forked from mirrors/linux
		
	 c475a8ab62
			
		
	
	
		c475a8ab62
		
	
	
	
	
		
			
			Remember that ironic get_user_pages race? when the raised page_count on a page swapped out led do_wp_page to decide that it had to copy on write, so substituted a different page into userspace. 2.6.7 onwards have Andrea's solution, where try_to_unmap_one backs out if it finds page_count raised. Which works, but is unsatisfying (rmap.c has no other page_count heuristics), and was found a few months ago to hang an intensive page migration test. A year ago I was hesitant to engage page_mapcount, now it seems the right fix. So remove the page_count hack from try_to_unmap_one; and use activate_page in unuse_mm when dropping lock, to replace its secondary effect of helping swapoff to make progress in that case. Simplify can_share_swap_page (now called only on anonymous pages) to check page_mapcount + page_swapcount == 1: still needs the page lock to stabilize their (pessimistic) sum, but does not need swapper_space.tree_lock for that. In do_swap_page, move swap_free and unlock_page below page_add_anon_rmap, to keep sum on the high side, and correct when can_share_swap_page called. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
		
			
				
	
	
		
			2233 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2233 lines
		
	
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/mm/memory.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * demand-loading started 01.12.91 - seems it is high on the list of
 | |
|  * things wanted, and it should be easy to implement. - Linus
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 | |
|  * pages started 02.12.91, seems to work. - Linus.
 | |
|  *
 | |
|  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 | |
|  * would have taken more than the 6M I have free, but it worked well as
 | |
|  * far as I could see.
 | |
|  *
 | |
|  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Real VM (paging to/from disk) started 18.12.91. Much more work and
 | |
|  * thought has to go into this. Oh, well..
 | |
|  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 | |
|  *		Found it. Everything seems to work now.
 | |
|  * 20.12.91  -  Ok, making the swap-device changeable like the root.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * 05.04.94  -  Multi-page memory management added for v1.1.
 | |
|  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 | |
|  *
 | |
|  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 | |
|  *		(Gerhard.Wichert@pdb.siemens.de)
 | |
|  *
 | |
|  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| 
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/pgtable.h>
 | |
| 
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/elf.h>
 | |
| 
 | |
| #ifndef CONFIG_DISCONTIGMEM
 | |
| /* use the per-pgdat data instead for discontigmem - mbligh */
 | |
| unsigned long max_mapnr;
 | |
| struct page *mem_map;
 | |
| 
 | |
| EXPORT_SYMBOL(max_mapnr);
 | |
| EXPORT_SYMBOL(mem_map);
 | |
| #endif
 | |
| 
 | |
| unsigned long num_physpages;
 | |
| /*
 | |
|  * A number of key systems in x86 including ioremap() rely on the assumption
 | |
|  * that high_memory defines the upper bound on direct map memory, then end
 | |
|  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 | |
|  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 | |
|  * and ZONE_HIGHMEM.
 | |
|  */
 | |
| void * high_memory;
 | |
| unsigned long vmalloc_earlyreserve;
 | |
| 
 | |
| EXPORT_SYMBOL(num_physpages);
 | |
| EXPORT_SYMBOL(high_memory);
 | |
| EXPORT_SYMBOL(vmalloc_earlyreserve);
 | |
| 
 | |
| /*
 | |
|  * If a p?d_bad entry is found while walking page tables, report
 | |
|  * the error, before resetting entry to p?d_none.  Usually (but
 | |
|  * very seldom) called out from the p?d_none_or_clear_bad macros.
 | |
|  */
 | |
| 
 | |
| void pgd_clear_bad(pgd_t *pgd)
 | |
| {
 | |
| 	pgd_ERROR(*pgd);
 | |
| 	pgd_clear(pgd);
 | |
| }
 | |
| 
 | |
| void pud_clear_bad(pud_t *pud)
 | |
| {
 | |
| 	pud_ERROR(*pud);
 | |
| 	pud_clear(pud);
 | |
| }
 | |
| 
 | |
| void pmd_clear_bad(pmd_t *pmd)
 | |
| {
 | |
| 	pmd_ERROR(*pmd);
 | |
| 	pmd_clear(pmd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: this doesn't free the actual pages themselves. That
 | |
|  * has been handled earlier when unmapping all the memory regions.
 | |
|  */
 | |
| static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
 | |
| {
 | |
| 	struct page *page = pmd_page(*pmd);
 | |
| 	pmd_clear(pmd);
 | |
| 	pte_free_tlb(tlb, page);
 | |
| 	dec_page_state(nr_page_table_pages);
 | |
| 	tlb->mm->nr_ptes--;
 | |
| }
 | |
| 
 | |
| static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long start;
 | |
| 
 | |
| 	start = addr;
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		free_pte_range(tlb, pmd);
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 
 | |
| 	start &= PUD_MASK;
 | |
| 	if (start < floor)
 | |
| 		return;
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= PUD_MASK;
 | |
| 		if (!ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		return;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, start);
 | |
| 	pud_clear(pud);
 | |
| 	pmd_free_tlb(tlb, pmd);
 | |
| }
 | |
| 
 | |
| static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	unsigned long start;
 | |
| 
 | |
| 	start = addr;
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 
 | |
| 	start &= PGDIR_MASK;
 | |
| 	if (start < floor)
 | |
| 		return;
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= PGDIR_MASK;
 | |
| 		if (!ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		return;
 | |
| 
 | |
| 	pud = pud_offset(pgd, start);
 | |
| 	pgd_clear(pgd);
 | |
| 	pud_free_tlb(tlb, pud);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function frees user-level page tables of a process.
 | |
|  *
 | |
|  * Must be called with pagetable lock held.
 | |
|  */
 | |
| void free_pgd_range(struct mmu_gather **tlb,
 | |
| 			unsigned long addr, unsigned long end,
 | |
| 			unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long start;
 | |
| 
 | |
| 	/*
 | |
| 	 * The next few lines have given us lots of grief...
 | |
| 	 *
 | |
| 	 * Why are we testing PMD* at this top level?  Because often
 | |
| 	 * there will be no work to do at all, and we'd prefer not to
 | |
| 	 * go all the way down to the bottom just to discover that.
 | |
| 	 *
 | |
| 	 * Why all these "- 1"s?  Because 0 represents both the bottom
 | |
| 	 * of the address space and the top of it (using -1 for the
 | |
| 	 * top wouldn't help much: the masks would do the wrong thing).
 | |
| 	 * The rule is that addr 0 and floor 0 refer to the bottom of
 | |
| 	 * the address space, but end 0 and ceiling 0 refer to the top
 | |
| 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 | |
| 	 * that end 0 case should be mythical).
 | |
| 	 *
 | |
| 	 * Wherever addr is brought up or ceiling brought down, we must
 | |
| 	 * be careful to reject "the opposite 0" before it confuses the
 | |
| 	 * subsequent tests.  But what about where end is brought down
 | |
| 	 * by PMD_SIZE below? no, end can't go down to 0 there.
 | |
| 	 *
 | |
| 	 * Whereas we round start (addr) and ceiling down, by different
 | |
| 	 * masks at different levels, in order to test whether a table
 | |
| 	 * now has no other vmas using it, so can be freed, we don't
 | |
| 	 * bother to round floor or end up - the tests don't need that.
 | |
| 	 */
 | |
| 
 | |
| 	addr &= PMD_MASK;
 | |
| 	if (addr < floor) {
 | |
| 		addr += PMD_SIZE;
 | |
| 		if (!addr)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= PMD_MASK;
 | |
| 		if (!ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		end -= PMD_SIZE;
 | |
| 	if (addr > end - 1)
 | |
| 		return;
 | |
| 
 | |
| 	start = addr;
 | |
| 	pgd = pgd_offset((*tlb)->mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 
 | |
| 	if (!tlb_is_full_mm(*tlb))
 | |
| 		flush_tlb_pgtables((*tlb)->mm, start, end);
 | |
| }
 | |
| 
 | |
| void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
 | |
| 		unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	while (vma) {
 | |
| 		struct vm_area_struct *next = vma->vm_next;
 | |
| 		unsigned long addr = vma->vm_start;
 | |
| 
 | |
| 		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
 | |
| 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 | |
| 				floor, next? next->vm_start: ceiling);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Optimization: gather nearby vmas into one call down
 | |
| 			 */
 | |
| 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 | |
| 			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
 | |
| 							HPAGE_SIZE)) {
 | |
| 				vma = next;
 | |
| 				next = vma->vm_next;
 | |
| 			}
 | |
| 			free_pgd_range(tlb, addr, vma->vm_end,
 | |
| 				floor, next? next->vm_start: ceiling);
 | |
| 		}
 | |
| 		vma = next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
 | |
| 				unsigned long address)
 | |
| {
 | |
| 	if (!pmd_present(*pmd)) {
 | |
| 		struct page *new;
 | |
| 
 | |
| 		spin_unlock(&mm->page_table_lock);
 | |
| 		new = pte_alloc_one(mm, address);
 | |
| 		spin_lock(&mm->page_table_lock);
 | |
| 		if (!new)
 | |
| 			return NULL;
 | |
| 		/*
 | |
| 		 * Because we dropped the lock, we should re-check the
 | |
| 		 * entry, as somebody else could have populated it..
