forked from mirrors/linux
		
	 4ae08bc23e
			
		
	
	
		4ae08bc23e
		
	
	
	
	
		
			
			This code generates a Smatch warning: drivers/usb/cdns3/cdnsp-mem.c:1085 cdnsp_mem_cleanup() warn: variable dereferenced before check 'pdev->dcbaa' (see line 1067) The unchecked dereference happens inside the function when we call: cdnsp_free_priv_device(pdev); But fortunately, the "pdev->dcbaa" pointer can never be NULL so it does not lead to a runtime issue. We can just remove the NULL check which silences the warning and makes the code consistent. Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Pawel Laszczak <pawell@cadence.com> Link: https://lore.kernel.org/r/20210505055854.40240-1-pawell@gli-login.cadence.com Signed-off-by: Peter Chen <peter.chen@kernel.org>
		
			
				
	
	
		
			1334 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1334 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Cadence CDNSP DRD Driver.
 | |
|  *
 | |
|  * Copyright (C) 2020 Cadence.
 | |
|  *
 | |
|  * Author: Pawel Laszczak <pawell@cadence.com>
 | |
|  *
 | |
|  * Code based on Linux XHCI driver.
 | |
|  * Origin: Copyright (C) 2008 Intel Corp.
 | |
|  */
 | |
| 
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/usb.h>
 | |
| 
 | |
| #include "cdnsp-gadget.h"
 | |
| #include "cdnsp-trace.h"
 | |
| 
 | |
| static void cdnsp_free_stream_info(struct cdnsp_device *pdev,
 | |
| 				   struct cdnsp_ep *pep);
 | |
| /*
 | |
|  * Allocates a generic ring segment from the ring pool, sets the dma address,
 | |
|  * initializes the segment to zero, and sets the private next pointer to NULL.
 | |
|  *
 | |
|  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 | |
|  */
 | |
| static struct cdnsp_segment *cdnsp_segment_alloc(struct cdnsp_device *pdev,
 | |
| 						 unsigned int cycle_state,
 | |
| 						 unsigned int max_packet,
 | |
| 						 gfp_t flags)
 | |
| {
 | |
| 	struct cdnsp_segment *seg;
 | |
| 	dma_addr_t dma;
 | |
| 	int i;
 | |
| 
 | |
| 	seg = kzalloc(sizeof(*seg), flags);
 | |
| 	if (!seg)
 | |
| 		return NULL;
 | |
| 
 | |
| 	seg->trbs = dma_pool_zalloc(pdev->segment_pool, flags, &dma);
 | |
| 	if (!seg->trbs) {
 | |
| 		kfree(seg);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (max_packet) {
 | |
| 		seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
 | |
| 		if (!seg->bounce_buf)
 | |
| 			goto free_dma;
 | |
| 	}
 | |
| 
 | |
| 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs. */
 | |
| 	if (cycle_state == 0) {
 | |
| 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
 | |
| 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
 | |
| 	}
 | |
| 	seg->dma = dma;
 | |
| 	seg->next = NULL;
 | |
| 
 | |
| 	return seg;
 | |
| 
 | |
| free_dma:
 | |
| 	dma_pool_free(pdev->segment_pool, seg->trbs, dma);
 | |
| 	kfree(seg);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void cdnsp_segment_free(struct cdnsp_device *pdev,
 | |
| 			       struct cdnsp_segment *seg)
 | |
| {
 | |
| 	if (seg->trbs)
 | |
| 		dma_pool_free(pdev->segment_pool, seg->trbs, seg->dma);
 | |
| 
 | |
| 	kfree(seg->bounce_buf);
 | |
| 	kfree(seg);
 | |
| }
 | |
| 
 | |
| static void cdnsp_free_segments_for_ring(struct cdnsp_device *pdev,
 | |
| 					 struct cdnsp_segment *first)
 | |
| {
 | |
| 	struct cdnsp_segment *seg;
 | |
| 
 | |
| 	seg = first->next;
 | |
| 
 | |
| 	while (seg != first) {
 | |
| 		struct cdnsp_segment *next = seg->next;
 | |
| 
 | |
| 		cdnsp_segment_free(pdev, seg);
 | |
| 		seg = next;
 | |
| 	}
 | |
| 
 | |
| 	cdnsp_segment_free(pdev, first);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make the prev segment point to the next segment.
 | |
|  *
 | |
|  * Change the last TRB in the prev segment to be a Link TRB which points to the
 | |
|  * DMA address of the next segment. The caller needs to set any Link TRB
 | |
|  * related flags, such as End TRB, Toggle Cycle, and no snoop.
 | |
|  */
 | |
| static void cdnsp_link_segments(struct cdnsp_device *pdev,
 | |
| 				struct cdnsp_segment *prev,
 | |
| 				struct cdnsp_segment *next,
 | |
| 				enum cdnsp_ring_type type)
 | |
| {
 | |
| 	struct cdnsp_link_trb *link;
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (!prev || !next)
 | |
| 		return;
 | |
| 
 | |
| 	prev->next = next;
 | |
| 	if (type != TYPE_EVENT) {
 | |
| 		link = &prev->trbs[TRBS_PER_SEGMENT - 1].link;
 | |
| 		link->segment_ptr = cpu_to_le64(next->dma);
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the last TRB in the segment to have a TRB type ID
 | |
| 		 * of Link TRB
 | |
| 		 */
 | |
| 		val = le32_to_cpu(link->control);
 | |
| 		val &= ~TRB_TYPE_BITMASK;
 | |
| 		val |= TRB_TYPE(TRB_LINK);
 | |
| 		link->control = cpu_to_le32(val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Link the ring to the new segments.
 | |
|  * Set Toggle Cycle for the new ring if needed.
 | |
|  */
 | |
| static void cdnsp_link_rings(struct cdnsp_device *pdev,
 | |
| 			     struct cdnsp_ring *ring,
 | |
| 			     struct cdnsp_segment *first,
 | |
| 			     struct cdnsp_segment *last,
 | |
| 			     unsigned int num_segs)
 | |
| {
 | |
| 	struct cdnsp_segment *next;
 | |
| 
 | |
| 	if (!ring || !first || !last)
 | |
| 		return;
 | |
| 
 | |
| 	next = ring->enq_seg->next;
 | |
| 	cdnsp_link_segments(pdev, ring->enq_seg, first, ring->type);
 | |
| 	cdnsp_link_segments(pdev, last, next, ring->type);
 | |
| 	ring->num_segs += num_segs;
 | |
| 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 | |
| 
 | |
| 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 | |
| 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 | |
| 			~cpu_to_le32(LINK_TOGGLE);
 | |
| 		last->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 | |
| 			cpu_to_le32(LINK_TOGGLE);
 | |
| 		ring->last_seg = last;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need a radix tree for mapping physical addresses of TRBs to which stream
 | |
|  * ID they belong to. We need to do this because the device controller won't
 | |
|  * tell us which stream ring the TRB came from. We could store the stream ID
 | |
|  * in an event data TRB, but that doesn't help us for the cancellation case,
 | |
|  * since the endpoint may stop before it reaches that event data TRB.
