->private is an offset into the swapcache.
 | |
|  *
 | |
|  * In either case (swapcache or inode backed), the pagecache itself holds one
 | |
|  * reference to the page. Setting PG_private should also increment the
 | |
|  * refcount. The each user mapping also has a reference to the page.
 | |
|  *
 | |
|  * The pagecache pages are stored in a per-mapping radix tree, which is
 | |
|  * rooted at mapping->i_pages, and indexed by offset.
 | |
|  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 | |
|  * lists, we instead now tag pages as dirty/writeback in the radix tree.
 | |
|  *
 | |
|  * All pagecache pages may be subject to I/O:
 | |
|  * - inode pages may need to be read from disk,
 | |
|  * - inode pages which have been modified and are MAP_SHARED may need
 | |
|  *   to be written back to the inode on disk,
 | |
|  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 | |
|  *   modified may need to be swapped out to swap space and (later) to be read
 | |
|  *   back into memory.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The zone field is never updated after free_area_init_core()
 | |
|  * sets it, so none of the operations on it need to be atomic.
 | |
|  */
 | |
| 
 | |
| /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
 | |
| #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
 | |
| #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
 | |
| #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
 | |
| #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
 | |
| #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
 | |
| 
 | |
| /*
 | |
|  * Define the bit shifts to access each section.  For non-existent
 | |
|  * sections we define the shift as 0; that plus a 0 mask ensures
 | |
|  * the compiler will optimise away reference to them.
 | |
|  */
 | |
| #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
 | |
| #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
 | |
| #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
 | |
| #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
 | |
| #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
 | |
| 
 | |
| /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
 | |
| #ifdef NODE_NOT_IN_PAGE_FLAGS
 | |
| #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
 | |
| #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
 | |
| 						SECTIONS_PGOFF : ZONES_PGOFF)
 | |
| #else
 | |
| #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
 | |
| #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
 | |
| 						NODES_PGOFF : ZONES_PGOFF)
 | |
| #endif
 | |
| 
 | |
| #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
 | |
| 
 | |
| #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
 | |
| #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
 | |
| #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
 | |
| #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
 | |
| #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
 | |
| #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
 | |
| 
 | |
| static inline enum zone_type page_zonenum(const struct page *page)
 | |
| {
 | |
| 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
 | |
| 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DEVICE
 | |
| static inline bool is_zone_device_page(const struct page *page)
 | |
| {
 | |
| 	return page_zonenum(page) == ZONE_DEVICE;
 | |
| }
 | |
| extern void memmap_init_zone_device(struct zone *, unsigned long,
 | |
| 				    unsigned long, struct dev_pagemap *);
 | |
| #else
 | |
| static inline bool is_zone_device_page(const struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline bool is_zone_movable_page(const struct page *page)
 | |
| {
 | |
| 	return page_zonenum(page) == ZONE_MOVABLE;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEV_PAGEMAP_OPS
 | |
| void free_devmap_managed_page(struct page *page);
 | |
| DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
 | |
| 
 | |
| static inline bool page_is_devmap_managed(struct page *page)
 | |
| {
 | |
| 	if (!static_branch_unlikely(&devmap_managed_key))
 | |
| 		return false;
 | |
| 	if (!is_zone_device_page(page))
 | |
| 		return false;
 | |
| 	switch (page->pgmap->type) {
 | |
| 	case MEMORY_DEVICE_PRIVATE:
 | |
| 	case MEMORY_DEVICE_FS_DAX:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void put_devmap_managed_page(struct page *page);
 | |
| 
 | |
| #else /* CONFIG_DEV_PAGEMAP_OPS */
 | |
| static inline bool page_is_devmap_managed(struct page *page)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline void put_devmap_managed_page(struct page *page)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_DEV_PAGEMAP_OPS */
 | |
| 
 | |
| static inline bool is_device_private_page(const struct page *page)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
 | |
| 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
 | |
| 		is_zone_device_page(page) &&
 | |
| 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
 | |
| }
 | |
| 
 | |
| static inline bool is_pci_p2pdma_page(const struct page *page)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
 | |
| 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
 | |
| 		is_zone_device_page(page) &&
 | |
| 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
 | |
| }
 | |
| 
 | |
| /* 127: arbitrary random number, small enough to assemble well */
 | |
| #define page_ref_zero_or_close_to_overflow(page) \
 | |
| 	((unsigned int) page_ref_count(page) + 127u <= 127u)
 | |
| 
 | |
| static inline void get_page(struct page *page)
 | |
| {
 | |
| 	page = compound_head(page);
 | |
| 	/*
 | |
| 	 * Getting a normal page or the head of a compound page
 | |
| 	 * requires to already have an elevated page->_refcount.
 | |
| 	 */
 | |
| 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
 | |
| 	page_ref_inc(page);
 | |
| }
 | |
| 
 | |
| bool __must_check try_grab_page(struct page *page, unsigned int flags);
 | |
| __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
 | |
| 						   unsigned int flags);
 | |
| 
 | |
| 
 | |
| static inline __must_check bool try_get_page(struct page *page)
 | |
| {
 | |
| 	page = compound_head(page);
 | |
| 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
 | |
| 		return false;
 | |
| 	page_ref_inc(page);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void put_page(struct page *page)
 | |
| {
 | |
| 	page = compound_head(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * For devmap managed pages we need to catch refcount transition from
 | |
| 	 * 2 to 1, when refcount reach one it means the page is free and we
 | |
| 	 * need to inform the device driver through callback. See
 | |
| 	 * include/linux/memremap.h and HMM for details.
 | |
| 	 */
 | |
| 	if (page_is_devmap_managed(page)) {
 | |
| 		put_devmap_managed_page(page);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (put_page_testzero(page))
 | |
| 		__put_page(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
 | |
|  * the page's refcount so that two separate items are tracked: the original page
 | |
|  * reference count, and also a new count of how many pin_user_pages() calls were
 | |
|  * made against the page. ("gup-pinned" is another term for the latter).
 | |
|  *
 | |
|  * With this scheme, pin_user_pages() becomes special: such pages are marked as
 | |
|  * distinct from normal pages. As such, the unpin_user_page() call (and its
 | |
|  * variants) must be used in order to release gup-pinned pages.
 | |
|  *
 | |
|  * Choice of value:
 | |
|  *
 | |
|  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
 | |
|  * counts with respect to pin_user_pages() and unpin_user_page() becomes
 | |
|  * simpler, due to the fact that adding an even power of two to the page
 | |
|  * refcount has the effect of using only the upper N bits, for the code that
 | |
|  * counts up using the bias value. This means that the lower bits are left for
 | |
|  * the exclusive use of the original code that increments and decrements by one
 | |
|  * (or at least, by much smaller values than the bias value).
 | |
|  *
 | |
|  * Of course, once the lower bits overflow into the upper bits (and this is
 | |
|  * OK, because subtraction recovers the original values), then visual inspection
 | |
|  * no longer suffices to directly view the separate counts. However, for normal
 | |
|  * applications that don't have huge page reference counts, this won't be an
 | |
|  * issue.
 | |
|  *
 | |
|  * Locking: the lockless algorithm described in page_cache_get_speculative()
 | |
|  * and page_cache_gup_pin_speculative() provides safe operation for
 | |
|  * get_user_pages and page_mkclean and other calls that race to set up page
 | |
|  * table entries.
 | |
|  */
 | |
| #define GUP_PIN_COUNTING_BIAS (1U << 10)
 | |
| 
 | |
| void unpin_user_page(struct page *page);
 | |
| void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 | |
| 				 bool make_dirty);
 | |
| void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
 | |
| 				      bool make_dirty);
 | |
| void unpin_user_pages(struct page **pages, unsigned long npages);
 | |
| 
 | |
| /**
 | |
|  * page_maybe_dma_pinned - Report if a page is pinned for DMA.
 | |
|  * @page: The page.
 | |
|  *
 | |
|  * This function checks if a page has been pinned via a call to
 | |
|  * a function in the pin_user_pages() family.
 | |
|  *
 | |
|  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
 | |
|  * because it means "definitely not pinned for DMA", but true means "probably
 | |
|  * pinned for DMA, but possibly a false positive due to having at least
 | |
|  * GUP_PIN_COUNTING_BIAS worth of normal page references".
 | |
|  *
 | |
|  * False positives are OK, because: a) it's unlikely for a page to get that many
 | |
|  * refcounts, and b) all the callers of this routine are expected to be able to
 | |
|  * deal gracefully with a false positive.
 | |
|  *
 | |
|  * For huge pages, the result will be exactly correct. That's because we have
 | |
|  * more tracking data available: the 3rd struct page in the compound page is
 | |
|  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
 | |
|  * scheme).
 | |
|  *
 | |
|  * For more information, please see Documentation/core-api/pin_user_pages.rst.
 | |
|  *
 | |
|  * Return: True, if it is likely that the page has been "dma-pinned".
 | |
|  * False, if the page is definitely not dma-pinned.
 | |
|  */
 | |
| static inline bool page_maybe_dma_pinned(struct page *page)
 | |
| {
 | |
| 	if (hpage_pincount_available(page))
 | |
| 		return compound_pincount(page) > 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * page_ref_count() is signed. If that refcount overflows, then
 | |
| 	 * page_ref_count() returns a negative value, and callers will avoid
 | |
| 	 * further incrementing the refcount.
