forked from mirrors/linux
		
	smp_read_barrier_depends() doesn't exist any more, so reword the two comments that mention it to refer to "dependency ordering" instead. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Will Deacon <will@kernel.org>
		
			
				
	
	
		
			674 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			674 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* SPDX-License-Identifier: GPL-2.0-or-later */
 | 
						|
/*
 | 
						|
 *	Definitions for the 'struct ptr_ring' datastructure.
 | 
						|
 *
 | 
						|
 *	Author:
 | 
						|
 *		Michael S. Tsirkin <mst@redhat.com>
 | 
						|
 *
 | 
						|
 *	Copyright (C) 2016 Red Hat, Inc.
 | 
						|
 *
 | 
						|
 *	This is a limited-size FIFO maintaining pointers in FIFO order, with
 | 
						|
 *	one CPU producing entries and another consuming entries from a FIFO.
 | 
						|
 *
 | 
						|
 *	This implementation tries to minimize cache-contention when there is a
 | 
						|
 *	single producer and a single consumer CPU.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef _LINUX_PTR_RING_H
 | 
						|
#define _LINUX_PTR_RING_H 1
 | 
						|
 | 
						|
#ifdef __KERNEL__
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/cache.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <asm/errno.h>
 | 
						|
#endif
 | 
						|
 | 
						|
struct ptr_ring {
 | 
						|
	int producer ____cacheline_aligned_in_smp;
 | 
						|
	spinlock_t producer_lock;
 | 
						|
	int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
 | 
						|
	int consumer_tail; /* next entry to invalidate */
 | 
						|
	spinlock_t consumer_lock;
 | 
						|
	/* Shared consumer/producer data */
 | 
						|
	/* Read-only by both the producer and the consumer */
 | 
						|
	int size ____cacheline_aligned_in_smp; /* max entries in queue */
 | 
						|
	int batch; /* number of entries to consume in a batch */
 | 
						|
	void **queue;
 | 
						|
};
 | 
						|
 | 
						|
/* Note: callers invoking this in a loop must use a compiler barrier,
 | 
						|
 * for example cpu_relax().
 | 
						|
 *
 | 
						|
 * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
 | 
						|
 * see e.g. ptr_ring_full.
 | 
						|
 */
 | 
						|
static inline bool __ptr_ring_full(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	return r->queue[r->producer];
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ptr_ring_full(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	spin_lock(&r->producer_lock);
 | 
						|
	ret = __ptr_ring_full(r);
 | 
						|
	spin_unlock(&r->producer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ptr_ring_full_irq(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	spin_lock_irq(&r->producer_lock);
 | 
						|
	ret = __ptr_ring_full(r);
 | 
						|
	spin_unlock_irq(&r->producer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ptr_ring_full_any(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	spin_lock_irqsave(&r->producer_lock, flags);
 | 
						|
	ret = __ptr_ring_full(r);
 | 
						|
	spin_unlock_irqrestore(&r->producer_lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ptr_ring_full_bh(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	spin_lock_bh(&r->producer_lock);
 | 
						|
	ret = __ptr_ring_full(r);
 | 
						|
	spin_unlock_bh(&r->producer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Note: callers invoking this in a loop must use a compiler barrier,
 | 
						|
 * for example cpu_relax(). Callers must hold producer_lock.
 | 
						|
 * Callers are responsible for making sure pointer that is being queued
 | 
						|
 * points to a valid data.
 | 
						|
 */
 | 
						|
static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
 | 
						|
{
 | 
						|
	if (unlikely(!r->size) || r->queue[r->producer])
 | 
						|
		return -ENOSPC;
 | 
						|
 | 
						|
	/* Make sure the pointer we are storing points to a valid data. */
 | 
						|
	/* Pairs with the dependency ordering in __ptr_ring_consume. */
 | 
						|
	smp_wmb();
 | 
						|
 | 
						|
	WRITE_ONCE(r->queue[r->producer++], ptr);
 | 
						|
	if (unlikely(r->producer >= r->size))
 | 
						|
		r->producer = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: resize (below) nests producer lock within consumer lock, so if you
 | 
						|
 * consume in interrupt or BH context, you must disable interrupts/BH when
 | 
						|
 * calling this.
