forked from mirrors/linux
		
	 aa6b43d57f
			
		
	
	
		aa6b43d57f
		
	
	
	
	
		
			
			Make acpi_processor_idle use the common broadcast code, there's no reason not to. This also removes some RCU usage after rcu_idle_enter(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reported-by: Borislav Petkov <bp@suse.de> Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
		
			
				
	
	
		
			1337 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1337 lines
		
	
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * processor_idle - idle state submodule to the ACPI processor driver
 | |
|  *
 | |
|  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
 | |
|  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
 | |
|  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
 | |
|  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
 | |
|  *  			- Added processor hotplug support
 | |
|  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 | |
|  *  			- Added support for C3 on SMP
 | |
|  */
 | |
| #define pr_fmt(fmt) "ACPI: " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/sched.h>       /* need_resched() */
 | |
| #include <linux/tick.h>
 | |
| #include <linux/cpuidle.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <acpi/processor.h>
 | |
| 
 | |
| /*
 | |
|  * Include the apic definitions for x86 to have the APIC timer related defines
 | |
|  * available also for UP (on SMP it gets magically included via linux/smp.h).
 | |
|  * asm/acpi.h is not an option, as it would require more include magic. Also
 | |
|  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
 | |
|  */
 | |
| #ifdef CONFIG_X86
 | |
| #include <asm/apic.h>
 | |
| #endif
 | |
| 
 | |
| #define ACPI_PROCESSOR_CLASS            "processor"
 | |
| #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
 | |
| ACPI_MODULE_NAME("processor_idle");
 | |
| 
 | |
| #define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
 | |
| 
 | |
| static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
 | |
| module_param(max_cstate, uint, 0000);
 | |
| static unsigned int nocst __read_mostly;
 | |
| module_param(nocst, uint, 0000);
 | |
| static int bm_check_disable __read_mostly;
 | |
| module_param(bm_check_disable, uint, 0000);
 | |
| 
 | |
| static unsigned int latency_factor __read_mostly = 2;
 | |
| module_param(latency_factor, uint, 0644);
 | |
| 
 | |
| static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
 | |
| 
 | |
| struct cpuidle_driver acpi_idle_driver = {
 | |
| 	.name =		"acpi_idle",
 | |
| 	.owner =	THIS_MODULE,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
 | |
| static
 | |
| DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
 | |
| 
 | |
| static int disabled_by_idle_boot_param(void)
 | |
| {
 | |
| 	return boot_option_idle_override == IDLE_POLL ||
 | |
| 		boot_option_idle_override == IDLE_HALT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
 | |
|  * For now disable this. Probably a bug somewhere else.
 | |
|  *
 | |
|  * To skip this limit, boot/load with a large max_cstate limit.
 | |
|  */
 | |
| static int set_max_cstate(const struct dmi_system_id *id)
 | |
| {
 | |
| 	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
 | |
| 		return 0;
 | |
| 
 | |
| 	pr_notice("%s detected - limiting to C%ld max_cstate."
 | |
| 		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
 | |
| 		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
 | |
| 
 | |
| 	max_cstate = (long)id->driver_data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct dmi_system_id processor_power_dmi_table[] = {
 | |
| 	{ set_max_cstate, "Clevo 5600D", {
 | |
| 	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
 | |
| 	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
 | |
| 	 (void *)2},
 | |
| 	{ set_max_cstate, "Pavilion zv5000", {
 | |
| 	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
 | |
| 	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
 | |
| 	 (void *)1},
 | |
| 	{ set_max_cstate, "Asus L8400B", {
 | |
| 	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
 | |
| 	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
 | |
| 	 (void *)1},
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Callers should disable interrupts before the call and enable
 | |
|  * interrupts after return.
 | |
|  */
 | |
| static void __cpuidle acpi_safe_halt(void)
 | |
| {
 | |
| 	if (!tif_need_resched()) {
 | |
| 		safe_halt();
 | |
| 		local_irq_disable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef ARCH_APICTIMER_STOPS_ON_C3
 | |
| 
 | |
| /*
 | |
|  * Some BIOS implementations switch to C3 in the published C2 state.
 | |
|  * This seems to be a common problem on AMD boxen, but other vendors
 | |
|  * are affected too. We pick the most conservative approach: we assume
 | |
|  * that the local APIC stops in both C2 and C3.