 | |
| 	 *
 | |
| 	 * Here, for that overflow case, use the signed bit to count a little
 | |
| 	 * bit higher via unsigned math, and thus still get an accurate result.
 | |
| 	 */
 | |
| 	return ((unsigned int)page_ref_count(compound_head(page))) >=
 | |
| 		GUP_PIN_COUNTING_BIAS;
 | |
| }
 | |
| 
 | |
| static inline bool is_cow_mapping(vm_flags_t flags)
 | |
| {
 | |
| 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This should most likely only be called during fork() to see whether we
 | |
|  * should break the cow immediately for a page on the src mm.
 | |
|  */
 | |
| static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
 | |
| 					  struct page *page)
 | |
| {
 | |
| 	if (!is_cow_mapping(vma->vm_flags))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	return page_maybe_dma_pinned(page);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
 | |
| #define SECTION_IN_PAGE_FLAGS
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The identification function is mainly used by the buddy allocator for
 | |
|  * determining if two pages could be buddies. We are not really identifying
 | |
|  * the zone since we could be using the section number id if we do not have
 | |
|  * node id available in page flags.
 | |
|  * We only guarantee that it will return the same value for two combinable
 | |
|  * pages in a zone.
 | |
|  */
 | |
| static inline int page_zone_id(struct page *page)
 | |
| {
 | |
| 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
 | |
| }
 | |
| 
 | |
| #ifdef NODE_NOT_IN_PAGE_FLAGS
 | |
| extern int page_to_nid(const struct page *page);
 | |
| #else
 | |
| static inline int page_to_nid(const struct page *page)
 | |
| {
 | |
| 	struct page *p = (struct page *)page;
 | |
| 
 | |
| 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| static inline int cpu_pid_to_cpupid(int cpu, int pid)
 | |
| {
 | |
| 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_pid(int cpupid)
 | |
| {
 | |
| 	return cpupid & LAST__PID_MASK;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_cpu(int cpupid)
 | |
| {
 | |
| 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_nid(int cpupid)
 | |
| {
 | |
| 	return cpu_to_node(cpupid_to_cpu(cpupid));
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_pid_unset(int cpupid)
 | |
| {
 | |
| 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_cpu_unset(int cpupid)
 | |
| {
 | |
| 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
 | |
| }
 | |
| 
 | |
| static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
 | |
| {
 | |
| 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
 | |
| }
 | |
| 
 | |
| #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
 | |
| #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
 | |
| static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 | |
| {
 | |
| 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
 | |
| }
 | |
| 
 | |
| static inline int page_cpupid_last(struct page *page)
 | |
| {
 | |
| 	return page->_last_cpupid;
 | |
| }
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
 | |
| }
 | |
| #else
 | |
| static inline int page_cpupid_last(struct page *page)
 | |
| {
 | |
| 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
 | |
| }
 | |
| 
 | |
| extern int page_cpupid_xchg_last(struct page *page, int cpupid);
 | |
| 
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
 | |
| }
 | |
| #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
 | |
| #else /* !CONFIG_NUMA_BALANCING */
 | |
| static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
 | |
| {
 | |
| 	return page_to_nid(page); /* XXX */
 | |
| }
 | |
| 
 | |
| static inline int page_cpupid_last(struct page *page)
 | |
| {
 | |
| 	return page_to_nid(page); /* XXX */
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_nid(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_pid(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpupid_to_cpu(int cpupid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline int cpu_pid_to_cpupid(int nid, int pid)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_pid_unset(int cpupid)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void page_cpupid_reset_last(struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_NUMA_BALANCING */
 | |
| 
 | |
| #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
 | |
| 
 | |
| /*
 | |
|  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
 | |
|  * setting tags for all pages to native kernel tag value 0xff, as the default
 | |
|  * value 0x00 maps to 0xff.
 | |
|  */
 | |
| 
 | |
| static inline u8 page_kasan_tag(const struct page *page)
 | |
| {
 | |
| 	u8 tag = 0xff;
 | |
| 
 | |
| 	if (kasan_enabled()) {
 | |
| 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
 | |
| 		tag ^= 0xff;
 | |
| 	}
 | |
| 
 | |
| 	return tag;
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_set(struct page *page, u8 tag)
 | |
| {
 | |
| 	if (kasan_enabled()) {
 | |
| 		tag ^= 0xff;
 | |
| 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
 | |
| 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_reset(struct page *page)
 | |
| {
 | |
| 	if (kasan_enabled())
 | |
| 		page_kasan_tag_set(page, 0xff);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
 | |
| 
 | |
| static inline u8 page_kasan_tag(const struct page *page)
 | |
| {
 | |
| 	return 0xff;
 | |
| }
 | |
| 
 | |
| static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
 | |
| static inline void page_kasan_tag_reset(struct page *page) { }
 | |
| 
 | |
| #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
 | |
| 
 | |
| static inline struct zone *page_zone(const struct page *page)
 | |
| {
 | |
| 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
 | |
| }
 | |
| 
 | |
| static inline pg_data_t *page_pgdat(const struct page *page)
 | |
| {
 | |
| 	return NODE_DATA(page_to_nid(page));
 | |
| }
 | |
| 
 | |
| #ifdef SECTION_IN_PAGE_FLAGS
 | |
| static inline void set_page_section(struct page *page, unsigned long section)
 | |
| {
 | |
| 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
 | |
| 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long page_to_section(const struct page *page)
 | |
| {
 | |
| 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
 | |
| #ifdef CONFIG_MIGRATION
 | |
| static inline bool is_pinnable_page(struct page *page)
 | |
| {
 | |
| 	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
 | |
| 		is_zero_pfn(page_to_pfn(page));
 | |
| }
 | |
| #else
 | |
| static inline bool is_pinnable_page(struct page *page)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void set_page_zone(struct page *page, enum zone_type zone)
 | |
| {
 | |
| 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
 | |
| 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline void set_page_node(struct page *page, unsigned long node)
 | |
| {
 | |
| 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
 | |
| 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
 | |
| }
 | |
| 
 | |
| static inline void set_page_links(struct page *page, enum zone_type zone,
 | |
| 	unsigned long node, unsigned long pfn)
 | |
| {
 | |
| 	set_page_zone(page, zone);
 | |
| 	set_page_node(page, node);
 | |
| #ifdef SECTION_IN_PAGE_FLAGS
 | |
| 	set_page_section(page, pfn_to_section_nr(pfn));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some inline functions in vmstat.h depend on page_zone()
 | |
|  */
 | |
| #include <linux/vmstat.h>
 | |
| 
 | |
| static __always_inline void *lowmem_page_address(const struct page *page)
 | |
| {
 | |
| 	return page_to_virt(page);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
 | |
| #define HASHED_PAGE_VIRTUAL
 | |
| #endif
 | |
| 
 | |
| #if defined(WANT_PAGE_VIRTUAL)
 | |
| static inline void *page_address(const struct page *page)
 | |
| {
 | |
| 	return page->virtual;
 | |
| }
 | |
| static inline void set_page_address(struct page *page, void *address)
 | |
| {
 | |
| 	page->virtual = address;
 | |
| }
 | |
| #define page_address_init()  do { } while(0)
 | |
| #endif
 | |
| 
 | |
| #if defined(HASHED_PAGE_VIRTUAL)
 | |
| void *page_address(const struct page *page);
 | |
| void set_page_address(struct page *page, void *virtual);
 | |
| void page_address_init(void);
 | |
| #endif
 | |
| 
 | |
| #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
 | |
| #define page_address(page) lowmem_page_address(page)
 | |
| #define set_page_address(page, address)  do { } while(0)
 | |
| #define page_address_init()  do { } while(0)
 | |
| #endif
 | |
| 
 | |
| extern void *page_rmapping(struct page *page);
 | |
| extern struct anon_vma *page_anon_vma(struct page *page);
 | |
| extern struct address_space *page_mapping(struct page *page);
 | |
| 
 | |
| extern struct address_space *__page_file_mapping(struct page *);
 | |
| 
 | |
| static inline
 | |
| struct address_space *page_file_mapping(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageSwapCache(page)))
 | |
| 		return __page_file_mapping(page);
 | |
| 
 | |
| 	return page->mapping;
 | |
| }
 | |
| 
 | |
| extern pgoff_t __page_file_index(struct page *page);
 | |
| 
 | |
| /*
 | |
|  * Return the pagecache index of the passed page.  Regular pagecache pages
 | |
|  * use ->index whereas swapcache pages use swp_offset(->private)
 | |
|  */
 | |
| static inline pgoff_t page_index(struct page *page)
 | |
| {
 | |
| 	if (unlikely(PageSwapCache(page)))
 | |
| 		return __page_file_index(page);
 | |
| 	return page->index;
 | |
| }
 | |
| 
 | |
| bool page_mapped(struct page *page);
 | |
| struct address_space *page_mapping(struct page *page);
 | |
| 
 | |
| /*
 | |
|  * Return true only if the page has been allocated with
 | |
|  * ALLOC_NO_WATERMARKS and the low watermark was not
 | |
|  * met implying that the system is under some pressure.
