forked from mirrors/linux
		
	 f8e08a8466
			
		
	
	
		f8e08a8466
		
	
	
	
	
		
			
			Since we only access reiserfs_key ->u.k_offset_v2 guts in four helper functions, we are free to sanitize those, as long as - layout of the structure is unchanged (it's on-disk object) - behaviour of these helpers is same as before. Patch kills the mess with endianness-dependent bitfields and replaces them with a single __le64. Helpers are switched to straightforward shift/and/or. Benefits: - exact same definitions for little- and big-endian architectures; no ifdefs in sight. - generate the same code on little-endian and improved on big-endian. - doesn't rely on lousy bitfields handling in gcc codegenerator. - happens to be standard C (unsigned long long is not a valid type for a bitfield; it's a gccism and not well-implemented one, at that). Signed-off-by: Al Viro <viro@parcelfarce.linux.theplanet.co.uk> Cc: <reiserfs-dev@namesys.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			2220 lines
		
	
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2220 lines
		
	
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
 | |
|  */
 | |
| 
 | |
| 				/* this file has an amazingly stupid
 | |
|                                    name, yura please fix it to be
 | |
|                                    reiserfs.h, and merge all the rest
 | |
|                                    of our .h files that are in this
 | |
|                                    directory into it.  */
 | |
| 
 | |
| 
 | |
| #ifndef _LINUX_REISER_FS_H
 | |
| #define _LINUX_REISER_FS_H
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #ifdef __KERNEL__
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <asm/unaligned.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/smp_lock.h>
 | |
| #include <linux/buffer_head.h>
 | |
| #include <linux/reiserfs_fs_i.h>
 | |
| #include <linux/reiserfs_fs_sb.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *  include/linux/reiser_fs.h
 | |
|  *
 | |
|  *  Reiser File System constants and structures
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* in reading the #defines, it may help to understand that they employ
 | |
|    the following abbreviations:
 | |
| 
 | |
|    B = Buffer
 | |
|    I = Item header
 | |
|    H = Height within the tree (should be changed to LEV)
 | |
|    N = Number of the item in the node
 | |
|    STAT = stat data
 | |
|    DEH = Directory Entry Header
 | |
|    EC = Entry Count
 | |
|    E = Entry number
 | |
|    UL = Unsigned Long
 | |
|    BLKH = BLocK Header
 | |
|    UNFM = UNForMatted node
 | |
|    DC = Disk Child
 | |
|    P = Path
 | |
| 
 | |
|    These #defines are named by concatenating these abbreviations,
 | |
|    where first comes the arguments, and last comes the return value,
 | |
|    of the macro.
 | |
| 
 | |
| */
 | |
| 
 | |
| #define USE_INODE_GENERATION_COUNTER
 | |
| 
 | |
| #define REISERFS_PREALLOCATE
 | |
| #define DISPLACE_NEW_PACKING_LOCALITIES
 | |
| #define PREALLOCATION_SIZE 9
 | |
| 
 | |
| /* n must be power of 2 */
 | |
| #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
 | |
| 
 | |
| // to be ok for alpha and others we have to align structures to 8 byte
 | |
| // boundary.
 | |
| // FIXME: do not change 4 by anything else: there is code which relies on that
 | |
| #define ROUND_UP(x) _ROUND_UP(x,8LL)
 | |
| 
 | |
| /* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
 | |
| ** messages.
 | |
| */
 | |
| #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 
 | |
| 
 | |
| void reiserfs_warning (struct super_block *s, const char * fmt, ...);
 | |
| /* assertions handling */
 | |
| 
 | |
| /** always check a condition and panic if it's false. */
 | |
| #define RASSERT( cond, format, args... )					\
 | |
| if( !( cond ) ) 								\
 | |
|   reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at "	\
 | |
| 		  __FILE__ ":%i:%s: " format "\n",		\
 | |
| 		  in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
 | |
| 
 | |
| #if defined( CONFIG_REISERFS_CHECK )
 | |
| #define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
 | |
| #else
 | |
| #define RFALSE( cond, format, args... ) do {;} while( 0 )
 | |
| #endif
 | |
| 
 | |
| #define CONSTF __attribute_const__
 | |
| /*
 | |
|  * Disk Data Structures
 | |
|  */
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                             SUPER BLOCK                                 */
 | |
| /***************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
 | |
|  * the version in RAM is part of a larger structure containing fields never written to disk.
 | |
|  */
 | |
| #define UNSET_HASH 0 // read_super will guess about, what hash names
 | |
|                      // in directories were sorted with
 | |
| #define TEA_HASH  1
 | |
| #define YURA_HASH 2
 | |
| #define R5_HASH   3
 | |
| #define DEFAULT_HASH R5_HASH
 | |
| 
 | |
| 
 | |
| struct journal_params {
 | |
|     __le32 jp_journal_1st_block;	      /* where does journal start from on its
 | |
| 				       * device */
 | |
|     __le32 jp_journal_dev;	      /* journal device st_rdev */
 | |
|     __le32 jp_journal_size;	      /* size of the journal */
 | |
|     __le32 jp_journal_trans_max;	      /* max number of blocks in a transaction. */
 | |
|     __le32 jp_journal_magic; 	      /* random value made on fs creation (this
 | |
| 				       * was sb_journal_block_count) */
 | |
|     __le32 jp_journal_max_batch;	      /* max number of blocks to batch into a
 | |
| 				       * trans */
 | |
|     __le32 jp_journal_max_commit_age;  /* in seconds, how old can an async
 | |
| 				       * commit be */
 | |
|     __le32 jp_journal_max_trans_age;   /* in seconds, how old can a transaction
 | |
| 				       * be */
 | |
| };
 | |
| 
 | |
| /* this is the super from 3.5.X, where X >= 10 */
 | |
| struct reiserfs_super_block_v1
 | |
| {
 | |
|     __le32 s_block_count;	   /* blocks count         */
 | |
|     __le32 s_free_blocks;           /* free blocks count    */
 | |
|     __le32 s_root_block;            /* root block number    */
 | |
|     struct journal_params s_journal;
 | |
|     __le16 s_blocksize;             /* block size */
 | |
|     __le16 s_oid_maxsize;	   /* max size of object id array, see
 | |
| 				    * get_objectid() commentary  */
 | |
|     __le16 s_oid_cursize;	   /* current size of object id array */
 | |
|     __le16 s_umount_state;          /* this is set to 1 when filesystem was
 | |
| 				    * umounted, to 2 - when not */    
 | |
|     char s_magic[10];              /* reiserfs magic string indicates that
 | |
| 				    * file system is reiserfs:
 | |
| 				    * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
 | |
|     __le16 s_fs_state;	           /* it is set to used by fsck to mark which
 | |
| 				    * phase of rebuilding is done */
 | |
|     __le32 s_hash_function_code;    /* indicate, what hash function is being use
 | |
| 				    * to sort names in a directory*/
 | |
|     __le16 s_tree_height;           /* height of disk tree */
 | |
|     __le16 s_bmap_nr;               /* amount of bitmap blocks needed to address
 | |
| 				    * each block of file system */
 | |
|     __le16 s_version;               /* this field is only reliable on filesystem
 | |
| 				    * with non-standard journal */
 | |
|     __le16 s_reserved_for_journal;  /* size in blocks of journal area on main
 | |
| 				    * device, we need to keep after
 | |
| 				    * making fs with non-standard journal */	
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
 | |
| 
 | |
| /* this is the on disk super block */
 | |
| struct reiserfs_super_block
 | |
| {
 | |
|     struct reiserfs_super_block_v1 s_v1;
 | |
|     __le32 s_inode_generation;
 | |
|     __le32 s_flags;                  /* Right now used only by inode-attributes, if enabled */
 | |
|     unsigned char s_uuid[16];       /* filesystem unique identifier */
 | |
|     unsigned char s_label[16];      /* filesystem volume label */
 | |
|     char s_unused[88] ;             /* zero filled by mkreiserfs and
 | |
| 				     * reiserfs_convert_objectid_map_v1()
 | |
| 				     * so any additions must be updated
 | |
| 				     * there as well. */
 | |
| }  __attribute__ ((__packed__));
 | |
| 
 | |
| #define SB_SIZE (sizeof(struct reiserfs_super_block))
 | |
| 
 | |
| #define REISERFS_VERSION_1 0
 | |
| #define REISERFS_VERSION_2 2
 | |
| 
 | |
| 
 | |
| // on-disk super block fields converted to cpu form
 | |
| #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
 | |
| #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
 | |
| #define SB_BLOCKSIZE(s) \
 | |
|         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
 | |
| #define SB_BLOCK_COUNT(s) \
 | |
|         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
 | |
| #define SB_FREE_BLOCKS(s) \
 | |
|         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
 | |
| #define SB_REISERFS_MAGIC(s) \
 | |
|         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
 | |
| #define SB_ROOT_BLOCK(s) \
 | |
|         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
 | |
| #define SB_TREE_HEIGHT(s) \
 | |
|         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
 | |
| #define SB_REISERFS_STATE(s) \
 | |
|         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
 | |
| #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
 | |
| #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
 | |
| 
 | |
| #define PUT_SB_BLOCK_COUNT(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
 | |
| #define PUT_SB_FREE_BLOCKS(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
 | |
| #define PUT_SB_ROOT_BLOCK(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
 | |
| #define PUT_SB_TREE_HEIGHT(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
 | |
| #define PUT_SB_REISERFS_STATE(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 
 | |
| #define PUT_SB_VERSION(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
 | |
| #define PUT_SB_BMAP_NR(s, val) \
 | |
|    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
 | |
| 
 | |
| 
 | |
| #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
 | |
| #define SB_ONDISK_JOURNAL_SIZE(s) \
 | |
|          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
 | |
| #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
 | |
|          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
 | |
| #define SB_ONDISK_JOURNAL_DEVICE(s) \
 | |
|          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
 | |
| #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
 | |
|          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
 | |
| 
 | |
| #define is_block_in_log_or_reserved_area(s, block) \
 | |
|          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
 | |
|          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
 | |
|          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
 | |
|          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 
 | |
| 
 | |
| 
 | |
| 
 | |
| 				/* used by gcc */
 | |
| #define REISERFS_SUPER_MAGIC 0x52654973
 | |
| 				/* used by file system utilities that
 | |
|                                    look at the superblock, etc. */
 | |
| #define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
 | |
| #define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
 | |
| #define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
 | |
| 
 | |
| int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
 | |
| int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
 | |
| int is_reiserfs_jr (struct reiserfs_super_block * rs);
 | |
| 
 | |
| /* ReiserFS leaves the first 64k unused, so that partition labels have
 | |
|    enough space.  If someone wants to write a fancy bootloader that
 | |
|    needs more than 64k, let us know, and this will be increased in size.