 | |
|  */
 | |
| static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 | |
| 				   struct acpi_processor_cx *cx)
 | |
| {
 | |
| 	struct acpi_processor_power *pwr = &pr->power;
 | |
| 	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 | |
| 
 | |
| 	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 | |
| 		return;
 | |
| 
 | |
| 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 | |
| 		type = ACPI_STATE_C1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, if one of the previous states already marked the lapic
 | |
| 	 * unstable
 | |
| 	 */
 | |
| 	if (pwr->timer_broadcast_on_state < state)
 | |
| 		return;
 | |
| 
 | |
| 	if (cx->type >= type)
 | |
| 		pr->power.timer_broadcast_on_state = state;
 | |
| }
 | |
| 
 | |
| static void __lapic_timer_propagate_broadcast(void *arg)
 | |
| {
 | |
| 	struct acpi_processor *pr = (struct acpi_processor *) arg;
 | |
| 
 | |
| 	if (pr->power.timer_broadcast_on_state < INT_MAX)
 | |
| 		tick_broadcast_enable();
 | |
| 	else
 | |
| 		tick_broadcast_disable();
 | |
| }
 | |
| 
 | |
| static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 | |
| {
 | |
| 	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 | |
| 				 (void *)pr, 1);
 | |
| }
 | |
| 
 | |
| /* Power(C) State timer broadcast control */
 | |
| static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 | |
| 					struct acpi_processor_cx *cx)
 | |
| {
 | |
| 	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 | |
| 				   struct acpi_processor_cx *cstate) { }
 | |
| static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 | |
| 
 | |
| static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 | |
| 					struct acpi_processor_cx *cx)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_X86)
 | |
| static void tsc_check_state(int state)
 | |
| {
 | |
| 	switch (boot_cpu_data.x86_vendor) {
 | |
| 	case X86_VENDOR_HYGON:
 | |
| 	case X86_VENDOR_AMD:
 | |
| 	case X86_VENDOR_INTEL:
 | |
| 	case X86_VENDOR_CENTAUR:
 | |
| 	case X86_VENDOR_ZHAOXIN:
 | |
| 		/*
 | |
| 		 * AMD Fam10h TSC will tick in all
 | |
| 		 * C/P/S0/S1 states when this bit is set.
 | |
| 		 */
 | |
| 		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 | |
| 			return;
 | |
| 		fallthrough;
 | |
| 	default:
 | |
| 		/* TSC could halt in idle, so notify users */
 | |
| 		if (state > ACPI_STATE_C1)
 | |
| 			mark_tsc_unstable("TSC halts in idle");
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static void tsc_check_state(int state) { return; }
 | |
| #endif
 | |
| 
 | |
| static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 | |
| {
 | |
| 
 | |
| 	if (!pr->pblk)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* if info is obtained from pblk/fadt, type equals state */
 | |
| 	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 | |
| 	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 | |
| 
 | |
| #ifndef CONFIG_HOTPLUG_CPU
 | |
| 	/*
 | |
| 	 * Check for P_LVL2_UP flag before entering C2 and above on
 | |
| 	 * an SMP system.
 | |
| 	 */
 | |
| 	if ((num_online_cpus() > 1) &&
 | |
| 	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 | |
| 		return -ENODEV;
 | |
| #endif
 | |
| 
 | |
| 	/* determine C2 and C3 address from pblk */
 | |
| 	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 | |
| 	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 | |
| 
 | |
| 	/* determine latencies from FADT */
 | |
| 	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 | |
| 	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 | |
| 
 | |
| 	/*
 | |
| 	 * FADT specified C2 latency must be less than or equal to
 | |
| 	 * 100 microseconds.
 | |
| 	 */
 | |
| 	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 | |
| 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 			"C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
 | |
| 		/* invalidate C2 */
 | |
| 		pr->power.states[ACPI_STATE_C2].address = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * FADT supplied C3 latency must be less than or equal to
 | |
| 	 * 1000 microseconds.
 | |
| 	 */
 | |
| 	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 | |
| 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 			"C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
 | |
| 		/* invalidate C3 */
 | |
| 		pr->power.states[ACPI_STATE_C3].address = 0;
 | |
| 	}
 | |
| 
 | |
| 	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 			  "lvl2[0x%08x] lvl3[0x%08x]\n",
 | |
| 			  pr->power.states[ACPI_STATE_C2].address,
 | |
| 			  pr->power.states[ACPI_STATE_C3].address));
 | |
| 
 | |
| 	snprintf(pr->power.states[ACPI_STATE_C2].desc,
 | |
| 			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 | |
| 			 pr->power.states[ACPI_STATE_C2].address);
 | |
| 	snprintf(pr->power.states[ACPI_STATE_C3].desc,
 | |
| 			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 | |
| 			 pr->power.states[ACPI_STATE_C3].address);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 | |
| {
 | |
| 	if (!pr->power.states[ACPI_STATE_C1].valid) {
 | |
| 		/* set the first C-State to C1 */
 | |
| 		/* all processors need to support C1 */
 | |
| 		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 | |
| 		pr->power.states[ACPI_STATE_C1].valid = 1;
 | |
| 		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 | |
| 
 | |
| 		snprintf(pr->power.states[ACPI_STATE_C1].desc,
 | |
| 			 ACPI_CX_DESC_LEN, "ACPI HLT");
 | |
| 	}
 | |
| 	/* the C0 state only exists as a filler in our array */
 | |
| 	pr->power.states[ACPI_STATE_C0].valid = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (nocst)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!pr->power.count)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	pr->flags.has_cst = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 | |
| 					   struct acpi_processor_cx *cx)
 | |
| {
 | |
| 	static int bm_check_flag = -1;
 | |
| 	static int bm_control_flag = -1;
 | |
| 
 | |
| 
 | |
| 	if (!cx->address)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 | |
| 	 * DMA transfers are used by any ISA device to avoid livelock.
 | |
| 	 * Note that we could disable Type-F DMA (as recommended by
 | |
| 	 * the erratum), but this is known to disrupt certain ISA
 | |
| 	 * devices thus we take the conservative approach.