 | |
| 		 */
 | |
| 		if (pmd_present(*pmd)) {
 | |
| 			pte_free(new);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		mm->nr_ptes++;
 | |
| 		inc_page_state(nr_page_table_pages);
 | |
| 		pmd_populate(mm, pmd, new);
 | |
| 	}
 | |
| out:
 | |
| 	return pte_offset_map(pmd, address);
 | |
| }
 | |
| 
 | |
| pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 | |
| {
 | |
| 	if (!pmd_present(*pmd)) {
 | |
| 		pte_t *new;
 | |
| 
 | |
| 		spin_unlock(&mm->page_table_lock);
 | |
| 		new = pte_alloc_one_kernel(mm, address);
 | |
| 		spin_lock(&mm->page_table_lock);
 | |
| 		if (!new)
 | |
| 			return NULL;
 | |
| 
 | |
| 		/*
 | |
| 		 * Because we dropped the lock, we should re-check the
 | |
| 		 * entry, as somebody else could have populated it..
 | |
| 		 */
 | |
| 		if (pmd_present(*pmd)) {
 | |
| 			pte_free_kernel(new);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		pmd_populate_kernel(mm, pmd, new);
 | |
| 	}
 | |
| out:
 | |
| 	return pte_offset_kernel(pmd, address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * copy one vm_area from one task to the other. Assumes the page tables
 | |
|  * already present in the new task to be cleared in the whole range
 | |
|  * covered by this vma.
 | |
|  *
 | |
|  * dst->page_table_lock is held on entry and exit,
 | |
|  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
 | |
|  */
 | |
| 
 | |
| static inline void
 | |
| copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
 | |
| 		unsigned long addr)
 | |
| {
 | |
| 	pte_t pte = *src_pte;
 | |
| 	struct page *page;
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	/* pte contains position in swap or file, so copy. */
 | |
| 	if (unlikely(!pte_present(pte))) {
 | |
| 		if (!pte_file(pte)) {
 | |
| 			swap_duplicate(pte_to_swp_entry(pte));
 | |
| 			/* make sure dst_mm is on swapoff's mmlist. */
 | |
| 			if (unlikely(list_empty(&dst_mm->mmlist))) {
 | |
| 				spin_lock(&mmlist_lock);
 | |
| 				list_add(&dst_mm->mmlist, &src_mm->mmlist);
 | |
| 				spin_unlock(&mmlist_lock);
 | |
| 			}
 | |
| 		}
 | |
| 		set_pte_at(dst_mm, addr, dst_pte, pte);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pfn = pte_pfn(pte);
 | |
| 	/* the pte points outside of valid memory, the
 | |
| 	 * mapping is assumed to be good, meaningful
 | |
| 	 * and not mapped via rmap - duplicate the
 | |
| 	 * mapping as is.
 | |
| 	 */
 | |
| 	page = NULL;
 | |
| 	if (pfn_valid(pfn))
 | |
| 		page = pfn_to_page(pfn);
 | |
| 
 | |
| 	if (!page || PageReserved(page)) {
 | |
| 		set_pte_at(dst_mm, addr, dst_pte, pte);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a COW mapping, write protect it both
 | |
| 	 * in the parent and the child
 | |
| 	 */
 | |
| 	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
 | |
| 		ptep_set_wrprotect(src_mm, addr, src_pte);
 | |
| 		pte = *src_pte;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a shared mapping, mark it clean in
 | |
| 	 * the child
 | |
| 	 */
 | |
| 	if (vm_flags & VM_SHARED)
 | |
| 		pte = pte_mkclean(pte);
 | |
| 	pte = pte_mkold(pte);
 | |
| 	get_page(page);
 | |
| 	inc_mm_counter(dst_mm, rss);
 | |
| 	if (PageAnon(page))
 | |
| 		inc_mm_counter(dst_mm, anon_rss);
 | |
| 	set_pte_at(dst_mm, addr, dst_pte, pte);
 | |
| 	page_dup_rmap(page);
 | |
| }
 | |
| 
 | |
| static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 | |
| 		unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	pte_t *src_pte, *dst_pte;
 | |
| 	unsigned long vm_flags = vma->vm_flags;
 | |
| 	int progress;
 | |
| 
 | |
| again:
 | |
| 	dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
 | |
| 	if (!dst_pte)
 | |
| 		return -ENOMEM;
 | |
| 	src_pte = pte_offset_map_nested(src_pmd, addr);
 | |
| 
 | |
| 	progress = 0;
 | |
| 	spin_lock(&src_mm->page_table_lock);
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * We are holding two locks at this point - either of them
 | |
| 		 * could generate latencies in another task on another CPU.
 | |
| 		 */
 | |
| 		if (progress >= 32 && (need_resched() ||
 | |
| 		    need_lockbreak(&src_mm->page_table_lock) ||
 | |
| 		    need_lockbreak(&dst_mm->page_table_lock)))
 | |
| 			break;
 | |
| 		if (pte_none(*src_pte)) {
 | |
| 			progress++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
 | |
| 		progress += 8;
 | |
| 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	spin_unlock(&src_mm->page_table_lock);
 | |
| 
 | |
| 	pte_unmap_nested(src_pte - 1);
 | |
| 	pte_unmap(dst_pte - 1);
 | |
| 	cond_resched_lock(&dst_mm->page_table_lock);
 | |
| 	if (addr != end)
 | |
| 		goto again;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 | |
| 		unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	pmd_t *src_pmd, *dst_pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 | |
| 	if (!dst_pmd)
 | |
| 		return -ENOMEM;
 | |
| 	src_pmd = pmd_offset(src_pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_clear_bad(src_pmd))
 | |
| 			continue;
 | |
| 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 | |
| 						vma, addr, next))
 | |
| 			return -ENOMEM;
 | |
| 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 | |
| 		unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	pud_t *src_pud, *dst_pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
 | |
| 	if (!dst_pud)
 | |
| 		return -ENOMEM;
 | |
| 	src_pud = pud_offset(src_pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(src_pud))
 | |
| 			continue;
 | |
| 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 | |
| 						vma, addr, next))
 | |
| 			return -ENOMEM;
 | |
| 	} while (dst_pud++, src_pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		struct vm_area_struct *vma)
 | |
| {
 | |
| 	pgd_t *src_pgd, *dst_pgd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long addr = vma->vm_start;
 | |
| 	unsigned long end = vma->vm_end;
 | |
| 
 | |
| 	if (is_vm_hugetlb_page(vma))
 | |
| 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 | |
| 
 | |
| 	dst_pgd = pgd_offset(dst_mm, addr);
 | |
| 	src_pgd = pgd_offset(src_mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(src_pgd))
 | |
| 			continue;
 | |
| 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
 | |
| 						vma, addr, next))
 | |
| 			return -ENOMEM;
 | |
| 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				struct zap_details *details)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_offset_map(pmd, addr);
 | |
| 	do {
 | |
| 		pte_t ptent = *pte;
 | |
| 		if (pte_none(ptent))
 | |
| 			continue;
 | |
| 		if (pte_present(ptent)) {
 | |
| 			struct page *page = NULL;
 | |
| 			unsigned long pfn = pte_pfn(ptent);
 | |
| 			if (pfn_valid(pfn)) {
 | |
| 				page = pfn_to_page(pfn);
 | |
| 				if (PageReserved(page))
 | |
| 					page = NULL;
 | |
| 			}
 | |
| 			if (unlikely(details) && page) {
 | |
| 				/*
 | |
| 				 * unmap_shared_mapping_pages() wants to
 | |
| 				 * invalidate cache without truncating:
 | |
| 				 * unmap shared but keep private pages.
 | |
| 				 */
 | |
| 				if (details->check_mapping &&
 | |
| 				    details->check_mapping != page->mapping)
 | |
| 					continue;
 | |
| 				/*
 | |
| 				 * Each page->index must be checked when
 | |
| 				 * invalidating or truncating nonlinear.
 | |
| 				 */
 | |
| 				if (details->nonlinear_vma &&
 | |
| 				    (page->index < details->first_index ||
 | |
| 				     page->index > details->last_index))
 | |
| 					continue;
 | |
| 			}
 | |
| 			ptent = ptep_get_and_clear(tlb->mm, addr, pte);
 | |
| 			tlb_remove_tlb_entry(tlb, pte, addr);
 | |
| 			if (unlikely(!page))
 | |
| 				continue;
 | |
| 			if (unlikely(details) && details->nonlinear_vma
 | |
| 			    && linear_page_index(details->nonlinear_vma,
 | |
| 						addr) != page->index)
 | |
| 				set_pte_at(tlb->mm, addr, pte,
 | |
| 					   pgoff_to_pte(page->index));
 | |
| 			if (pte_dirty(ptent))
 | |
| 				set_page_dirty(page);
 | |
| 			if (PageAnon(page))
 | |
| 				dec_mm_counter(tlb->mm, anon_rss);
 | |
| 			else if (pte_young(ptent))
 | |
| 				mark_page_accessed(page);
 | |
| 			tlb->freed++;
 | |
| 			page_remove_rmap(page);
 | |
| 			tlb_remove_page(tlb, page);
 | |
| 			continue;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If details->check_mapping, we leave swap entries;
 | |
| 		 * if details->nonlinear_vma, we leave file entries.