 | |
|    This number must be larger than than the largest block size on any
 | |
|    platform, or code will break.  -Hans */
 | |
| #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
 | |
| #define REISERFS_FIRST_BLOCK unused_define
 | |
| #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
 | |
| 
 | |
| /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
 | |
| #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
 | |
| 
 | |
| // reiserfs internal error code (used by search_by_key adn fix_nodes))
 | |
| #define CARRY_ON      0
 | |
| #define REPEAT_SEARCH -1
 | |
| #define IO_ERROR      -2
 | |
| #define NO_DISK_SPACE -3
 | |
| #define NO_BALANCING_NEEDED  (-4)
 | |
| #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
 | |
| #define QUOTA_EXCEEDED -6
 | |
| 
 | |
| typedef __u32 b_blocknr_t;
 | |
| typedef __le32 unp_t;
 | |
| 
 | |
| struct unfm_nodeinfo {
 | |
|     unp_t unfm_nodenum;
 | |
|     unsigned short unfm_freespace;
 | |
| };
 | |
| 
 | |
| /* there are two formats of keys: 3.5 and 3.6
 | |
|  */
 | |
| #define KEY_FORMAT_3_5 0
 | |
| #define KEY_FORMAT_3_6 1
 | |
| 
 | |
| /* there are two stat datas */
 | |
| #define STAT_DATA_V1 0
 | |
| #define STAT_DATA_V2 1
 | |
| 
 | |
| 
 | |
| static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
 | |
| {
 | |
| 	return container_of(inode, struct reiserfs_inode_info, vfs_inode);
 | |
| }
 | |
| 
 | |
| static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
 | |
| {
 | |
| 	return sb->s_fs_info;
 | |
| }
 | |
| 
 | |
| /** this says about version of key of all items (but stat data) the
 | |
|     object consists of */
 | |
| #define get_inode_item_key_version( inode )                                    \
 | |
|     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
 | |
| 
 | |
| #define set_inode_item_key_version( inode, version )                           \
 | |
|          ({ if((version)==KEY_FORMAT_3_6)                                      \
 | |
|                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
 | |
|             else                                                               \
 | |
|                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
 | |
| 
 | |
| #define get_inode_sd_version(inode)                                            \
 | |
|     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
 | |
| 
 | |
| #define set_inode_sd_version(inode, version)                                   \
 | |
|          ({ if((version)==STAT_DATA_V2)                                        \
 | |
|                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
 | |
|             else                                                               \
 | |
|                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
 | |
| 
 | |
| /* This is an aggressive tail suppression policy, I am hoping it
 | |
|    improves our benchmarks. The principle behind it is that percentage
 | |
|    space saving is what matters, not absolute space saving.  This is
 | |
|    non-intuitive, but it helps to understand it if you consider that the
 | |
|    cost to access 4 blocks is not much more than the cost to access 1
 | |
|    block, if you have to do a seek and rotate.  A tail risks a
 | |
|    non-linear disk access that is significant as a percentage of total
 | |
|    time cost for a 4 block file and saves an amount of space that is
 | |
|    less significant as a percentage of space, or so goes the hypothesis.
 | |
|    -Hans */
 | |
| #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
 | |
| (\
 | |
|   (!(n_tail_size)) || \
 | |
|   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
 | |
|    ( (n_file_size) >= (n_block_size) * 4 ) || \
 | |
|    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
 | |
|      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
 | |
|    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
 | |
|      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
 | |
|    ( ( (n_file_size) >= (n_block_size) ) && \
 | |
|      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
 | |
| )
 | |
| 
 | |
| /* Another strategy for tails, this one means only create a tail if all the
 | |
|    file would fit into one DIRECT item.
 | |
|    Primary intention for this one is to increase performance by decreasing
 | |
|    seeking.
 | |
| */   
 | |
| #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
 | |
| (\
 | |
|   (!(n_tail_size)) || \
 | |
|   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
 | |
| )
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * values for s_umount_state field
 | |
|  */
 | |
| #define REISERFS_VALID_FS    1
 | |
| #define REISERFS_ERROR_FS    2
 | |
| 
 | |
| //
 | |
| // there are 5 item types currently
 | |
| //
 | |
| #define TYPE_STAT_DATA 0
 | |
| #define TYPE_INDIRECT 1
 | |
| #define TYPE_DIRECT 2
 | |
| #define TYPE_DIRENTRY 3 
 | |
| #define TYPE_MAXTYPE 3 
 | |
| #define TYPE_ANY 15 // FIXME: comment is required
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                       KEY & ITEM HEAD                                   */
 | |
| /***************************************************************************/
 | |
| 
 | |
| //
 | |
| // directories use this key as well as old files
 | |
| //
 | |
| struct offset_v1 {
 | |
|     __le32 k_offset;
 | |
|     __le32 k_uniqueness;
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| struct offset_v2 {
 | |
| 	__le64 v;
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
 | |
| {
 | |
| 	__u8 type = le64_to_cpu(v2->v) >> 60;
 | |
| 	return (type <= TYPE_MAXTYPE)?type:TYPE_ANY;
 | |
| }
 | |
|  
 | |
| static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
 | |
| {
 | |
| 	v2->v = (v2->v & cpu_to_le64(~0ULL>>4)) | cpu_to_le64((__u64)type<<60);
 | |
| }
 | |
|  
 | |
| static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
 | |
| {
 | |
| 	return le64_to_cpu(v2->v) & (~0ULL>>4);
 | |
| }
 | |
| 
 | |
| static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
 | |
| 	offset &= (~0ULL>>4);
 | |
| 	v2->v = (v2->v & cpu_to_le64(15ULL<<60)) | cpu_to_le64(offset);
 | |
| }
 | |
| 
 | |
| /* Key of an item determines its location in the S+tree, and
 | |
|    is composed of 4 components */
 | |
| struct reiserfs_key {
 | |
|     __le32 k_dir_id;    /* packing locality: by default parent
 | |
| 			  directory object id */
 | |
|     __le32 k_objectid;  /* object identifier */
 | |
|     union {
 | |
| 	struct offset_v1 k_offset_v1;
 | |
| 	struct offset_v2 k_offset_v2;
 | |
|     } __attribute__ ((__packed__)) u;
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| struct in_core_key {
 | |
|     __u32 k_dir_id;    /* packing locality: by default parent
 | |
| 			  directory object id */
 | |
|     __u32 k_objectid;  /* object identifier */
 | |
|     __u64 k_offset;
 | |
|     __u8 k_type;
 | |
| };
 | |
| 
 | |
| struct cpu_key {
 | |
|     struct in_core_key on_disk_key;
 | |
|     int version;
 | |
|     int key_length; /* 3 in all cases but direct2indirect and
 | |
| 		       indirect2direct conversion */
 | |
| };
 | |
| 
 | |
| /* Our function for comparing keys can compare keys of different
 | |
|    lengths.  It takes as a parameter the length of the keys it is to
 | |
|    compare.  These defines are used in determining what is to be passed
 | |
|    to it as that parameter. */
 | |
| #define REISERFS_FULL_KEY_LEN     4
 | |
| #define REISERFS_SHORT_KEY_LEN    2
 | |
| 
 | |
| /* The result of the key compare */
 | |
| #define FIRST_GREATER 1
 | |
| #define SECOND_GREATER -1
 | |
| #define KEYS_IDENTICAL 0
 | |
| #define KEY_FOUND 1
 | |
| #define KEY_NOT_FOUND 0
 | |
| 
 | |
| #define KEY_SIZE (sizeof(struct reiserfs_key))
 | |
| #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
 | |
| 
 | |
| /* return values for search_by_key and clones */
 | |
| #define ITEM_FOUND 1
 | |
| #define ITEM_NOT_FOUND 0
 | |
| #define ENTRY_FOUND 1
 | |
| #define ENTRY_NOT_FOUND 0
 | |
| #define DIRECTORY_NOT_FOUND -1
 | |
| #define REGULAR_FILE_FOUND -2
 | |
| #define DIRECTORY_FOUND -3
 | |
| #define BYTE_FOUND 1
 | |
| #define BYTE_NOT_FOUND 0
 | |
| #define FILE_NOT_FOUND -1
 | |
| 
 | |
| #define POSITION_FOUND 1
 | |
| #define POSITION_NOT_FOUND 0
 | |
| 
 | |
| // return values for reiserfs_find_entry and search_by_entry_key
 | |
| #define NAME_FOUND 1
 | |
| #define NAME_NOT_FOUND 0
 | |
| #define GOTO_PREVIOUS_ITEM 2
 | |
| #define NAME_FOUND_INVISIBLE 3
 | |
| 
 | |
| /*  Everything in the filesystem is stored as a set of items.  The
 | |
|     item head contains the key of the item, its free space (for
 | |
|     indirect items) and specifies the location of the item itself
 | |
|     within the block.  */
 | |
| 
 | |
| struct item_head
 | |
| {
 | |
| 	/* Everything in the tree is found by searching for it based on
 | |
| 	 * its key.*/
 | |
| 	struct reiserfs_key ih_key;
 | |
| 	union {
 | |
| 		/* The free space in the last unformatted node of an
 | |
| 		   indirect item if this is an indirect item.  This
 | |
| 		   equals 0xFFFF iff this is a direct item or stat data
 | |
| 		   item. Note that the key, not this field, is used to
 | |
| 		   determine the item type, and thus which field this
 | |
| 		   union contains. */
 | |
| 		__le16 ih_free_space_reserved;
 | |
| 		/* Iff this is a directory item, this field equals the
 | |
| 		   number of directory entries in the directory item. */
 | |
| 		__le16 ih_entry_count;
 | |
| 	} __attribute__ ((__packed__)) u;
 | |
| 	__le16 ih_item_len;           /* total size of the item body */
 | |
| 	__le16 ih_item_location;      /* an offset to the item body
 | |
| 				      * within the block */
 | |
| 	__le16 ih_version;	     /* 0 for all old items, 2 for new
 | |
| 					ones. Highest bit is set by fsck
 | |
| 					temporary, cleaned after all
 | |
| 					done */
 | |
| } __attribute__ ((__packed__));
 | |
| /* size of item header     */
 | |
| #define IH_SIZE (sizeof(struct item_head))
 | |
| 
 | |
| #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
 | |
| #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
 | |
| #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
 | |
| #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
 | |
| #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
 | |
| 
 | |
| #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
 | |
| #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
 | |
| #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
 | |
| #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
 | |
| #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
 | |
| 
 | |
| 
 | |
| #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
 | |
| 
 | |
| #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
 | |
| #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
 | |
| 
 | |
| /* these operate on indirect items, where you've got an array of ints
 | |
| ** at a possibly unaligned location.  These are a noop on ia32
 | |
| ** 
 | |
| ** p is the array of __u32, i is the index into the array, v is the value
 | |
| ** to store there.
 | |
| */
 | |
| #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
 | |
| #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
 | |
| 
 | |
| //
 | |
| // in old version uniqueness field shows key type
 | |
| //
 | |
| #define V1_SD_UNIQUENESS 0
 | |
| #define V1_INDIRECT_UNIQUENESS 0xfffffffe
 | |
| #define V1_DIRECT_UNIQUENESS 0xffffffff
 | |
| #define V1_DIRENTRY_UNIQUENESS 500
 | |
| #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
 | |
| 
 | |
| //
 | |
| // here are conversion routines
 | |
| //
 | |
| static inline int uniqueness2type (__u32 uniqueness) CONSTF;
 | |
| static inline int uniqueness2type (__u32 uniqueness)
 | |
| {
 | |
|     switch ((int)uniqueness) {
 | |
|     case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
 | |
|     case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
 | |
|     case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
 | |
|     case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
 | |
|     default:
 | |
| 	    reiserfs_warning (NULL, "vs-500: unknown uniqueness %d",
 | |
| 			      uniqueness);
 | |
| 	case V1_ANY_UNIQUENESS:
 | |
| 	    return TYPE_ANY;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline __u32 type2uniqueness (int type) CONSTF;
 | |
| static inline __u32 type2uniqueness (int type)
 | |
| {
 | |
|     switch (type) {
 | |
|     case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
 | |
|     case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
 | |
|     case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
 | |
|     case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
 | |
|     default:
 | |
| 	    reiserfs_warning (NULL, "vs-501: unknown type %d", type);
 | |
| 	case TYPE_ANY:
 | |
| 	    return V1_ANY_UNIQUENESS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| // key is pointer to on disk key which is stored in le, result is cpu,
 | |
| // there is no way to get version of object from key, so, provide
 | |
| // version to these defines
 | |
| //
 | |
| static inline loff_t le_key_k_offset (int version, const struct reiserfs_key * key)
 | |
| {
 | |
|     return (version == KEY_FORMAT_3_5) ?