 | |
| 	 */
 | |
| 	else if (errata.piix4.fdma) {
 | |
| 		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 				  "C3 not supported on PIIX4 with Type-F DMA\n"));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* All the logic here assumes flags.bm_check is same across all CPUs */
 | |
| 	if (bm_check_flag == -1) {
 | |
| 		/* Determine whether bm_check is needed based on CPU  */
 | |
| 		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 | |
| 		bm_check_flag = pr->flags.bm_check;
 | |
| 		bm_control_flag = pr->flags.bm_control;
 | |
| 	} else {
 | |
| 		pr->flags.bm_check = bm_check_flag;
 | |
| 		pr->flags.bm_control = bm_control_flag;
 | |
| 	}
 | |
| 
 | |
| 	if (pr->flags.bm_check) {
 | |
| 		if (!pr->flags.bm_control) {
 | |
| 			if (pr->flags.has_cst != 1) {
 | |
| 				/* bus mastering control is necessary */
 | |
| 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 					"C3 support requires BM control\n"));
 | |
| 				return;
 | |
| 			} else {
 | |
| 				/* Here we enter C3 without bus mastering */
 | |
| 				ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 					"C3 support without BM control\n"));
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * WBINVD should be set in fadt, for C3 state to be
 | |
| 		 * supported on when bm_check is not required.
 | |
| 		 */
 | |
| 		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 | |
| 			ACPI_DEBUG_PRINT((ACPI_DB_INFO,
 | |
| 					  "Cache invalidation should work properly"
 | |
| 					  " for C3 to be enabled on SMP systems\n"));
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Otherwise we've met all of our C3 requirements.
 | |
| 	 * Normalize the C3 latency to expidite policy.  Enable
 | |
| 	 * checking of bus mastering status (bm_check) so we can
 | |
| 	 * use this in our C3 policy
 | |
| 	 */
 | |
| 	cx->valid = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * On older chipsets, BM_RLD needs to be set
 | |
| 	 * in order for Bus Master activity to wake the
 | |
| 	 * system from C3.  Newer chipsets handle DMA
 | |
| 	 * during C3 automatically and BM_RLD is a NOP.
 | |
| 	 * In either case, the proper way to
 | |
| 	 * handle BM_RLD is to set it and leave it set.
 | |
| 	 */
 | |
| 	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_power_verify(struct acpi_processor *pr)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int working = 0;
 | |
| 
 | |
| 	pr->power.timer_broadcast_on_state = INT_MAX;
 | |
| 
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 | |
| 		struct acpi_processor_cx *cx = &pr->power.states[i];
 | |
| 
 | |
| 		switch (cx->type) {
 | |
| 		case ACPI_STATE_C1:
 | |
| 			cx->valid = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case ACPI_STATE_C2:
 | |
| 			if (!cx->address)
 | |
| 				break;
 | |
| 			cx->valid = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case ACPI_STATE_C3:
 | |
| 			acpi_processor_power_verify_c3(pr, cx);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!cx->valid)
 | |
| 			continue;
 | |
| 
 | |
| 		lapic_timer_check_state(i, pr, cx);
 | |
| 		tsc_check_state(cx->type);
 | |
| 		working++;
 | |
| 	}
 | |
| 
 | |
| 	lapic_timer_propagate_broadcast(pr);
 | |
| 
 | |
| 	return (working);
 | |
| }
 | |
| 
 | |
| static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int result;
 | |
| 
 | |
| 
 | |
| 	/* NOTE: the idle thread may not be running while calling
 | |
| 	 * this function */
 | |
| 
 | |
| 	/* Zero initialize all the C-states info. */
 | |
| 	memset(pr->power.states, 0, sizeof(pr->power.states));
 | |
| 
 | |
| 	result = acpi_processor_get_power_info_cst(pr);
 | |
| 	if (result == -ENODEV)
 | |
| 		result = acpi_processor_get_power_info_fadt(pr);
 | |
| 
 | |
| 	if (result)
 | |
| 		return result;
 | |
| 
 | |
| 	acpi_processor_get_power_info_default(pr);
 | |
| 
 | |
| 	pr->power.count = acpi_processor_power_verify(pr);
 | |
| 
 | |
| 	/*
 | |
| 	 * if one state of type C2 or C3 is available, mark this
 | |
| 	 * CPU as being "idle manageable"
 | |
| 	 */
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 | |
| 		if (pr->power.states[i].valid) {
 | |
| 			pr->power.count = i;
 | |
| 			pr->flags.power = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_bm_check - checks if bus master activity was detected
 | |
|  */
 | |
| static int acpi_idle_bm_check(void)
 | |
| {
 | |
| 	u32 bm_status = 0;
 | |
| 
 | |
| 	if (bm_check_disable)
 | |
| 		return 0;
 | |
| 
 | |
| 	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 | |
| 	if (bm_status)
 | |
| 		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 | |
| 	/*
 | |
| 	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 | |
| 	 * the true state of bus mastering activity; forcing us to
 | |
| 	 * manually check the BMIDEA bit of each IDE channel.
 | |
| 	 */
 | |
| 	else if (errata.piix4.bmisx) {
 | |
| 		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 | |
| 		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 | |
| 			bm_status = 1;
 | |
| 	}
 | |
| 	return bm_status;
 | |
| }
 | |
| 
 | |
| static void wait_for_freeze(void)
 | |
| {
 | |
| #ifdef	CONFIG_X86
 | |
| 	/* No delay is needed if we are in guest */
 | |
| 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 | |
| 		return;
 | |
| #endif
 | |
| 	/* Dummy wait op - must do something useless after P_LVL2 read
 | |
| 	   because chipsets cannot guarantee that STPCLK# signal
 | |
| 	   gets asserted in time to freeze execution properly. */
 | |
| 	inl(acpi_gbl_FADT.xpm_timer_block.address);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_do_entry - enter idle state using the appropriate method
 | |
|  * @cx: cstate data
 | |
|  *
 | |
|  * Caller disables interrupt before call and enables interrupt after return.