 | |
| 		 */
 | |
| 		if (unlikely(details))
 | |
| 			continue;
 | |
| 		if (!pte_file(ptent))
 | |
| 			free_swap_and_cache(pte_to_swp_entry(ptent));
 | |
| 		pte_clear(tlb->mm, addr, pte);
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	pte_unmap(pte - 1);
 | |
| }
 | |
| 
 | |
| static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				struct zap_details *details)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		zap_pte_range(tlb, pmd, addr, next, details);
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				struct zap_details *details)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		zap_pmd_range(tlb, pud, addr, next, details);
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 				unsigned long addr, unsigned long end,
 | |
| 				struct zap_details *details)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	if (details && !details->check_mapping && !details->nonlinear_vma)
 | |
| 		details = NULL;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	tlb_start_vma(tlb, vma);
 | |
| 	pgd = pgd_offset(vma->vm_mm, addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		zap_pud_range(tlb, pgd, addr, next, details);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	tlb_end_vma(tlb, vma);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT
 | |
| # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
 | |
| #else
 | |
| /* No preempt: go for improved straight-line efficiency */
 | |
| # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * unmap_vmas - unmap a range of memory covered by a list of vma's
 | |
|  * @tlbp: address of the caller's struct mmu_gather
 | |
|  * @mm: the controlling mm_struct
 | |
|  * @vma: the starting vma
 | |
|  * @start_addr: virtual address at which to start unmapping
 | |
|  * @end_addr: virtual address at which to end unmapping
 | |
|  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
 | |
|  * @details: details of nonlinear truncation or shared cache invalidation
 | |
|  *
 | |
|  * Returns the end address of the unmapping (restart addr if interrupted).
 | |
|  *
 | |
|  * Unmap all pages in the vma list.  Called under page_table_lock.
 | |
|  *
 | |
|  * We aim to not hold page_table_lock for too long (for scheduling latency
 | |
|  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
 | |
|  * return the ending mmu_gather to the caller.
 | |
|  *
 | |
|  * Only addresses between `start' and `end' will be unmapped.
 | |
|  *
 | |
|  * The VMA list must be sorted in ascending virtual address order.
 | |
|  *
 | |
|  * unmap_vmas() assumes that the caller will flush the whole unmapped address
 | |
|  * range after unmap_vmas() returns.  So the only responsibility here is to
 | |
|  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 | |
|  * drops the lock and schedules.
 | |
|  */
 | |
| unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
 | |
| 		struct vm_area_struct *vma, unsigned long start_addr,
 | |
| 		unsigned long end_addr, unsigned long *nr_accounted,
 | |
| 		struct zap_details *details)
 | |
| {
 | |
| 	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
 | |
| 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
 | |
| 	int tlb_start_valid = 0;
 | |
| 	unsigned long start = start_addr;
 | |
| 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
 | |
| 	int fullmm = tlb_is_full_mm(*tlbp);
 | |
| 
 | |
| 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
 | |
| 		unsigned long end;
 | |
| 
 | |
| 		start = max(vma->vm_start, start_addr);
 | |
| 		if (start >= vma->vm_end)
 | |
| 			continue;
 | |
| 		end = min(vma->vm_end, end_addr);
 | |
| 		if (end <= vma->vm_start)
 | |
| 			continue;
 | |
| 
 | |
| 		if (vma->vm_flags & VM_ACCOUNT)
 | |
| 			*nr_accounted += (end - start) >> PAGE_SHIFT;
 | |
| 
 | |
| 		while (start != end) {
 | |
| 			unsigned long block;
 | |
| 
 | |
| 			if (!tlb_start_valid) {
 | |
| 				tlb_start = start;
 | |
| 				tlb_start_valid = 1;
 | |
| 			}
 | |
| 
 | |
| 			if (is_vm_hugetlb_page(vma)) {
 | |
| 				block = end - start;
 | |
| 				unmap_hugepage_range(vma, start, end);
 | |
| 			} else {
 | |
| 				block = min(zap_bytes, end - start);
 | |
| 				unmap_page_range(*tlbp, vma, start,
 | |
| 						start + block, details);
 | |
| 			}
 | |
| 
 | |
| 			start += block;
 | |
| 			zap_bytes -= block;
 | |
| 			if ((long)zap_bytes > 0)
 | |
| 				continue;
 | |
| 
 | |
| 			tlb_finish_mmu(*tlbp, tlb_start, start);
 | |
| 
 | |
| 			if (need_resched() ||
 | |
| 				need_lockbreak(&mm->page_table_lock) ||
 | |
| 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
 | |
| 				if (i_mmap_lock) {
 | |
| 					/* must reset count of rss freed */
 | |
| 					*tlbp = tlb_gather_mmu(mm, fullmm);
 | |
| 					goto out;
 | |
| 				}
 | |
| 				spin_unlock(&mm->page_table_lock);
 | |
| 				cond_resched();
 | |
| 				spin_lock(&mm->page_table_lock);
 | |
| 			}
 | |
| 
 | |
| 			*tlbp = tlb_gather_mmu(mm, fullmm);
 | |
| 			tlb_start_valid = 0;
 | |
| 			zap_bytes = ZAP_BLOCK_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	return start;	/* which is now the end (or restart) address */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * zap_page_range - remove user pages in a given range
 | |
|  * @vma: vm_area_struct holding the applicable pages
 | |
|  * @address: starting address of pages to zap
 | |
|  * @size: number of bytes to zap
 | |
|  * @details: details of nonlinear truncation or shared cache invalidation
 | |
|  */
 | |
| unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
 | |
| 		unsigned long size, struct zap_details *details)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct mmu_gather *tlb;
 | |
| 	unsigned long end = address + size;
 | |
| 	unsigned long nr_accounted = 0;
 | |
| 
 | |
| 	if (is_vm_hugetlb_page(vma)) {
 | |
| 		zap_hugepage_range(vma, address, size);
 | |
| 		return end;
 | |
| 	}
 | |
| 
 | |
| 	lru_add_drain();
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	tlb = tlb_gather_mmu(mm, 0);
 | |
| 	end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
 | |
| 	tlb_finish_mmu(tlb, address, end);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return end;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do a quick page-table lookup for a single page.
 | |
|  * mm->page_table_lock must be held.
 | |
|  */
 | |
| static struct page *
 | |
| __follow_page(struct mm_struct *mm, unsigned long address, int read, int write)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *ptep, pte;
 | |
| 	unsigned long pfn;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = follow_huge_addr(mm, address, write);
 | |
| 	if (! IS_ERR(page))
 | |
| 		return page;
 | |
| 
 | |
| 	pgd = pgd_offset(mm, address);
 | |
| 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 | |
| 		goto out;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
 | |
| 		goto out;
 | |
| 	
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
 | |
| 		goto out;
 | |
| 	if (pmd_huge(*pmd))
 | |
| 		return follow_huge_pmd(mm, address, pmd, write);
 | |
| 
 | |
| 	ptep = pte_offset_map(pmd, address);
 | |
| 	if (!ptep)
 | |
| 		goto out;
 | |
| 
 | |
| 	pte = *ptep;
 | |
| 	pte_unmap(ptep);
 | |
| 	if (pte_present(pte)) {
 | |
| 		if (write && !pte_write(pte))
 | |
| 			goto out;
 | |
| 		if (read && !pte_read(pte))
 | |
| 			goto out;
 | |
| 		pfn = pte_pfn(pte);
 | |
| 		if (pfn_valid(pfn)) {
 | |
| 			page = pfn_to_page(pfn);
 | |
| 			if (write && !pte_dirty(pte) && !PageDirty(page))
 | |
| 				set_page_dirty(page);
 | |
| 			mark_page_accessed(page);
 | |
| 			return page;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| struct page *
 | |
| follow_page(struct mm_struct *mm, unsigned long address, int write)
 | |
| {
 | |
| 	return __follow_page(mm, address, /*read*/0, write);
 | |
| }
 | |
| 
 | |
| int
 | |
| check_user_page_readable(struct mm_struct *mm, unsigned long address)
 | |
| {
 | |
| 	return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(check_user_page_readable);
 | |
| 
 | |
| static inline int
 | |
| untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
 | |
| 			 unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	/* Check if the vma is for an anonymous mapping. */
 | |
| 	if (vma->vm_ops && vma->vm_ops->nopage)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check if page directory entry exists. */
 | |
| 	pgd = pgd_offset(mm, address);
 | |
| 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 | |
| 		return 1;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Check if page middle directory entry exists. */
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* There is a pte slot for 'address' in 'mm'. */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 | |
| 		unsigned long start, int len, int write, int force,
 | |
| 		struct page **pages, struct vm_area_struct **vmas)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int flags;
 | |
| 
 | |
| 	/* 
 | |
| 	 * Require read or write permissions.
 | |
| 	 * If 'force' is set, we only require the "MAY" flags.