 | |
|         le32_to_cpu( key->u.k_offset_v1.k_offset ) :
 | |
| 	offset_v2_k_offset( &(key->u.k_offset_v2) );
 | |
| }
 | |
| 
 | |
| static inline loff_t le_ih_k_offset (const struct item_head * ih)
 | |
| {
 | |
|     return le_key_k_offset (ih_version (ih), &(ih->ih_key));
 | |
| }
 | |
| 
 | |
| static inline loff_t le_key_k_type (int version, const struct reiserfs_key * key)
 | |
| {
 | |
|     return (version == KEY_FORMAT_3_5) ?
 | |
|         uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
 | |
| 	offset_v2_k_type( &(key->u.k_offset_v2) );
 | |
| }
 | |
| 
 | |
| static inline loff_t le_ih_k_type (const struct item_head * ih)
 | |
| {
 | |
|     return le_key_k_type (ih_version (ih), &(ih->ih_key));
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void set_le_key_k_offset (int version, struct reiserfs_key * key, loff_t offset)
 | |
| {
 | |
|     (version == KEY_FORMAT_3_5) ?
 | |
|         (void)(key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
 | |
| 	(void)(set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
 | |
| {
 | |
|     set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void set_le_key_k_type (int version, struct reiserfs_key * key, int type)
 | |
| {
 | |
|     (version == KEY_FORMAT_3_5) ?
 | |
|         (void)(key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
 | |
| 	(void)(set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
 | |
| }
 | |
| static inline void set_le_ih_k_type (struct item_head * ih, int type)
 | |
| {
 | |
|     set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
 | |
| }
 | |
| 
 | |
| 
 | |
| #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
 | |
| #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
 | |
| #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
 | |
| #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
 | |
| 
 | |
| //
 | |
| // item header has version.
 | |
| //
 | |
| #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
 | |
| #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
 | |
| #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
 | |
| #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
 | |
| 
 | |
| 
 | |
| 
 | |
| //
 | |
| // key is pointer to cpu key, result is cpu
 | |
| //
 | |
| static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
 | |
| {
 | |
|     return key->on_disk_key.k_offset;
 | |
| }
 | |
| 
 | |
| static inline loff_t cpu_key_k_type (const struct cpu_key * key)
 | |
| {
 | |
|     return key->on_disk_key.k_type;
 | |
| }
 | |
| 
 | |
| static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
 | |
| {
 | |
| 	key->on_disk_key.k_offset = offset;
 | |
| }
 | |
| 
 | |
| static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
 | |
| {
 | |
| 	key->on_disk_key.k_type = type;
 | |
| }
 | |
| 
 | |
| static inline void cpu_key_k_offset_dec (struct cpu_key * key)
 | |
| {
 | |
| 	key->on_disk_key.k_offset --;
 | |
| }
 | |
| 
 | |
| #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
 | |
| #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
 | |
| #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
 | |
| #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
 | |
| 
 | |
| 
 | |
| /* are these used ? */
 | |
| #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
 | |
| #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
 | |
| #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
 | |
| #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
 | |
|     ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
 | |
|           I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
 | |
| 
 | |
| /* maximal length of item */ 
 | |
| #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
 | |
| #define MIN_ITEM_LEN 1
 | |
| 
 | |
| 
 | |
| /* object identifier for root dir */
 | |
| #define REISERFS_ROOT_OBJECTID 2
 | |
| #define REISERFS_ROOT_PARENT_OBJECTID 1
 | |
| extern struct reiserfs_key root_key;
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* 
 | |
|  * Picture represents a leaf of the S+tree
 | |
|  *  ______________________________________________________
 | |
|  * |      |  Array of     |                   |           |
 | |
|  * |Block |  Object-Item  |      F r e e      |  Objects- |
 | |
|  * | head |  Headers      |     S p a c e     |   Items   |
 | |
|  * |______|_______________|___________________|___________|
 | |
|  */
 | |
| 
 | |
| /* Header of a disk block.  More precisely, header of a formatted leaf
 | |
|    or internal node, and not the header of an unformatted node. */
 | |
| struct block_head {       
 | |
|   __le16 blk_level;        /* Level of a block in the tree. */
 | |
|   __le16 blk_nr_item;      /* Number of keys/items in a block. */
 | |
|   __le16 blk_free_space;   /* Block free space in bytes. */
 | |
|   __le16 blk_reserved;
 | |
| 				/* dump this in v4/planA */
 | |
|   struct reiserfs_key  blk_right_delim_key; /* kept only for compatibility */
 | |
| };
 | |
| 
 | |
| #define BLKH_SIZE                     (sizeof(struct block_head))
 | |
| #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
 | |
| #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
 | |
| #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
 | |
| #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
 | |
| #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
 | |
| #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
 | |
| #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
 | |
| #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
 | |
| #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
 | |
| #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
 | |
| 
 | |
| /*
 | |
|  * values for blk_level field of the struct block_head
 | |
|  */
 | |
| 
 | |
| #define FREE_LEVEL 0 /* when node gets removed from the tree its
 | |
| 			blk_level is set to FREE_LEVEL. It is then
 | |
| 			used to see whether the node is still in the
 | |
| 			tree */
 | |
| 
 | |
| #define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level.*/
 | |
| 
 | |
| /* Given the buffer head of a formatted node, resolve to the block head of that node. */
 | |
| #define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
 | |
| /* Number of items that are in buffer. */
 | |
| #define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
 | |
| #define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
 | |
| #define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
 | |
| 
 | |
| #define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
 | |
| #define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
 | |
| #define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
 | |
| 
 | |
| 
 | |
| /* Get right delimiting key. -- little endian */
 | |
| #define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
 | |
| 
 | |
| /* Does the buffer contain a disk leaf. */
 | |
| #define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
 | |
| 
 | |
| /* Does the buffer contain a disk internal node */
 | |
| #define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
 | |
|                                             && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                             STAT DATA                                   */
 | |
| /***************************************************************************/
 | |
| 
 | |
| 
 | |
| //
 | |
| // old stat data is 32 bytes long. We are going to distinguish new one by
 | |
| // different size
 | |
| //
 | |
| struct stat_data_v1
 | |
| {
 | |
|     __le16 sd_mode;	/* file type, permissions */
 | |
|     __le16 sd_nlink;	/* number of hard links */
 | |
|     __le16 sd_uid;		/* owner */
 | |
|     __le16 sd_gid;		/* group */
 | |
|     __le32 sd_size;	/* file size */
 | |
|     __le32 sd_atime;	/* time of last access */
 | |
|     __le32 sd_mtime;	/* time file was last modified  */
 | |
|     __le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
 | |
|     union {
 | |
| 	__le32 sd_rdev;
 | |
| 	__le32 sd_blocks;	/* number of blocks file uses */
 | |
|     } __attribute__ ((__packed__)) u;
 | |
|     __le32 sd_first_direct_byte; /* first byte of file which is stored
 | |
| 				   in a direct item: except that if it
 | |
| 				   equals 1 it is a symlink and if it
 | |
| 				   equals ~(__u32)0 there is no
 | |
| 				   direct item.  The existence of this
 | |
| 				   field really grates on me. Let's
 | |
| 				   replace it with a macro based on
 | |
| 				   sd_size and our tail suppression
 | |
| 				   policy.  Someday.  -Hans */
 | |
| } __attribute__ ((__packed__));
 | |
| 
 | |
| #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
 | |
| #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
 | |
| #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
 | |
| #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
 | |
| #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
 | |
| #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
 | |
| #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
 | |
| #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
 | |
| #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
 | |
| #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
 | |
| #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
 | |
| #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
 | |
| #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
 | |
| #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
 | |
| #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
 | |
| #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
 | |
| #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
 | |
| #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
 | |
| #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
 | |
| #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
 | |
| #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
 | |
| #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
 | |
| #define sd_v1_first_direct_byte(sdp) \
 | |
|                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
 | |
| #define set_sd_v1_first_direct_byte(sdp,v) \
 | |
|                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
 | |
| 
 | |
| #include <linux/ext2_fs.h>
 | |
| 
 | |
| /* inode flags stored in sd_attrs (nee sd_reserved) */
 | |
| 
 | |
| /* we want common flags to have the same values as in ext2,
 | |
|    so chattr(1) will work without problems */
 | |
| #define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
 | |
| #define REISERFS_APPEND_FL    EXT2_APPEND_FL
 | |
| #define REISERFS_SYNC_FL      EXT2_SYNC_FL
 | |
| #define REISERFS_NOATIME_FL   EXT2_NOATIME_FL
 | |
| #define REISERFS_NODUMP_FL    EXT2_NODUMP_FL
 | |
| #define REISERFS_SECRM_FL     EXT2_SECRM_FL
 | |
| #define REISERFS_UNRM_FL      EXT2_UNRM_FL
 | |
| #define REISERFS_COMPR_FL     EXT2_COMPR_FL
 | |
| #define REISERFS_NOTAIL_FL    EXT2_NOTAIL_FL
 | |
| 
 | |
| /* persistent flags that file inherits from the parent directory */
 | |
| #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL |	\
 | |
| 				REISERFS_SYNC_FL |	\
 | |
| 				REISERFS_NOATIME_FL |	\
 | |
| 				REISERFS_NODUMP_FL |	\
 | |
| 				REISERFS_SECRM_FL |	\
 | |
| 				REISERFS_COMPR_FL |	\
 | |
| 				REISERFS_NOTAIL_FL )
 | |
| 
 | |
| /* Stat Data on disk (reiserfs version of UFS disk inode minus the
 | |
|    address blocks) */
 | |
| struct stat_data {
 | |
|     __le16 sd_mode;	/* file type, permissions */
 | |
|     __le16 sd_attrs;     /* persistent inode flags */
 | |
|     __le32 sd_nlink;	/* number of hard links */
 | |
|     __le64 sd_size;	/* file size */
 | |
|     __le32 sd_uid;		/* owner */
 | |
|     __le32 sd_gid;		/* group */
 | |
|     __le32 sd_atime;	/* time of last access */
 | |
|     __le32 sd_mtime;	/* time file was last modified  */
 | |
|     __le32 sd_ctime;	/* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
 | |
|     __le32 sd_blocks;
 | |
|     union {
 | |
| 	__le32 sd_rdev;
 | |
| 	__le32 sd_generation;
 | |
|       //__le32 sd_first_direct_byte;
 | |
|       /* first byte of file which is stored in a
 | |
| 				       direct item: except that if it equals 1
 | |
| 				       it is a symlink and if it equals
 | |
| 				       ~(__u32)0 there is no direct item.  The
 | |
| 				       existence of this field really grates
 | |
| 				       on me. Let's replace it with a macro
 | |
| 				       based on sd_size and our tail
 | |
| 				       suppression policy? */
 | |
|   } __attribute__ ((__packed__)) u;
 | |
| } __attribute__ ((__packed__));
 | |
| //
 | |
| // this is 44 bytes long
 | |
| //
 | |
| #define SD_SIZE (sizeof(struct stat_data))
 | |
| #define SD_V2_SIZE              SD_SIZE
 | |
| #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
 | |
| #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
 | |
| #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
 | |
| /* sd_reserved */
 | |
| /* set_sd_reserved */
 | |
| #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
 | |
| #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
 | |
| #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
 | |
| #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
 | |
| #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
 | |
| #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
 | |
| #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
 | |
| #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
 | |
| #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
 | |
| #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
 | |
| #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
 | |
| #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
 | |
| #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
 | |
| #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
 | |
| #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
 | |
| #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
 | |
| #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
 | |
| #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
 | |
| #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
 | |
| #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
 | |
| #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
 | |
| #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
 | |
| 
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                      DIRECTORY STRUCTURE                                */
 | |
| /***************************************************************************/
 | |
| /* 
 | |
|    Picture represents the structure of directory items
 | |
|    ________________________________________________
 | |
|    |  Array of     |   |     |        |       |   |
 | |
|    | directory     |N-1| N-2 | ....   |   1st |0th|
 | |
|    | entry headers |   |     |        |       |   |
 | |
|    |_______________|___|_____|________|_______|___|
 | |
|                     <----   directory entries         ------>
 | |
| 
 | |
|  First directory item has k_offset component 1. We store "." and ".."