 | |
|  *
 | |
|  * The radix tree maps the upper portion of the TRB DMA address to a ring
 | |
|  * segment that has the same upper portion of DMA addresses. For example,
 | |
|  * say I have segments of size 1KB, that are always 1KB aligned. A segment may
 | |
|  * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
 | |
|  * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
 | |
|  * pass the radix tree a key to get the right stream ID:
 | |
|  *
 | |
|  *	0x10c90fff >> 10 = 0x43243
 | |
|  *	0x10c912c0 >> 10 = 0x43244
 | |
|  *	0x10c91400 >> 10 = 0x43245
 | |
|  *
 | |
|  * Obviously, only those TRBs with DMA addresses that are within the segment
 | |
|  * will make the radix tree return the stream ID for that ring.
 | |
|  *
 | |
|  * Caveats for the radix tree:
 | |
|  *
 | |
|  * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
 | |
|  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 | |
|  * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
 | |
|  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 | |
|  * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
 | |
|  * extended systems (where the DMA address can be bigger than 32-bits),
 | |
|  * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
 | |
|  */
 | |
| static int cdnsp_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 | |
| 					struct cdnsp_ring *ring,
 | |
| 					struct cdnsp_segment *seg,
 | |
| 					gfp_t mem_flags)
 | |
| {
 | |
| 	unsigned long key;
 | |
| 	int ret;
 | |
| 
 | |
| 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 | |
| 
 | |
| 	/* Skip any segments that were already added. */
 | |
| 	if (radix_tree_lookup(trb_address_map, key))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = radix_tree_maybe_preload(mem_flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = radix_tree_insert(trb_address_map, key, ring);
 | |
| 	radix_tree_preload_end();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cdnsp_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 | |
| 					 struct cdnsp_segment *seg)
 | |
| {
 | |
| 	unsigned long key;
 | |
| 
 | |
| 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 | |
| 	if (radix_tree_lookup(trb_address_map, key))
 | |
| 		radix_tree_delete(trb_address_map, key);
 | |
| }
 | |
| 
 | |
| static int cdnsp_update_stream_segment_mapping(struct radix_tree_root *trb_address_map,
 | |
| 					       struct cdnsp_ring *ring,
 | |
| 					       struct cdnsp_segment *first_seg,
 | |
| 					       struct cdnsp_segment *last_seg,
 | |
| 					       gfp_t mem_flags)
 | |
| {
 | |
| 	struct cdnsp_segment *failed_seg;
 | |
| 	struct cdnsp_segment *seg;
 | |
| 	int ret;
 | |
| 
 | |
| 	seg = first_seg;
 | |
| 	do {
 | |
| 		ret = cdnsp_insert_segment_mapping(trb_address_map, ring, seg,
 | |
| 						   mem_flags);
 | |
| 		if (ret)
 | |
| 			goto remove_streams;
 | |
| 		if (seg == last_seg)
 | |
| 			return 0;
 | |
| 		seg = seg->next;
 | |
| 	} while (seg != first_seg);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| remove_streams:
 | |
| 	failed_seg = seg;
 | |
| 	seg = first_seg;
 | |
| 	do {
 | |
| 		cdnsp_remove_segment_mapping(trb_address_map, seg);
 | |
| 		if (seg == failed_seg)
 | |
| 			return ret;
 | |
| 		seg = seg->next;
 | |
| 	} while (seg != first_seg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cdnsp_remove_stream_mapping(struct cdnsp_ring *ring)
 | |
| {
 | |
| 	struct cdnsp_segment *seg;
 | |
| 
 | |
| 	seg = ring->first_seg;
 | |
| 	do {
 | |
| 		cdnsp_remove_segment_mapping(ring->trb_address_map, seg);
 | |
| 		seg = seg->next;
 | |
| 	} while (seg != ring->first_seg);
 | |
| }
 | |
| 
 | |
| static int cdnsp_update_stream_mapping(struct cdnsp_ring *ring)
 | |
| {
 | |
| 	return cdnsp_update_stream_segment_mapping(ring->trb_address_map, ring,
 | |
| 			ring->first_seg, ring->last_seg, GFP_ATOMIC);
 | |
| }
 | |
| 
 | |
| static void cdnsp_ring_free(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
 | |
| {
 | |
| 	if (!ring)
 | |
| 		return;
 | |
| 
 | |
| 	trace_cdnsp_ring_free(ring);
 | |
| 
 | |
| 	if (ring->first_seg) {
 | |
| 		if (ring->type == TYPE_STREAM)
 | |
| 			cdnsp_remove_stream_mapping(ring);
 | |
| 
 | |
| 		cdnsp_free_segments_for_ring(pdev, ring->first_seg);
 | |
| 	}
 | |
| 
 | |
| 	kfree(ring);
 | |
| }
 | |
| 
 | |
| void cdnsp_initialize_ring_info(struct cdnsp_ring *ring)
 | |
| {
 | |
| 	ring->enqueue = ring->first_seg->trbs;
 | |
| 	ring->enq_seg = ring->first_seg;
 | |
| 	ring->dequeue = ring->enqueue;
 | |
| 	ring->deq_seg = ring->first_seg;
 | |
| 
 | |
| 	/*
 | |
| 	 * The ring is initialized to 0. The producer must write 1 to the cycle
 | |
| 	 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
 | |
| 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 | |
| 	 *
 | |
| 	 * New rings are initialized with cycle state equal to 1; if we are
 | |
| 	 * handling ring expansion, set the cycle state equal to the old ring.
 | |
| 	 */
 | |
| 	ring->cycle_state = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Each segment has a link TRB, and leave an extra TRB for SW
 | |
| 	 * accounting purpose
 | |
| 	 */
 | |
| 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 | |
| }
 | |
| 
 | |
| /* Allocate segments and link them for a ring. */
 | |
| static int cdnsp_alloc_segments_for_ring(struct cdnsp_device *pdev,
 | |
| 					 struct cdnsp_segment **first,
 | |
| 					 struct cdnsp_segment **last,
 | |
| 					 unsigned int num_segs,
 | |
| 					 unsigned int cycle_state,
 | |
| 					 enum cdnsp_ring_type type,
 | |
| 					 unsigned int max_packet,
 | |
| 					 gfp_t flags)
 | |
| {
 | |
| 	struct cdnsp_segment *prev;
 | |
| 
 | |
| 	/* Allocate first segment. */
 | |
| 	prev = cdnsp_segment_alloc(pdev, cycle_state, max_packet, flags);
 | |
| 	if (!prev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	num_segs--;
 | |
| 	*first = prev;
 | |
| 
 | |
| 	/* Allocate all other segments. */
 | |
| 	while (num_segs > 0) {
 | |
| 		struct cdnsp_segment	*next;
 | |
| 
 | |
| 		next = cdnsp_segment_alloc(pdev, cycle_state,
 | |
| 					   max_packet, flags);
 | |
| 		if (!next) {
 | |
| 			cdnsp_free_segments_for_ring(pdev, *first);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		cdnsp_link_segments(pdev, prev, next, type);
 | |
| 
 | |
| 		prev = next;
 | |
| 		num_segs--;
 | |
| 	}
 | |
| 
 | |
| 	cdnsp_link_segments(pdev, prev, *first, type);
 | |
| 	*last = prev;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a new ring with zero or more segments.