 | |
|  */
 | |
| static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 | |
| {
 | |
| 	if (cx->entry_method == ACPI_CSTATE_FFH) {
 | |
| 		/* Call into architectural FFH based C-state */
 | |
| 		acpi_processor_ffh_cstate_enter(cx);
 | |
| 	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
 | |
| 		acpi_safe_halt();
 | |
| 	} else {
 | |
| 		/* IO port based C-state */
 | |
| 		inb(cx->address);
 | |
| 		wait_for_freeze();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 | |
|  * @dev: the target CPU
 | |
|  * @index: the index of suggested state
 | |
|  */
 | |
| static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 | |
| {
 | |
| 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 | |
| 
 | |
| 	ACPI_FLUSH_CPU_CACHE();
 | |
| 
 | |
| 	while (1) {
 | |
| 
 | |
| 		if (cx->entry_method == ACPI_CSTATE_HALT)
 | |
| 			safe_halt();
 | |
| 		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 | |
| 			inb(cx->address);
 | |
| 			wait_for_freeze();
 | |
| 		} else
 | |
| 			return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Never reached */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 | |
| 		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 | |
| }
 | |
| 
 | |
| static int c3_cpu_count;
 | |
| static DEFINE_RAW_SPINLOCK(c3_lock);
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_enter_bm - enters C3 with proper BM handling
 | |
|  * @pr: Target processor
 | |
|  * @cx: Target state context
 | |
|  */
 | |
| static void acpi_idle_enter_bm(struct acpi_processor *pr,
 | |
| 			       struct acpi_processor_cx *cx)
 | |
| {
 | |
| 	acpi_unlazy_tlb(smp_processor_id());
 | |
| 
 | |
| 	/*
 | |
| 	 * disable bus master
 | |
| 	 * bm_check implies we need ARB_DIS
 | |
| 	 * bm_control implies whether we can do ARB_DIS
 | |
| 	 *
 | |
| 	 * That leaves a case where bm_check is set and bm_control is
 | |
| 	 * not set. In that case we cannot do much, we enter C3
 | |
| 	 * without doing anything.
 | |
| 	 */
 | |
| 	if (pr->flags.bm_control) {
 | |
| 		raw_spin_lock(&c3_lock);
 | |
| 		c3_cpu_count++;
 | |
| 		/* Disable bus master arbitration when all CPUs are in C3 */
 | |
| 		if (c3_cpu_count == num_online_cpus())
 | |
| 			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 | |
| 		raw_spin_unlock(&c3_lock);
 | |
| 	}
 | |
| 
 | |
| 	acpi_idle_do_entry(cx);
 | |
| 
 | |
| 	/* Re-enable bus master arbitration */
 | |
| 	if (pr->flags.bm_control) {
 | |
| 		raw_spin_lock(&c3_lock);
 | |
| 		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 | |
| 		c3_cpu_count--;
 | |
| 		raw_spin_unlock(&c3_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int acpi_idle_enter(struct cpuidle_device *dev,
 | |
| 			   struct cpuidle_driver *drv, int index)
 | |
| {
 | |
| 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 | |
| 	struct acpi_processor *pr;
 | |
| 
 | |
| 	pr = __this_cpu_read(processors);
 | |
| 	if (unlikely(!pr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (cx->type != ACPI_STATE_C1) {
 | |
| 		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 | |
| 			index = ACPI_IDLE_STATE_START;
 | |
| 			cx = per_cpu(acpi_cstate[index], dev->cpu);
 | |
| 		} else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
 | |
| 			if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
 | |
| 				acpi_idle_enter_bm(pr, cx);
 | |
| 				return index;
 | |
| 			} else if (drv->safe_state_index >= 0) {
 | |
| 				index = drv->safe_state_index;
 | |
| 				cx = per_cpu(acpi_cstate[index], dev->cpu);
 | |
| 			} else {
 | |
| 				acpi_safe_halt();
 | |
| 				return -EBUSY;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (cx->type == ACPI_STATE_C3)
 | |
| 		ACPI_FLUSH_CPU_CACHE();
 | |
| 
 | |
| 	acpi_idle_do_entry(cx);
 | |
| 
 | |
| 	return index;
 | |
| }
 | |
| 
 | |
| static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 | |
| 				  struct cpuidle_driver *drv, int index)
 | |
| {
 | |
| 	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 | |
| 
 | |
| 	if (cx->type == ACPI_STATE_C3) {
 | |
| 		struct acpi_processor *pr = __this_cpu_read(processors);
 | |
| 
 | |
| 		if (unlikely(!pr))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (pr->flags.bm_check) {
 | |
| 			acpi_idle_enter_bm(pr, cx);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			ACPI_FLUSH_CPU_CACHE();
 | |
| 		}
 | |
| 	}
 | |
| 	acpi_idle_do_entry(cx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 | |
| 					   struct cpuidle_device *dev)
 | |
| {
 | |
| 	int i, count = ACPI_IDLE_STATE_START;
 | |
| 	struct acpi_processor_cx *cx;
 | |
| 	struct cpuidle_state *state;
 | |
| 
 | |
| 	if (max_cstate == 0)
 | |
| 		max_cstate = 1;
 | |
| 
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 | |
| 		cx = &pr->power.states[i];
 | |
| 
 | |
| 		if (!cx->valid)
 | |
| 			continue;
 | |
| 
 | |
| 		per_cpu(acpi_cstate[count], dev->cpu) = cx;
 | |
| 
 | |
| 		if (lapic_timer_needs_broadcast(pr, cx)) {
 | |
| 			state = &acpi_idle_driver.states[count];
 | |
| 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 | |
| 		}
 | |
| 
 | |
| 		count++;
 | |
| 		if (count == CPUIDLE_STATE_MAX)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!count)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 | |
| {
 | |
| 	int i, count;
 | |
| 	struct acpi_processor_cx *cx;