 | |
|  in one item, always, we never split "." and ".." into differing
 | |
|  items.  This makes, among other things, the code for removing
 | |
|  directories simpler. */
 | |
| #define SD_OFFSET  0
 | |
| #define SD_UNIQUENESS 0
 | |
| #define DOT_OFFSET 1
 | |
| #define DOT_DOT_OFFSET 2
 | |
| #define DIRENTRY_UNIQUENESS 500
 | |
| 
 | |
| /* */
 | |
| #define FIRST_ITEM_OFFSET 1
 | |
| 
 | |
| /*
 | |
|    Q: How to get key of object pointed to by entry from entry?  
 | |
| 
 | |
|    A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
 | |
|       of object, entry points to */
 | |
| 
 | |
| /* NOT IMPLEMENTED:   
 | |
|    Directory will someday contain stat data of object */
 | |
| 
 | |
| 
 | |
| 
 | |
| struct reiserfs_de_head
 | |
| {
 | |
|   __le32 deh_offset;		/* third component of the directory entry key */
 | |
|   __le32 deh_dir_id;		/* objectid of the parent directory of the object, that is referenced
 | |
| 					   by directory entry */
 | |
|   __le32 deh_objectid;		/* objectid of the object, that is referenced by directory entry */
 | |
|   __le16 deh_location;		/* offset of name in the whole item */
 | |
|   __le16 deh_state;		/* whether 1) entry contains stat data (for future), and 2) whether
 | |
| 					   entry is hidden (unlinked) */
 | |
| } __attribute__ ((__packed__));
 | |
| #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
 | |
| #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
 | |
| #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
 | |
| #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
 | |
| #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
 | |
| #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
 | |
| 
 | |
| #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
 | |
| #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
 | |
| #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
 | |
| #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
 | |
| #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
 | |
| 
 | |
| /* empty directory contains two entries "." and ".." and their headers */
 | |
| #define EMPTY_DIR_SIZE \
 | |
| (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
 | |
| 
 | |
| /* old format directories have this size when empty */
 | |
| #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
 | |
| 
 | |
| #define DEH_Statdata 0			/* not used now */
 | |
| #define DEH_Visible 2
 | |
| 
 | |
| /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
 | |
| #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
 | |
| #   define ADDR_UNALIGNED_BITS  (3)
 | |
| #endif
 | |
| 
 | |
| /* These are only used to manipulate deh_state.
 | |
|  * Because of this, we'll use the ext2_ bit routines,
 | |
|  * since they are little endian */
 | |
| #ifdef ADDR_UNALIGNED_BITS
 | |
| 
 | |
| #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
 | |
| #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
 | |
| 
 | |
| #   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
 | |
| #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
 | |
| #   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
 | |
| 
 | |
| #else
 | |
| 
 | |
| #   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
 | |
| #   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
 | |
| #   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
 | |
| #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
 | |
| #define mark_de_visible(deh)	    set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
 | |
| #define mark_de_hidden(deh)	    clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
 | |
| 
 | |
| #define de_with_sd(deh)		    test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
 | |
| #define de_visible(deh)	    	    test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
 | |
| #define de_hidden(deh)	    	    !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
 | |
| 
 | |
| extern void make_empty_dir_item_v1 (char * body, __le32 dirid, __le32 objid,
 | |
| 				    __le32 par_dirid, __le32 par_objid);
 | |
| extern void make_empty_dir_item (char * body, __le32 dirid, __le32 objid,
 | |
| 				 __le32 par_dirid, __le32 par_objid);
 | |
| 
 | |
| /* array of the entry headers */
 | |
|  /* get item body */
 | |
| #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
 | |
| #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
 | |
| 
 | |
| /* length of the directory entry in directory item. This define
 | |
|    calculates length of i-th directory entry using directory entry
 | |
|    locations from dir entry head. When it calculates length of 0-th
 | |
|    directory entry, it uses length of whole item in place of entry
 | |
|    location of the non-existent following entry in the calculation.
 | |
|    See picture above.*/
 | |
| /*
 | |
| #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
 | |
| ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
 | |
| */
 | |
| static inline int entry_length (const struct buffer_head * bh, 
 | |
| 								const struct item_head * ih, int pos_in_item)
 | |
| {
 | |
|     struct reiserfs_de_head * deh;
 | |
| 
 | |
|     deh = B_I_DEH (bh, ih) + pos_in_item;
 | |
|     if (pos_in_item)
 | |
| 	return deh_location(deh-1) - deh_location(deh);
 | |
| 
 | |
|     return ih_item_len(ih) - deh_location(deh);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
 | |
| #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
 | |
| 
 | |
| 
 | |
| /* name by bh, ih and entry_num */
 | |
| #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
 | |
| 
 | |
| // two entries per block (at least)
 | |
| #define REISERFS_MAX_NAME(block_size) 255
 | |
| 
 | |
| 
 | |
| /* this structure is used for operations on directory entries. It is
 | |
|    not a disk structure. */
 | |
| /* When reiserfs_find_entry or search_by_entry_key find directory
 | |
|    entry, they return filled reiserfs_dir_entry structure */
 | |
| struct reiserfs_dir_entry
 | |
| {
 | |
|   struct buffer_head * de_bh;
 | |
|   int de_item_num;
 | |
|   struct item_head * de_ih;
 | |
|   int de_entry_num;
 | |
|   struct reiserfs_de_head * de_deh;
 | |
|   int de_entrylen;
 | |
|   int de_namelen;
 | |
|   char * de_name;
 | |
|   char * de_gen_number_bit_string;
 | |
| 
 | |
|   __u32 de_dir_id;
 | |
|   __u32 de_objectid;
 | |
| 
 | |
|   struct cpu_key de_entry_key;
 | |
| };
 | |
|    
 | |
| /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
 | |
| 
 | |
| /* pointer to file name, stored in entry */
 | |
| #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
 | |
| 
 | |
| /* length of name */
 | |
| #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
 | |
| (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
 | |
| 
 | |
| 
 | |
| 
 | |
| /* hash value occupies bits from 7 up to 30 */
 | |
| #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
 | |
| /* generation number occupies 7 bits starting from 0 up to 6 */
 | |
| #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
 | |
| #define MAX_GENERATION_NUMBER  127
 | |
| 
 | |
| #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Picture represents an internal node of the reiserfs tree
 | |
|  *  ______________________________________________________
 | |
|  * |      |  Array of     |  Array of         |  Free     |
 | |
|  * |block |    keys       |  pointers         | space     |
 | |
|  * | head |      N        |      N+1          |           |
 | |
|  * |______|_______________|___________________|___________|
 | |
|  */
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                      DISK CHILD                                         */
 | |
| /***************************************************************************/
 | |
| /* Disk child pointer: The pointer from an internal node of the tree
 | |
|    to a node that is on disk. */
 | |
| struct disk_child {
 | |
|   __le32       dc_block_number;              /* Disk child's block number. */
 | |
|   __le16       dc_size;		            /* Disk child's used space.   */
 | |
|   __le16       dc_reserved;
 | |
| };
 | |
| 
 | |
| #define DC_SIZE (sizeof(struct disk_child))
 | |
| #define dc_block_number(dc_p)	(le32_to_cpu((dc_p)->dc_block_number))
 | |
| #define dc_size(dc_p)		(le16_to_cpu((dc_p)->dc_size))
 | |
| #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
 | |
| #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
 | |
| 
 | |
| /* Get disk child by buffer header and position in the tree node. */
 | |
| #define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
 | |
| ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
 | |
| 
 | |
| /* Get disk child number by buffer header and position in the tree node. */
 | |
| #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
 | |
| #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
 | |
| 
 | |
|  /* maximal value of field child_size in structure disk_child */ 
 | |
|  /* child size is the combined size of all items and their headers */
 | |
| #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
 | |
| 
 | |
| /* amount of used space in buffer (not including block head) */
 | |
| #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
 | |
| 
 | |
| /* max and min number of keys in internal node */
 | |
| #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
 | |
| #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                      PATH STRUCTURES AND DEFINES                        */
 | |
| /***************************************************************************/
 | |
| 
 | |
| 
 | |
| /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
 | |
|    key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
 | |
|    does not find them in the cache it reads them from disk.  For each node search_by_key finds using
 | |
|    reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
 | |
|    position of the block_number of the next node if it is looking through an internal node.  If it
 | |
|    is looking through a leaf node bin_search will find the position of the item which has key either
 | |
|    equal to given key, or which is the maximal key less than the given key. */
 | |
| 
 | |
| struct  path_element  {
 | |
|   struct buffer_head *	pe_buffer;    /* Pointer to the buffer at the path in the tree. */
 | |
|   int         		pe_position;  /* Position in the tree node which is placed in the */
 | |
|                                       /* buffer above.                                  */
 | |
| };
 | |
| 
 | |
| #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
 | |
| #define EXTENDED_MAX_HEIGHT         7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
 | |
| #define FIRST_PATH_ELEMENT_OFFSET   2 /* Must be equal to at least 2. */
 | |
| 
 | |
| #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
 | |
| #define MAX_FEB_SIZE 6   /* this MUST be MAX_HEIGHT + 1. See about FEB below */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* We need to keep track of who the ancestors of nodes are.  When we
 | |
|    perform a search we record which nodes were visited while
 | |
|    descending the tree looking for the node we searched for. This list
 | |
|    of nodes is called the path.  This information is used while
 | |
|    performing balancing.  Note that this path information may become
 | |
|    invalid, and this means we must check it when using it to see if it
 | |
|    is still valid. You'll need to read search_by_key and the comments
 | |
|    in it, especially about decrement_counters_in_path(), to understand
 | |
|    this structure.  
 | |
| 
 | |
| Paths make the code so much harder to work with and debug.... An
 | |
| enormous number of bugs are due to them, and trying to write or modify
 | |
| code that uses them just makes my head hurt.  They are based on an
 | |
| excessive effort to avoid disturbing the precious VFS code.:-( The
 | |
| gods only know how we are going to SMP the code that uses them.
 | |
| znodes are the way! */
 | |
| 
 | |
| #define PATH_READA	0x1 /* do read ahead */
 | |
| #define PATH_READA_BACK 0x2 /* read backwards */
 | |
| 
 | |
| struct  path {
 | |
|   int                   path_length;                      	/* Length of the array above.   */
 | |
|   int			reada;
 | |
|   struct  path_element  path_elements[EXTENDED_MAX_HEIGHT];	/* Array of the path elements.  */
 | |
|   int			pos_in_item;
 | |
| };
 | |
| 
 | |
| #define pos_in_item(path) ((path)->pos_in_item)
 | |
| 
 | |
| #define INITIALIZE_PATH(var) \
 | |
| struct path var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
 | |
| 
 | |
| /* Get path element by path and path position. */
 | |
| #define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
 | |
| 
 | |
| /* Get buffer header at the path by path and path position. */
 | |
| #define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
 | |
| 
 | |
| /* Get position in the element at the path by path and path position. */
 | |
| #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
 | |
| 
 | |
| 
 | |
| #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
 | |
| 				/* you know, to the person who didn't
 | |
|                                    write this the macro name does not
 | |
|                                    at first suggest what it does.