 | 
						|
 */
 | 
						|
static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock(&r->producer_lock);
 | 
						|
	ret = __ptr_ring_produce(r, ptr);
 | 
						|
	spin_unlock(&r->producer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock_irq(&r->producer_lock);
 | 
						|
	ret = __ptr_ring_produce(r, ptr);
 | 
						|
	spin_unlock_irq(&r->producer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock_irqsave(&r->producer_lock, flags);
 | 
						|
	ret = __ptr_ring_produce(r, ptr);
 | 
						|
	spin_unlock_irqrestore(&r->producer_lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock_bh(&r->producer_lock);
 | 
						|
	ret = __ptr_ring_produce(r, ptr);
 | 
						|
	spin_unlock_bh(&r->producer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline void *__ptr_ring_peek(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	if (likely(r->size))
 | 
						|
		return READ_ONCE(r->queue[r->consumer_head]);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Test ring empty status without taking any locks.
 | 
						|
 *
 | 
						|
 * NB: This is only safe to call if ring is never resized.
 | 
						|
 *
 | 
						|
 * However, if some other CPU consumes ring entries at the same time, the value
 | 
						|
 * returned is not guaranteed to be correct.
 | 
						|
 *
 | 
						|
 * In this case - to avoid incorrectly detecting the ring
 | 
						|
 * as empty - the CPU consuming the ring entries is responsible
 | 
						|
 * for either consuming all ring entries until the ring is empty,
 | 
						|
 * or synchronizing with some other CPU and causing it to
 | 
						|
 * re-test __ptr_ring_empty and/or consume the ring enteries
 | 
						|
 * after the synchronization point.
 | 
						|
 *
 | 
						|
 * Note: callers invoking this in a loop must use a compiler barrier,
 | 
						|
 * for example cpu_relax().
 | 
						|
 */
 | 
						|
static inline bool __ptr_ring_empty(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	if (likely(r->size))
 | 
						|
		return !r->queue[READ_ONCE(r->consumer_head)];
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ptr_ring_empty(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	spin_lock(&r->consumer_lock);
 | 
						|
	ret = __ptr_ring_empty(r);
 | 
						|
	spin_unlock(&r->consumer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	spin_lock_irq(&r->consumer_lock);
 | 
						|
	ret = __ptr_ring_empty(r);
 | 
						|
	spin_unlock_irq(&r->consumer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ptr_ring_empty_any(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	spin_lock_irqsave(&r->consumer_lock, flags);
 | 
						|
	ret = __ptr_ring_empty(r);
 | 
						|
	spin_unlock_irqrestore(&r->consumer_lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	spin_lock_bh(&r->consumer_lock);
 | 
						|
	ret = __ptr_ring_empty(r);
 | 
						|
	spin_unlock_bh(&r->consumer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Must only be called after __ptr_ring_peek returned !NULL */
 | 
						|
static inline void __ptr_ring_discard_one(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	/* Fundamentally, what we want to do is update consumer
 | 
						|
	 * index and zero out the entry so producer can reuse it.
 | 
						|
	 * Doing it naively at each consume would be as simple as:
 | 
						|
	 *       consumer = r->consumer;
 | 
						|
	 *       r->queue[consumer++] = NULL;
 | 
						|
	 *       if (unlikely(consumer >= r->size))
 | 
						|
	 *               consumer = 0;
 | 
						|
	 *       r->consumer = consumer;
 | 
						|
	 * but that is suboptimal when the ring is full as producer is writing
 | 
						|
	 * out new entries in the same cache line.  Defer these updates until a
 | 
						|
	 * batch of entries has been consumed.
 | 
						|
	 */
 | 
						|
	/* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
 | 
						|
	 * to work correctly.