 | |
|  *
 | |
|  * Link each segment together into a ring.
 | |
|  * Set the end flag and the cycle toggle bit on the last segment.
 | |
|  */
 | |
| static struct cdnsp_ring *cdnsp_ring_alloc(struct cdnsp_device *pdev,
 | |
| 					   unsigned int num_segs,
 | |
| 					   enum cdnsp_ring_type type,
 | |
| 					   unsigned int max_packet,
 | |
| 					   gfp_t flags)
 | |
| {
 | |
| 	struct cdnsp_ring *ring;
 | |
| 	int ret;
 | |
| 
 | |
| 	ring = kzalloc(sizeof *(ring), flags);
 | |
| 	if (!ring)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ring->num_segs = num_segs;
 | |
| 	ring->bounce_buf_len = max_packet;
 | |
| 	INIT_LIST_HEAD(&ring->td_list);
 | |
| 	ring->type = type;
 | |
| 
 | |
| 	if (num_segs == 0)
 | |
| 		return ring;
 | |
| 
 | |
| 	ret = cdnsp_alloc_segments_for_ring(pdev, &ring->first_seg,
 | |
| 					    &ring->last_seg, num_segs,
 | |
| 					    1, type, max_packet, flags);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* Only event ring does not use link TRB. */
 | |
| 	if (type != TYPE_EVENT)
 | |
| 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 | |
| 			cpu_to_le32(LINK_TOGGLE);
 | |
| 
 | |
| 	cdnsp_initialize_ring_info(ring);
 | |
| 	trace_cdnsp_ring_alloc(ring);
 | |
| 	return ring;
 | |
| fail:
 | |
| 	kfree(ring);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void cdnsp_free_endpoint_rings(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
 | |
| {
 | |
| 	cdnsp_ring_free(pdev, pep->ring);
 | |
| 	pep->ring = NULL;
 | |
| 	cdnsp_free_stream_info(pdev, pep);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expand an existing ring.
 | |
|  * Allocate a new ring which has same segment numbers and link the two rings.
 | |
|  */
 | |
| int cdnsp_ring_expansion(struct cdnsp_device *pdev,
 | |
| 			 struct cdnsp_ring *ring,
 | |
| 			 unsigned int num_trbs,
 | |
| 			 gfp_t flags)
 | |
| {
 | |
| 	unsigned int num_segs_needed;
 | |
| 	struct cdnsp_segment *first;
 | |
| 	struct cdnsp_segment *last;
 | |
| 	unsigned int num_segs;
 | |
| 	int ret;
 | |
| 
 | |
| 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 | |
| 			(TRBS_PER_SEGMENT - 1);
 | |
| 
 | |
| 	/* Allocate number of segments we needed, or double the ring size. */
 | |
| 	num_segs = max(ring->num_segs, num_segs_needed);
 | |
| 
 | |
| 	ret = cdnsp_alloc_segments_for_ring(pdev, &first, &last, num_segs,
 | |
| 					    ring->cycle_state, ring->type,
 | |
| 					    ring->bounce_buf_len, flags);
 | |
| 	if (ret)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (ring->type == TYPE_STREAM)
 | |
| 		ret = cdnsp_update_stream_segment_mapping(ring->trb_address_map,
 | |
| 							  ring, first,
 | |
| 							  last, flags);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		cdnsp_free_segments_for_ring(pdev, first);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cdnsp_link_rings(pdev, ring, first, last, num_segs);
 | |
| 	trace_cdnsp_ring_expansion(ring);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cdnsp_init_device_ctx(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	int size = HCC_64BYTE_CONTEXT(pdev->hcc_params) ? 2048 : 1024;
 | |
| 
 | |
| 	pdev->out_ctx.type = CDNSP_CTX_TYPE_DEVICE;
 | |
| 	pdev->out_ctx.size = size;
 | |
| 	pdev->out_ctx.ctx_size = CTX_SIZE(pdev->hcc_params);
 | |
| 	pdev->out_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC,
 | |
| 					      &pdev->out_ctx.dma);
 | |
| 
 | |
| 	if (!pdev->out_ctx.bytes)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pdev->in_ctx.type = CDNSP_CTX_TYPE_INPUT;
 | |
| 	pdev->in_ctx.ctx_size = pdev->out_ctx.ctx_size;
 | |
| 	pdev->in_ctx.size = size + pdev->out_ctx.ctx_size;
 | |
| 	pdev->in_ctx.bytes = dma_pool_zalloc(pdev->device_pool, GFP_ATOMIC,
 | |
| 					     &pdev->in_ctx.dma);
 | |
| 
 | |
| 	if (!pdev->in_ctx.bytes) {
 | |
| 		dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
 | |
| 			      pdev->out_ctx.dma);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct cdnsp_input_control_ctx
 | |
| 	*cdnsp_get_input_control_ctx(struct cdnsp_container_ctx *ctx)
 | |
| {
 | |
| 	if (ctx->type != CDNSP_CTX_TYPE_INPUT)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return (struct cdnsp_input_control_ctx *)ctx->bytes;
 | |
| }
 | |
| 
 | |
| struct cdnsp_slot_ctx *cdnsp_get_slot_ctx(struct cdnsp_container_ctx *ctx)
 | |
| {
 | |
| 	if (ctx->type == CDNSP_CTX_TYPE_DEVICE)
 | |
| 		return (struct cdnsp_slot_ctx *)ctx->bytes;
 | |
| 
 | |
| 	return (struct cdnsp_slot_ctx *)(ctx->bytes + ctx->ctx_size);
 | |
| }
 | |
| 
 | |
| struct cdnsp_ep_ctx *cdnsp_get_ep_ctx(struct cdnsp_container_ctx *ctx,
 | |
| 				      unsigned int ep_index)
 | |
| {
 | |
| 	/* Increment ep index by offset of start of ep ctx array. */
 | |
| 	ep_index++;
 | |
| 	if (ctx->type == CDNSP_CTX_TYPE_INPUT)
 | |
| 		ep_index++;
 | |
| 
 | |
| 	return (struct cdnsp_ep_ctx *)(ctx->bytes + (ep_index * ctx->ctx_size));
 | |
| }
 | |
| 
 | |
| static void cdnsp_free_stream_ctx(struct cdnsp_device *pdev,
 | |
| 				  struct cdnsp_ep *pep)
 | |
| {
 | |
| 	dma_pool_free(pdev->device_pool, pep->stream_info.stream_ctx_array,
 | |
| 		      pep->stream_info.ctx_array_dma);
 | |
| }
 | |
| 
 | |
| /* The stream context array must be a power of 2. */
 | |
| static struct cdnsp_stream_ctx
 | |
| 	*cdnsp_alloc_stream_ctx(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
 | |
| {
 | |
| 	size_t size = sizeof(struct cdnsp_stream_ctx) *
 | |
| 		      pep->stream_info.num_stream_ctxs;
 | |
| 
 | |
| 	if (size > CDNSP_CTX_SIZE)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/**
 | |
| 	 * Driver uses intentionally the device_pool to allocated stream
 | |
| 	 * context array. Device Pool has 2048 bytes of size what gives us
 | |
| 	 * 128 entries.