 | |
|                                    Maybe POSITION_FROM_PATH_END? Or
 | |
|                                    maybe we should just focus on
 | |
|                                    dumping paths... -Hans */
 | |
| #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
 | |
| 
 | |
| 
 | |
| #define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
 | |
| 
 | |
| /* in do_balance leaf has h == 0 in contrast with path structure,
 | |
|    where root has level == 0. That is why we need these defines */
 | |
| #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h))	/* tb->S[h] */
 | |
| #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)			/* tb->F[h] or tb->S[0]->b_parent */
 | |
| #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))	
 | |
| #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)		/* tb->S[h]->b_item_order */
 | |
| 
 | |
| #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
 | |
| 
 | |
| #define get_last_bh(path) PATH_PLAST_BUFFER(path)
 | |
| #define get_ih(path) PATH_PITEM_HEAD(path)
 | |
| #define get_item_pos(path) PATH_LAST_POSITION(path)
 | |
| #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
 | |
| #define item_moved(ih,path) comp_items(ih, path)
 | |
| #define path_changed(ih,path) comp_items (ih, path)
 | |
| 
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                       MISC                                              */
 | |
| /***************************************************************************/
 | |
| 
 | |
| /* Size of pointer to the unformatted node. */
 | |
| #define UNFM_P_SIZE (sizeof(unp_t))
 | |
| #define UNFM_P_SHIFT 2
 | |
| 
 | |
| // in in-core inode key is stored on le form
 | |
| #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
 | |
| 
 | |
| #define MAX_UL_INT 0xffffffff
 | |
| #define MAX_INT    0x7ffffff
 | |
| #define MAX_US_INT 0xffff
 | |
| 
 | |
| // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
 | |
| #define U32_MAX (~(__u32)0)
 | |
| 
 | |
| static inline loff_t max_reiserfs_offset (struct inode * inode)
 | |
| {
 | |
|     if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
 | |
| 	return (loff_t)U32_MAX;
 | |
| 
 | |
|     return (loff_t)((~(__u64)0) >> 4);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*#define MAX_KEY_UNIQUENESS	MAX_UL_INT*/
 | |
| #define MAX_KEY_OBJECTID	MAX_UL_INT
 | |
| 
 | |
| 
 | |
| #define MAX_B_NUM  MAX_UL_INT
 | |
| #define MAX_FC_NUM MAX_US_INT
 | |
| 
 | |
| 
 | |
| /* the purpose is to detect overflow of an unsigned short */
 | |
| #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
 | |
| 
 | |
| 
 | |
| /* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
 | |
| #define REISERFS_KERNEL_MEM		0	/* reiserfs kernel memory mode	*/
 | |
| #define REISERFS_USER_MEM		1	/* reiserfs user memory mode		*/
 | |
| 
 | |
| #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
 | |
| #define get_generation(s) atomic_read (&fs_generation(s))
 | |
| #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
 | |
| #define __fs_changed(gen,s) (gen != get_generation (s))
 | |
| #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
 | |
| 
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                  FIXATE NODES                                           */
 | |
| /***************************************************************************/
 | |
| 
 | |
| #define VI_TYPE_LEFT_MERGEABLE 1
 | |
| #define VI_TYPE_RIGHT_MERGEABLE 2
 | |
| 
 | |
| /* To make any changes in the tree we always first find node, that
 | |
|    contains item to be changed/deleted or place to insert a new
 | |
|    item. We call this node S. To do balancing we need to decide what
 | |
|    we will shift to left/right neighbor, or to a new node, where new
 | |
|    item will be etc. To make this analysis simpler we build virtual
 | |
|    node. Virtual node is an array of items, that will replace items of
 | |
|    node S. (For instance if we are going to delete an item, virtual
 | |
|    node does not contain it). Virtual node keeps information about
 | |
|    item sizes and types, mergeability of first and last items, sizes
 | |
|    of all entries in directory item. We use this array of items when
 | |
|    calculating what we can shift to neighbors and how many nodes we
 | |
|    have to have if we do not any shiftings, if we shift to left/right
 | |
|    neighbor or to both. */
 | |
| struct virtual_item
 | |
| {
 | |
|     int vi_index; // index in the array of item operations
 | |
|     unsigned short vi_type;	// left/right mergeability
 | |
|     unsigned short vi_item_len;           /* length of item that it will have after balancing */
 | |
|     struct item_head * vi_ih;
 | |
|     const char * vi_item;     // body of item (old or new)
 | |
|     const void * vi_new_data; // 0 always but paste mode
 | |
|     void * vi_uarea;    // item specific area
 | |
| };
 | |
| 
 | |
| 
 | |
| struct virtual_node
 | |
| {
 | |
|   char * vn_free_ptr;		/* this is a pointer to the free space in the buffer */
 | |
|   unsigned short vn_nr_item;	/* number of items in virtual node */
 | |
|   short vn_size;        	/* size of node , that node would have if it has unlimited size and no balancing is performed */
 | |
|   short vn_mode;		/* mode of balancing (paste, insert, delete, cut) */
 | |
|   short vn_affected_item_num; 
 | |
|   short vn_pos_in_item;
 | |
|   struct item_head * vn_ins_ih;	/* item header of inserted item, 0 for other modes */
 | |
|   const void * vn_data;
 | |
|   struct virtual_item * vn_vi;	/* array of items (including a new one, excluding item to be deleted) */
 | |
| };
 | |
| 
 | |
| /* used by directory items when creating virtual nodes */
 | |
| struct direntry_uarea {
 | |
|     int flags;
 | |
|     __u16 entry_count;
 | |
|     __u16 entry_sizes[1];
 | |
| } __attribute__ ((__packed__)) ;
 | |
| 
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                  TREE BALANCE                                           */
 | |
| /***************************************************************************/
 | |
| 
 | |
| /* This temporary structure is used in tree balance algorithms, and
 | |
|    constructed as we go to the extent that its various parts are
 | |
|    needed.  It contains arrays of nodes that can potentially be
 | |
|    involved in the balancing of node S, and parameters that define how
 | |
|    each of the nodes must be balanced.  Note that in these algorithms
 | |
|    for balancing the worst case is to need to balance the current node
 | |
|    S and the left and right neighbors and all of their parents plus
 | |
|    create a new node.  We implement S1 balancing for the leaf nodes
 | |
|    and S0 balancing for the internal nodes (S1 and S0 are defined in
 | |
|    our papers.)*/
 | |
| 
 | |
| #define MAX_FREE_BLOCK 7	/* size of the array of buffers to free at end of do_balance */
 | |
| 
 | |
| /* maximum number of FEB blocknrs on a single level */
 | |
| #define MAX_AMOUNT_NEEDED 2
 | |
| 
 | |
| /* someday somebody will prefix every field in this struct with tb_ */
 | |
| struct tree_balance
 | |
| {
 | |
|   int tb_mode;
 | |
|   int need_balance_dirty;
 | |
|   struct super_block * tb_sb;
 | |
|   struct reiserfs_transaction_handle *transaction_handle ;
 | |
|   struct path * tb_path;
 | |
|   struct buffer_head * L[MAX_HEIGHT];        /* array of left neighbors of nodes in the path */
 | |
|   struct buffer_head * R[MAX_HEIGHT];        /* array of right neighbors of nodes in the path*/
 | |
|   struct buffer_head * FL[MAX_HEIGHT];       /* array of fathers of the left  neighbors      */
 | |
|   struct buffer_head * FR[MAX_HEIGHT];       /* array of fathers of the right neighbors      */
 | |
|   struct buffer_head * CFL[MAX_HEIGHT];      /* array of common parents of center node and its left neighbor  */
 | |
|   struct buffer_head * CFR[MAX_HEIGHT];      /* array of common parents of center node and its right neighbor */
 | |
| 
 | |
|   struct buffer_head * FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
 | |
| 					     cur_blknum. */
 | |
|   struct buffer_head * used[MAX_FEB_SIZE];
 | |
|   struct buffer_head * thrown[MAX_FEB_SIZE];
 | |
|   int lnum[MAX_HEIGHT];	/* array of number of items which must be
 | |
| 			   shifted to the left in order to balance the
 | |
| 			   current node; for leaves includes item that
 | |
| 			   will be partially shifted; for internal
 | |
| 			   nodes, it is the number of child pointers
 | |
| 			   rather than items. It includes the new item
 | |
| 			   being created. The code sometimes subtracts
 | |
| 			   one to get the number of wholly shifted
 | |
| 			   items for other purposes. */
 | |
|   int rnum[MAX_HEIGHT];	/* substitute right for left in comment above */
 | |
|   int lkey[MAX_HEIGHT];               /* array indexed by height h mapping the key delimiting L[h] and
 | |
| 					       S[h] to its item number within the node CFL[h] */
 | |
|   int rkey[MAX_HEIGHT];               /* substitute r for l in comment above */
 | |
|   int insert_size[MAX_HEIGHT];        /* the number of bytes by we are trying to add or remove from
 | |
| 					       S[h]. A negative value means removing.  */
 | |
|   int blknum[MAX_HEIGHT];             /* number of nodes that will replace node S[h] after
 | |
| 					       balancing on the level h of the tree.  If 0 then S is
 | |
| 					       being deleted, if 1 then S is remaining and no new nodes
 | |
| 					       are being created, if 2 or 3 then 1 or 2 new nodes is
 | |
| 					       being created */
 | |
| 
 | |
|   /* fields that are used only for balancing leaves of the tree */
 | |
|   int cur_blknum;	/* number of empty blocks having been already allocated			*/
 | |
|   int s0num;             /* number of items that fall into left most  node when S[0] splits	*/
 | |
|   int s1num;             /* number of items that fall into first  new node when S[0] splits	*/
 | |
|   int s2num;             /* number of items that fall into second new node when S[0] splits	*/
 | |
|   int lbytes;            /* number of bytes which can flow to the left neighbor from the	left	*/
 | |
|   /* most liquid item that cannot be shifted from S[0] entirely		*/
 | |
|   /* if -1 then nothing will be partially shifted */
 | |
|   int rbytes;            /* number of bytes which will flow to the right neighbor from the right	*/
 | |
|   /* most liquid item that cannot be shifted from S[0] entirely		*/
 | |
|   /* if -1 then nothing will be partially shifted                           */
 | |
|   int s1bytes;		/* number of bytes which flow to the first  new node when S[0] splits	*/
 | |
|             			/* note: if S[0] splits into 3 nodes, then items do not need to be cut	*/
 | |
|   int s2bytes;
 | |
|   struct buffer_head * buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
 | |
|   char * vn_buf;		/* kmalloced memory. Used to create
 | |
| 				   virtual node and keep map of
 | |
| 				   dirtied bitmap blocks */
 | |
|   int vn_buf_size;		/* size of the vn_buf */
 | |
|   struct virtual_node * tb_vn;	/* VN starts after bitmap of bitmap blocks */
 | |
| 
 | |
|   int fs_gen;                  /* saved value of `reiserfs_generation' counter
 | |
| 			          see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
 | |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES
 | |
|   struct in_core_key  key;	      /* key pointer, to pass to block allocator or
 | |
| 				 another low-level subsystem */
 | |
| #endif
 | |
| } ;
 | |
| 
 | |
| /* These are modes of balancing */
 | |
| 
 | |
| /* When inserting an item. */
 | |
| #define M_INSERT	'i'
 | |
| /* When inserting into (directories only) or appending onto an already
 | |
|    existant item. */
 | |
| #define M_PASTE		'p'
 | |
| /* When deleting an item. */
 | |
| #define M_DELETE	'd'
 | |
| /* When truncating an item or removing an entry from a (directory) item. */
 | |
| #define M_CUT 		'c'
 | |
| 
 | |
| /* used when balancing on leaf level skipped (in reiserfsck) */
 | |
| #define M_INTERNAL	'n'
 | |
| 
 | |
| /* When further balancing is not needed, then do_balance does not need
 | |
|    to be called. */
 | |
| #define M_SKIP_BALANCING 		's'
 | |
| #define M_CONVERT	'v'
 | |
| 
 | |
| /* modes of leaf_move_items */
 | |
| #define LEAF_FROM_S_TO_L 0
 | |
| #define LEAF_FROM_S_TO_R 1
 | |
| #define LEAF_FROM_R_TO_L 2
 | |
| #define LEAF_FROM_L_TO_R 3
 | |
| #define LEAF_FROM_S_TO_SNEW 4
 | |
| 
 | |
| #define FIRST_TO_LAST 0
 | |
| #define LAST_TO_FIRST 1
 | |
| 
 | |
| /* used in do_balance for passing parent of node information that has
 | |
|    been gotten from tb struct */
 | |
| struct buffer_info {
 | |
|     struct tree_balance * tb;
 | |
|     struct buffer_head * bi_bh;
 | |
|     struct buffer_head * bi_parent;
 | |
|     int bi_position;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* there are 4 types of items: stat data, directory item, indirect, direct.