 | |
| 	 */
 | |
| 	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
 | |
| 	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
 | |
| 	i = 0;
 | |
| 
 | |
| 	do {
 | |
| 		struct vm_area_struct *	vma;
 | |
| 
 | |
| 		vma = find_extend_vma(mm, start);
 | |
| 		if (!vma && in_gate_area(tsk, start)) {
 | |
| 			unsigned long pg = start & PAGE_MASK;
 | |
| 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
 | |
| 			pgd_t *pgd;
 | |
| 			pud_t *pud;
 | |
| 			pmd_t *pmd;
 | |
| 			pte_t *pte;
 | |
| 			if (write) /* user gate pages are read-only */
 | |
| 				return i ? : -EFAULT;
 | |
| 			if (pg > TASK_SIZE)
 | |
| 				pgd = pgd_offset_k(pg);
 | |
| 			else
 | |
| 				pgd = pgd_offset_gate(mm, pg);
 | |
| 			BUG_ON(pgd_none(*pgd));
 | |
| 			pud = pud_offset(pgd, pg);
 | |
| 			BUG_ON(pud_none(*pud));
 | |
| 			pmd = pmd_offset(pud, pg);
 | |
| 			BUG_ON(pmd_none(*pmd));
 | |
| 			pte = pte_offset_map(pmd, pg);
 | |
| 			BUG_ON(pte_none(*pte));
 | |
| 			if (pages) {
 | |
| 				pages[i] = pte_page(*pte);
 | |
| 				get_page(pages[i]);
 | |
| 			}
 | |
| 			pte_unmap(pte);
 | |
| 			if (vmas)
 | |
| 				vmas[i] = gate_vma;
 | |
| 			i++;
 | |
| 			start += PAGE_SIZE;
 | |
| 			len--;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!vma || (vma->vm_flags & VM_IO)
 | |
| 				|| !(flags & vma->vm_flags))
 | |
| 			return i ? : -EFAULT;
 | |
| 
 | |
| 		if (is_vm_hugetlb_page(vma)) {
 | |
| 			i = follow_hugetlb_page(mm, vma, pages, vmas,
 | |
| 						&start, &len, i);
 | |
| 			continue;
 | |
| 		}
 | |
| 		spin_lock(&mm->page_table_lock);
 | |
| 		do {
 | |
| 			struct page *page;
 | |
| 			int lookup_write = write;
 | |
| 
 | |
| 			cond_resched_lock(&mm->page_table_lock);
 | |
| 			while (!(page = follow_page(mm, start, lookup_write))) {
 | |
| 				/*
 | |
| 				 * Shortcut for anonymous pages. We don't want
 | |
| 				 * to force the creation of pages tables for
 | |
| 				 * insanely big anonymously mapped areas that
 | |
| 				 * nobody touched so far. This is important
 | |
| 				 * for doing a core dump for these mappings.
 | |
| 				 */
 | |
| 				if (!lookup_write &&
 | |
| 				    untouched_anonymous_page(mm,vma,start)) {
 | |
| 					page = ZERO_PAGE(start);
 | |
| 					break;
 | |
| 				}
 | |
| 				spin_unlock(&mm->page_table_lock);
 | |
| 				switch (handle_mm_fault(mm,vma,start,write)) {
 | |
| 				case VM_FAULT_MINOR:
 | |
| 					tsk->min_flt++;
 | |
| 					break;
 | |
| 				case VM_FAULT_MAJOR:
 | |
| 					tsk->maj_flt++;
 | |
| 					break;
 | |
| 				case VM_FAULT_SIGBUS:
 | |
| 					return i ? i : -EFAULT;
 | |
| 				case VM_FAULT_OOM:
 | |
| 					return i ? i : -ENOMEM;
 | |
| 				default:
 | |
| 					BUG();
 | |
| 				}
 | |
| 				/*
 | |
| 				 * Now that we have performed a write fault
 | |
| 				 * and surely no longer have a shared page we
 | |
| 				 * shouldn't write, we shouldn't ignore an
 | |
| 				 * unwritable page in the page table if
 | |
| 				 * we are forcing write access.
 | |
| 				 */
 | |
| 				lookup_write = write && !force;
 | |
| 				spin_lock(&mm->page_table_lock);
 | |
| 			}
 | |
| 			if (pages) {
 | |
| 				pages[i] = page;
 | |
| 				flush_dcache_page(page);
 | |
| 				if (!PageReserved(page))
 | |
| 					page_cache_get(page);
 | |
| 			}
 | |
| 			if (vmas)
 | |
| 				vmas[i] = vma;
 | |
| 			i++;
 | |
| 			start += PAGE_SIZE;
 | |
| 			len--;
 | |
| 		} while (len && start < vma->vm_end);
 | |
| 		spin_unlock(&mm->page_table_lock);
 | |
| 	} while (len);
 | |
| 	return i;
 | |
| }
 | |
| EXPORT_SYMBOL(get_user_pages);
 | |
| 
 | |
| static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
 | |
| 			unsigned long addr, unsigned long end, pgprot_t prot)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_alloc_map(mm, pmd, addr);
 | |
| 	if (!pte)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
 | |
| 		BUG_ON(!pte_none(*pte));
 | |
| 		set_pte_at(mm, addr, pte, zero_pte);
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	pte_unmap(pte - 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
 | |
| 			unsigned long addr, unsigned long end, pgprot_t prot)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_alloc(mm, pud, addr);
 | |
| 	if (!pmd)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (zeromap_pte_range(mm, pmd, addr, next, prot))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
 | |
| 			unsigned long addr, unsigned long end, pgprot_t prot)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_alloc(mm, pgd, addr);
 | |
| 	if (!pud)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (zeromap_pmd_range(mm, pud, addr, next, prot))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int zeromap_page_range(struct vm_area_struct *vma,
 | |
| 			unsigned long addr, unsigned long size, pgprot_t prot)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long end = addr + size;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pgd = pgd_offset(mm, addr);
 | |
| 	flush_cache_range(vma, addr, end);
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * maps a range of physical memory into the requested pages. the old
 | |
|  * mappings are removed. any references to nonexistent pages results
 | |
|  * in null mappings (currently treated as "copy-on-access")
 | |
|  */
 | |
| static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
 | |
| 			unsigned long addr, unsigned long end,
 | |
| 			unsigned long pfn, pgprot_t prot)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_alloc_map(mm, pmd, addr);
 | |
| 	if (!pte)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		BUG_ON(!pte_none(*pte));
 | |
| 		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
 | |
| 			set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
 | |
| 		pfn++;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	pte_unmap(pte - 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
 | |
| 			unsigned long addr, unsigned long end,
 | |
| 			unsigned long pfn, pgprot_t prot)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pfn -= addr >> PAGE_SHIFT;
 | |
| 	pmd = pmd_alloc(mm, pud, addr);
 | |
| 	if (!pmd)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (remap_pte_range(mm, pmd, addr, next,
 | |
| 				pfn + (addr >> PAGE_SHIFT), prot))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
 | |
| 			unsigned long addr, unsigned long end,
 | |
| 			unsigned long pfn, pgprot_t prot)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pfn -= addr >> PAGE_SHIFT;
 | |
| 	pud = pud_alloc(mm, pgd, addr);
 | |
| 	if (!pud)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (remap_pmd_range(mm, pud, addr, next,
 | |
| 				pfn + (addr >> PAGE_SHIFT), prot))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*  Note: this is only safe if the mm semaphore is held when called. */
 | |
| int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		    unsigned long pfn, unsigned long size, pgprot_t prot)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long end = addr + size;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Physically remapped pages are special. Tell the
 | |
| 	 * rest of the world about it:
 | |
| 	 *   VM_IO tells people not to look at these pages
 | |
| 	 *	(accesses can have side effects).
 | |
| 	 *   VM_RESERVED tells swapout not to try to touch
 | |
| 	 *	this region.
 | |
| 	 */
 | |
| 	vma->vm_flags |= VM_IO | VM_RESERVED;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pfn -= addr >> PAGE_SHIFT;
 | |
| 	pgd = pgd_offset(mm, addr);
 | |
| 	flush_cache_range(vma, addr, end);
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		err = remap_pud_range(mm, pgd, addr, next,
 | |
| 				pfn + (addr >> PAGE_SHIFT), prot);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(remap_pfn_range);
 | |
| 
 | |
| /*
 | |
|  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
 | |
|  * servicing faults for write access.  In the normal case, do always want
 | |
|  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
 | |
|  * that do not have writing enabled, when used by access_process_vm.
 | |
|  */
 | |
| static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (likely(vma->vm_flags & VM_WRITE))
 | |
| 		pte = pte_mkwrite(pte);
 | |
| 	return pte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
 | |
|  */
 | |
| static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address, 
 | |
| 		pte_t *page_table)
 | |
| {
 | |
| 	pte_t entry;
 | |
| 
 | |
| 	entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
 | |
| 			      vma);
 | |
| 	ptep_establish(vma, address, page_table, entry);
 | |
| 	update_mmu_cache(vma, address, entry);
 | |
| 	lazy_mmu_prot_update(entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine handles present pages, when users try to write
 | |
|  * to a shared page. It is done by copying the page to a new address
 | |
|  * and decrementing the shared-page counter for the old page.
 | |
|  *
 | |
|  * Goto-purists beware: the only reason for goto's here is that it results
 | |
|  * in better assembly code.. The "default" path will see no jumps at all.
 | |
|  *
 | |
|  * Note that this routine assumes that the protection checks have been
 | |
|  * done by the caller (the low-level page fault routine in most cases).
 | |
|  * Thus we can safely just mark it writable once we've done any necessary
 | |
|  * COW.
 | |
|  *
 | |
|  * We also mark the page dirty at this point even though the page will
 | |
|  * change only once the write actually happens. This avoids a few races,
 | |
|  * and potentially makes it more efficient.
 | |
|  *
 | |
|  * We hold the mm semaphore and the page_table_lock on entry and exit
 | |
|  * with the page_table_lock released.