 | |
| 	 */
 | |
| 	return dma_pool_zalloc(pdev->device_pool, GFP_DMA32 | GFP_ATOMIC,
 | |
| 			       &pep->stream_info.ctx_array_dma);
 | |
| }
 | |
| 
 | |
| struct cdnsp_ring *cdnsp_dma_to_transfer_ring(struct cdnsp_ep *pep, u64 address)
 | |
| {
 | |
| 	if (pep->ep_state & EP_HAS_STREAMS)
 | |
| 		return radix_tree_lookup(&pep->stream_info.trb_address_map,
 | |
| 					 address >> TRB_SEGMENT_SHIFT);
 | |
| 
 | |
| 	return pep->ring;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Change an endpoint's internal structure so it supports stream IDs.
 | |
|  * The number of requested streams includes stream 0, which cannot be used by
 | |
|  * driver.
 | |
|  *
 | |
|  * The number of stream contexts in the stream context array may be bigger than
 | |
|  * the number of streams the driver wants to use. This is because the number of
 | |
|  * stream context array entries must be a power of two.
 | |
|  */
 | |
| int cdnsp_alloc_stream_info(struct cdnsp_device *pdev,
 | |
| 			    struct cdnsp_ep *pep,
 | |
| 			    unsigned int num_stream_ctxs,
 | |
| 			    unsigned int num_streams)
 | |
| {
 | |
| 	struct cdnsp_stream_info *stream_info;
 | |
| 	struct cdnsp_ring *cur_ring;
 | |
| 	u32 cur_stream;
 | |
| 	u64 addr;
 | |
| 	int ret;
 | |
| 	int mps;
 | |
| 
 | |
| 	stream_info = &pep->stream_info;
 | |
| 	stream_info->num_streams = num_streams;
 | |
| 	stream_info->num_stream_ctxs = num_stream_ctxs;
 | |
| 
 | |
| 	/* Initialize the array of virtual pointers to stream rings. */
 | |
| 	stream_info->stream_rings = kcalloc(num_streams,
 | |
| 					    sizeof(struct cdnsp_ring *),
 | |
| 					    GFP_ATOMIC);
 | |
| 	if (!stream_info->stream_rings)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Initialize the array of DMA addresses for stream rings for the HW. */
 | |
| 	stream_info->stream_ctx_array = cdnsp_alloc_stream_ctx(pdev, pep);
 | |
| 	if (!stream_info->stream_ctx_array)
 | |
| 		goto cleanup_stream_rings;
 | |
| 
 | |
| 	memset(stream_info->stream_ctx_array, 0,
 | |
| 	       sizeof(struct cdnsp_stream_ctx) * num_stream_ctxs);
 | |
| 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 | |
| 	mps = usb_endpoint_maxp(pep->endpoint.desc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate rings for all the streams that the driver will use,
 | |
| 	 * and add their segment DMA addresses to the radix tree.
 | |
| 	 * Stream 0 is reserved.
 | |
| 	 */
 | |
| 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 | |
| 		cur_ring = cdnsp_ring_alloc(pdev, 2, TYPE_STREAM, mps,
 | |
| 					    GFP_ATOMIC);
 | |
| 		stream_info->stream_rings[cur_stream] = cur_ring;
 | |
| 
 | |
| 		if (!cur_ring)
 | |
| 			goto cleanup_rings;
 | |
| 
 | |
| 		cur_ring->stream_id = cur_stream;
 | |
| 		cur_ring->trb_address_map = &stream_info->trb_address_map;
 | |
| 
 | |
| 		/* Set deq ptr, cycle bit, and stream context type. */
 | |
| 		addr = cur_ring->first_seg->dma | SCT_FOR_CTX(SCT_PRI_TR) |
 | |
| 		       cur_ring->cycle_state;
 | |
| 
 | |
| 		stream_info->stream_ctx_array[cur_stream].stream_ring =
 | |
| 			cpu_to_le64(addr);
 | |
| 
 | |
| 		trace_cdnsp_set_stream_ring(cur_ring);
 | |
| 
 | |
| 		ret = cdnsp_update_stream_mapping(cur_ring);
 | |
| 		if (ret)
 | |
| 			goto cleanup_rings;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cleanup_rings:
 | |
| 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 | |
| 		cur_ring = stream_info->stream_rings[cur_stream];
 | |
| 		if (cur_ring) {
 | |
| 			cdnsp_ring_free(pdev, cur_ring);
 | |
| 			stream_info->stream_rings[cur_stream] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| cleanup_stream_rings:
 | |
| 	kfree(pep->stream_info.stream_rings);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Frees all stream contexts associated with the endpoint. */
 | |
| static void cdnsp_free_stream_info(struct cdnsp_device *pdev,
 | |
| 				   struct cdnsp_ep *pep)
 | |
| {
 | |
| 	struct cdnsp_stream_info *stream_info = &pep->stream_info;
 | |
| 	struct cdnsp_ring *cur_ring;
 | |
| 	int cur_stream;
 | |
| 
 | |
| 	if (!(pep->ep_state & EP_HAS_STREAMS))
 | |
| 		return;
 | |
| 
 | |
| 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 | |
| 	     cur_stream++) {
 | |
| 		cur_ring = stream_info->stream_rings[cur_stream];
 | |
| 		if (cur_ring) {
 | |
| 			cdnsp_ring_free(pdev, cur_ring);
 | |
| 			stream_info->stream_rings[cur_stream] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (stream_info->stream_ctx_array)
 | |
| 		cdnsp_free_stream_ctx(pdev, pep);
 | |
| 
 | |
| 	kfree(stream_info->stream_rings);
 | |
| 	pep->ep_state &= ~EP_HAS_STREAMS;
 | |
| }
 | |
| 
 | |
| /* All the cdnsp_tds in the ring's TD list should be freed at this point.*/
 | |
| static void cdnsp_free_priv_device(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	pdev->dcbaa->dev_context_ptrs[1] = 0;
 | |
| 
 | |
| 	cdnsp_free_endpoint_rings(pdev, &pdev->eps[0]);
 | |
| 
 | |
| 	if (pdev->in_ctx.bytes)
 | |
| 		dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes,
 | |
| 			      pdev->in_ctx.dma);
 | |
| 
 | |
| 	if (pdev->out_ctx.bytes)
 | |
| 		dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
 | |
| 			      pdev->out_ctx.dma);
 | |
| 
 | |
| 	pdev->in_ctx.bytes = NULL;
 | |
| 	pdev->out_ctx.bytes = NULL;
 | |
| }
 | |
| 
 | |
| static int cdnsp_alloc_priv_device(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cdnsp_init_device_ctx(pdev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Allocate endpoint 0 ring. */
 | |
| 	pdev->eps[0].ring = cdnsp_ring_alloc(pdev, 2, TYPE_CTRL, 0, GFP_ATOMIC);
 | |
| 	if (!pdev->eps[0].ring)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/* Point to output device context in dcbaa. */
 | |
| 	pdev->dcbaa->dev_context_ptrs[1] = cpu_to_le64(pdev->out_ctx.dma);