 | |
| +-------------------+------------+--------------+------------+
 | |
| |	            |  k_offset  | k_uniqueness | mergeable? |
 | |
| +-------------------+------------+--------------+------------+
 | |
| |     stat data     |	0        |      0       |   no       |
 | |
| +-------------------+------------+--------------+------------+
 | |
| | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       | 
 | |
| | non 1st directory | hash value |              |   yes      |
 | |
| |     item          |            |              |            |
 | |
| +-------------------+------------+--------------+------------+
 | |
| | indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
 | |
| +-------------------+------------+--------------+------------+
 | |
| | direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
 | |
| +-------------------+------------+--------------+------------+
 | |
| */
 | |
| 
 | |
| struct item_operations {
 | |
|     int (*bytes_number) (struct item_head * ih, int block_size);
 | |
|     void (*decrement_key) (struct cpu_key *);
 | |
|     int (*is_left_mergeable) (struct reiserfs_key * ih, unsigned long bsize);
 | |
|     void (*print_item) (struct item_head *, char * item);
 | |
|     void (*check_item) (struct item_head *, char * item);
 | |
| 
 | |
|     int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 
 | |
| 		      int is_affected, int insert_size);
 | |
|     int (*check_left) (struct virtual_item * vi, int free, 
 | |
| 			    int start_skip, int end_skip);
 | |
|     int (*check_right) (struct virtual_item * vi, int free);
 | |
|     int (*part_size) (struct virtual_item * vi, int from, int to);
 | |
|     int (*unit_num) (struct virtual_item * vi);
 | |
|     void (*print_vi) (struct virtual_item * vi);
 | |
| };
 | |
| 
 | |
| 
 | |
| extern struct item_operations * item_ops [TYPE_ANY + 1];
 | |
| 
 | |
| #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
 | |
| #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
 | |
| #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
 | |
| #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
 | |
| #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
 | |
| #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
 | |
| #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
 | |
| #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
 | |
| #define op_unit_num(vi)				     item_ops[(vi)->vi_index]->unit_num (vi)
 | |
| #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
 | |
| 
 | |
| 
 | |
| 
 | |
| #define COMP_SHORT_KEYS comp_short_keys
 | |
| 
 | |
| /* number of blocks pointed to by the indirect item */
 | |
| #define I_UNFM_NUM(p_s_ih)	( ih_item_len(p_s_ih) / UNFM_P_SIZE )
 | |
| 
 | |
| /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
 | |
| #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
 | |
| 
 | |
| /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
 | |
| 
 | |
| 
 | |
| /* get the item header */ 
 | |
| #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
 | |
| 
 | |
| /* get key */
 | |
| #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
 | |
| 
 | |
| /* get the key */
 | |
| #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
 | |
| 
 | |
| /* get item body */
 | |
| #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
 | |
| 
 | |
| /* get the stat data by the buffer header and the item order */
 | |
| #define B_N_STAT_DATA(bh,nr) \
 | |
| ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
 | |
| 
 | |
|     /* following defines use reiserfs buffer header and item header */
 | |
| 
 | |
| /* get stat-data */
 | |
| #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
 | |
| 
 | |
| // this is 3976 for size==4096
 | |
| #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
 | |
| 
 | |
| /* indirect items consist of entries which contain blocknrs, pos
 | |
|    indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
 | |
|    blocknr contained by the entry pos points to */
 | |
| #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
 | |
| #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
 | |
| 
 | |
| struct reiserfs_iget_args {
 | |
|     __u32 objectid ;
 | |
|     __u32 dirid ;
 | |
| } ;
 | |
| 
 | |
| /***************************************************************************/
 | |
| /*                    FUNCTION DECLARATIONS                                */
 | |
| /***************************************************************************/
 | |
| 
 | |
| /*#ifdef __KERNEL__*/
 | |
| #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
 | |
| 
 | |
| #define journal_trans_half(blocksize) \
 | |
| 	((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
 | |
| 
 | |
| /* journal.c see journal.c for all the comments here */
 | |
| 
 | |
| /* first block written in a commit.  */
 | |
| struct reiserfs_journal_desc {
 | |
|   __le32 j_trans_id ;			/* id of commit */
 | |
|   __le32 j_len ;			/* length of commit. len +1 is the commit block */
 | |
|   __le32 j_mount_id ;				/* mount id of this trans*/
 | |
|   __le32 j_realblock[1] ; /* real locations for each block */
 | |
| } ;
 | |
| 
 | |
| #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
 | |
| #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
 | |
| #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
 | |
| 
 | |
| #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
 | |
| #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
 | |
| #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
 | |
| 
 | |
| /* last block written in a commit */
 | |
| struct reiserfs_journal_commit {
 | |
|   __le32 j_trans_id ;			/* must match j_trans_id from the desc block */
 | |
|   __le32 j_len ;			/* ditto */
 | |
|   __le32 j_realblock[1] ; /* real locations for each block */
 | |
| } ;
 | |
| 
 | |
| #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
 | |
| #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
 | |
| #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
 | |
| 
 | |
| #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
 | |
| #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
 | |
| 
 | |
| /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
 | |
| ** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
 | |
| ** and this transaction does not need to be replayed.
 | |
| */
 | |
| struct reiserfs_journal_header {
 | |
|   __le32 j_last_flush_trans_id ;		/* id of last fully flushed transaction */
 | |
|   __le32 j_first_unflushed_offset ;      /* offset in the log of where to start replay after a crash */
 | |
|   __le32 j_mount_id ;
 | |
|   /* 12 */ struct journal_params jh_journal;
 | |
| } ;
 | |
| 
 | |
| /* biggest tunable defines are right here */
 | |
| #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
 | |
| #define JOURNAL_TRANS_MAX_DEFAULT 1024   /* biggest possible single transaction, don't change for now (8/3/99) */
 | |
| #define JOURNAL_TRANS_MIN_DEFAULT 256
 | |
| #define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
 | |
| #define JOURNAL_MIN_RATIO 2
 | |
| #define JOURNAL_MAX_COMMIT_AGE 30 
 | |
| #define JOURNAL_MAX_TRANS_AGE 30
 | |
| #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
 | |
| #ifdef CONFIG_QUOTA
 | |
| #define REISERFS_QUOTA_TRANS_BLOCKS 2	/* We need to update data and inode (atime) */
 | |
| #define REISERFS_QUOTA_INIT_BLOCKS (DQUOT_MAX_WRITES*(JOURNAL_PER_BALANCE_CNT+2)+1)	/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
 | |
| #else
 | |
| #define REISERFS_QUOTA_TRANS_BLOCKS 0
 | |
| #define REISERFS_QUOTA_INIT_BLOCKS 0
 | |
| #endif
 | |
| 
 | |
| /* both of these can be as low as 1, or as high as you want.  The min is the
 | |
| ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
 | |
| ** as needed, and released when transactions are committed.  On release, if 
 | |
| ** the current number of nodes is > max, the node is freed, otherwise, 
 | |
| ** it is put on a free list for faster use later.
 | |
| */
 | |
| #define REISERFS_MIN_BITMAP_NODES 10 
 | |
| #define REISERFS_MAX_BITMAP_NODES 100 
 | |
| 
 | |
| #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
 | |
| #define JBH_HASH_MASK 8191
 | |
| 
 | |
| #define _jhashfn(sb,block)	\
 | |
| 	(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
 | |
| 	 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
 | |
| #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
 | |
| 
 | |
| // We need these to make journal.c code more readable
 | |
| #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
 | |
| #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
 | |
| #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
 | |
| 
 | |
| enum reiserfs_bh_state_bits {
 | |
|     BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
 | |
|     BH_JDirty_wait,
 | |
|     BH_JNew,                     /* disk block was taken off free list before
 | |
|                                   * being in a finished transaction, or
 | |
|                                   * written to disk. Can be reused immed. */
 | |
|     BH_JPrepared,
 | |
|     BH_JRestore_dirty,
 | |
|     BH_JTest, // debugging only will go away
 | |
| };
 | |
| 
 | |
| BUFFER_FNS(JDirty, journaled);
 | |
| TAS_BUFFER_FNS(JDirty, journaled);
 | |
| BUFFER_FNS(JDirty_wait, journal_dirty);
 | |
| TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
 | |
| BUFFER_FNS(JNew, journal_new);
 | |
| TAS_BUFFER_FNS(JNew, journal_new);
 | |
| BUFFER_FNS(JPrepared, journal_prepared);
 | |
| TAS_BUFFER_FNS(JPrepared, journal_prepared);
 | |
| BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
 | |
| TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
 | |
| BUFFER_FNS(JTest, journal_test);
 | |
| TAS_BUFFER_FNS(JTest, journal_test);
 | |
| 
 | |
| /*
 | |
| ** transaction handle which is passed around for all journal calls
 | |
| */
 | |
| struct reiserfs_transaction_handle {
 | |
|   struct super_block *t_super ; /* super for this FS when journal_begin was
 | |
| 				   called. saves calls to reiserfs_get_super
 | |
| 				   also used by nested transactions to make
 | |
| 				   sure they are nesting on the right FS
 | |
| 				   _must_ be first in the handle
 | |
| 				*/
 | |
|   int t_refcount;
 | |
|   int t_blocks_logged ;         /* number of blocks this writer has logged */
 | |
|   int t_blocks_allocated ;      /* number of blocks this writer allocated */
 | |
|   unsigned long t_trans_id ;    /* sanity check, equals the current trans id */
 | |
|   void *t_handle_save ;		/* save existing current->journal_info */
 | |
|   unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
 | |
| 				   should be displaced from others */
 | |
|   struct list_head t_list;
 | |
| } ;
 | |
| 
 | |
| /* used to keep track of ordered and tail writes, attached to the buffer
 | |
|  * head through b_journal_head.