 | |
|  */
 | |
| static inline bool page_is_pfmemalloc(const struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * Page index cannot be this large so this must be
 | |
| 	 * a pfmemalloc page.
 | |
| 	 */
 | |
| 	return page->index == -1UL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Only to be called by the page allocator on a freshly allocated
 | |
|  * page.
 | |
|  */
 | |
| static inline void set_page_pfmemalloc(struct page *page)
 | |
| {
 | |
| 	page->index = -1UL;
 | |
| }
 | |
| 
 | |
| static inline void clear_page_pfmemalloc(struct page *page)
 | |
| {
 | |
| 	page->index = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
 | |
|  */
 | |
| extern void pagefault_out_of_memory(void);
 | |
| 
 | |
| #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
 | |
| #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
 | |
| 
 | |
| /*
 | |
|  * Flags passed to show_mem() and show_free_areas() to suppress output in
 | |
|  * various contexts.
 | |
|  */
 | |
| #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
 | |
| 
 | |
| extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern bool can_do_mlock(void);
 | |
| #else
 | |
| static inline bool can_do_mlock(void) { return false; }
 | |
| #endif
 | |
| extern int user_shm_lock(size_t, struct user_struct *);
 | |
| extern void user_shm_unlock(size_t, struct user_struct *);
 | |
| 
 | |
| /*
 | |
|  * Parameter block passed down to zap_pte_range in exceptional cases.
 | |
|  */
 | |
| struct zap_details {
 | |
| 	struct address_space *check_mapping;	/* Check page->mapping if set */
 | |
| 	pgoff_t	first_index;			/* Lowest page->index to unmap */
 | |
| 	pgoff_t last_index;			/* Highest page->index to unmap */
 | |
| 	struct page *single_page;		/* Locked page to be unmapped */
 | |
| };
 | |
| 
 | |
| struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			     pte_t pte);
 | |
| struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 				pmd_t pmd);
 | |
| 
 | |
| void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
 | |
| 		  unsigned long size);
 | |
| void zap_page_range(struct vm_area_struct *vma, unsigned long address,
 | |
| 		    unsigned long size);
 | |
| void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
 | |
| 		unsigned long start, unsigned long end);
 | |
| 
 | |
| struct mmu_notifier_range;
 | |
| 
 | |
| void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
 | |
| 		unsigned long end, unsigned long floor, unsigned long ceiling);
 | |
| int
 | |
| copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
 | |
| int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
 | |
| 			  struct mmu_notifier_range *range, pte_t **ptepp,
 | |
| 			  pmd_t **pmdpp, spinlock_t **ptlp);
 | |
| int follow_pte(struct mm_struct *mm, unsigned long address,
 | |
| 	       pte_t **ptepp, spinlock_t **ptlp);
 | |
| int follow_pfn(struct vm_area_struct *vma, unsigned long address,
 | |
| 	unsigned long *pfn);
 | |
| int follow_phys(struct vm_area_struct *vma, unsigned long address,
 | |
| 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
 | |
| int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			void *buf, int len, int write);
 | |
| 
 | |
| extern void truncate_pagecache(struct inode *inode, loff_t new);
 | |
| extern void truncate_setsize(struct inode *inode, loff_t newsize);
 | |
| void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
 | |
| void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
 | |
| int truncate_inode_page(struct address_space *mapping, struct page *page);
 | |
| int generic_error_remove_page(struct address_space *mapping, struct page *page);
 | |
| int invalidate_inode_page(struct page *page);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
 | |
| 				  unsigned long address, unsigned int flags,
 | |
| 				  struct pt_regs *regs);
 | |
| extern int fixup_user_fault(struct mm_struct *mm,
 | |
| 			    unsigned long address, unsigned int fault_flags,
 | |
| 			    bool *unlocked);
 | |
| void unmap_mapping_page(struct page *page);
 | |
| void unmap_mapping_pages(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t nr, bool even_cows);
 | |
| void unmap_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen, int even_cows);
 | |
| #else
 | |
| static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
 | |
| 					 unsigned long address, unsigned int flags,
 | |
| 					 struct pt_regs *regs)
 | |
| {
 | |
| 	/* should never happen if there's no MMU */
 | |
| 	BUG();
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
 | |
| 		unsigned int fault_flags, bool *unlocked)
 | |
| {
 | |
| 	/* should never happen if there's no MMU */
 | |
| 	BUG();
 | |
| 	return -EFAULT;
 | |
| }
 | |
| static inline void unmap_mapping_page(struct page *page) { }
 | |
| static inline void unmap_mapping_pages(struct address_space *mapping,
 | |
| 		pgoff_t start, pgoff_t nr, bool even_cows) { }
 | |
| static inline void unmap_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
 | |
| #endif
 | |
| 
 | |
| static inline void unmap_shared_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen)
 | |
| {
 | |
| 	unmap_mapping_range(mapping, holebegin, holelen, 0);
 | |
| }
 | |
| 
 | |
| extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
 | |
| 		void *buf, int len, unsigned int gup_flags);
 | |
| extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
 | |
| 		void *buf, int len, unsigned int gup_flags);
 | |
| extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
 | |
| 			      void *buf, int len, unsigned int gup_flags);
 | |
| 
 | |
| long get_user_pages_remote(struct mm_struct *mm,
 | |
| 			    unsigned long start, unsigned long nr_pages,
 | |
| 			    unsigned int gup_flags, struct page **pages,
 | |
| 			    struct vm_area_struct **vmas, int *locked);
 | |
| long pin_user_pages_remote(struct mm_struct *mm,
 | |
| 			   unsigned long start, unsigned long nr_pages,
 | |
| 			   unsigned int gup_flags, struct page **pages,
 | |
| 			   struct vm_area_struct **vmas, int *locked);
 | |
| long get_user_pages(unsigned long start, unsigned long nr_pages,
 | |
| 			    unsigned int gup_flags, struct page **pages,
 | |
| 			    struct vm_area_struct **vmas);
 | |
| long pin_user_pages(unsigned long start, unsigned long nr_pages,
 | |
| 		    unsigned int gup_flags, struct page **pages,
 | |
| 		    struct vm_area_struct **vmas);
 | |
| long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 | |
| 		    unsigned int gup_flags, struct page **pages, int *locked);
 | |
| long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
 | |
| 		    unsigned int gup_flags, struct page **pages, int *locked);
 | |
| long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 | |
| 		    struct page **pages, unsigned int gup_flags);
 | |
| long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
 | |
| 		    struct page **pages, unsigned int gup_flags);
 | |
| 
 | |
| int get_user_pages_fast(unsigned long start, int nr_pages,
 | |
| 			unsigned int gup_flags, struct page **pages);
 | |
| int pin_user_pages_fast(unsigned long start, int nr_pages,
 | |
| 			unsigned int gup_flags, struct page **pages);
 | |
| 
 | |
| int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
 | |
| int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
 | |
| 			struct task_struct *task, bool bypass_rlim);
 | |
| 
 | |
| struct kvec;
 | |
| int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
 | |
| 			struct page **pages);
 | |
| int get_kernel_page(unsigned long start, int write, struct page **pages);
 | |
| struct page *get_dump_page(unsigned long addr);
 | |
| 
 | |
| extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
 | |
| extern void do_invalidatepage(struct page *page, unsigned int offset,
 | |
| 			      unsigned int length);
 | |
| 
 | |
| int redirty_page_for_writepage(struct writeback_control *wbc,
 | |
| 				struct page *page);
 | |
| void account_page_cleaned(struct page *page, struct address_space *mapping,
 | |
| 			  struct bdi_writeback *wb);
 | |
| int set_page_dirty(struct page *page);
 | |
| int set_page_dirty_lock(struct page *page);
 | |
| void __cancel_dirty_page(struct page *page);
 | |
| static inline void cancel_dirty_page(struct page *page)
 | |
| {
 | |
| 	/* Avoid atomic ops, locking, etc. when not actually needed. */
 | |
| 	if (PageDirty(page))
 | |
| 		__cancel_dirty_page(page);
 | |
| }
 | |
| int clear_page_dirty_for_io(struct page *page);
 | |
| 
 | |
| int get_cmdline(struct task_struct *task, char *buffer, int buflen);
 | |
| 
 | |
| extern unsigned long move_page_tables(struct vm_area_struct *vma,
 | |
| 		unsigned long old_addr, struct vm_area_struct *new_vma,
 | |
| 		unsigned long new_addr, unsigned long len,
 | |
| 		bool need_rmap_locks);
 | |
| 
 | |
| /*
 | |
|  * Flags used by change_protection().  For now we make it a bitmap so
 | |
|  * that we can pass in multiple flags just like parameters.  However
 | |
|  * for now all the callers are only use one of the flags at the same
 | |
|  * time.
 | |
|  */
 | |
| /* Whether we should allow dirty bit accounting */
 | |
| #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
 | |
| /* Whether this protection change is for NUMA hints */
 | |
| #define  MM_CP_PROT_NUMA                   (1UL << 1)
 | |
| /* Whether this change is for write protecting */
 | |
| #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
 | |
| #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
 | |
| #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
 | |
| 					    MM_CP_UFFD_WP_RESOLVE)
 | |
| 
 | |
| extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
 | |
| 			      unsigned long end, pgprot_t newprot,
 | |
| 			      unsigned long cp_flags);
 | |
| extern int mprotect_fixup(struct vm_area_struct *vma,
 | |
| 			  struct vm_area_struct **pprev, unsigned long start,
 | |
| 			  unsigned long end, unsigned long newflags);
 | |
| 
 | |
| /*
 | |
|  * doesn't attempt to fault and will return short.