 | |
| 	struct cpuidle_state *state;
 | |
| 	struct cpuidle_driver *drv = &acpi_idle_driver;
 | |
| 
 | |
| 	if (max_cstate == 0)
 | |
| 		max_cstate = 1;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 | |
| 		cpuidle_poll_state_init(drv);
 | |
| 		count = 1;
 | |
| 	} else {
 | |
| 		count = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 | |
| 		cx = &pr->power.states[i];
 | |
| 
 | |
| 		if (!cx->valid)
 | |
| 			continue;
 | |
| 
 | |
| 		state = &drv->states[count];
 | |
| 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 | |
| 		strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 | |
| 		state->exit_latency = cx->latency;
 | |
| 		state->target_residency = cx->latency * latency_factor;
 | |
| 		state->enter = acpi_idle_enter;
 | |
| 
 | |
| 		state->flags = 0;
 | |
| 		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 | |
| 			state->enter_dead = acpi_idle_play_dead;
 | |
| 			drv->safe_state_index = count;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Halt-induced C1 is not good for ->enter_s2idle, because it
 | |
| 		 * re-enables interrupts on exit.  Moreover, C1 is generally not
 | |
| 		 * particularly interesting from the suspend-to-idle angle, so
 | |
| 		 * avoid C1 and the situations in which we may need to fall back
 | |
| 		 * to it altogether.
 | |
| 		 */
 | |
| 		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 | |
| 			state->enter_s2idle = acpi_idle_enter_s2idle;
 | |
| 
 | |
| 		count++;
 | |
| 		if (count == CPUIDLE_STATE_MAX)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	drv->state_count = count;
 | |
| 
 | |
| 	if (!count)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void acpi_processor_cstate_first_run_checks(void)
 | |
| {
 | |
| 	static int first_run;
 | |
| 
 | |
| 	if (first_run)
 | |
| 		return;
 | |
| 	dmi_check_system(processor_power_dmi_table);
 | |
| 	max_cstate = acpi_processor_cstate_check(max_cstate);
 | |
| 	if (max_cstate < ACPI_C_STATES_MAX)
 | |
| 		pr_notice("ACPI: processor limited to max C-state %d\n",
 | |
| 			  max_cstate);
 | |
| 	first_run++;
 | |
| 
 | |
| 	if (nocst)
 | |
| 		return;
 | |
| 
 | |
| 	acpi_processor_claim_cst_control();
 | |
| }
 | |
| #else
 | |
| 
 | |
| static inline int disabled_by_idle_boot_param(void) { return 0; }
 | |
| static inline void acpi_processor_cstate_first_run_checks(void) { }
 | |
| static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 | |
| 					   struct cpuidle_device *dev)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 | |
| {
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 | |
| 
 | |
| struct acpi_lpi_states_array {
 | |
| 	unsigned int size;
 | |
| 	unsigned int composite_states_size;
 | |
| 	struct acpi_lpi_state *entries;
 | |
| 	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 | |
| };
 | |
| 
 | |
| static int obj_get_integer(union acpi_object *obj, u32 *value)
 | |
| {
 | |
| 	if (obj->type != ACPI_TYPE_INTEGER)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*value = obj->integer.value;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_evaluate_lpi(acpi_handle handle,
 | |
| 				       struct acpi_lpi_states_array *info)
 | |
| {
 | |
| 	acpi_status status;
 | |
| 	int ret = 0;
 | |
| 	int pkg_count, state_idx = 1, loop;
 | |
| 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 | |
| 	union acpi_object *lpi_data;
 | |
| 	struct acpi_lpi_state *lpi_state;
 | |
| 
 | |
| 	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 | |
| 	if (ACPI_FAILURE(status)) {
 | |
| 		ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	lpi_data = buffer.pointer;
 | |
| 
 | |
| 	/* There must be at least 4 elements = 3 elements + 1 package */
 | |
| 	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 | |
| 	    lpi_data->package.count < 4) {
 | |
| 		pr_debug("not enough elements in _LPI\n");
 | |
| 		ret = -ENODATA;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	pkg_count = lpi_data->package.elements[2].integer.value;
 | |
| 
 | |
| 	/* Validate number of power states. */
 | |
| 	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 | |
| 		pr_debug("count given by _LPI is not valid\n");
 | |
| 		ret = -ENODATA;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 | |
| 	if (!lpi_state) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	info->size = pkg_count;
 | |
| 	info->entries = lpi_state;
 | |
| 
 | |
| 	/* LPI States start at index 3 */
 | |
| 	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 | |
| 		union acpi_object *element, *pkg_elem, *obj;
 | |
| 
 | |
| 		element = &lpi_data->package.elements[loop];
 | |
| 		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 | |
| 			continue;
 | |
| 
 | |
| 		pkg_elem = element->package.elements;
 | |
| 
 | |
| 		obj = pkg_elem + 6;
 | |
| 		if (obj->type == ACPI_TYPE_BUFFER) {
 | |
| 			struct acpi_power_register *reg;
 | |
| 
 | |
| 			reg = (struct acpi_power_register *)obj->buffer.pointer;
 | |
| 			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 | |
| 			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 | |
| 				continue;
 | |
| 
 | |
| 			lpi_state->address = reg->address;
 | |
| 			lpi_state->entry_method =
 | |
| 				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 | |
| 				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 | |