 | |
|  */
 | |
| struct reiserfs_jh {
 | |
|     struct reiserfs_journal_list *jl;
 | |
|     struct buffer_head *bh;
 | |
|     struct list_head list;
 | |
| };
 | |
| 
 | |
| void reiserfs_free_jh(struct buffer_head *bh);
 | |
| int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
 | |
| int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
 | |
| int journal_mark_dirty(struct reiserfs_transaction_handle *, struct super_block *, struct buffer_head *bh) ;
 | |
| 
 | |
| static inline int
 | |
| reiserfs_file_data_log(struct inode *inode) {
 | |
|     if (reiserfs_data_log(inode->i_sb) ||
 | |
|        (REISERFS_I(inode)->i_flags & i_data_log))
 | |
|         return 1 ;
 | |
|     return 0 ;
 | |
| }
 | |
| 
 | |
| static inline int reiserfs_transaction_running(struct super_block *s) {
 | |
|     struct reiserfs_transaction_handle *th = current->journal_info ;
 | |
|     if (th && th->t_super == s)
 | |
|         return 1 ;
 | |
|     if (th && th->t_super == NULL)
 | |
|         BUG();
 | |
|     return 0 ;
 | |
| }
 | |
| 
 | |
| int reiserfs_async_progress_wait(struct super_block *s);
 | |
| 
 | |
| struct reiserfs_transaction_handle *
 | |
| reiserfs_persistent_transaction(struct super_block *, int count);
 | |
| int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
 | |
| int reiserfs_commit_page(struct inode *inode, struct page *page,
 | |
| 		unsigned from, unsigned to);
 | |
| int reiserfs_flush_old_commits(struct super_block *);
 | |
| int reiserfs_commit_for_inode(struct inode *) ;
 | |
| int  reiserfs_inode_needs_commit(struct inode *) ;
 | |
| void reiserfs_update_inode_transaction(struct inode *) ;
 | |
| void reiserfs_wait_on_write_block(struct super_block *s) ;
 | |
| void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
 | |
| void reiserfs_allow_writes(struct super_block *s) ;
 | |
| void reiserfs_check_lock_depth(struct super_block *s, char *caller) ;
 | |
| int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, int wait) ;
 | |
| void reiserfs_restore_prepared_buffer(struct super_block *, struct buffer_head *bh) ;
 | |
| int journal_init(struct super_block *, const char * j_dev_name, int old_format, unsigned int) ;
 | |
| int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
 | |
| int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
 | |
| int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
 | |
| int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
 | |
| int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
 | |
| int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
 | |
| int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
 | |
| int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
 | |
| int journal_join_abort(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
 | |
| void reiserfs_journal_abort (struct super_block *sb, int errno);
 | |
| void reiserfs_abort (struct super_block *sb, int errno, const char *fmt, ...);
 | |
| int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
 | |
| 
 | |
| void add_save_link (struct reiserfs_transaction_handle * th,
 | |
| 					struct inode * inode, int truncate);
 | |
| int remove_save_link (struct inode * inode, int truncate);
 | |
| 
 | |
| /* objectid.c */
 | |
| __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
 | |
| void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
 | |
| int reiserfs_convert_objectid_map_v1(struct super_block *) ;
 | |
| 
 | |
| /* stree.c */
 | |
| int B_IS_IN_TREE(const struct buffer_head *);
 | |
| extern void copy_item_head(struct item_head * p_v_to,
 | |
| 								  const struct item_head * p_v_from);
 | |
| 
 | |
| // first key is in cpu form, second - le
 | |
| extern int  comp_short_keys (const struct reiserfs_key * le_key,
 | |
| 				    const struct cpu_key * cpu_key);
 | |
| extern void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from);
 | |
| 
 | |
| // both are in le form
 | |
| extern int comp_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
 | |
| extern int comp_short_le_keys (const struct reiserfs_key *, const struct reiserfs_key *);
 | |
| 
 | |
| //
 | |
| // get key version from on disk key - kludge
 | |
| //
 | |
| static inline int le_key_version (const struct reiserfs_key * key)
 | |
| {
 | |
|     int type;
 | |
|     
 | |
|     type = offset_v2_k_type( &(key->u.k_offset_v2));
 | |
|     if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
 | |
| 	return KEY_FORMAT_3_5;
 | |
| 
 | |
|     return KEY_FORMAT_3_6;
 | |
| 	
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void copy_key (struct reiserfs_key *to, const struct reiserfs_key *from)
 | |
| {
 | |
|     memcpy (to, from, KEY_SIZE);
 | |
| }
 | |
| 
 | |
| 
 | |
| int comp_items (const struct item_head * stored_ih, const struct path * p_s_path);
 | |
| const struct reiserfs_key * get_rkey (const struct path * p_s_chk_path,
 | |
| 							 const struct super_block  * p_s_sb);
 | |
| int search_by_key (struct super_block *, const struct cpu_key *, 
 | |
| 				   struct path *, int);
 | |
| #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
 | |
| int search_for_position_by_key (struct super_block * p_s_sb, 
 | |
| 								const struct cpu_key * p_s_cpu_key, 
 | |
| 								struct path * p_s_search_path);
 | |
| extern void decrement_bcount (struct buffer_head * p_s_bh);
 | |
| void decrement_counters_in_path (struct path * p_s_search_path);
 | |
| void pathrelse (struct path * p_s_search_path);
 | |
| int reiserfs_check_path(struct path *p) ;
 | |
| void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
 | |
| 
 | |
| int reiserfs_insert_item (struct reiserfs_transaction_handle *th, 
 | |
| 			  struct path * path, 
 | |
| 			  const struct cpu_key * key,
 | |
| 			  struct item_head * ih,
 | |
| 			  struct inode *inode, const char * body);
 | |
| 
 | |
| int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
 | |
| 			      struct path * path,
 | |
| 			      const struct cpu_key * key,
 | |
| 			      struct inode *inode,
 | |
| 			      const char * body, int paste_size);
 | |
| 
 | |
| int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
 | |
| 			    struct path * path,
 | |
| 			    struct cpu_key * key,
 | |
| 			    struct inode * inode,
 | |
| 			    struct page *page,
 | |
| 			    loff_t new_file_size);
 | |
| 
 | |
| int reiserfs_delete_item (struct reiserfs_transaction_handle *th,
 | |
| 			  struct path * path, 
 | |
| 			  const struct cpu_key * key,
 | |
| 			  struct inode * inode, 
 | |
| 			  struct buffer_head  * p_s_un_bh);
 | |
| 
 | |
| void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
 | |
| 			struct inode *inode, struct reiserfs_key * key);
 | |
| int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
 | |
| int reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
 | |
| 			   struct  inode * p_s_inode, struct page *, 
 | |
| 			   int update_timestamps);
 | |
| 
 | |
| #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
 | |
| #define file_size(inode) ((inode)->i_size)
 | |
| #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
 | |
| 
 | |
| #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
 | |
| !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
 | |
| 
 | |
| void padd_item (char * item, int total_length, int length);
 | |
| 
 | |
| /* inode.c */
 | |
| /* args for the create parameter of reiserfs_get_block */
 | |
| #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
 | |
| #define GET_BLOCK_CREATE 1    /* add anything you need to find block */
 | |
| #define GET_BLOCK_NO_HOLE 2   /* return -ENOENT for file holes */
 | |
| #define GET_BLOCK_READ_DIRECT 4  /* read the tail if indirect item not found */
 | |
| #define GET_BLOCK_NO_ISEM     8 /* i_sem is not held, don't preallocate */
 | |
| #define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
 | |
| 
 | |
| int restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
 | |
| void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
 | |
| int reiserfs_find_actor(struct inode * inode, void *p) ;
 | |
| int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
 | |
| void reiserfs_delete_inode (struct inode * inode);
 | |
| int reiserfs_write_inode (struct inode * inode, int) ;
 | |
| int reiserfs_get_block (struct inode * inode, sector_t block, struct buffer_head * bh_result, int create);
 | |
| struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
 | |
| struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
 | |
|                                      int len, int fhtype,
 | |
| 				  int (*acceptable)(void *contect, struct dentry *de),
 | |
| 				  void *context) ;
 | |
| int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp, 
 | |
| 						int connectable );
 | |
| 
 | |
| int reiserfs_truncate_file(struct inode *, int update_timestamps) ;
 | |
| void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
 | |
| 		   int type, int key_length);
 | |
| void make_le_item_head (struct item_head * ih, const struct cpu_key * key, 
 | |
| 			int version,
 | |
| 			loff_t offset, int type, int length, int entry_count);
 | |
| struct inode * reiserfs_iget (struct super_block * s, 
 | |
| 			      const struct cpu_key * key);
 | |
| 
 | |
| 
 | |
| int reiserfs_new_inode (struct reiserfs_transaction_handle *th, 
 | |
| 				   struct inode * dir, int mode, 
 | |
| 				   const char * symname, loff_t i_size,
 | |
| 				   struct dentry *dentry, struct inode *inode);
 | |
| 
 | |
| void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
 | |
|                               struct inode * inode, loff_t size);
 | |
| 
 | |
| static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
 | |
|                                       struct inode *inode)
 | |
| {
 | |
|     reiserfs_update_sd_size(th, inode, inode->i_size) ;
 | |
| }
 | |
| 
 | |
| void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
 | |
| void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
 | |
| int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
 | |
| 
 | |
| /* namei.c */
 | |
| void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
 | |
| int search_by_entry_key (struct super_block * sb, const struct cpu_key * key, 
 | |
| 			 struct path * path, 
 | |
| 			 struct reiserfs_dir_entry * de);
 | |
| struct dentry *reiserfs_get_parent(struct dentry *) ;
 | |
| /* procfs.c */
 | |
| 
 | |
| #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
 | |
| #define REISERFS_PROC_INFO
 | |
| #else
 | |
| #undef REISERFS_PROC_INFO
 | |
| #endif
 | |
| 
 | |
| int reiserfs_proc_info_init( struct super_block *sb );
 | |
| int reiserfs_proc_info_done( struct super_block *sb );
 | |
| struct proc_dir_entry *reiserfs_proc_register_global( char *name, 
 | |
| 													  read_proc_t *func );
 | |
| void reiserfs_proc_unregister_global( const char *name );
 | |
| int reiserfs_proc_info_global_init( void );
 | |
| int reiserfs_proc_info_global_done( void );
 | |
| int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
 | |
| 									 int count, int *eof, void *data );
 | |
| 
 | |
| #if defined( REISERFS_PROC_INFO )
 | |
| 
 | |
| #define PROC_EXP( e )   e
 | |
| 
 | |
| #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
 | |
| #define PROC_INFO_MAX( sb, field, value )								\
 | |
|     __PINFO( sb ).field =												\
 | |
|         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
 | |
| #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
 | |
| #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
 | |
| #define PROC_INFO_BH_STAT( sb, bh, level )							\
 | |
|     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );						\
 | |
|     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );	\
 | |
|     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
 | |
| #else
 | |