 | |
| 	pdev->cmd.in_ctx = &pdev->in_ctx;
 | |
| 
 | |
| 	trace_cdnsp_alloc_priv_device(pdev);
 | |
| 	return 0;
 | |
| fail:
 | |
| 	dma_pool_free(pdev->device_pool, pdev->out_ctx.bytes,
 | |
| 		      pdev->out_ctx.dma);
 | |
| 	dma_pool_free(pdev->device_pool, pdev->in_ctx.bytes,
 | |
| 		      pdev->in_ctx.dma);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void cdnsp_copy_ep0_dequeue_into_input_ctx(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	struct cdnsp_ep_ctx *ep0_ctx = pdev->eps[0].in_ctx;
 | |
| 	struct cdnsp_ring *ep_ring = pdev->eps[0].ring;
 | |
| 	dma_addr_t dma;
 | |
| 
 | |
| 	dma = cdnsp_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
 | |
| 	ep0_ctx->deq = cpu_to_le64(dma | ep_ring->cycle_state);
 | |
| }
 | |
| 
 | |
| /* Setup an controller private device for a Set Address command. */
 | |
| int cdnsp_setup_addressable_priv_dev(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	struct cdnsp_slot_ctx *slot_ctx;
 | |
| 	struct cdnsp_ep_ctx *ep0_ctx;
 | |
| 	u32 max_packets, port;
 | |
| 
 | |
| 	ep0_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, 0);
 | |
| 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
 | |
| 
 | |
| 	/* Only the control endpoint is valid - one endpoint context. */
 | |
| 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
 | |
| 
 | |
| 	switch (pdev->gadget.speed) {
 | |
| 	case USB_SPEED_SUPER_PLUS:
 | |
| 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
 | |
| 		max_packets = MAX_PACKET(512);
 | |
| 		break;
 | |
| 	case USB_SPEED_SUPER:
 | |
| 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
 | |
| 		max_packets = MAX_PACKET(512);
 | |
| 		break;
 | |
| 	case USB_SPEED_HIGH:
 | |
| 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
 | |
| 		max_packets = MAX_PACKET(64);
 | |
| 		break;
 | |
| 	case USB_SPEED_FULL:
 | |
| 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
 | |
| 		max_packets = MAX_PACKET(64);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Speed was not set , this shouldn't happen. */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	port = DEV_PORT(pdev->active_port->port_num);
 | |
| 	slot_ctx->dev_port |= cpu_to_le32(port);
 | |
| 	slot_ctx->dev_state = cpu_to_le32((pdev->device_address &
 | |
| 					   DEV_ADDR_MASK));
 | |
| 	ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(0x8));
 | |
| 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
 | |
| 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
 | |
| 					 max_packets);
 | |
| 
 | |
| 	ep0_ctx->deq = cpu_to_le64(pdev->eps[0].ring->first_seg->dma |
 | |
| 				   pdev->eps[0].ring->cycle_state);
 | |
| 
 | |
| 	trace_cdnsp_setup_addressable_priv_device(pdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert interval expressed as 2^(bInterval - 1) == interval into
 | |
|  * straight exponent value 2^n == interval.
 | |
|  */
 | |
| static unsigned int cdnsp_parse_exponent_interval(struct usb_gadget *g,
 | |
| 						  struct cdnsp_ep *pep)
 | |
| {
 | |
| 	unsigned int interval;
 | |
| 
 | |
| 	interval = clamp_val(pep->endpoint.desc->bInterval, 1, 16) - 1;
 | |
| 	if (interval != pep->endpoint.desc->bInterval - 1)
 | |
| 		dev_warn(&g->dev, "ep %s - rounding interval to %d %sframes\n",
 | |
| 			 pep->name, 1 << interval,
 | |
| 			 g->speed == USB_SPEED_FULL ? "" : "micro");
 | |
| 
 | |
| 	/*
 | |
| 	 * Full speed isoc endpoints specify interval in frames,
 | |
| 	 * not microframes. We are using microframes everywhere,
 | |
| 	 * so adjust accordingly.
 | |
| 	 */
 | |
| 	if (g->speed == USB_SPEED_FULL)
 | |
| 		interval += 3;	/* 1 frame = 2^3 uframes */
 | |
| 
 | |
| 	/* Controller handles only up to 512ms (2^12). */
 | |
| 	if (interval > 12)
 | |
| 		interval = 12;
 | |
| 
 | |
| 	return interval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
 | |
|  * microframes, rounded down to nearest power of 2.
 | |
|  */
 | |
| static unsigned int cdnsp_microframes_to_exponent(struct usb_gadget *g,
 | |
| 						  struct cdnsp_ep *pep,
 | |
| 						  unsigned int desc_interval,
 | |
| 						  unsigned int min_exponent,
 | |
| 						  unsigned int max_exponent)
 | |
| {
 | |
| 	unsigned int interval;
 | |
| 
 | |
| 	interval = fls(desc_interval) - 1;
 | |
| 	return clamp_val(interval, min_exponent, max_exponent);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the polling interval.
 | |
|  *
 | |
|  * The polling interval is expressed in "microframes". If controllers's Interval
 | |
|  * field is set to N, it will service the endpoint every 2^(Interval)*125us.
 | |
|  */
 | |
| static unsigned int cdnsp_get_endpoint_interval(struct usb_gadget *g,
 | |
| 						struct cdnsp_ep *pep)
 | |
| {
 | |
| 	unsigned int interval = 0;
 | |
| 
 | |
| 	switch (g->speed) {
 | |
| 	case USB_SPEED_HIGH:
 | |
| 	case USB_SPEED_SUPER_PLUS:
 | |
| 	case USB_SPEED_SUPER:
 | |
| 		if (usb_endpoint_xfer_int(pep->endpoint.desc) ||
 | |
| 		    usb_endpoint_xfer_isoc(pep->endpoint.desc))
 | |
| 			interval = cdnsp_parse_exponent_interval(g, pep);
 | |
| 		break;
 | |
| 	case USB_SPEED_FULL:
 | |
| 		if (usb_endpoint_xfer_isoc(pep->endpoint.desc)) {
 | |
| 			interval = cdnsp_parse_exponent_interval(g, pep);
 | |
| 		} else if (usb_endpoint_xfer_int(pep->endpoint.desc)) {
 | |
| 			interval = pep->endpoint.desc->bInterval << 3;
 | |
| 			interval = cdnsp_microframes_to_exponent(g, pep,
 | |
| 								 interval,
 | |
| 								 3, 10);
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 	}
 | |
| 
 | |
| 	return interval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
 | |
|  * High speed endpoint descriptors can define "the number of additional
 | |
|  * transaction opportunities per microframe", but that goes in the Max Burst
 | |
|  * endpoint context field.