 | |
|  */
 | |
| static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
 | |
| 	unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
 | |
| {
 | |
| 	struct page *old_page, *new_page;
 | |
| 	unsigned long pfn = pte_pfn(pte);
 | |
| 	pte_t entry;
 | |
| 
 | |
| 	if (unlikely(!pfn_valid(pfn))) {
 | |
| 		/*
 | |
| 		 * This should really halt the system so it can be debugged or
 | |
| 		 * at least the kernel stops what it's doing before it corrupts
 | |
| 		 * data, but for the moment just pretend this is OOM.
 | |
| 		 */
 | |
| 		pte_unmap(page_table);
 | |
| 		printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
 | |
| 				address);
 | |
| 		spin_unlock(&mm->page_table_lock);
 | |
| 		return VM_FAULT_OOM;
 | |
| 	}
 | |
| 	old_page = pfn_to_page(pfn);
 | |
| 
 | |
| 	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
 | |
| 		int reuse = can_share_swap_page(old_page);
 | |
| 		unlock_page(old_page);
 | |
| 		if (reuse) {
 | |
| 			flush_cache_page(vma, address, pfn);
 | |
| 			entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
 | |
| 					      vma);
 | |
| 			ptep_set_access_flags(vma, address, page_table, entry, 1);
 | |
| 			update_mmu_cache(vma, address, entry);
 | |
| 			lazy_mmu_prot_update(entry);
 | |
| 			pte_unmap(page_table);
 | |
| 			spin_unlock(&mm->page_table_lock);
 | |
| 			return VM_FAULT_MINOR;
 | |
| 		}
 | |
| 	}
 | |
| 	pte_unmap(page_table);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, we need to copy. Oh, well..
 | |
| 	 */
 | |
| 	if (!PageReserved(old_page))
 | |
| 		page_cache_get(old_page);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	if (unlikely(anon_vma_prepare(vma)))
 | |
| 		goto no_new_page;
 | |
| 	if (old_page == ZERO_PAGE(address)) {
 | |
| 		new_page = alloc_zeroed_user_highpage(vma, address);
 | |
| 		if (!new_page)
 | |
| 			goto no_new_page;
 | |
| 	} else {
 | |
| 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
 | |
| 		if (!new_page)
 | |
| 			goto no_new_page;
 | |
| 		copy_user_highpage(new_page, old_page, address);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Re-check the pte - we dropped the lock
 | |
| 	 */
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	page_table = pte_offset_map(pmd, address);
 | |
| 	if (likely(pte_same(*page_table, pte))) {
 | |
| 		if (PageAnon(old_page))
 | |
| 			dec_mm_counter(mm, anon_rss);
 | |
| 		if (PageReserved(old_page))
 | |
| 			inc_mm_counter(mm, rss);
 | |
| 		else
 | |
| 			page_remove_rmap(old_page);
 | |
| 		flush_cache_page(vma, address, pfn);
 | |
| 		break_cow(vma, new_page, address, page_table);
 | |
| 		lru_cache_add_active(new_page);
 | |
| 		page_add_anon_rmap(new_page, vma, address);
 | |
| 
 | |
| 		/* Free the old page.. */
 | |
| 		new_page = old_page;
 | |
| 	}
 | |
| 	pte_unmap(page_table);
 | |
| 	page_cache_release(new_page);
 | |
| 	page_cache_release(old_page);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return VM_FAULT_MINOR;
 | |
| 
 | |
| no_new_page:
 | |
| 	page_cache_release(old_page);
 | |
| 	return VM_FAULT_OOM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper functions for unmap_mapping_range().
 | |
|  *
 | |
|  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
 | |
|  *
 | |
|  * We have to restart searching the prio_tree whenever we drop the lock,
 | |
|  * since the iterator is only valid while the lock is held, and anyway
 | |
|  * a later vma might be split and reinserted earlier while lock dropped.
 | |
|  *
 | |
|  * The list of nonlinear vmas could be handled more efficiently, using
 | |
|  * a placeholder, but handle it in the same way until a need is shown.
 | |
|  * It is important to search the prio_tree before nonlinear list: a vma
 | |
|  * may become nonlinear and be shifted from prio_tree to nonlinear list
 | |
|  * while the lock is dropped; but never shifted from list to prio_tree.
 | |
|  *
 | |
|  * In order to make forward progress despite restarting the search,
 | |
|  * vm_truncate_count is used to mark a vma as now dealt with, so we can
 | |
|  * quickly skip it next time around.  Since the prio_tree search only
 | |
|  * shows us those vmas affected by unmapping the range in question, we
 | |
|  * can't efficiently keep all vmas in step with mapping->truncate_count:
 | |
|  * so instead reset them all whenever it wraps back to 0 (then go to 1).
 | |
|  * mapping->truncate_count and vma->vm_truncate_count are protected by
 | |
|  * i_mmap_lock.
 | |
|  *
 | |
|  * In order to make forward progress despite repeatedly restarting some
 | |
|  * large vma, note the restart_addr from unmap_vmas when it breaks out:
 | |
|  * and restart from that address when we reach that vma again.  It might
 | |
|  * have been split or merged, shrunk or extended, but never shifted: so
 | |
|  * restart_addr remains valid so long as it remains in the vma's range.
 | |
|  * unmap_mapping_range forces truncate_count to leap over page-aligned
 | |
|  * values so we can save vma's restart_addr in its truncate_count field.
 | |
|  */
 | |
| #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
 | |
| 
 | |
| static void reset_vma_truncate_counts(struct address_space *mapping)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct prio_tree_iter iter;
 | |
| 
 | |
| 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
 | |
| 		vma->vm_truncate_count = 0;
 | |
| 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
 | |
| 		vma->vm_truncate_count = 0;
 | |
| }
 | |
| 
 | |
| static int unmap_mapping_range_vma(struct vm_area_struct *vma,
 | |
| 		unsigned long start_addr, unsigned long end_addr,
 | |
| 		struct zap_details *details)
 | |
| {
 | |
| 	unsigned long restart_addr;
 | |
| 	int need_break;
 | |
| 
 | |
| again:
 | |
| 	restart_addr = vma->vm_truncate_count;
 | |
| 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
 | |
| 		start_addr = restart_addr;
 | |
| 		if (start_addr >= end_addr) {
 | |
| 			/* Top of vma has been split off since last time */
 | |
| 			vma->vm_truncate_count = details->truncate_count;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	restart_addr = zap_page_range(vma, start_addr,
 | |
| 					end_addr - start_addr, details);
 | |
| 
 | |
| 	/*
 | |
| 	 * We cannot rely on the break test in unmap_vmas:
 | |
| 	 * on the one hand, we don't want to restart our loop
 | |
| 	 * just because that broke out for the page_table_lock;
 | |
| 	 * on the other hand, it does no test when vma is small.
 | |
| 	 */
 | |
| 	need_break = need_resched() ||
 | |
| 			need_lockbreak(details->i_mmap_lock);
 | |
| 
 | |
| 	if (restart_addr >= end_addr) {
 | |
| 		/* We have now completed this vma: mark it so */
 | |
| 		vma->vm_truncate_count = details->truncate_count;
 | |
| 		if (!need_break)
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		/* Note restart_addr in vma's truncate_count field */
 | |
| 		vma->vm_truncate_count = restart_addr;
 | |
| 		if (!need_break)
 | |
| 			goto again;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(details->i_mmap_lock);
 | |
| 	cond_resched();
 | |
| 	spin_lock(details->i_mmap_lock);
 | |
| 	return -EINTR;
 | |
| }
 | |
| 
 | |
| static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
 | |
| 					    struct zap_details *details)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct prio_tree_iter iter;
 | |
| 	pgoff_t vba, vea, zba, zea;
 | |
| 
 | |
| restart:
 | |
| 	vma_prio_tree_foreach(vma, &iter, root,
 | |
| 			details->first_index, details->last_index) {
 | |
| 		/* Skip quickly over those we have already dealt with */
 | |
| 		if (vma->vm_truncate_count == details->truncate_count)
 | |
| 			continue;
 | |
| 
 | |
| 		vba = vma->vm_pgoff;
 | |
| 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
 | |
| 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
 | |
| 		zba = details->first_index;
 | |
| 		if (zba < vba)
 | |
| 			zba = vba;
 | |
| 		zea = details->last_index;
 | |
| 		if (zea > vea)
 | |
| 			zea = vea;
 | |
| 
 | |
| 		if (unmap_mapping_range_vma(vma,
 | |
| 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
 | |
| 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
 | |
| 				details) < 0)
 | |
| 			goto restart;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void unmap_mapping_range_list(struct list_head *head,
 | |
| 					    struct zap_details *details)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	/*
 | |
| 	 * In nonlinear VMAs there is no correspondence between virtual address
 | |
| 	 * offset and file offset.  So we must perform an exhaustive search
 | |
| 	 * across *all* the pages in each nonlinear VMA, not just the pages
 | |
| 	 * whose virtual address lies outside the file truncation point.
 | |
| 	 */
 | |
| restart:
 | |
| 	list_for_each_entry(vma, head, shared.vm_set.list) {
 | |
| 		/* Skip quickly over those we have already dealt with */
 | |
| 		if (vma->vm_truncate_count == details->truncate_count)
 | |
| 			continue;
 | |
| 		details->nonlinear_vma = vma;
 | |
| 		if (unmap_mapping_range_vma(vma, vma->vm_start,
 | |
| 					vma->vm_end, details) < 0)
 | |
| 			goto restart;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unmap_mapping_range - unmap the portion of all mmaps
 | |
|  * in the specified address_space corresponding to the specified
 | |
|  * page range in the underlying file.