 | |
|  */
 | |
| int get_user_pages_fast_only(unsigned long start, int nr_pages,
 | |
| 			     unsigned int gup_flags, struct page **pages);
 | |
| int pin_user_pages_fast_only(unsigned long start, int nr_pages,
 | |
| 			     unsigned int gup_flags, struct page **pages);
 | |
| 
 | |
| static inline bool get_user_page_fast_only(unsigned long addr,
 | |
| 			unsigned int gup_flags, struct page **pagep)
 | |
| {
 | |
| 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
 | |
| }
 | |
| /*
 | |
|  * per-process(per-mm_struct) statistics.
 | |
|  */
 | |
| static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	long val = atomic_long_read(&mm->rss_stat.count[member]);
 | |
| 
 | |
| #ifdef SPLIT_RSS_COUNTING
 | |
| 	/*
 | |
| 	 * counter is updated in asynchronous manner and may go to minus.
 | |
| 	 * But it's never be expected number for users.
 | |
| 	 */
 | |
| 	if (val < 0)
 | |
| 		val = 0;
 | |
| #endif
 | |
| 	return (unsigned long)val;
 | |
| }
 | |
| 
 | |
| void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
 | |
| 
 | |
| static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
 | |
| {
 | |
| 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
 | |
| 
 | |
| 	mm_trace_rss_stat(mm, member, count);
 | |
| }
 | |
| 
 | |
| static inline void inc_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
 | |
| 
 | |
| 	mm_trace_rss_stat(mm, member, count);
 | |
| }
 | |
| 
 | |
| static inline void dec_mm_counter(struct mm_struct *mm, int member)
 | |
| {
 | |
| 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
 | |
| 
 | |
| 	mm_trace_rss_stat(mm, member, count);
 | |
| }
 | |
| 
 | |
| /* Optimized variant when page is already known not to be PageAnon */
 | |
| static inline int mm_counter_file(struct page *page)
 | |
| {
 | |
| 	if (PageSwapBacked(page))
 | |
| 		return MM_SHMEMPAGES;
 | |
| 	return MM_FILEPAGES;
 | |
| }
 | |
| 
 | |
| static inline int mm_counter(struct page *page)
 | |
| {
 | |
| 	if (PageAnon(page))
 | |
| 		return MM_ANONPAGES;
 | |
| 	return mm_counter_file(page);
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	return get_mm_counter(mm, MM_FILEPAGES) +
 | |
| 		get_mm_counter(mm, MM_ANONPAGES) +
 | |
| 		get_mm_counter(mm, MM_SHMEMPAGES);
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	return max(mm->hiwater_rss, get_mm_rss(mm));
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
 | |
| {
 | |
| 	return max(mm->hiwater_vm, mm->total_vm);
 | |
| }
 | |
| 
 | |
| static inline void update_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long _rss = get_mm_rss(mm);
 | |
| 
 | |
| 	if ((mm)->hiwater_rss < _rss)
 | |
| 		(mm)->hiwater_rss = _rss;
 | |
| }
 | |
| 
 | |
| static inline void update_hiwater_vm(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm->hiwater_vm < mm->total_vm)
 | |
| 		mm->hiwater_vm = mm->total_vm;
 | |
| }
 | |
| 
 | |
| static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
 | |
| {
 | |
| 	mm->hiwater_rss = get_mm_rss(mm);
 | |
| }
 | |
| 
 | |
| static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
 | |
| 					 struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
 | |
| 
 | |
| 	if (*maxrss < hiwater_rss)
 | |
| 		*maxrss = hiwater_rss;
 | |
| }
 | |
| 
 | |
| #if defined(SPLIT_RSS_COUNTING)
 | |
| void sync_mm_rss(struct mm_struct *mm);
 | |
| #else
 | |
| static inline void sync_mm_rss(struct mm_struct *mm)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
 | |
| static inline int pte_special(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline pte_t pte_mkspecial(pte_t pte)
 | |
| {
 | |
| 	return pte;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
 | |
| static inline int pte_devmap(pte_t pte)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
 | |
| 
 | |
| extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
 | |
| 			       spinlock_t **ptl);
 | |
| static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
 | |
| 				    spinlock_t **ptl)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
 | |
| 	return ptep;
 | |
| }
 | |
| 
 | |
| #ifdef __PAGETABLE_P4D_FOLDED
 | |
| static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
 | |
| #endif
 | |
| 
 | |
| #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
 | |
| static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
 | |
| 
 | |
| #else
 | |
| int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
 | |
| 
 | |
| static inline void mm_inc_nr_puds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pud_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_puds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pud_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
 | |
| static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
 | |
| 						unsigned long address)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
 | |
| 
 | |
| #else
 | |
| int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
 | |
| 
 | |
| static inline void mm_inc_nr_pmds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pmd_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_pmds(struct mm_struct *mm)
 | |
| {
 | |
| 	if (mm_pmd_folded(mm))
 | |
| 		return;
 | |
| 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_set(&mm->pgtables_bytes, 0);
 | |
| }
 | |
| 
 | |
| static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
 | |
| {
 | |
| 	return atomic_long_read(&mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_ptes(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
 | |
| }
 | |
| 
 | |
| static inline void mm_dec_nr_ptes(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
 | |
| }
 | |
| #else
 | |
| 
 | |
| static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
 | |
| static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
 | |
| static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
 | |
| #endif
 | |
| 
 | |
| int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
 | |
| int __pte_alloc_kernel(pmd_t *pmd);
 | |
| 
 | |
| #if defined(CONFIG_MMU)
 | |
| 
 | |
| static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
 | |
| 		NULL : p4d_offset(pgd, address);
 | |
| }
 | |
| 
 | |
| static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
 | |
| 		NULL : pud_offset(p4d, address);
 | |
| }
 | |
| 
 | |
| static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
 | |
| {
 | |
| 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
 | |
| 		NULL: pmd_offset(pud, address);
 | |
| }
 | |
| #endif /* CONFIG_MMU */
 | |
| 
 | |
| #if USE_SPLIT_PTE_PTLOCKS
 | |
| #if ALLOC_SPLIT_PTLOCKS
 | |
| void __init ptlock_cache_init(void);
 | |
| extern bool ptlock_alloc(struct page *page);
 | |
| extern void ptlock_free(struct page *page);
 | |
| 
 | |
| static inline spinlock_t *ptlock_ptr(struct page *page)
 | |
| {
 | |
| 	return page->ptl;
 | |
| }
 | |
| #else /* ALLOC_SPLIT_PTLOCKS */
 | |
| static inline void ptlock_cache_init(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline bool ptlock_alloc(struct page *page)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void ptlock_free(struct page *page)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *ptlock_ptr(struct page *page)
 | |
| {
 | |
| 	return &page->ptl;
 | |
| }
 | |
| #endif /* ALLOC_SPLIT_PTLOCKS */
 | |
| 
 | |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return ptlock_ptr(pmd_page(*pmd));
 | |
| }
 | |
| 
 | |
| static inline bool ptlock_init(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * prep_new_page() initialize page->private (and therefore page->ptl)
 | |
| 	 * with 0. Make sure nobody took it in use in between.
 | |
| 	 *
 | |
| 	 * It can happen if arch try to use slab for page table allocation:
 | |
| 	 * slab code uses page->slab_cache, which share storage with page->ptl.
 | |
| 	 */
 | |
| 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
 | |
| 	if (!ptlock_alloc(page))
 | |
| 		return false;
 | |
| 	spin_lock_init(ptlock_ptr(page));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #else	/* !USE_SPLIT_PTE_PTLOCKS */
 | |
| /*
 | |
|  * We use mm->page_table_lock to guard all pagetable pages of the mm.