 | |
|  */
 | |
| static u32 cdnsp_get_endpoint_mult(struct usb_gadget *g, struct cdnsp_ep *pep)
 | |
| {
 | |
| 	if (g->speed < USB_SPEED_SUPER ||
 | |
| 	    !usb_endpoint_xfer_isoc(pep->endpoint.desc))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pep->endpoint.comp_desc->bmAttributes;
 | |
| }
 | |
| 
 | |
| static u32 cdnsp_get_endpoint_max_burst(struct usb_gadget *g,
 | |
| 					struct cdnsp_ep *pep)
 | |
| {
 | |
| 	/* Super speed and Plus have max burst in ep companion desc */
 | |
| 	if (g->speed >= USB_SPEED_SUPER)
 | |
| 		return pep->endpoint.comp_desc->bMaxBurst;
 | |
| 
 | |
| 	if (g->speed == USB_SPEED_HIGH &&
 | |
| 	    (usb_endpoint_xfer_isoc(pep->endpoint.desc) ||
 | |
| 	     usb_endpoint_xfer_int(pep->endpoint.desc)))
 | |
| 		return (usb_endpoint_maxp(pep->endpoint.desc) & 0x1800) >> 11;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 cdnsp_get_endpoint_type(const struct usb_endpoint_descriptor *desc)
 | |
| {
 | |
| 	int in;
 | |
| 
 | |
| 	in = usb_endpoint_dir_in(desc);
 | |
| 
 | |
| 	switch (usb_endpoint_type(desc)) {
 | |
| 	case USB_ENDPOINT_XFER_CONTROL:
 | |
| 		return CTRL_EP;
 | |
| 	case USB_ENDPOINT_XFER_BULK:
 | |
| 		return in ? BULK_IN_EP : BULK_OUT_EP;
 | |
| 	case USB_ENDPOINT_XFER_ISOC:
 | |
| 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
 | |
| 	case USB_ENDPOINT_XFER_INT:
 | |
| 		return in ? INT_IN_EP : INT_OUT_EP;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the maximum endpoint service interval time (ESIT) payload.
 | |
|  * Basically, this is the maxpacket size, multiplied by the burst size
 | |
|  * and mult size.
 | |
|  */
 | |
| static u32 cdnsp_get_max_esit_payload(struct usb_gadget *g,
 | |
| 				      struct cdnsp_ep *pep)
 | |
| {
 | |
| 	int max_packet;
 | |
| 	int max_burst;
 | |
| 
 | |
| 	/* Only applies for interrupt or isochronous endpoints*/
 | |
| 	if (usb_endpoint_xfer_control(pep->endpoint.desc) ||
 | |
| 	    usb_endpoint_xfer_bulk(pep->endpoint.desc))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* SuperSpeedPlus Isoc ep sending over 48k per EIST. */
 | |
| 	if (g->speed >= USB_SPEED_SUPER_PLUS &&
 | |
| 	    USB_SS_SSP_ISOC_COMP(pep->endpoint.desc->bmAttributes))
 | |
| 		return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval);
 | |
| 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
 | |
| 	else if (g->speed >= USB_SPEED_SUPER)
 | |
| 		return le16_to_cpu(pep->endpoint.comp_desc->wBytesPerInterval);
 | |
| 
 | |
| 	max_packet = usb_endpoint_maxp(pep->endpoint.desc);
 | |
| 	max_burst = usb_endpoint_maxp_mult(pep->endpoint.desc);
 | |
| 
 | |
| 	/* A 0 in max burst means 1 transfer per ESIT */
 | |
| 	return max_packet * max_burst;
 | |
| }
 | |
| 
 | |
| int cdnsp_endpoint_init(struct cdnsp_device *pdev,
 | |
| 			struct cdnsp_ep *pep,
 | |
| 			gfp_t mem_flags)
 | |
| {
 | |
| 	enum cdnsp_ring_type ring_type;
 | |
| 	struct cdnsp_ep_ctx *ep_ctx;
 | |
| 	unsigned int err_count = 0;
 | |
| 	unsigned int avg_trb_len;
 | |
| 	unsigned int max_packet;
 | |
| 	unsigned int max_burst;
 | |
| 	unsigned int interval;
 | |
| 	u32 max_esit_payload;
 | |
| 	unsigned int mult;
 | |
| 	u32 endpoint_type;
 | |
| 	int ret;
 | |
| 
 | |
| 	ep_ctx = pep->in_ctx;
 | |
| 
 | |
| 	endpoint_type = cdnsp_get_endpoint_type(pep->endpoint.desc);
 | |
| 	if (!endpoint_type)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ring_type = usb_endpoint_type(pep->endpoint.desc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get values to fill the endpoint context, mostly from ep descriptor.
 | |
| 	 * The average TRB buffer length for bulk endpoints is unclear as we
 | |
| 	 * have no clue on scatter gather list entry size. For Isoc and Int,
 | |
| 	 * set it to max available.
 | |
| 	 */
 | |
| 	max_esit_payload = cdnsp_get_max_esit_payload(&pdev->gadget, pep);
 | |
| 	interval = cdnsp_get_endpoint_interval(&pdev->gadget, pep);
 | |
| 	mult = cdnsp_get_endpoint_mult(&pdev->gadget, pep);
 | |
| 	max_packet = usb_endpoint_maxp(pep->endpoint.desc);
 | |
| 	max_burst = cdnsp_get_endpoint_max_burst(&pdev->gadget, pep);
 | |
| 	avg_trb_len = max_esit_payload;
 | |
| 
 | |
| 	/* Allow 3 retries for everything but isoc, set CErr = 3. */
 | |
| 	if (!usb_endpoint_xfer_isoc(pep->endpoint.desc))
 | |
| 		err_count = 3;
 | |
| 	if (usb_endpoint_xfer_bulk(pep->endpoint.desc) &&
 | |
| 	    pdev->gadget.speed == USB_SPEED_HIGH)
 | |
| 		max_packet = 512;
 | |
| 	/* Controller spec indicates that ctrl ep avg TRB Length should be 8. */
 | |
| 	if (usb_endpoint_xfer_control(pep->endpoint.desc))
 | |
| 		avg_trb_len = 8;
 | |
| 
 | |
| 	/* Set up the endpoint ring. */
 | |
| 	pep->ring = cdnsp_ring_alloc(pdev, 2, ring_type, max_packet, mem_flags);
 | |
| 	pep->skip = false;
 | |
| 
 | |
| 	/* Fill the endpoint context */
 | |
| 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
 | |
| 				EP_INTERVAL(interval) | EP_MULT(mult));
 | |
| 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
 | |
| 				MAX_PACKET(max_packet) | MAX_BURST(max_burst) |
 | |
| 				ERROR_COUNT(err_count));
 | |
| 	ep_ctx->deq = cpu_to_le64(pep->ring->first_seg->dma |
 | |
| 				  pep->ring->cycle_state);
 | |
| 
 | |
| 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
 | |
| 				EP_AVG_TRB_LENGTH(avg_trb_len));
 | |
| 
 | |
| 	if (usb_endpoint_xfer_bulk(pep->endpoint.desc) &&
 | |
| 	    pdev->gadget.speed > USB_SPEED_HIGH) {
 | |
| 		ret = cdnsp_alloc_streams(pdev, pep);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void cdnsp_endpoint_zero(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
 | |
| {
 | |
| 	pep->in_ctx->ep_info = 0;
 | |
| 	pep->in_ctx->ep_info2 = 0;
 | |
| 	pep->in_ctx->deq = 0;
 | |
| 	pep->in_ctx->tx_info = 0;
 | |