| 		} else if (obj->type == ACPI_TYPE_INTEGER) {
 | |
| 			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 | |
| 			lpi_state->address = obj->integer.value;
 | |
| 		} else {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 | |
| 
 | |
| 		obj = pkg_elem + 9;
 | |
| 		if (obj->type == ACPI_TYPE_STRING)
 | |
| 			strlcpy(lpi_state->desc, obj->string.pointer,
 | |
| 				ACPI_CX_DESC_LEN);
 | |
| 
 | |
| 		lpi_state->index = state_idx;
 | |
| 		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 | |
| 			pr_debug("No min. residency found, assuming 10 us\n");
 | |
| 			lpi_state->min_residency = 10;
 | |
| 		}
 | |
| 
 | |
| 		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 | |
| 			pr_debug("No wakeup residency found, assuming 10 us\n");
 | |
| 			lpi_state->wake_latency = 10;
 | |
| 		}
 | |
| 
 | |
| 		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 | |
| 			lpi_state->flags = 0;
 | |
| 
 | |
| 		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 | |
| 			lpi_state->arch_flags = 0;
 | |
| 
 | |
| 		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 | |
| 			lpi_state->res_cnt_freq = 1;
 | |
| 
 | |
| 		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 | |
| 			lpi_state->enable_parent_state = 0;
 | |
| 	}
 | |
| 
 | |
| 	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
 | |
| end:
 | |
| 	kfree(buffer.pointer);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * flat_state_cnt - the number of composite LPI states after the process of flattening
 | |
|  */
 | |
| static int flat_state_cnt;
 | |
| 
 | |
| /**
 | |
|  * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
 | |
|  *
 | |
|  * @local: local LPI state
 | |
|  * @parent: parent LPI state
 | |
|  * @result: composite LPI state
 | |
|  */
 | |
| static bool combine_lpi_states(struct acpi_lpi_state *local,
 | |
| 			       struct acpi_lpi_state *parent,
 | |
| 			       struct acpi_lpi_state *result)
 | |
| {
 | |
| 	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
 | |
| 		if (!parent->address) /* 0 means autopromotable */
 | |
| 			return false;
 | |
| 		result->address = local->address + parent->address;
 | |
| 	} else {
 | |
| 		result->address = parent->address;
 | |
| 	}
 | |
| 
 | |
| 	result->min_residency = max(local->min_residency, parent->min_residency);
 | |
| 	result->wake_latency = local->wake_latency + parent->wake_latency;
 | |
| 	result->enable_parent_state = parent->enable_parent_state;
 | |
| 	result->entry_method = local->entry_method;
 | |
| 
 | |
| 	result->flags = parent->flags;
 | |
| 	result->arch_flags = parent->arch_flags;
 | |
| 	result->index = parent->index;
 | |
| 
 | |
| 	strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
 | |
| 	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
 | |
| 	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
 | |
| 
 | |
| static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
 | |
| 				  struct acpi_lpi_state *t)
 | |
| {
 | |
| 	curr_level->composite_states[curr_level->composite_states_size++] = t;
 | |
| }
 | |
| 
 | |
| static int flatten_lpi_states(struct acpi_processor *pr,
 | |
| 			      struct acpi_lpi_states_array *curr_level,
 | |
| 			      struct acpi_lpi_states_array *prev_level)
 | |
| {
 | |
| 	int i, j, state_count = curr_level->size;
 | |
| 	struct acpi_lpi_state *p, *t = curr_level->entries;
 | |
| 
 | |
| 	curr_level->composite_states_size = 0;
 | |
| 	for (j = 0; j < state_count; j++, t++) {
 | |
| 		struct acpi_lpi_state *flpi;
 | |
| 
 | |
| 		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
 | |
| 			continue;
 | |
| 
 | |
| 		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
 | |
| 			pr_warn("Limiting number of LPI states to max (%d)\n",
 | |
| 				ACPI_PROCESSOR_MAX_POWER);
 | |
| 			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		flpi = &pr->power.lpi_states[flat_state_cnt];
 | |
| 
 | |
| 		if (!prev_level) { /* leaf/processor node */
 | |
| 			memcpy(flpi, t, sizeof(*t));
 | |
| 			stash_composite_state(curr_level, flpi);
 | |
| 			flat_state_cnt++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < prev_level->composite_states_size; i++) {
 | |
| 			p = prev_level->composite_states[i];
 | |
| 			if (t->index <= p->enable_parent_state &&
 | |
| 			    combine_lpi_states(p, t, flpi)) {
 | |
| 				stash_composite_state(curr_level, flpi);
 | |
| 				flat_state_cnt++;
 | |
| 				flpi++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(curr_level->entries);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
 | |
| {
 | |
| 	int ret, i;
 | |
| 	acpi_status status;
 | |
| 	acpi_handle handle = pr->handle, pr_ahandle;
 | |
| 	struct acpi_device *d = NULL;
 | |
| 	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
 | |
| 
 | |
| 	if (!osc_pc_lpi_support_confirmed)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	if (!acpi_has_method(handle, "_LPI"))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	flat_state_cnt = 0;
 | |
| 	prev = &info[0];
 | |
| 	curr = &info[1];
 | |
| 	handle = pr->handle;
 | |
| 	ret = acpi_processor_evaluate_lpi(handle, prev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	flatten_lpi_states(pr, prev, NULL);
 | |
| 
 | |
| 	status = acpi_get_parent(handle, &pr_ahandle);
 | |
| 	while (ACPI_SUCCESS(status)) {