 | |
|  */
 | |
| static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| static inline void ptlock_cache_init(void) {}
 | |
| static inline bool ptlock_init(struct page *page) { return true; }
 | |
| static inline void ptlock_free(struct page *page) {}
 | |
| #endif /* USE_SPLIT_PTE_PTLOCKS */
 | |
| 
 | |
| static inline void pgtable_init(void)
 | |
| {
 | |
| 	ptlock_cache_init();
 | |
| 	pgtable_cache_init();
 | |
| }
 | |
| 
 | |
| static inline bool pgtable_pte_page_ctor(struct page *page)
 | |
| {
 | |
| 	if (!ptlock_init(page))
 | |
| 		return false;
 | |
| 	__SetPageTable(page);
 | |
| 	inc_lruvec_page_state(page, NR_PAGETABLE);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void pgtable_pte_page_dtor(struct page *page)
 | |
| {
 | |
| 	ptlock_free(page);
 | |
| 	__ClearPageTable(page);
 | |
| 	dec_lruvec_page_state(page, NR_PAGETABLE);
 | |
| }
 | |
| 
 | |
| #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
 | |
| ({							\
 | |
| 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
 | |
| 	pte_t *__pte = pte_offset_map(pmd, address);	\
 | |
| 	*(ptlp) = __ptl;				\
 | |
| 	spin_lock(__ptl);				\
 | |
| 	__pte;						\
 | |
| })
 | |
| 
 | |
| #define pte_unmap_unlock(pte, ptl)	do {		\
 | |
| 	spin_unlock(ptl);				\
 | |
| 	pte_unmap(pte);					\
 | |
| } while (0)
 | |
| 
 | |
| #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
 | |
| 
 | |
| #define pte_alloc_map(mm, pmd, address)			\
 | |
| 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
 | |
| 
 | |
| #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
 | |
| 	(pte_alloc(mm, pmd) ?			\
 | |
| 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
 | |
| 
 | |
| #define pte_alloc_kernel(pmd, address)			\
 | |
| 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
 | |
| 		NULL: pte_offset_kernel(pmd, address))
 | |
| 
 | |
| #if USE_SPLIT_PMD_PTLOCKS
 | |
| 
 | |
| static struct page *pmd_to_page(pmd_t *pmd)
 | |
| {
 | |
| 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
 | |
| 	return virt_to_page((void *)((unsigned long) pmd & mask));
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return ptlock_ptr(pmd_to_page(pmd));
 | |
| }
 | |
| 
 | |
| static inline bool pmd_ptlock_init(struct page *page)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	page->pmd_huge_pte = NULL;
 | |
| #endif
 | |
| 	return ptlock_init(page);
 | |
| }
 | |
| 
 | |
| static inline void pmd_ptlock_free(struct page *page)
 | |
| {
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
 | |
| #endif
 | |
| 	ptlock_free(page);
 | |
| }
 | |
| 
 | |
| #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| 
 | |
| static inline bool pmd_ptlock_init(struct page *page) { return true; }
 | |
| static inline void pmd_ptlock_free(struct page *page) {}
 | |
| 
 | |
| #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
 | |
| {
 | |
| 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
 | |
| 	spin_lock(ptl);
 | |
| 	return ptl;
 | |
| }
 | |
| 
 | |
| static inline bool pgtable_pmd_page_ctor(struct page *page)
 | |
| {
 | |
| 	if (!pmd_ptlock_init(page))
 | |
| 		return false;
 | |
| 	__SetPageTable(page);
 | |
| 	inc_lruvec_page_state(page, NR_PAGETABLE);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static inline void pgtable_pmd_page_dtor(struct page *page)
 | |
| {
 | |
| 	pmd_ptlock_free(page);
 | |
| 	__ClearPageTable(page);
 | |
| 	dec_lruvec_page_state(page, NR_PAGETABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No scalability reason to split PUD locks yet, but follow the same pattern
 | |
|  * as the PMD locks to make it easier if we decide to.  The VM should not be
 | |
|  * considered ready to switch to split PUD locks yet; there may be places
 | |
|  * which need to be converted from page_table_lock.
 | |
|  */
 | |
| static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
 | |
| {
 | |
| 	return &mm->page_table_lock;
 | |
| }
 | |
| 
 | |
| static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
 | |
| {
 | |
| 	spinlock_t *ptl = pud_lockptr(mm, pud);
 | |
| 
 | |
| 	spin_lock(ptl);
 | |
| 	return ptl;
 | |
| }
 | |
| 
 | |
| extern void __init pagecache_init(void);
 | |
| extern void __init free_area_init_memoryless_node(int nid);
 | |
| extern void free_initmem(void);
 | |
| 
 | |
| /*
 | |
|  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
 | |
|  * into the buddy system. The freed pages will be poisoned with pattern
 | |
|  * "poison" if it's within range [0, UCHAR_MAX].
 | |
|  * Return pages freed into the buddy system.
 | |
|  */
 | |
| extern unsigned long free_reserved_area(void *start, void *end,
 | |
| 					int poison, const char *s);
 | |
| 
 | |
| extern void adjust_managed_page_count(struct page *page, long count);
 | |
| extern void mem_init_print_info(void);
 | |
| 
 | |
| extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
 | |
| 
 | |
| /* Free the reserved page into the buddy system, so it gets managed. */
 | |
| static inline void free_reserved_page(struct page *page)
 | |
| {
 | |
| 	ClearPageReserved(page);
 | |
| 	init_page_count(page);
 | |
| 	__free_page(page);
 | |
| 	adjust_managed_page_count(page, 1);
 | |
| }
 | |
| #define free_highmem_page(page) free_reserved_page(page)
 | |
| 
 | |
| static inline void mark_page_reserved(struct page *page)
 | |
| {
 | |
| 	SetPageReserved(page);
 | |
| 	adjust_managed_page_count(page, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Default method to free all the __init memory into the buddy system.
 | |
|  * The freed pages will be poisoned with pattern "poison" if it's within
 | |
|  * range [0, UCHAR_MAX].
 | |
|  * Return pages freed into the buddy system.
 | |
|  */
 | |
| static inline unsigned long free_initmem_default(int poison)
 | |
| {
 | |
| 	extern char __init_begin[], __init_end[];
 | |
| 
 | |
| 	return free_reserved_area(&__init_begin, &__init_end,
 | |
| 				  poison, "unused kernel image (initmem)");
 | |
| }
 | |
| 
 | |
| static inline unsigned long get_num_physpages(void)
 | |
| {
 | |
| 	int nid;
 | |
| 	unsigned long phys_pages = 0;
 | |
| 
 | |
| 	for_each_online_node(nid)
 | |
| 		phys_pages += node_present_pages(nid);
 | |
| 
 | |
| 	return phys_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Using memblock node mappings, an architecture may initialise its
 | |
|  * zones, allocate the backing mem_map and account for memory holes in an
 | |
|  * architecture independent manner.
 | |
|  *
 | |
|  * An architecture is expected to register range of page frames backed by
 | |
|  * physical memory with memblock_add[_node]() before calling
 | |
|  * free_area_init() passing in the PFN each zone ends at. At a basic
 | |
|  * usage, an architecture is expected to do something like
 | |
|  *
 | |
|  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
 | |
|  * 							 max_highmem_pfn};
 | |
|  * for_each_valid_physical_page_range()
 | |
|  * 	memblock_add_node(base, size, nid)
 | |
|  * free_area_init(max_zone_pfns);
 | |
|  */
 | |
| void free_area_init(unsigned long *max_zone_pfn);
 | |
| unsigned long node_map_pfn_alignment(void);
 | |
| unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
 | |
| 						unsigned long end_pfn);
 | |
| extern unsigned long absent_pages_in_range(unsigned long start_pfn,
 | |
| 						unsigned long end_pfn);
 | |
| extern void get_pfn_range_for_nid(unsigned int nid,
 | |
| 			unsigned long *start_pfn, unsigned long *end_pfn);
 | |
| extern unsigned long find_min_pfn_with_active_regions(void);
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| static inline int early_pfn_to_nid(unsigned long pfn)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| /* please see mm/page_alloc.c */
 | |
| extern int __meminit early_pfn_to_nid(unsigned long pfn);
 | |
| #endif
 | |
| 
 | |
| extern void set_dma_reserve(unsigned long new_dma_reserve);
 | |
| extern void memmap_init_range(unsigned long, int, unsigned long,
 | |
| 		unsigned long, unsigned long, enum meminit_context,
 | |
| 		struct vmem_altmap *, int migratetype);
 | |
| extern void setup_per_zone_wmarks(void);
 | |
| extern int __meminit init_per_zone_wmark_min(void);
 | |
| extern void mem_init(void);
 | |
| extern void __init mmap_init(void);
 | |
| extern void show_mem(unsigned int flags, nodemask_t *nodemask);
 | |
| extern long si_mem_available(void);
 | |
| extern void si_meminfo(struct sysinfo * val);
 | |
| extern void si_meminfo_node(struct sysinfo *val, int nid);
 | |
| #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
 | |
| extern unsigned long arch_reserved_kernel_pages(void);
 | |
| #endif
 | |
| 
 | |
| extern __printf(3, 4)
 | |
| void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
 | |
| 
 | |
| extern void setup_per_cpu_pageset(void);
 | |
| 
 | |
| /* page_alloc.c */
 | |
| extern int min_free_kbytes;
 | |
| extern int watermark_boost_factor;
 | |
| extern int watermark_scale_factor;
 | |
| extern bool arch_has_descending_max_zone_pfns(void);
 | |
| 
 | |
| /* nommu.c */
 | |
| extern atomic_long_t mmap_pages_allocated;