 | |
|  * @address_space: the address space containing mmaps to be unmapped.
 | |
|  * @holebegin: byte in first page to unmap, relative to the start of
 | |
|  * the underlying file.  This will be rounded down to a PAGE_SIZE
 | |
|  * boundary.  Note that this is different from vmtruncate(), which
 | |
|  * must keep the partial page.  In contrast, we must get rid of
 | |
|  * partial pages.
 | |
|  * @holelen: size of prospective hole in bytes.  This will be rounded
 | |
|  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 | |
|  * end of the file.
 | |
|  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 | |
|  * but 0 when invalidating pagecache, don't throw away private data.
 | |
|  */
 | |
| void unmap_mapping_range(struct address_space *mapping,
 | |
| 		loff_t const holebegin, loff_t const holelen, int even_cows)
 | |
| {
 | |
| 	struct zap_details details;
 | |
| 	pgoff_t hba = holebegin >> PAGE_SHIFT;
 | |
| 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Check for overflow. */
 | |
| 	if (sizeof(holelen) > sizeof(hlen)) {
 | |
| 		long long holeend =
 | |
| 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | |
| 		if (holeend & ~(long long)ULONG_MAX)
 | |
| 			hlen = ULONG_MAX - hba + 1;
 | |
| 	}
 | |
| 
 | |
| 	details.check_mapping = even_cows? NULL: mapping;
 | |
| 	details.nonlinear_vma = NULL;
 | |
| 	details.first_index = hba;
 | |
| 	details.last_index = hba + hlen - 1;
 | |
| 	if (details.last_index < details.first_index)
 | |
| 		details.last_index = ULONG_MAX;
 | |
| 	details.i_mmap_lock = &mapping->i_mmap_lock;
 | |
| 
 | |
| 	spin_lock(&mapping->i_mmap_lock);
 | |
| 
 | |
| 	/* serialize i_size write against truncate_count write */
 | |
| 	smp_wmb();
 | |
| 	/* Protect against page faults, and endless unmapping loops */
 | |
| 	mapping->truncate_count++;
 | |
| 	/*
 | |
| 	 * For archs where spin_lock has inclusive semantics like ia64
 | |
| 	 * this smp_mb() will prevent to read pagetable contents
 | |
| 	 * before the truncate_count increment is visible to
 | |
| 	 * other cpus.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
 | |
| 		if (mapping->truncate_count == 0)
 | |
| 			reset_vma_truncate_counts(mapping);
 | |
| 		mapping->truncate_count++;
 | |
| 	}
 | |
| 	details.truncate_count = mapping->truncate_count;
 | |
| 
 | |
| 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
 | |
| 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
 | |
| 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
 | |
| 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
 | |
| 	spin_unlock(&mapping->i_mmap_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(unmap_mapping_range);
 | |
| 
 | |
| /*
 | |
|  * Handle all mappings that got truncated by a "truncate()"
 | |
|  * system call.
 | |
|  *
 | |
|  * NOTE! We have to be ready to update the memory sharing
 | |
|  * between the file and the memory map for a potential last
 | |
|  * incomplete page.  Ugly, but necessary.
 | |
|  */
 | |
| int vmtruncate(struct inode * inode, loff_t offset)
 | |
| {
 | |
| 	struct address_space *mapping = inode->i_mapping;
 | |
| 	unsigned long limit;
 | |
| 
 | |
| 	if (inode->i_size < offset)
 | |
| 		goto do_expand;
 | |
| 	/*
 | |
| 	 * truncation of in-use swapfiles is disallowed - it would cause
 | |
| 	 * subsequent swapout to scribble on the now-freed blocks.
 | |
| 	 */
 | |
| 	if (IS_SWAPFILE(inode))
 | |
| 		goto out_busy;
 | |
| 	i_size_write(inode, offset);
 | |
| 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
 | |
| 	truncate_inode_pages(mapping, offset);
 | |
| 	goto out_truncate;
 | |
| 
 | |
| do_expand:
 | |
| 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
 | |
| 	if (limit != RLIM_INFINITY && offset > limit)
 | |
| 		goto out_sig;
 | |
| 	if (offset > inode->i_sb->s_maxbytes)
 | |
| 		goto out_big;
 | |
| 	i_size_write(inode, offset);
 | |
| 
 | |
| out_truncate:
 | |
| 	if (inode->i_op && inode->i_op->truncate)
 | |
| 		inode->i_op->truncate(inode);
 | |
| 	return 0;
 | |
| out_sig:
 | |
| 	send_sig(SIGXFSZ, current, 0);
 | |
| out_big:
 | |
| 	return -EFBIG;
 | |
| out_busy:
 | |
| 	return -ETXTBSY;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(vmtruncate);
 | |
| 
 | |
| /* 
 | |
|  * Primitive swap readahead code. We simply read an aligned block of
 | |
|  * (1 << page_cluster) entries in the swap area. This method is chosen
 | |
|  * because it doesn't cost us any seek time.  We also make sure to queue
 | |
|  * the 'original' request together with the readahead ones...  
 | |
|  *
 | |
|  * This has been extended to use the NUMA policies from the mm triggering
 | |
|  * the readahead.
 | |
|  *
 | |
|  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 | |
|  */
 | |
| void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
 | |
| #endif
 | |
| 	int i, num;
 | |
| 	struct page *new_page;
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the number of handles we should do readahead io to.
 | |
| 	 */
 | |
| 	num = valid_swaphandles(entry, &offset);
 | |
| 	for (i = 0; i < num; offset++, i++) {
 | |
| 		/* Ok, do the async read-ahead now */
 | |
| 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
 | |
| 							   offset), vma, addr);
 | |
| 		if (!new_page)
 | |
| 			break;
 | |
| 		page_cache_release(new_page);
 | |
| #ifdef CONFIG_NUMA
 | |
| 		/*
 | |
| 		 * Find the next applicable VMA for the NUMA policy.
 | |
| 		 */
 | |
| 		addr += PAGE_SIZE;
 | |
| 		if (addr == 0)
 | |
| 			vma = NULL;
 | |
| 		if (vma) {
 | |
| 			if (addr >= vma->vm_end) {
 | |
| 				vma = next_vma;
 | |
| 				next_vma = vma ? vma->vm_next : NULL;
 | |
| 			}
 | |
| 			if (vma && addr < vma->vm_start)
 | |
| 				vma = NULL;
 | |
| 		} else {
 | |
| 			if (next_vma && addr >= next_vma->vm_start) {
 | |
| 				vma = next_vma;
 | |
| 				next_vma = vma->vm_next;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 	lru_add_drain();	/* Push any new pages onto the LRU now */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We hold the mm semaphore and the page_table_lock on entry and
 | |
|  * should release the pagetable lock on exit..
 | |
|  */
 | |
| static int do_swap_page(struct mm_struct * mm,
 | |
| 	struct vm_area_struct * vma, unsigned long address,
 | |
| 	pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
 | |
| 	pte_t pte;
 | |
| 	int ret = VM_FAULT_MINOR;
 | |
| 
 | |
| 	pte_unmap(page_table);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	page = lookup_swap_cache(entry);
 | |
| 	if (!page) {
 | |
|  		swapin_readahead(entry, address, vma);
 | |
|  		page = read_swap_cache_async(entry, vma, address);
 | |
| 		if (!page) {
 | |
| 			/*
 | |
| 			 * Back out if somebody else faulted in this pte while
 | |
| 			 * we released the page table lock.
 | |
| 			 */
 | |
| 			spin_lock(&mm->page_table_lock);
 | |
| 			page_table = pte_offset_map(pmd, address);
 | |
| 			if (likely(pte_same(*page_table, orig_pte)))
 | |
| 				ret = VM_FAULT_OOM;
 | |
| 			else
 | |
| 				ret = VM_FAULT_MINOR;
 | |
| 			pte_unmap(page_table);
 | |
| 			spin_unlock(&mm->page_table_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* Had to read the page from swap area: Major fault */
 | |
| 		ret = VM_FAULT_MAJOR;
 | |
| 		inc_page_state(pgmajfault);
 | |
| 		grab_swap_token();
 | |
| 	}
 | |
| 
 | |
| 	mark_page_accessed(page);
 | |
| 	lock_page(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * Back out if somebody else faulted in this pte while we
 | |
| 	 * released the page table lock.