 | |
| 		acpi_bus_get_device(pr_ahandle, &d);
 | |
| 		handle = pr_ahandle;
 | |
| 
 | |
| 		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
 | |
| 			break;
 | |
| 
 | |
| 		/* can be optional ? */
 | |
| 		if (!acpi_has_method(handle, "_LPI"))
 | |
| 			break;
 | |
| 
 | |
| 		ret = acpi_processor_evaluate_lpi(handle, curr);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		/* flatten all the LPI states in this level of hierarchy */
 | |
| 		flatten_lpi_states(pr, curr, prev);
 | |
| 
 | |
| 		tmp = prev, prev = curr, curr = tmp;
 | |
| 
 | |
| 		status = acpi_get_parent(handle, &pr_ahandle);
 | |
| 	}
 | |
| 
 | |
| 	pr->power.count = flat_state_cnt;
 | |
| 	/* reset the index after flattening */
 | |
| 	for (i = 0; i < pr->power.count; i++)
 | |
| 		pr->power.lpi_states[i].index = i;
 | |
| 
 | |
| 	/* Tell driver that _LPI is supported. */
 | |
| 	pr->flags.has_lpi = 1;
 | |
| 	pr->flags.power = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_idle_lpi_enter - enters an ACPI any LPI state
 | |
|  * @dev: the target CPU
 | |
|  * @drv: cpuidle driver containing cpuidle state info
 | |
|  * @index: index of target state
 | |
|  *
 | |
|  * Return: 0 for success or negative value for error
 | |
|  */
 | |
| static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
 | |
| 			       struct cpuidle_driver *drv, int index)
 | |
| {
 | |
| 	struct acpi_processor *pr;
 | |
| 	struct acpi_lpi_state *lpi;
 | |
| 
 | |
| 	pr = __this_cpu_read(processors);
 | |
| 
 | |
| 	if (unlikely(!pr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	lpi = &pr->power.lpi_states[index];
 | |
| 	if (lpi->entry_method == ACPI_CSTATE_FFH)
 | |
| 		return acpi_processor_ffh_lpi_enter(lpi);
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
 | |
| {
 | |
| 	int i;
 | |
| 	struct acpi_lpi_state *lpi;
 | |
| 	struct cpuidle_state *state;
 | |
| 	struct cpuidle_driver *drv = &acpi_idle_driver;
 | |
| 
 | |
| 	if (!pr->flags.has_lpi)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
 | |
| 		lpi = &pr->power.lpi_states[i];
 | |
| 
 | |
| 		state = &drv->states[i];
 | |
| 		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
 | |
| 		strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
 | |
| 		state->exit_latency = lpi->wake_latency;
 | |
| 		state->target_residency = lpi->min_residency;
 | |
| 		if (lpi->arch_flags)
 | |
| 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 | |
| 		state->enter = acpi_idle_lpi_enter;
 | |
| 		drv->safe_state_index = i;
 | |
| 	}
 | |
| 
 | |
| 	drv->state_count = i;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
 | |
|  * global state data i.e. idle routines
 | |
|  *
 | |
|  * @pr: the ACPI processor
 | |
|  */
 | |
| static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
 | |
| {
 | |
| 	int i;
 | |
| 	struct cpuidle_driver *drv = &acpi_idle_driver;
 | |
| 
 | |
| 	if (!pr->flags.power_setup_done || !pr->flags.power)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	drv->safe_state_index = -1;
 | |
| 	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
 | |
| 		drv->states[i].name[0] = '\0';
 | |
| 		drv->states[i].desc[0] = '\0';
 | |
| 	}
 | |
| 
 | |
| 	if (pr->flags.has_lpi)
 | |
| 		return acpi_processor_setup_lpi_states(pr);
 | |
| 
 | |
| 	return acpi_processor_setup_cstates(pr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
 | |
|  * device i.e. per-cpu data
 | |
|  *
 | |
|  * @pr: the ACPI processor
 | |
|  * @dev : the cpuidle device
 | |
|  */
 | |
| static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
 | |
| 					    struct cpuidle_device *dev)
 | |
| {
 | |
| 	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev->cpu = pr->id;
 | |
| 	if (pr->flags.has_lpi)
 | |
| 		return acpi_processor_ffh_lpi_probe(pr->id);
 | |
| 
 | |
| 	return acpi_processor_setup_cpuidle_cx(pr, dev);
 | |
| }
 | |
| 
 | |
| static int acpi_processor_get_power_info(struct acpi_processor *pr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = acpi_processor_get_lpi_info(pr);
 | |
| 	if (ret)
 | |
| 		ret = acpi_processor_get_cstate_info(pr);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int acpi_processor_hotplug(struct acpi_processor *pr)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct cpuidle_device *dev;
 | |
| 
 | |
| 	if (disabled_by_idle_boot_param())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!pr->flags.power_setup_done)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	dev = per_cpu(acpi_cpuidle_device, pr->id);
 | |
| 	cpuidle_pause_and_lock();
 | |
| 	cpuidle_disable_device(dev);
 | |
| 	ret = acpi_processor_get_power_info(pr);
 | |
| 	if (!ret && pr->flags.power) {
 | |
| 		acpi_processor_setup_cpuidle_dev(pr, dev);
 | |
| 		ret = cpuidle_enable_device(dev);
 | |
| 	}
 | |
| 	cpuidle_resume_and_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct acpi_processor *_pr;
 | |
| 	struct cpuidle_device *dev;
 | |
| 
 | |
| 	if (disabled_by_idle_boot_param())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!pr->flags.power_setup_done)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME:  Design the ACPI notification to make it once per
 | |
| 	 * system instead of once per-cpu.  This condition is a hack
 | |
| 	 * to make the code that updates C-States be called once.