| }
 | |
| 
 | |
| static int cdnsp_alloc_erst(struct cdnsp_device *pdev,
 | |
| 			    struct cdnsp_ring *evt_ring,
 | |
| 			    struct cdnsp_erst *erst)
 | |
| {
 | |
| 	struct cdnsp_erst_entry *entry;
 | |
| 	struct cdnsp_segment *seg;
 | |
| 	unsigned int val;
 | |
| 	size_t size;
 | |
| 
 | |
| 	size = sizeof(struct cdnsp_erst_entry) * evt_ring->num_segs;
 | |
| 	erst->entries = dma_alloc_coherent(pdev->dev, size,
 | |
| 					   &erst->erst_dma_addr, GFP_KERNEL);
 | |
| 	if (!erst->entries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	erst->num_entries = evt_ring->num_segs;
 | |
| 
 | |
| 	seg = evt_ring->first_seg;
 | |
| 	for (val = 0; val < evt_ring->num_segs; val++) {
 | |
| 		entry = &erst->entries[val];
 | |
| 		entry->seg_addr = cpu_to_le64(seg->dma);
 | |
| 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
 | |
| 		entry->rsvd = 0;
 | |
| 		seg = seg->next;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cdnsp_free_erst(struct cdnsp_device *pdev, struct cdnsp_erst *erst)
 | |
| {
 | |
| 	size_t size = sizeof(struct cdnsp_erst_entry) * (erst->num_entries);
 | |
| 	struct device *dev = pdev->dev;
 | |
| 
 | |
| 	if (erst->entries)
 | |
| 		dma_free_coherent(dev, size, erst->entries,
 | |
| 				  erst->erst_dma_addr);
 | |
| 
 | |
| 	erst->entries = NULL;
 | |
| }
 | |
| 
 | |
| void cdnsp_mem_cleanup(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	struct device *dev = pdev->dev;
 | |
| 
 | |
| 	cdnsp_free_priv_device(pdev);
 | |
| 	cdnsp_free_erst(pdev, &pdev->erst);
 | |
| 
 | |
| 	if (pdev->event_ring)
 | |
| 		cdnsp_ring_free(pdev, pdev->event_ring);
 | |
| 
 | |
| 	pdev->event_ring = NULL;
 | |
| 
 | |
| 	if (pdev->cmd_ring)
 | |
| 		cdnsp_ring_free(pdev, pdev->cmd_ring);
 | |
| 
 | |
| 	pdev->cmd_ring = NULL;
 | |
| 
 | |
| 	dma_pool_destroy(pdev->segment_pool);
 | |
| 	pdev->segment_pool = NULL;
 | |
| 	dma_pool_destroy(pdev->device_pool);
 | |
| 	pdev->device_pool = NULL;
 | |
| 
 | |
| 	dma_free_coherent(dev, sizeof(*pdev->dcbaa),
 | |
| 			  pdev->dcbaa, pdev->dcbaa->dma);
 | |
| 
 | |
| 	pdev->dcbaa = NULL;
 | |
| 
 | |
| 	pdev->usb2_port.exist = 0;
 | |
| 	pdev->usb3_port.exist = 0;
 | |
| 	pdev->usb2_port.port_num = 0;
 | |
| 	pdev->usb3_port.port_num = 0;
 | |
| 	pdev->active_port = NULL;
 | |
| }
 | |
| 
 | |
| static void cdnsp_set_event_deq(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	dma_addr_t deq;
 | |
| 	u64 temp;
 | |
| 
 | |
| 	deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
 | |
| 				    pdev->event_ring->dequeue);
 | |
| 
 | |
| 	/* Update controller event ring dequeue pointer */
 | |
| 	temp = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
 | |
| 	temp &= ERST_PTR_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't clear the EHB bit (which is RW1C) because
 | |
| 	 * there might be more events to service.
 | |
| 	 */
 | |
| 	temp &= ~ERST_EHB;
 | |
| 
 | |
| 	cdnsp_write_64(((u64)deq & (u64)~ERST_PTR_MASK) | temp,
 | |
| 		       &pdev->ir_set->erst_dequeue);
 | |
| }
 | |
| 
 | |
| static void cdnsp_add_in_port(struct cdnsp_device *pdev,
 | |
| 			      struct cdnsp_port *port,
 | |
| 			      __le32 __iomem *addr)
 | |
| {
 | |
| 	u32 temp, port_offset, port_count;
 | |
| 
 | |
| 	temp = readl(addr);
 | |
| 	port->maj_rev = CDNSP_EXT_PORT_MAJOR(temp);
 | |
| 	port->min_rev = CDNSP_EXT_PORT_MINOR(temp);
 | |
| 
 | |
| 	/* Port offset and count in the third dword.*/
 | |
| 	temp = readl(addr + 2);
 | |
| 	port_offset = CDNSP_EXT_PORT_OFF(temp);
 | |
| 	port_count = CDNSP_EXT_PORT_COUNT(temp);
 | |
| 
 | |
| 	trace_cdnsp_port_info(addr, port_offset, port_count, port->maj_rev);
 | |
| 
 | |
| 	port->port_num = port_offset;
 | |
| 	port->exist = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
 | |
|  * specify what speeds each port is supposed to be.
 | |
|  */
 | |
| static int cdnsp_setup_port_arrays(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	void __iomem *base;
 | |
| 	u32 offset;
 | |
| 	int i;
 | |
| 
 | |
| 	base = &pdev->cap_regs->hc_capbase;
 | |
| 	offset = cdnsp_find_next_ext_cap(base, 0,
 | |
| 					 EXT_CAP_CFG_DEV_20PORT_CAP_ID);
 | |
| 	pdev->port20_regs = base + offset;
 | |
| 
 | |
| 	offset = cdnsp_find_next_ext_cap(base, 0, D_XEC_CFG_3XPORT_CAP);
 | |
| 	pdev->port3x_regs =  base + offset;
 | |
| 
 | |
| 	offset = 0;
 | |
| 	base = &pdev->cap_regs->hc_capbase;
 | |
| 
 | |
| 	/* Driver expects max 2 extended protocol capability. */
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		u32 temp;
 | |
| 
 | |
| 		offset = cdnsp_find_next_ext_cap(base, offset,
 | |
| 						 EXT_CAPS_PROTOCOL);
 | |
| 		temp = readl(base + offset);
 | |
| 
 | |
| 		if (CDNSP_EXT_PORT_MAJOR(temp) == 0x03 &&
 | |
| 		    !pdev->usb3_port.port_num)
 | |
| 			cdnsp_add_in_port(pdev, &pdev->usb3_port,
 | |
| 					  base + offset);
 | |
| 
 | |
| 		if (CDNSP_EXT_PORT_MAJOR(temp) == 0x02 &&
 | |
| 		    !pdev->usb2_port.port_num)
 | |
| 			cdnsp_add_in_port(pdev, &pdev->usb2_port,
 | |
| 					  base + offset);
 | |
| 	}
 | |
| 
 | |
| 	if (!pdev->usb2_port.exist || !pdev->usb3_port.exist) {
 | |
| 		dev_err(pdev->dev, "Error: Only one port detected\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	trace_cdnsp_init("Found USB 2.0 ports and  USB 3.0 ports.");
 | |
| 
 | |
| 	pdev->usb2_port.regs = (struct cdnsp_port_regs __iomem *)
 | |
| 			       (&pdev->op_regs->port_reg_base + NUM_PORT_REGS *
 | |
| 				(pdev->usb2_port.port_num - 1));
 | |
| 
 | |
| 	pdev->usb3_port.regs = (struct cdnsp_port_regs __iomem *)
 | |
| 			       (&pdev->op_regs->port_reg_base + NUM_PORT_REGS *
 | |
| 				(pdev->usb3_port.port_num - 1));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize memory for CDNSP (one-time init).