 | |
| 	 */
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	page_table = pte_offset_map(pmd, address);
 | |
| 	if (unlikely(!pte_same(*page_table, orig_pte))) {
 | |
| 		ret = VM_FAULT_MINOR;
 | |
| 		goto out_nomap;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!PageUptodate(page))) {
 | |
| 		ret = VM_FAULT_SIGBUS;
 | |
| 		goto out_nomap;
 | |
| 	}
 | |
| 
 | |
| 	/* The page isn't present yet, go ahead with the fault. */
 | |
| 
 | |
| 	inc_mm_counter(mm, rss);
 | |
| 	pte = mk_pte(page, vma->vm_page_prot);
 | |
| 	if (write_access && can_share_swap_page(page)) {
 | |
| 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
 | |
| 		write_access = 0;
 | |
| 	}
 | |
| 
 | |
| 	flush_icache_page(vma, page);
 | |
| 	set_pte_at(mm, address, page_table, pte);
 | |
| 	page_add_anon_rmap(page, vma, address);
 | |
| 
 | |
| 	swap_free(entry);
 | |
| 	if (vm_swap_full())
 | |
| 		remove_exclusive_swap_page(page);
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	if (write_access) {
 | |
| 		if (do_wp_page(mm, vma, address,
 | |
| 				page_table, pmd, pte) == VM_FAULT_OOM)
 | |
| 			ret = VM_FAULT_OOM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* No need to invalidate - it was non-present before */
 | |
| 	update_mmu_cache(vma, address, pte);
 | |
| 	lazy_mmu_prot_update(pte);
 | |
| 	pte_unmap(page_table);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| out:
 | |
| 	return ret;
 | |
| out_nomap:
 | |
| 	pte_unmap(page_table);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	unlock_page(page);
 | |
| 	page_cache_release(page);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We are called with the MM semaphore and page_table_lock
 | |
|  * spinlock held to protect against concurrent faults in
 | |
|  * multithreaded programs. 
 | |
|  */
 | |
| static int
 | |
| do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 		pte_t *page_table, pmd_t *pmd, int write_access,
 | |
| 		unsigned long addr)
 | |
| {
 | |
| 	pte_t entry;
 | |
| 	struct page * page = ZERO_PAGE(addr);
 | |
| 
 | |
| 	/* Read-only mapping of ZERO_PAGE. */
 | |
| 	entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
 | |
| 
 | |
| 	/* ..except if it's a write access */
 | |
| 	if (write_access) {
 | |
| 		/* Allocate our own private page. */
 | |
| 		pte_unmap(page_table);
 | |
| 		spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 		if (unlikely(anon_vma_prepare(vma)))
 | |
| 			goto no_mem;
 | |
| 		page = alloc_zeroed_user_highpage(vma, addr);
 | |
| 		if (!page)
 | |
| 			goto no_mem;
 | |
| 
 | |
| 		spin_lock(&mm->page_table_lock);
 | |
| 		page_table = pte_offset_map(pmd, addr);
 | |
| 
 | |
| 		if (!pte_none(*page_table)) {
 | |
| 			pte_unmap(page_table);
 | |
| 			page_cache_release(page);
 | |
| 			spin_unlock(&mm->page_table_lock);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		inc_mm_counter(mm, rss);
 | |
| 		entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
 | |
| 							 vma->vm_page_prot)),
 | |
| 				      vma);
 | |
| 		lru_cache_add_active(page);
 | |
| 		SetPageReferenced(page);
 | |
| 		page_add_anon_rmap(page, vma, addr);
 | |
| 	}
 | |
| 
 | |
| 	set_pte_at(mm, addr, page_table, entry);
 | |
| 	pte_unmap(page_table);
 | |
| 
 | |
| 	/* No need to invalidate - it was non-present before */
 | |
| 	update_mmu_cache(vma, addr, entry);
 | |
| 	lazy_mmu_prot_update(entry);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| out:
 | |
| 	return VM_FAULT_MINOR;
 | |
| no_mem:
 | |
| 	return VM_FAULT_OOM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * do_no_page() tries to create a new page mapping. It aggressively
 | |
|  * tries to share with existing pages, but makes a separate copy if
 | |
|  * the "write_access" parameter is true in order to avoid the next
 | |
|  * page fault.
 | |
|  *
 | |
|  * As this is called only for pages that do not currently exist, we
 | |
|  * do not need to flush old virtual caches or the TLB.
 | |
|  *
 | |
|  * This is called with the MM semaphore held and the page table
 | |
|  * spinlock held. Exit with the spinlock released.
 | |
|  */
 | |
| static int
 | |
| do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 	unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
 | |
| {
 | |
| 	struct page * new_page;
 | |
| 	struct address_space *mapping = NULL;
 | |
| 	pte_t entry;
 | |
| 	unsigned int sequence = 0;
 | |
| 	int ret = VM_FAULT_MINOR;
 | |
| 	int anon = 0;
 | |
| 
 | |
| 	if (!vma->vm_ops || !vma->vm_ops->nopage)
 | |
| 		return do_anonymous_page(mm, vma, page_table,
 | |
| 					pmd, write_access, address);
 | |
| 	pte_unmap(page_table);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	if (vma->vm_file) {
 | |
| 		mapping = vma->vm_file->f_mapping;
 | |
| 		sequence = mapping->truncate_count;
 | |
| 		smp_rmb(); /* serializes i_size against truncate_count */
 | |
| 	}
 | |
| retry:
 | |
| 	cond_resched();
 | |
| 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
 | |
| 	/*
 | |
| 	 * No smp_rmb is needed here as long as there's a full
 | |
| 	 * spin_lock/unlock sequence inside the ->nopage callback
 | |
| 	 * (for the pagecache lookup) that acts as an implicit
 | |
| 	 * smp_mb() and prevents the i_size read to happen
 | |
| 	 * after the next truncate_count read.
 | |
| 	 */
 | |
| 
 | |
| 	/* no page was available -- either SIGBUS or OOM */
 | |
| 	if (new_page == NOPAGE_SIGBUS)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	if (new_page == NOPAGE_OOM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Should we do an early C-O-W break?
 | |
| 	 */
 | |
| 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (unlikely(anon_vma_prepare(vma)))
 | |
| 			goto oom;
 | |
| 		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
 | |
| 		if (!page)
 | |
| 			goto oom;
 | |
| 		copy_user_highpage(page, new_page, address);
 | |
| 		page_cache_release(new_page);
 | |
| 		new_page = page;
 | |
| 		anon = 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	/*
 | |
| 	 * For a file-backed vma, someone could have truncated or otherwise
 | |
| 	 * invalidated this page.  If unmap_mapping_range got called,
 | |
| 	 * retry getting the page.
 | |
| 	 */
 | |
| 	if (mapping && unlikely(sequence != mapping->truncate_count)) {
 | |
| 		sequence = mapping->truncate_count;
 | |
| 		spin_unlock(&mm->page_table_lock);
 | |
| 		page_cache_release(new_page);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	page_table = pte_offset_map(pmd, address);
 | |
| 
 | |
| 	/*
 | |
| 	 * This silly early PAGE_DIRTY setting removes a race
 | |
| 	 * due to the bad i386 page protection. But it's valid
 | |
| 	 * for other architectures too.
 | |
| 	 *
 | |
| 	 * Note that if write_access is true, we either now have
 | |
| 	 * an exclusive copy of the page, or this is a shared mapping,
 | |
| 	 * so we can make it writable and dirty to avoid having to
 | |
| 	 * handle that later.
 | |
| 	 */
 | |
| 	/* Only go through if we didn't race with anybody else... */
 | |
| 	if (pte_none(*page_table)) {
 | |
| 		if (!PageReserved(new_page))
 | |
| 			inc_mm_counter(mm, rss);
 | |
| 
 | |
| 		flush_icache_page(vma, new_page);
 | |
| 		entry = mk_pte(new_page, vma->vm_page_prot);
 | |
| 		if (write_access)
 | |
| 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 | |
| 		set_pte_at(mm, address, page_table, entry);
 | |
| 		if (anon) {
 | |
| 			lru_cache_add_active(new_page);
 | |
| 			page_add_anon_rmap(new_page, vma, address);
 | |
| 		} else
 | |
| 			page_add_file_rmap(new_page);
 | |
| 		pte_unmap(page_table);
 | |
| 	} else {
 | |
| 		/* One of our sibling threads was faster, back out. */
 | |
| 		pte_unmap(page_table);
 | |
| 		page_cache_release(new_page);
 | |
| 		spin_unlock(&mm->page_table_lock);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* no need to invalidate: a not-present page shouldn't be cached */
 | |
| 	update_mmu_cache(vma, address, entry);
 | |
| 	lazy_mmu_prot_update(entry);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| out:
 | |
| 	return ret;
 | |
| oom:
 | |
| 	page_cache_release(new_page);
 | |
| 	ret = VM_FAULT_OOM;
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fault of a previously existing named mapping. Repopulate the pte
 | |
|  * from the encoded file_pte if possible. This enables swappable
 | |
|  * nonlinear vmas.
 | |
|  */
 | |
| static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
 | |
| 	unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
 | |
| {
 | |
| 	unsigned long pgoff;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
 | |
| 	/*
 | |
| 	 * Fall back to the linear mapping if the fs does not support
 | |
| 	 * ->populate:
 | |
| 	 */
 | |
| 	if (!vma->vm_ops || !vma->vm_ops->populate || 
 | |
| 			(write_access && !(vma->vm_flags & VM_SHARED))) {
 | |
| 		pte_clear(mm, address, pte);
 | |
| 		return do_no_page(mm, vma, address, write_access, pte, pmd);
 | |
| 	}
 | |
| 
 | |
| 	pgoff = pte_to_pgoff(*pte);
 | |
| 
 | |
| 	pte_unmap(pte);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
 | |
| 	if (err == -ENOMEM)
 | |
| 		return VM_FAULT_OOM;
 | |
| 	if (err)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	return VM_FAULT_MAJOR;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These routines also need to handle stuff like marking pages dirty
 | |
|  * and/or accessed for architectures that don't do it in hardware (most
 | |
|  * RISC architectures).  The early dirtying is also good on the i386.