 | |
| 	 */
 | |
| 
 | |
| 	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
 | |
| 
 | |
| 		/* Protect against cpu-hotplug */
 | |
| 		get_online_cpus();
 | |
| 		cpuidle_pause_and_lock();
 | |
| 
 | |
| 		/* Disable all cpuidle devices */
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			_pr = per_cpu(processors, cpu);
 | |
| 			if (!_pr || !_pr->flags.power_setup_done)
 | |
| 				continue;
 | |
| 			dev = per_cpu(acpi_cpuidle_device, cpu);
 | |
| 			cpuidle_disable_device(dev);
 | |
| 		}
 | |
| 
 | |
| 		/* Populate Updated C-state information */
 | |
| 		acpi_processor_get_power_info(pr);
 | |
| 		acpi_processor_setup_cpuidle_states(pr);
 | |
| 
 | |
| 		/* Enable all cpuidle devices */
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			_pr = per_cpu(processors, cpu);
 | |
| 			if (!_pr || !_pr->flags.power_setup_done)
 | |
| 				continue;
 | |
| 			acpi_processor_get_power_info(_pr);
 | |
| 			if (_pr->flags.power) {
 | |
| 				dev = per_cpu(acpi_cpuidle_device, cpu);
 | |
| 				acpi_processor_setup_cpuidle_dev(_pr, dev);
 | |
| 				cpuidle_enable_device(dev);
 | |
| 			}
 | |
| 		}
 | |
| 		cpuidle_resume_and_unlock();
 | |
| 		put_online_cpus();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_processor_registered;
 | |
| 
 | |
| int acpi_processor_power_init(struct acpi_processor *pr)
 | |
| {
 | |
| 	int retval;
 | |
| 	struct cpuidle_device *dev;
 | |
| 
 | |
| 	if (disabled_by_idle_boot_param())
 | |
| 		return 0;
 | |
| 
 | |
| 	acpi_processor_cstate_first_run_checks();
 | |
| 
 | |
| 	if (!acpi_processor_get_power_info(pr))
 | |
| 		pr->flags.power_setup_done = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the idle handler if processor power management is supported.
 | |
| 	 * Note that we use previously set idle handler will be used on
 | |
| 	 * platforms that only support C1.
 | |
| 	 */
 | |
| 	if (pr->flags.power) {
 | |
| 		/* Register acpi_idle_driver if not already registered */
 | |
| 		if (!acpi_processor_registered) {
 | |
| 			acpi_processor_setup_cpuidle_states(pr);
 | |
| 			retval = cpuidle_register_driver(&acpi_idle_driver);
 | |
| 			if (retval)
 | |
| 				return retval;
 | |
| 			pr_debug("%s registered with cpuidle\n",
 | |
| 				 acpi_idle_driver.name);
 | |
| 		}
 | |
| 
 | |
| 		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 | |
| 		if (!dev)
 | |
| 			return -ENOMEM;
 | |
| 		per_cpu(acpi_cpuidle_device, pr->id) = dev;
 | |
| 
 | |
| 		acpi_processor_setup_cpuidle_dev(pr, dev);
 | |
| 
 | |
| 		/* Register per-cpu cpuidle_device. Cpuidle driver
 | |
| 		 * must already be registered before registering device
 | |
| 		 */
 | |
| 		retval = cpuidle_register_device(dev);
 | |
| 		if (retval) {
 | |
| 			if (acpi_processor_registered == 0)
 | |
| 				cpuidle_unregister_driver(&acpi_idle_driver);
 | |
| 			return retval;
 | |
| 		}
 | |
| 		acpi_processor_registered++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int acpi_processor_power_exit(struct acpi_processor *pr)
 | |
| {
 | |
| 	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
 | |
| 
 | |
| 	if (disabled_by_idle_boot_param())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pr->flags.power) {
 | |
| 		cpuidle_unregister_device(dev);
 | |
| 		acpi_processor_registered--;
 | |
| 		if (acpi_processor_registered == 0)
 | |
| 			cpuidle_unregister_driver(&acpi_idle_driver);
 | |
| 	}
 | |
| 
 | |
| 	pr->flags.power_setup_done = 0;
 | |
| 	return 0;
 | |
| }
 |