| #define PROC_EXP( e )
 | |
| #define VOID_V ( ( void ) 0 )
 | |
| #define PROC_INFO_MAX( sb, field, value ) VOID_V
 | |
| #define PROC_INFO_INC( sb, field ) VOID_V
 | |
| #define PROC_INFO_ADD( sb, field, val ) VOID_V
 | |
| #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
 | |
| #endif
 | |
| 
 | |
| /* dir.c */
 | |
| extern struct inode_operations reiserfs_dir_inode_operations;
 | |
| extern struct inode_operations reiserfs_symlink_inode_operations;
 | |
| extern struct inode_operations reiserfs_special_inode_operations;
 | |
| extern struct file_operations reiserfs_dir_operations;
 | |
| 
 | |
| /* tail_conversion.c */
 | |
| int direct2indirect (struct reiserfs_transaction_handle *, struct inode *, struct path *, struct buffer_head *, loff_t);
 | |
| int indirect2direct (struct reiserfs_transaction_handle *, struct inode *, struct page *, struct path *, const struct cpu_key *, loff_t, char *);
 | |
| void reiserfs_unmap_buffer(struct buffer_head *) ;
 | |
| 
 | |
| 
 | |
| /* file.c */
 | |
| extern struct inode_operations reiserfs_file_inode_operations;
 | |
| extern struct file_operations reiserfs_file_operations;
 | |
| extern struct address_space_operations reiserfs_address_space_operations ;
 | |
| 
 | |
| /* fix_nodes.c */
 | |
| #ifdef CONFIG_REISERFS_CHECK
 | |
| void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s);
 | |
| void reiserfs_kfree (const void * vp, size_t size, struct super_block * s);
 | |
| #else
 | |
| static inline void *reiserfs_kmalloc(size_t size, int flags,
 | |
| 					struct super_block *s)
 | |
| {
 | |
| 	return kmalloc(size, flags);
 | |
| }
 | |
| 
 | |
| static inline void reiserfs_kfree(const void *vp, size_t size,
 | |
| 					struct super_block *s)
 | |
| {
 | |
| 	kfree(vp);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int fix_nodes (int n_op_mode, struct tree_balance * p_s_tb, 
 | |
| 	       struct item_head * p_s_ins_ih, const void *);
 | |
| void unfix_nodes (struct tree_balance *);
 | |
| 
 | |
| 
 | |
| /* prints.c */
 | |
| void reiserfs_panic (struct super_block * s, const char * fmt, ...) __attribute__ ( ( noreturn ) );
 | |
| void reiserfs_info (struct super_block *s, const char * fmt, ...);
 | |
| void reiserfs_debug (struct super_block *s, int level, const char * fmt, ...);
 | |
| void print_indirect_item (struct buffer_head * bh, int item_num);
 | |
| void store_print_tb (struct tree_balance * tb);
 | |
| void print_cur_tb (char * mes);
 | |
| void print_de (struct reiserfs_dir_entry * de);
 | |
| void print_bi (struct buffer_info * bi, char * mes);
 | |
| #define PRINT_LEAF_ITEMS 1   /* print all items */
 | |
| #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
 | |
| #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
 | |
| void print_block (struct buffer_head * bh, ...);
 | |
| void print_bmap (struct super_block * s, int silent);
 | |
| void print_bmap_block (int i, char * data, int size, int silent);
 | |
| /*void print_super_block (struct super_block * s, char * mes);*/
 | |
| void print_objectid_map (struct super_block * s);
 | |
| void print_block_head (struct buffer_head * bh, char * mes);
 | |
| void check_leaf (struct buffer_head * bh);
 | |
| void check_internal (struct buffer_head * bh);
 | |
| void print_statistics (struct super_block * s);
 | |
| char * reiserfs_hashname(int code);
 | |
| 
 | |
| /* lbalance.c */
 | |
| int leaf_move_items (int shift_mode, struct tree_balance * tb, int mov_num, int mov_bytes, struct buffer_head * Snew);
 | |
| int leaf_shift_left (struct tree_balance * tb, int shift_num, int shift_bytes);
 | |
| int leaf_shift_right (struct tree_balance * tb, int shift_num, int shift_bytes);
 | |
| void leaf_delete_items (struct buffer_info * cur_bi, int last_first, int first, int del_num, int del_bytes);
 | |
| void leaf_insert_into_buf (struct buffer_info * bi, int before, 
 | |
|                            struct item_head * inserted_item_ih, const char * inserted_item_body, int zeros_number);
 | |
| void leaf_paste_in_buffer (struct buffer_info * bi, int pasted_item_num, 
 | |
|                            int pos_in_item, int paste_size, const char * body, int zeros_number);
 | |
| void leaf_cut_from_buffer (struct buffer_info * bi, int cut_item_num, int pos_in_item, 
 | |
|                            int cut_size);
 | |
| void leaf_paste_entries (struct buffer_head * bh, int item_num, int before, 
 | |
|                          int new_entry_count, struct reiserfs_de_head * new_dehs, const char * records, int paste_size);
 | |
| /* ibalance.c */
 | |
| int balance_internal (struct tree_balance * , int, int, struct item_head * , 
 | |
|                       struct buffer_head **);
 | |
| 
 | |
| /* do_balance.c */
 | |
| void do_balance_mark_leaf_dirty (struct tree_balance * tb,
 | |
| 					struct buffer_head * bh, int flag);
 | |
| #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
 | |
| #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
 | |
| 
 | |
| void do_balance (struct tree_balance * tb, struct item_head * ih, 
 | |
|                  const char * body, int flag);
 | |
| void reiserfs_invalidate_buffer (struct tree_balance * tb, struct buffer_head * bh);
 | |
| 
 | |
| int get_left_neighbor_position (struct tree_balance * tb, int h);
 | |
| int get_right_neighbor_position (struct tree_balance * tb, int h);
 | |
| void replace_key (struct tree_balance * tb, struct buffer_head *, int, struct buffer_head *, int);
 | |
| void make_empty_node (struct buffer_info *);
 | |
| struct buffer_head * get_FEB (struct tree_balance *);
 | |
| 
 | |
| /* bitmap.c */
 | |
| 
 | |
| /* structure contains hints for block allocator, and it is a container for
 | |
|  * arguments, such as node, search path, transaction_handle, etc. */
 | |
|  struct __reiserfs_blocknr_hint {
 | |
|      struct inode * inode;		/* inode passed to allocator, if we allocate unf. nodes */
 | |
|      long block;			/* file offset, in blocks */
 | |
|      struct in_core_key key;
 | |
|      struct path * path;		/* search path, used by allocator to deternine search_start by
 | |
| 					 * various ways */
 | |
|      struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
 | |
| 					       * bitmap blocks changes  */
 | |
|      b_blocknr_t beg, end;
 | |
|      b_blocknr_t search_start;		/* a field used to transfer search start value (block number)
 | |
| 					 * between different block allocator procedures
 | |
| 					 * (determine_search_start() and others) */
 | |
|     int prealloc_size;			/* is set in determine_prealloc_size() function, used by underlayed
 | |
| 					 * function that do actual allocation */
 | |
| 
 | |
|     unsigned formatted_node:1;		/* the allocator uses different polices for getting disk space for
 | |
| 					 * formatted/unformatted blocks with/without preallocation */
 | |
|     unsigned preallocate:1;
 | |
| };
 | |
| 
 | |
| typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
 | |
| 
 | |
| int reiserfs_parse_alloc_options (struct super_block *, char *);
 | |
| void reiserfs_init_alloc_options (struct super_block *s);
 | |
| 
 | |
| /*
 | |
|  * given a directory, this will tell you what packing locality
 | |
|  * to use for a new object underneat it.  The locality is returned
 | |
|  * in disk byte order (le).
 | |
|  */
 | |
| __le32 reiserfs_choose_packing(struct inode *dir);
 | |
| 
 | |
| int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
 | |
| void reiserfs_free_block (struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted);
 | |
| int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
 | |
| extern inline int reiserfs_new_form_blocknrs (struct tree_balance * tb,
 | |
| 					      b_blocknr_t *new_blocknrs, int amount_needed)
 | |
| {
 | |
|     reiserfs_blocknr_hint_t hint = {
 | |
| 	.th = tb->transaction_handle,
 | |
| 	.path = tb->tb_path,
 | |
| 	.inode = NULL,
 | |
| 	.key = tb->key,
 | |
| 	.block = 0,
 | |
| 	.formatted_node = 1
 | |
|     };
 | |
|     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 0);
 | |
| }
 | |
| 
 | |
| extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
 | |
| 					     struct inode *inode,
 | |
| 					     b_blocknr_t *new_blocknrs,
 | |
| 					     struct path * path, long block)
 | |
| {
 | |
|     reiserfs_blocknr_hint_t hint = {
 | |
| 	.th = th,
 | |
| 	.path = path,
 | |
| 	.inode = inode,
 | |
| 	.block = block,
 | |
| 	.formatted_node = 0,
 | |
| 	.preallocate = 0
 | |
|     };
 | |
|     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
 | |
| }
 | |
| 
 | |
| #ifdef REISERFS_PREALLOCATE
 | |
| extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
 | |
| 					     struct inode * inode,
 | |
| 					     b_blocknr_t *new_blocknrs,
 | |
| 					     struct path * path, long block)
 | |
| {
 | |
|     reiserfs_blocknr_hint_t hint = {
 | |
| 	.th = th,
 | |
| 	.path = path,
 | |
| 	.inode = inode,
 | |
| 	.block = block,
 | |
| 	.formatted_node = 0,
 | |
| 	.preallocate = 1
 | |
|     };
 | |
|     return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
 | |
| }
 | |
| 
 | |
| void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th, 
 | |
| 				struct inode * inode);
 | |
| void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
 | |
| #endif
 | |
| void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
 | |
| void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
 | |
| int reiserfs_can_fit_pages(struct super_block *sb);
 | |
| 
 | |
| /* hashes.c */
 | |
| __u32 keyed_hash (const signed char *msg, int len);
 | |
| __u32 yura_hash (const signed char *msg, int len);
 | |
| __u32 r5_hash (const signed char *msg, int len);
 | |
| 
 | |
| /* the ext2 bit routines adjust for big or little endian as
 | |
| ** appropriate for the arch, so in our laziness we use them rather
 | |
| ** than using the bit routines they call more directly.  These
 | |
| ** routines must be used when changing on disk bitmaps.  */
 | |
| #define reiserfs_test_and_set_le_bit   ext2_set_bit
 | |
| #define reiserfs_test_and_clear_le_bit ext2_clear_bit
 | |
| #define reiserfs_test_le_bit           ext2_test_bit
 | |
| #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
 | |
| 
 | |
| /* sometimes reiserfs_truncate may require to allocate few new blocks
 | |
|    to perform indirect2direct conversion. People probably used to
 | |
|    think, that truncate should work without problems on a filesystem
 | |
|    without free disk space. They may complain that they can not
 | |
|    truncate due to lack of free disk space. This spare space allows us
 | |
|    to not worry about it. 500 is probably too much, but it should be
 | |
|    absolutely safe */
 | |
| #define SPARE_SPACE 500
 | |
| 
 | |
| 
 | |
| /* prototypes from ioctl.c */
 | |
| int reiserfs_ioctl (struct inode * inode, struct file * filp, 
 | |
|  		    unsigned int cmd, unsigned long arg);
 | |
|  
 | |
| /* ioctl's command */
 | |
| #define REISERFS_IOC_UNPACK		_IOW(0xCD,1,long)
 | |
| /* define following flags to be the same as in ext2, so that chattr(1),
 | |
|    lsattr(1) will work with us. */
 | |
| #define REISERFS_IOC_GETFLAGS		EXT2_IOC_GETFLAGS
 | |
| #define REISERFS_IOC_SETFLAGS		EXT2_IOC_SETFLAGS
 | |
| #define REISERFS_IOC_GETVERSION		EXT2_IOC_GETVERSION
 | |
| #define REISERFS_IOC_SETVERSION		EXT2_IOC_SETVERSION
 | |
| 
 | |
| /* Locking primitives */
 | |
| /* Right now we are still falling back to (un)lock_kernel, but eventually that
 | |
|    would evolve into real per-fs locks */
 | |
| #define reiserfs_write_lock( sb ) lock_kernel()
 | |
| #define reiserfs_write_unlock( sb ) unlock_kernel()
 | |
|  			         
 | |
| /* xattr stuff */
 | |
| #define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
 | |
| 
 | |
| #endif /* _LINUX_REISER_FS_H */
 | |
| 
 | |
| 
 |