 | |
| extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
 | |
| 
 | |
| /* interval_tree.c */
 | |
| void vma_interval_tree_insert(struct vm_area_struct *node,
 | |
| 			      struct rb_root_cached *root);
 | |
| void vma_interval_tree_insert_after(struct vm_area_struct *node,
 | |
| 				    struct vm_area_struct *prev,
 | |
| 				    struct rb_root_cached *root);
 | |
| void vma_interval_tree_remove(struct vm_area_struct *node,
 | |
| 			      struct rb_root_cached *root);
 | |
| struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
 | |
| 				unsigned long start, unsigned long last);
 | |
| struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
 | |
| 				unsigned long start, unsigned long last);
 | |
| 
 | |
| #define vma_interval_tree_foreach(vma, root, start, last)		\
 | |
| 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
 | |
| 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
 | |
| 
 | |
| void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
 | |
| 				   struct rb_root_cached *root);
 | |
| void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
 | |
| 				   struct rb_root_cached *root);
 | |
| struct anon_vma_chain *
 | |
| anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
 | |
| 				  unsigned long start, unsigned long last);
 | |
| struct anon_vma_chain *anon_vma_interval_tree_iter_next(
 | |
| 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
 | |
| #ifdef CONFIG_DEBUG_VM_RB
 | |
| void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
 | |
| #endif
 | |
| 
 | |
| #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
 | |
| 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
 | |
| 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
 | |
| 
 | |
| /* mmap.c */
 | |
| extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
 | |
| extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 | |
| 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 | |
| 	struct vm_area_struct *expand);
 | |
| static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 | |
| 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 | |
| {
 | |
| 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
 | |
| }
 | |
| extern struct vm_area_struct *vma_merge(struct mm_struct *,
 | |
| 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
 | |
| 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
 | |
| 	struct mempolicy *, struct vm_userfaultfd_ctx);
 | |
| extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
 | |
| extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
 | |
| 	unsigned long addr, int new_below);
 | |
| extern int split_vma(struct mm_struct *, struct vm_area_struct *,
 | |
| 	unsigned long addr, int new_below);
 | |
| extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
 | |
| extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
 | |
| 	struct rb_node **, struct rb_node *);
 | |
| extern void unlink_file_vma(struct vm_area_struct *);
 | |
| extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
 | |
| 	unsigned long addr, unsigned long len, pgoff_t pgoff,
 | |
| 	bool *need_rmap_locks);
 | |
| extern void exit_mmap(struct mm_struct *);
 | |
| 
 | |
| static inline int check_data_rlimit(unsigned long rlim,
 | |
| 				    unsigned long new,
 | |
| 				    unsigned long start,
 | |
| 				    unsigned long end_data,
 | |
| 				    unsigned long start_data)
 | |
| {
 | |
| 	if (rlim < RLIM_INFINITY) {
 | |
| 		if (((new - start) + (end_data - start_data)) > rlim)
 | |
| 			return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| extern int mm_take_all_locks(struct mm_struct *mm);
 | |
| extern void mm_drop_all_locks(struct mm_struct *mm);
 | |
| 
 | |
| extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
 | |
| extern struct file *get_mm_exe_file(struct mm_struct *mm);
 | |
| extern struct file *get_task_exe_file(struct task_struct *task);
 | |
| 
 | |
| extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
 | |
| extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
 | |
| 
 | |
| extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
 | |
| 				   const struct vm_special_mapping *sm);
 | |
| extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
 | |
| 				   unsigned long addr, unsigned long len,
 | |
| 				   unsigned long flags,
 | |
| 				   const struct vm_special_mapping *spec);
 | |
| /* This is an obsolete alternative to _install_special_mapping. */
 | |
| extern int install_special_mapping(struct mm_struct *mm,
 | |
| 				   unsigned long addr, unsigned long len,
 | |
| 				   unsigned long flags, struct page **pages);
 | |
| 
 | |
| unsigned long randomize_stack_top(unsigned long stack_top);
 | |
| 
 | |
| extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
 | |
| 
 | |
| extern unsigned long mmap_region(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
 | |
| 	struct list_head *uf);
 | |
| extern unsigned long do_mmap(struct file *file, unsigned long addr,
 | |
| 	unsigned long len, unsigned long prot, unsigned long flags,
 | |
| 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
 | |
| extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
 | |
| 		       struct list_head *uf, bool downgrade);
 | |
| extern int do_munmap(struct mm_struct *, unsigned long, size_t,
 | |
| 		     struct list_head *uf);
 | |
| extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| extern int __mm_populate(unsigned long addr, unsigned long len,
 | |
| 			 int ignore_errors);
 | |
| static inline void mm_populate(unsigned long addr, unsigned long len)
 | |
| {
 | |
| 	/* Ignore errors */
 | |
| 	(void) __mm_populate(addr, len, 1);
 | |
| }
 | |
| #else
 | |
| static inline void mm_populate(unsigned long addr, unsigned long len) {}
 | |
| #endif
 | |
| 
 | |
| /* These take the mm semaphore themselves */
 | |
| extern int __must_check vm_brk(unsigned long, unsigned long);
 | |
| extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
 | |
| extern int vm_munmap(unsigned long, size_t);
 | |
| extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
 | |
|         unsigned long, unsigned long,
 | |
|         unsigned long, unsigned long);
 | |
| 
 | |
| struct vm_unmapped_area_info {
 | |
| #define VM_UNMAPPED_AREA_TOPDOWN 1
 | |
| 	unsigned long flags;
 | |
| 	unsigned long length;
 | |
| 	unsigned long low_limit;
 | |
| 	unsigned long high_limit;
 | |
| 	unsigned long align_mask;
 | |
| 	unsigned long align_offset;
 | |
| };
 | |
| 
 | |
| extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
 | |
| 
 | |
| /* truncate.c */
 | |
| extern void truncate_inode_pages(struct address_space *, loff_t);
 | |
| extern void truncate_inode_pages_range(struct address_space *,
 | |
| 				       loff_t lstart, loff_t lend);
 | |
| extern void truncate_inode_pages_final(struct address_space *);
 | |
| 
 | |
| /* generic vm_area_ops exported for stackable file systems */
 | |
| extern vm_fault_t filemap_fault(struct vm_fault *vmf);
 | |
| extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
 | |
| 		pgoff_t start_pgoff, pgoff_t end_pgoff);
 | |
| extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
 | |
| 
 | |
| /* mm/page-writeback.c */
 | |
| int __must_check write_one_page(struct page *page);
 | |
| void task_dirty_inc(struct task_struct *tsk);
 | |
| 
 | |
| extern unsigned long stack_guard_gap;
 | |
| /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
 | |
| extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
 | |
| 
 | |
| /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
 | |
| extern int expand_downwards(struct vm_area_struct *vma,
 | |
| 		unsigned long address);
 | |
| #if VM_GROWSUP
 | |
| extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
 | |
| #else
 | |
|   #define expand_upwards(vma, address) (0)
 | |
| #endif
 | |
| 
 | |
| /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
 | |
| extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
 | |
| extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
 | |
| 					     struct vm_area_struct **pprev);
 | |
| 
 | |
| /**
 | |
|  * find_vma_intersection() - Look up the first VMA which intersects the interval
 | |
|  * @mm: The process address space.
 | |
|  * @start_addr: The inclusive start user address.
 | |
|  * @end_addr: The exclusive end user address.
 | |
|  *
 | |
|  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
 | |
|  * start_addr < end_addr.
 | |
|  */
 | |
| static inline
 | |
| struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
 | |
| 					     unsigned long start_addr,
 | |
| 					     unsigned long end_addr)
 | |
| {
 | |
| 	struct vm_area_struct *vma = find_vma(mm, start_addr);
 | |
| 
 | |
| 	if (vma && end_addr <= vma->vm_start)
 | |
| 		vma = NULL;
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vma_lookup() - Find a VMA at a specific address
 | |
|  * @mm: The process address space.
 | |
|  * @addr: The user address.
 | |
|  *
 | |
|  * Return: The vm_area_struct at the given address, %NULL otherwise.
