forked from mirrors/linux
		
	Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
		
			
				
	
	
		
			110 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			110 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* $Id: timer.h,v 1.21 1999/04/20 13:22:51 anton Exp $
 | 
						|
 * timer.h:  Definitions for the timer chips on the Sparc.
 | 
						|
 *
 | 
						|
 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/config.h>
 | 
						|
 | 
						|
#ifndef _SPARC_TIMER_H
 | 
						|
#define _SPARC_TIMER_H
 | 
						|
 | 
						|
#include <asm/system.h>  /* For SUN4M_NCPUS */
 | 
						|
#include <asm/sun4paddr.h>
 | 
						|
#include <asm/btfixup.h>
 | 
						|
 | 
						|
/* Timer structures. The interrupt timer has two properties which
 | 
						|
 * are the counter (which is handled in do_timer in sched.c) and the limit.
 | 
						|
 * This limit is where the timer's counter 'wraps' around. Oddly enough,
 | 
						|
 * the sun4c timer when it hits the limit wraps back to 1 and not zero
 | 
						|
 * thus when calculating the value at which it will fire a microsecond you
 | 
						|
 * must adjust by one.  Thanks SUN for designing such great hardware ;(
 | 
						|
 */
 | 
						|
 | 
						|
/* Note that I am only going to use the timer that interrupts at
 | 
						|
 * Sparc IRQ 10.  There is another one available that can fire at
 | 
						|
 * IRQ 14. Currently it is left untouched, we keep the PROM's limit
 | 
						|
 * register value and let the prom take these interrupts.  This allows
 | 
						|
 * L1-A to work.
 | 
						|
 */
 | 
						|
 | 
						|
struct sun4c_timer_info {
 | 
						|
  __volatile__ unsigned int cur_count10;
 | 
						|
  __volatile__ unsigned int timer_limit10;
 | 
						|
  __volatile__ unsigned int cur_count14;
 | 
						|
  __volatile__ unsigned int timer_limit14;
 | 
						|
};
 | 
						|
 | 
						|
#define SUN4C_TIMER_PHYSADDR   0xf3000000
 | 
						|
#ifdef CONFIG_SUN4
 | 
						|
#define SUN_TIMER_PHYSADDR SUN4_300_TIMER_PHYSADDR
 | 
						|
#else
 | 
						|
#define SUN_TIMER_PHYSADDR SUN4C_TIMER_PHYSADDR
 | 
						|
#endif
 | 
						|
 | 
						|
/* A sun4m has two blocks of registers which are probably of the same
 | 
						|
 * structure. LSI Logic's L64851 is told to _decrement_ from the limit
 | 
						|
 * value. Aurora behaves similarly but its limit value is compacted in
 | 
						|
 * other fashion (it's wider). Documented fields are defined here.
 | 
						|
 */
 | 
						|
 | 
						|
/* As with the interrupt register, we have two classes of timer registers
 | 
						|
 * which are per-cpu and master.  Per-cpu timers only hit that cpu and are
 | 
						|
 * only level 14 ticks, master timer hits all cpus and is level 10.
 | 
						|
 */
 | 
						|
 | 
						|
#define SUN4M_PRM_CNT_L       0x80000000
 | 
						|
#define SUN4M_PRM_CNT_LVALUE  0x7FFFFC00
 | 
						|
 | 
						|
struct sun4m_timer_percpu_info {
 | 
						|
  __volatile__ unsigned int l14_timer_limit;    /* Initial value is 0x009c4000 */
 | 
						|
  __volatile__ unsigned int l14_cur_count;
 | 
						|
 | 
						|
  /* This register appears to be write only and/or inaccessible
 | 
						|
   * on Uni-Processor sun4m machines.
 | 
						|
   */
 | 
						|
  __volatile__ unsigned int l14_limit_noclear;  /* Data access error is here */
 | 
						|
 | 
						|
  __volatile__ unsigned int cntrl;            /* =1 after POST on Aurora */
 | 
						|
  __volatile__ unsigned char space[PAGE_SIZE - 16];
 | 
						|
};
 | 
						|
 | 
						|
struct sun4m_timer_regs {
 | 
						|
	struct sun4m_timer_percpu_info cpu_timers[SUN4M_NCPUS];
 | 
						|
	volatile unsigned int l10_timer_limit;
 | 
						|
	volatile unsigned int l10_cur_count;
 | 
						|
 | 
						|
	/* Again, this appears to be write only and/or inaccessible
 | 
						|
	 * on uni-processor sun4m machines.
 | 
						|
	 */
 | 
						|
	volatile unsigned int l10_limit_noclear;
 | 
						|
 | 
						|
	/* This register too, it must be magic. */
 | 
						|
	volatile unsigned int foobar;
 | 
						|
 | 
						|
	volatile unsigned int cfg;     /* equals zero at boot time... */
 | 
						|
};
 | 
						|
 | 
						|
extern struct sun4m_timer_regs *sun4m_timers;
 | 
						|
 | 
						|
#define SUN4D_PRM_CNT_L       0x80000000
 | 
						|
#define SUN4D_PRM_CNT_LVALUE  0x7FFFFC00
 | 
						|
 | 
						|
struct sun4d_timer_regs {
 | 
						|
	volatile unsigned int l10_timer_limit;
 | 
						|
	volatile unsigned int l10_cur_countx;
 | 
						|
	volatile unsigned int l10_limit_noclear;
 | 
						|
	volatile unsigned int ctrl;
 | 
						|
	volatile unsigned int l10_cur_count;
 | 
						|
};
 | 
						|
 | 
						|
extern struct sun4d_timer_regs *sun4d_timers;
 | 
						|
 | 
						|
extern __volatile__ unsigned int *master_l10_counter;
 | 
						|
extern __volatile__ unsigned int *master_l10_limit;
 | 
						|
 | 
						|
/* FIXME: Make do_[gs]ettimeofday btfixup calls */
 | 
						|
BTFIXUPDEF_CALL(int, bus_do_settimeofday, struct timespec *tv)
 | 
						|
#define bus_do_settimeofday(tv) BTFIXUP_CALL(bus_do_settimeofday)(tv)
 | 
						|
 | 
						|
#endif /* !(_SPARC_TIMER_H) */
 |