 | |
|  *
 | |
|  * There is also a hook called "update_mmu_cache()" that architectures
 | |
|  * with external mmu caches can use to update those (ie the Sparc or
 | |
|  * PowerPC hashed page tables that act as extended TLBs).
 | |
|  *
 | |
|  * Note the "page_table_lock". It is to protect against kswapd removing
 | |
|  * pages from under us. Note that kswapd only ever _removes_ pages, never
 | |
|  * adds them. As such, once we have noticed that the page is not present,
 | |
|  * we can drop the lock early.
 | |
|  *
 | |
|  * The adding of pages is protected by the MM semaphore (which we hold),
 | |
|  * so we don't need to worry about a page being suddenly been added into
 | |
|  * our VM.
 | |
|  *
 | |
|  * We enter with the pagetable spinlock held, we are supposed to
 | |
|  * release it when done.
 | |
|  */
 | |
| static inline int handle_pte_fault(struct mm_struct *mm,
 | |
| 	struct vm_area_struct * vma, unsigned long address,
 | |
| 	int write_access, pte_t *pte, pmd_t *pmd)
 | |
| {
 | |
| 	pte_t entry;
 | |
| 
 | |
| 	entry = *pte;
 | |
| 	if (!pte_present(entry)) {
 | |
| 		/*
 | |
| 		 * If it truly wasn't present, we know that kswapd
 | |
| 		 * and the PTE updates will not touch it later. So
 | |
| 		 * drop the lock.
 | |
| 		 */
 | |
| 		if (pte_none(entry))
 | |
| 			return do_no_page(mm, vma, address, write_access, pte, pmd);
 | |
| 		if (pte_file(entry))
 | |
| 			return do_file_page(mm, vma, address, write_access, pte, pmd);
 | |
| 		return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
 | |
| 	}
 | |
| 
 | |
| 	if (write_access) {
 | |
| 		if (!pte_write(entry))
 | |
| 			return do_wp_page(mm, vma, address, pte, pmd, entry);
 | |
| 
 | |
| 		entry = pte_mkdirty(entry);
 | |
| 	}
 | |
| 	entry = pte_mkyoung(entry);
 | |
| 	ptep_set_access_flags(vma, address, pte, entry, write_access);
 | |
| 	update_mmu_cache(vma, address, entry);
 | |
| 	lazy_mmu_prot_update(entry);
 | |
| 	pte_unmap(pte);
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return VM_FAULT_MINOR;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * By the time we get here, we already hold the mm semaphore
 | |
|  */
 | |
| int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
 | |
| 		unsigned long address, int write_access)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 	inc_page_state(pgfault);
 | |
| 
 | |
| 	if (is_vm_hugetlb_page(vma))
 | |
| 		return VM_FAULT_SIGBUS;	/* mapping truncation does this. */
 | |
| 
 | |
| 	/*
 | |
| 	 * We need the page table lock to synchronize with kswapd
 | |
| 	 * and the SMP-safe atomic PTE updates.
 | |
| 	 */
 | |
| 	pgd = pgd_offset(mm, address);
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 
 | |
| 	pud = pud_alloc(mm, pgd, address);
 | |
| 	if (!pud)
 | |
| 		goto oom;
 | |
| 
 | |
| 	pmd = pmd_alloc(mm, pud, address);
 | |
| 	if (!pmd)
 | |
| 		goto oom;
 | |
| 
 | |
| 	pte = pte_alloc_map(mm, pmd, address);
 | |
| 	if (!pte)
 | |
| 		goto oom;
 | |
| 	
 | |
| 	return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
 | |
| 
 | |
|  oom:
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return VM_FAULT_OOM;
 | |
| }
 | |
| 
 | |
| #ifndef __PAGETABLE_PUD_FOLDED
 | |
| /*
 | |
|  * Allocate page upper directory.
 | |
|  *
 | |
|  * We've already handled the fast-path in-line, and we own the
 | |
|  * page table lock.
 | |
|  */
 | |
| pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
 | |
| {
 | |
| 	pud_t *new;
 | |
| 
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	new = pud_alloc_one(mm, address);
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	if (!new)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we dropped the lock, we should re-check the
 | |
| 	 * entry, as somebody else could have populated it..
 | |
| 	 */
 | |
| 	if (pgd_present(*pgd)) {
 | |
| 		pud_free(new);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	pgd_populate(mm, pgd, new);
 | |
|  out:
 | |
| 	return pud_offset(pgd, address);
 | |
| }
 | |
| #endif /* __PAGETABLE_PUD_FOLDED */
 | |
| 
 | |
| #ifndef __PAGETABLE_PMD_FOLDED
 | |
| /*
 | |
|  * Allocate page middle directory.
 | |
|  *
 | |
|  * We've already handled the fast-path in-line, and we own the
 | |
|  * page table lock.
 | |
|  */
 | |
| pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
 | |
| {
 | |
| 	pmd_t *new;
 | |
| 
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	new = pmd_alloc_one(mm, address);
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	if (!new)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we dropped the lock, we should re-check the
 | |
| 	 * entry, as somebody else could have populated it..
 | |
| 	 */
 | |
| #ifndef __ARCH_HAS_4LEVEL_HACK
 | |
| 	if (pud_present(*pud)) {
 | |
| 		pmd_free(new);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	pud_populate(mm, pud, new);
 | |
| #else
 | |
| 	if (pgd_present(*pud)) {
 | |
| 		pmd_free(new);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	pgd_populate(mm, pud, new);
 | |
| #endif /* __ARCH_HAS_4LEVEL_HACK */
 | |
| 
 | |
|  out:
 | |
| 	return pmd_offset(pud, address);
 | |
| }
 | |
| #endif /* __PAGETABLE_PMD_FOLDED */
 | |
| 
 | |
| int make_pages_present(unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	int ret, len, write;
 | |
| 	struct vm_area_struct * vma;
 | |
| 
 | |
| 	vma = find_vma(current->mm, addr);
 | |
| 	if (!vma)
 | |
| 		return -1;
 | |
| 	write = (vma->vm_flags & VM_WRITE) != 0;
 | |
| 	if (addr >= end)
 | |
| 		BUG();
 | |
| 	if (end > vma->vm_end)
 | |
| 		BUG();
 | |
| 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
 | |
| 	ret = get_user_pages(current, current->mm, addr,
 | |
| 			len, write, 0, NULL, NULL);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	return ret == len ? 0 : -1;
 | |
| }
 | |
| 
 | |
| /* 
 | |
|  * Map a vmalloc()-space virtual address to the physical page.
 | |
|  */
 | |
| struct page * vmalloc_to_page(void * vmalloc_addr)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) vmalloc_addr;
 | |
| 	struct page *page = NULL;
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *ptep, pte;
 | |
|   
 | |
| 	if (!pgd_none(*pgd)) {
 | |
| 		pud = pud_offset(pgd, addr);
 | |
| 		if (!pud_none(*pud)) {
 | |
| 			pmd = pmd_offset(pud, addr);
 | |
| 			if (!pmd_none(*pmd)) {
 | |
| 				ptep = pte_offset_map(pmd, addr);
 | |
| 				pte = *ptep;
 | |
| 				if (pte_present(pte))
 | |
| 					page = pte_page(pte);
 | |
| 				pte_unmap(ptep);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(vmalloc_to_page);
 | |
| 
 | |
| /*
 | |
|  * Map a vmalloc()-space virtual address to the physical page frame number.
 | |
|  */
 | |
| unsigned long vmalloc_to_pfn(void * vmalloc_addr)
 | |
| {
 | |
| 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(vmalloc_to_pfn);
 | |
| 
 | |
| /*
 | |
|  * update_mem_hiwater
 | |
|  *	- update per process rss and vm high water data
 | |
|  */
 | |
| void update_mem_hiwater(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->mm) {
 | |
| 		unsigned long rss = get_mm_counter(tsk->mm, rss);
 | |
| 
 | |
| 		if (tsk->mm->hiwater_rss < rss)
 | |
| 			tsk->mm->hiwater_rss = rss;
 | |
| 		if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
 | |
| 			tsk->mm->hiwater_vm = tsk->mm->total_vm;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if !defined(__HAVE_ARCH_GATE_AREA)
 | |
| 
 | |
| #if defined(AT_SYSINFO_EHDR)
 | |
| struct vm_area_struct gate_vma;
 | |
| 
 | |
| static int __init gate_vma_init(void)
 | |
| {
 | |
| 	gate_vma.vm_mm = NULL;
 | |
| 	gate_vma.vm_start = FIXADDR_USER_START;
 | |
| 	gate_vma.vm_end = FIXADDR_USER_END;
 | |
| 	gate_vma.vm_page_prot = PAGE_READONLY;
 | |
| 	gate_vma.vm_flags = 0;
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(gate_vma_init);
 | |
| #endif
 | |
| 
 | |
| struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
 | |
| {
 | |
| #ifdef AT_SYSINFO_EHDR
 | |
| 	return &gate_vma;
 | |
| #else
 | |
| 	return NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int in_gate_area_no_task(unsigned long addr)
 | |
| {
 | |
| #ifdef AT_SYSINFO_EHDR
 | |
| 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif	/* __HAVE_ARCH_GATE_AREA */
 |