 | |
|  */
 | |
| static inline
 | |
| struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	struct vm_area_struct *vma = find_vma(mm, addr);
 | |
| 
 | |
| 	if (vma && addr < vma->vm_start)
 | |
| 		vma = NULL;
 | |
| 
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long vm_start = vma->vm_start;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_GROWSDOWN) {
 | |
| 		vm_start -= stack_guard_gap;
 | |
| 		if (vm_start > vma->vm_start)
 | |
| 			vm_start = 0;
 | |
| 	}
 | |
| 	return vm_start;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned long vm_end = vma->vm_end;
 | |
| 
 | |
| 	if (vma->vm_flags & VM_GROWSUP) {
 | |
| 		vm_end += stack_guard_gap;
 | |
| 		if (vm_end < vma->vm_end)
 | |
| 			vm_end = -PAGE_SIZE;
 | |
| 	}
 | |
| 	return vm_end;
 | |
| }
 | |
| 
 | |
| static inline unsigned long vma_pages(struct vm_area_struct *vma)
 | |
| {
 | |
| 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
 | |
| static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
 | |
| 				unsigned long vm_start, unsigned long vm_end)
 | |
| {
 | |
| 	struct vm_area_struct *vma = find_vma(mm, vm_start);
 | |
| 
 | |
| 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
 | |
| 		vma = NULL;
 | |
| 
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| static inline bool range_in_vma(struct vm_area_struct *vma,
 | |
| 				unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| pgprot_t vm_get_page_prot(unsigned long vm_flags);
 | |
| void vma_set_page_prot(struct vm_area_struct *vma);
 | |
| #else
 | |
| static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
 | |
| {
 | |
| 	return __pgprot(0);
 | |
| }
 | |
| static inline void vma_set_page_prot(struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void vma_set_file(struct vm_area_struct *vma, struct file *file);
 | |
| 
 | |
| #ifdef CONFIG_NUMA_BALANCING
 | |
| unsigned long change_prot_numa(struct vm_area_struct *vma,
 | |
| 			unsigned long start, unsigned long end);
 | |
| #endif
 | |
| 
 | |
| struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
 | |
| int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
 | |
| 			unsigned long pfn, unsigned long size, pgprot_t);
 | |
| int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		unsigned long pfn, unsigned long size, pgprot_t prot);
 | |
| int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
 | |
| int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			struct page **pages, unsigned long *num);
 | |
| int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
 | |
| 				unsigned long num);
 | |
| int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
 | |
| 				unsigned long num);
 | |
| vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			unsigned long pfn);
 | |
| vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			unsigned long pfn, pgprot_t pgprot);
 | |
| vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			pfn_t pfn);
 | |
| vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			pfn_t pfn, pgprot_t pgprot);
 | |
| vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
 | |
| 		unsigned long addr, pfn_t pfn);
 | |
| int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
 | |
| 
 | |
| static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
 | |
| 				unsigned long addr, struct page *page)
 | |
| {
 | |
| 	int err = vm_insert_page(vma, addr, page);
 | |
| 
 | |
| 	if (err == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	if (err < 0 && err != -EBUSY)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| }
 | |
| 
 | |
| #ifndef io_remap_pfn_range
 | |
| static inline int io_remap_pfn_range(struct vm_area_struct *vma,
 | |
| 				     unsigned long addr, unsigned long pfn,
 | |
| 				     unsigned long size, pgprot_t prot)
 | |
| {
 | |
| 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline vm_fault_t vmf_error(int err)
 | |
| {
 | |
| 	if (err == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| 
 | |
| struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 | |
| 			 unsigned int foll_flags);
 | |
| 
 | |
| #define FOLL_WRITE	0x01	/* check pte is writable */
 | |
| #define FOLL_TOUCH	0x02	/* mark page accessed */
 | |
| #define FOLL_GET	0x04	/* do get_page on page */
 | |
| #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
 | |
| #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
 | |
| #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
 | |
| 				 * and return without waiting upon it */
 | |
| #define FOLL_POPULATE	0x40	/* fault in page */
 | |
| #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
 | |
| #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
 | |
| #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
 | |
| #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
 | |
| #define FOLL_MLOCK	0x1000	/* lock present pages */
 | |
| #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
 | |
| #define FOLL_COW	0x4000	/* internal GUP flag */
 | |
| #define FOLL_ANON	0x8000	/* don't do file mappings */
 | |
| #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
 | |
| #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
 | |
| #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
 | |
| #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
 | |
| 
 | |
| /*
 | |
|  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
 | |
|  * other. Here is what they mean, and how to use them:
 | |
|  *
 | |
|  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
 | |
|  * period _often_ under userspace control.  This is in contrast to
 | |
|  * iov_iter_get_pages(), whose usages are transient.
 | |
|  *
 | |
|  * FIXME: For pages which are part of a filesystem, mappings are subject to the
 | |
|  * lifetime enforced by the filesystem and we need guarantees that longterm
 | |
|  * users like RDMA and V4L2 only establish mappings which coordinate usage with
 | |
|  * the filesystem.  Ideas for this coordination include revoking the longterm
 | |
|  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
 | |
|  * added after the problem with filesystems was found FS DAX VMAs are
 | |
|  * specifically failed.  Filesystem pages are still subject to bugs and use of
 | |
|  * FOLL_LONGTERM should be avoided on those pages.
 | |
|  *
 | |
|  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
 | |
|  * Currently only get_user_pages() and get_user_pages_fast() support this flag
 | |
|  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
 | |
|  * is due to an incompatibility with the FS DAX check and
 | |
|  * FAULT_FLAG_ALLOW_RETRY.
 | |
|  *
 | |
|  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
 | |
|  * that region.  And so, CMA attempts to migrate the page before pinning, when
 | |
|  * FOLL_LONGTERM is specified.
 | |
|  *
 | |
|  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
 | |
|  * but an additional pin counting system) will be invoked. This is intended for
 | |
|  * anything that gets a page reference and then touches page data (for example,
 | |
|  * Direct IO). This lets the filesystem know that some non-file-system entity is
 | |
|  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
 | |
|  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
 | |
|  * a call to unpin_user_page().
 | |
|  *
 | |
|  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
 | |
|  * and separate refcounting mechanisms, however, and that means that each has
 | |
|  * its own acquire and release mechanisms:
 | |
|  *
 | |
|  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
 | |
|  *
 | |
|  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
 | |
|  *
 | |
|  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
 | |
|  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
 | |
|  * calls applied to them, and that's perfectly OK. This is a constraint on the
 | |
|  * callers, not on the pages.)
 | |
|  *
 | |
|  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
 | |
|  * directly by the caller. That's in order to help avoid mismatches when
 | |
|  * releasing pages: get_user_pages*() pages must be released via put_page(),
 | |
|  * while pin_user_pages*() pages must be released via unpin_user_page().
 | |
|  *
 | |
|  * Please see Documentation/core-api/pin_user_pages.rst for more information.
 | |
|  */
 | |
| 
 | |
| static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
 | |
| {
 | |
| 	if (vm_fault & VM_FAULT_OOM)
 | |
| 		return -ENOMEM;
 | |
| 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
 | |
| 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
 | |
| 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
 | |
| extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
 | |
| 			       unsigned long size, pte_fn_t fn, void *data);
 | |
| extern int apply_to_existing_page_range(struct mm_struct *mm,
 | |
| 				   unsigned long address, unsigned long size,
 | |
| 				   pte_fn_t fn, void *data);
 | |
| 
 | |
| extern void init_mem_debugging_and_hardening(void);
 | |
| #ifdef CONFIG_PAGE_POISONING
 | |
| extern void __kernel_poison_pages(struct page *page, int numpages);
 | |
| extern void __kernel_unpoison_pages(struct page *page, int numpages);
 | |
| extern bool _page_poisoning_enabled_early;
 | |
| DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
 | |
| static inline bool page_poisoning_enabled(void)
 | |
| {
 | |
| 	return _page_poisoning_enabled_early;
 | |
| }
 | |
| /*
 | |
|  * For use in fast paths after init_mem_debugging() has run, or when a
 | |
|  * false negative result is not harmful when called too early.
 | |
|  */
 | |
| static inline bool page_poisoning_enabled_static(void)
 | |
| {
 | |
| 	return static_branch_unlikely(&_page_poisoning_enabled);
 | |
| }
 | |
| static inline void kernel_poison_pages(struct page *page, int numpages)
 | |
| {
 | |
| 	if (page_poisoning_enabled_static())
 | |
| 		__kernel_poison_pages(page, numpages);
 | |
| }
 | |
| static inline void kernel_unpoison_pages(struct page *page, int numpages)
 | |
| {
 | |
| 	if (page_poisoning_enabled_static())
 | |
| 		__kernel_unpoison_pages(page, numpages);
 | |
| }
 | |
| #else
 | |
| static inline bool page_poisoning_enabled(void) { return false; }
 | |
| static inline bool page_poisoning_enabled_static(void) { return false; }
 | |
| static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
 | |
| static inline void kernel_poison_pages(struct page *page, int numpages) { }
 | |
| static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
 | |
| #endif
 | |
| 
 | |
| DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
 | |
| static inline bool want_init_on_alloc(gfp_t flags)
 | |
| {
 | |
| 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
 | |
| 				&init_on_alloc))
 | |
| 		return true;
 | |
| 	return flags & __GFP_ZERO;
 | |
| }
 | |
| 
 | |
| DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
 | |
| static inline bool want_init_on_free(void)
 | |
| {
 | |
| 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
 | |
| 				   &init_on_free);
 | |
| }
 | |
| 
 | |
| extern bool _debug_pagealloc_enabled_early;
 | |
| DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 | |
| 
 | |
| static inline bool debug_pagealloc_enabled(void)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
 | |
| 		_debug_pagealloc_enabled_early;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For use in fast paths after init_debug_pagealloc() has run, or when a
 | |
|  * false negative result is not harmful when called too early.