 | |
|  *
 | |
|  * Program the PAGESIZE register, initialize the device context array, create
 | |
|  * device contexts, set up a command ring segment, create event
 | |
|  * ring (one for now).
 | |
|  */
 | |
| int cdnsp_mem_init(struct cdnsp_device *pdev)
 | |
| {
 | |
| 	struct device *dev = pdev->dev;
 | |
| 	int ret = -ENOMEM;
 | |
| 	unsigned int val;
 | |
| 	dma_addr_t dma;
 | |
| 	u32 page_size;
 | |
| 	u64 val_64;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use 4K pages, since that's common and the minimum the
 | |
| 	 * controller supports
 | |
| 	 */
 | |
| 	page_size = 1 << 12;
 | |
| 
 | |
| 	val = readl(&pdev->op_regs->config_reg);
 | |
| 	val |= ((val & ~MAX_DEVS) | CDNSP_DEV_MAX_SLOTS) | CONFIG_U3E;
 | |
| 	writel(val, &pdev->op_regs->config_reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Doorbell array must be physically contiguous
 | |
| 	 * and 64-byte (cache line) aligned.
 | |
| 	 */
 | |
| 	pdev->dcbaa = dma_alloc_coherent(dev, sizeof(*pdev->dcbaa),
 | |
| 					 &dma, GFP_KERNEL);
 | |
| 	if (!pdev->dcbaa)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pdev->dcbaa->dma = dma;
 | |
| 
 | |
| 	cdnsp_write_64(dma, &pdev->op_regs->dcbaa_ptr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the ring segment pool.  The ring must be a contiguous
 | |
| 	 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
 | |
| 	 * however, the command ring segment needs 64-byte aligned segments
 | |
| 	 * and our use of dma addresses in the trb_address_map radix tree needs
 | |
| 	 * TRB_SEGMENT_SIZE alignment, so driver pick the greater alignment
 | |
| 	 * need.
 | |
| 	 */
 | |
| 	pdev->segment_pool = dma_pool_create("CDNSP ring segments", dev,
 | |
| 					     TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE,
 | |
| 					     page_size);
 | |
| 	if (!pdev->segment_pool)
 | |
| 		goto release_dcbaa;
 | |
| 
 | |
| 	pdev->device_pool = dma_pool_create("CDNSP input/output contexts", dev,
 | |
| 					    CDNSP_CTX_SIZE, 64, page_size);
 | |
| 	if (!pdev->device_pool)
 | |
| 		goto destroy_segment_pool;
 | |
| 
 | |
| 
 | |
| 	/* Set up the command ring to have one segments for now. */
 | |
| 	pdev->cmd_ring = cdnsp_ring_alloc(pdev, 1, TYPE_COMMAND, 0, GFP_KERNEL);
 | |
| 	if (!pdev->cmd_ring)
 | |
| 		goto destroy_device_pool;
 | |
| 
 | |
| 	/* Set the address in the Command Ring Control register */
 | |
| 	val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
 | |
| 	val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
 | |
| 		 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
 | |
| 		 pdev->cmd_ring->cycle_state;
 | |
| 	cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
 | |
| 
 | |
| 	val = readl(&pdev->cap_regs->db_off);
 | |
| 	val &= DBOFF_MASK;
 | |
| 	pdev->dba = (void __iomem *)pdev->cap_regs + val;
 | |
| 
 | |
| 	/* Set ir_set to interrupt register set 0 */
 | |
| 	pdev->ir_set = &pdev->run_regs->ir_set[0];
 | |
| 
 | |
| 	/*
 | |
| 	 * Event ring setup: Allocate a normal ring, but also setup
 | |
| 	 * the event ring segment table (ERST).
 | |
| 	 */
 | |
| 	pdev->event_ring = cdnsp_ring_alloc(pdev, ERST_NUM_SEGS, TYPE_EVENT,
 | |
| 					    0, GFP_KERNEL);
 | |
| 	if (!pdev->event_ring)
 | |
| 		goto free_cmd_ring;
 | |
| 
 | |
| 	ret = cdnsp_alloc_erst(pdev, pdev->event_ring, &pdev->erst);
 | |
| 	if (ret)
 | |
| 		goto free_event_ring;
 | |
| 
 | |
| 	/* Set ERST count with the number of entries in the segment table. */
 | |
| 	val = readl(&pdev->ir_set->erst_size);
 | |
| 	val &= ERST_SIZE_MASK;
 | |
| 	val |= ERST_NUM_SEGS;
 | |
| 	writel(val, &pdev->ir_set->erst_size);
 | |
| 
 | |
| 	/* Set the segment table base address. */
 | |
| 	val_64 = cdnsp_read_64(&pdev->ir_set->erst_base);
 | |
| 	val_64 &= ERST_PTR_MASK;
 | |
| 	val_64 |= (pdev->erst.erst_dma_addr & (u64)~ERST_PTR_MASK);
 | |
| 	cdnsp_write_64(val_64, &pdev->ir_set->erst_base);
 | |
| 
 | |
| 	/* Set the event ring dequeue address. */
 | |
| 	cdnsp_set_event_deq(pdev);
 | |
| 
 | |
| 	ret = cdnsp_setup_port_arrays(pdev);
 | |
| 	if (ret)
 | |
| 		goto free_erst;
 | |
| 
 | |
| 	ret = cdnsp_alloc_priv_device(pdev);
 | |
| 	if (ret) {
 | |
| 		dev_err(pdev->dev,
 | |
| 			"Could not allocate cdnsp_device data structures\n");
 | |
| 		goto free_erst;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_erst:
 | |
| 	cdnsp_free_erst(pdev, &pdev->erst);
 | |
| free_event_ring:
 | |
| 	cdnsp_ring_free(pdev, pdev->event_ring);
 | |
| free_cmd_ring:
 | |
| 	cdnsp_ring_free(pdev, pdev->cmd_ring);
 | |
| destroy_device_pool:
 | |
| 	dma_pool_destroy(pdev->device_pool);
 | |
| destroy_segment_pool:
 | |
| 	dma_pool_destroy(pdev->segment_pool);
 | |
| release_dcbaa:
 | |
| 	dma_free_coherent(dev, sizeof(*pdev->dcbaa), pdev->dcbaa,
 | |
| 			  pdev->dcbaa->dma);
 | |
| 
 | |
| 	cdnsp_reset(pdev);
 | |
| 
 | |
| 	return ret;
 | |
| }
 |