 | |
|  */
 | |
| static inline bool debug_pagealloc_enabled_static(void)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
 | |
| 		return false;
 | |
| 
 | |
| 	return static_branch_unlikely(&_debug_pagealloc_enabled);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| /*
 | |
|  * To support DEBUG_PAGEALLOC architecture must ensure that
 | |
|  * __kernel_map_pages() never fails
 | |
|  */
 | |
| extern void __kernel_map_pages(struct page *page, int numpages, int enable);
 | |
| 
 | |
| static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
 | |
| {
 | |
| 	if (debug_pagealloc_enabled_static())
 | |
| 		__kernel_map_pages(page, numpages, 1);
 | |
| }
 | |
| 
 | |
| static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
 | |
| {
 | |
| 	if (debug_pagealloc_enabled_static())
 | |
| 		__kernel_map_pages(page, numpages, 0);
 | |
| }
 | |
| #else	/* CONFIG_DEBUG_PAGEALLOC */
 | |
| static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
 | |
| static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
 | |
| #endif	/* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| #ifdef __HAVE_ARCH_GATE_AREA
 | |
| extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
 | |
| extern int in_gate_area_no_mm(unsigned long addr);
 | |
| extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
 | |
| #else
 | |
| static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
 | |
| static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif	/* __HAVE_ARCH_GATE_AREA */
 | |
| 
 | |
| extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| extern int sysctl_drop_caches;
 | |
| int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
 | |
| 		loff_t *);
 | |
| #endif
 | |
| 
 | |
| void drop_slab(void);
 | |
| void drop_slab_node(int nid);
 | |
| 
 | |
| #ifndef CONFIG_MMU
 | |
| #define randomize_va_space 0
 | |
| #else
 | |
| extern int randomize_va_space;
 | |
| #endif
 | |
| 
 | |
| const char * arch_vma_name(struct vm_area_struct *vma);
 | |
| #ifdef CONFIG_MMU
 | |
| void print_vma_addr(char *prefix, unsigned long rip);
 | |
| #else
 | |
| static inline void print_vma_addr(char *prefix, unsigned long rip)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void *sparse_buffer_alloc(unsigned long size);
 | |
| struct page * __populate_section_memmap(unsigned long pfn,
 | |
| 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
 | |
| pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
 | |
| p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
 | |
| pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
 | |
| pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
 | |
| pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
 | |
| 			    struct vmem_altmap *altmap);
 | |
| void *vmemmap_alloc_block(unsigned long size, int node);
 | |
| struct vmem_altmap;
 | |
| void *vmemmap_alloc_block_buf(unsigned long size, int node,
 | |
| 			      struct vmem_altmap *altmap);
 | |
| void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
 | |
| int vmemmap_populate_basepages(unsigned long start, unsigned long end,
 | |
| 			       int node, struct vmem_altmap *altmap);
 | |
| int vmemmap_populate(unsigned long start, unsigned long end, int node,
 | |
| 		struct vmem_altmap *altmap);
 | |
| void vmemmap_populate_print_last(void);
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| void vmemmap_free(unsigned long start, unsigned long end,
 | |
| 		struct vmem_altmap *altmap);
 | |
| #endif
 | |
| void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
 | |
| 				  unsigned long nr_pages);
 | |
| 
 | |
| enum mf_flags {
 | |
| 	MF_COUNT_INCREASED = 1 << 0,
 | |
| 	MF_ACTION_REQUIRED = 1 << 1,
 | |
| 	MF_MUST_KILL = 1 << 2,
 | |
| 	MF_SOFT_OFFLINE = 1 << 3,
 | |
| };
 | |
| extern int memory_failure(unsigned long pfn, int flags);
 | |
| extern void memory_failure_queue(unsigned long pfn, int flags);
 | |
| extern void memory_failure_queue_kick(int cpu);
 | |
| extern int unpoison_memory(unsigned long pfn);
 | |
| extern int sysctl_memory_failure_early_kill;
 | |
| extern int sysctl_memory_failure_recovery;
 | |
| extern void shake_page(struct page *p, int access);
 | |
| extern atomic_long_t num_poisoned_pages __read_mostly;
 | |
| extern int soft_offline_page(unsigned long pfn, int flags);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Error handlers for various types of pages.
 | |
|  */
 | |
| enum mf_result {
 | |
| 	MF_IGNORED,	/* Error: cannot be handled */
 | |
| 	MF_FAILED,	/* Error: handling failed */
 | |
| 	MF_DELAYED,	/* Will be handled later */
 | |
| 	MF_RECOVERED,	/* Successfully recovered */
 | |
| };
 | |
| 
 | |
| enum mf_action_page_type {
 | |
| 	MF_MSG_KERNEL,
 | |
| 	MF_MSG_KERNEL_HIGH_ORDER,
 | |
| 	MF_MSG_SLAB,
 | |
| 	MF_MSG_DIFFERENT_COMPOUND,
 | |
| 	MF_MSG_POISONED_HUGE,
 | |
| 	MF_MSG_HUGE,
 | |
| 	MF_MSG_FREE_HUGE,
 | |
| 	MF_MSG_NON_PMD_HUGE,
 | |
| 	MF_MSG_UNMAP_FAILED,
 | |
| 	MF_MSG_DIRTY_SWAPCACHE,
 | |
| 	MF_MSG_CLEAN_SWAPCACHE,
 | |
| 	MF_MSG_DIRTY_MLOCKED_LRU,
 | |
| 	MF_MSG_CLEAN_MLOCKED_LRU,
 | |
| 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
 | |
| 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
 | |
| 	MF_MSG_DIRTY_LRU,
 | |
| 	MF_MSG_CLEAN_LRU,
 | |
| 	MF_MSG_TRUNCATED_LRU,
 | |
| 	MF_MSG_BUDDY,
 | |
| 	MF_MSG_BUDDY_2ND,
 | |
| 	MF_MSG_DAX,
 | |
| 	MF_MSG_UNSPLIT_THP,
 | |
| 	MF_MSG_UNKNOWN,
 | |
| };
 | |
| 
 | |
| #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
 | |
| extern void clear_huge_page(struct page *page,
 | |
| 			    unsigned long addr_hint,
 | |
| 			    unsigned int pages_per_huge_page);
 | |
| extern void copy_user_huge_page(struct page *dst, struct page *src,
 | |
| 				unsigned long addr_hint,
 | |
| 				struct vm_area_struct *vma,
 | |
| 				unsigned int pages_per_huge_page);
 | |
| extern long copy_huge_page_from_user(struct page *dst_page,
 | |
| 				const void __user *usr_src,
 | |
| 				unsigned int pages_per_huge_page,
 | |
| 				bool allow_pagefault);
 | |
| 
 | |
| /**
 | |
|  * vma_is_special_huge - Are transhuge page-table entries considered special?
 | |
|  * @vma: Pointer to the struct vm_area_struct to consider
 | |
|  *
 | |
|  * Whether transhuge page-table entries are considered "special" following
 | |
|  * the definition in vm_normal_page().
 | |
|  *
 | |
|  * Return: true if transhuge page-table entries should be considered special,
 | |
|  * false otherwise.
 | |
|  */
 | |
| static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
 | |
| {
 | |
| 	return vma_is_dax(vma) || (vma->vm_file &&
 | |
| 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| extern unsigned int _debug_guardpage_minorder;
 | |
| DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 | |
| 
 | |
| static inline unsigned int debug_guardpage_minorder(void)
 | |
| {
 | |
| 	return _debug_guardpage_minorder;
 | |
| }
 | |
| 
 | |
| static inline bool debug_guardpage_enabled(void)
 | |
| {
 | |
| 	return static_branch_unlikely(&_debug_guardpage_enabled);
 | |
| }
 | |
| 
 | |
| static inline bool page_is_guard(struct page *page)
 | |
| {
 | |
| 	if (!debug_guardpage_enabled())
 | |
| 		return false;
 | |
| 
 | |
| 	return PageGuard(page);
 | |
| }
 | |
| #else
 | |
| static inline unsigned int debug_guardpage_minorder(void) { return 0; }
 | |
| static inline bool debug_guardpage_enabled(void) { return false; }
 | |
| static inline bool page_is_guard(struct page *page) { return false; }
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| #if MAX_NUMNODES > 1
 | |
| void __init setup_nr_node_ids(void);
 | |
| #else
 | |
| static inline void setup_nr_node_ids(void) {}
 | |
| #endif
 | |
| 
 | |
| extern int memcmp_pages(struct page *page1, struct page *page2);
 | |
| 
 | |
| static inline int pages_identical(struct page *page1, struct page *page2)
 | |
| {
 | |
| 	return !memcmp_pages(page1, page2);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MAPPING_DIRTY_HELPERS
 | |
| unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
 | |
| 						pgoff_t first_index, pgoff_t nr,
 | |
| 						pgoff_t bitmap_pgoff,
 | |
| 						unsigned long *bitmap,
 | |
| 						pgoff_t *start,
 | |
| 						pgoff_t *end);
 | |
| 
 | |
| unsigned long wp_shared_mapping_range(struct address_space *mapping,
 | |
| 				      pgoff_t first_index, pgoff_t nr);
 | |
| #endif
 | |
| 
 | |
| extern int sysctl_nr_trim_pages;
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| void mem_dump_obj(void *object);
 | |
| #else
 | |
| static inline void mem_dump_obj(void *object) {}
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
 | |
|  * @seals: the seals to check
 | |
|  * @vma: the vma to operate on
 | |
|  *
 | |
|  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
 | |
|  * the vma flags.  Return 0 if check pass, or <0 for errors.
 | |
|  */
 | |
| static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (seals & F_SEAL_FUTURE_WRITE) {
 | |
| 		/*
 | |
| 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
 | |
| 		 * "future write" seal active.
 | |
| 		 */
 | |
| 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		/*
 | |
| 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
 | |
| 		 * MAP_SHARED and read-only, take care to not allow mprotect to
 | |
| 		 * revert protections on such mappings. Do this only for shared
 | |
| 		 * mappings. For private mappings, don't need to mask
 | |
| 		 * VM_MAYWRITE as we still want them to be COW-writable.
 | |
| 		 */
 | |
| 		if (vma->vm_flags & VM_SHARED)
 | |
| 			vma->vm_flags &= ~(VM_MAYWRITE);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* __KERNEL__ */
 | |
| #endif /* _LINUX_MM_H */
 |