 | 
						|
	 */
 | 
						|
	int consumer_head = r->consumer_head;
 | 
						|
	int head = consumer_head++;
 | 
						|
 | 
						|
	/* Once we have processed enough entries invalidate them in
 | 
						|
	 * the ring all at once so producer can reuse their space in the ring.
 | 
						|
	 * We also do this when we reach end of the ring - not mandatory
 | 
						|
	 * but helps keep the implementation simple.
 | 
						|
	 */
 | 
						|
	if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
 | 
						|
		     consumer_head >= r->size)) {
 | 
						|
		/* Zero out entries in the reverse order: this way we touch the
 | 
						|
		 * cache line that producer might currently be reading the last;
 | 
						|
		 * producer won't make progress and touch other cache lines
 | 
						|
		 * besides the first one until we write out all entries.
 | 
						|
		 */
 | 
						|
		while (likely(head >= r->consumer_tail))
 | 
						|
			r->queue[head--] = NULL;
 | 
						|
		r->consumer_tail = consumer_head;
 | 
						|
	}
 | 
						|
	if (unlikely(consumer_head >= r->size)) {
 | 
						|
		consumer_head = 0;
 | 
						|
		r->consumer_tail = 0;
 | 
						|
	}
 | 
						|
	/* matching READ_ONCE in __ptr_ring_empty for lockless tests */
 | 
						|
	WRITE_ONCE(r->consumer_head, consumer_head);
 | 
						|
}
 | 
						|
 | 
						|
static inline void *__ptr_ring_consume(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	/* The READ_ONCE in __ptr_ring_peek guarantees that anyone
 | 
						|
	 * accessing data through the pointer is up to date. Pairs
 | 
						|
	 * with smp_wmb in __ptr_ring_produce.
 | 
						|
	 */
 | 
						|
	ptr = __ptr_ring_peek(r);
 | 
						|
	if (ptr)
 | 
						|
		__ptr_ring_discard_one(r);
 | 
						|
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
 | 
						|
					     void **array, int n)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < n; i++) {
 | 
						|
		ptr = __ptr_ring_consume(r);
 | 
						|
		if (!ptr)
 | 
						|
			break;
 | 
						|
		array[i] = ptr;
 | 
						|
	}
 | 
						|
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: resize (below) nests producer lock within consumer lock, so if you
 | 
						|
 * call this in interrupt or BH context, you must disable interrupts/BH when
 | 
						|
 * producing.
 | 
						|
 */
 | 
						|
static inline void *ptr_ring_consume(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	spin_lock(&r->consumer_lock);
 | 
						|
	ptr = __ptr_ring_consume(r);
 | 
						|
	spin_unlock(&r->consumer_lock);
 | 
						|
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	spin_lock_irq(&r->consumer_lock);
 | 
						|
	ptr = __ptr_ring_consume(r);
 | 
						|
	spin_unlock_irq(&r->consumer_lock);
 | 
						|
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static inline void *ptr_ring_consume_any(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	spin_lock_irqsave(&r->consumer_lock, flags);
 | 
						|
	ptr = __ptr_ring_consume(r);
 | 
						|
	spin_unlock_irqrestore(&r->consumer_lock, flags);
 | 
						|
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	spin_lock_bh(&r->consumer_lock);
 | 
						|
	ptr = __ptr_ring_consume(r);
 | 
						|
	spin_unlock_bh(&r->consumer_lock);
 | 
						|
 | 
						|
	return ptr;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ptr_ring_consume_batched(struct ptr_ring *r,
 | 
						|
					   void **array, int n)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock(&r->consumer_lock);
 | 
						|
	ret = __ptr_ring_consume_batched(r, array, n);
 | 
						|
	spin_unlock(&r->consumer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
 | 
						|
					       void **array, int n)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock_irq(&r->consumer_lock);
 | 
						|
	ret = __ptr_ring_consume_batched(r, array, n);
 | 
						|
	spin_unlock_irq(&r->consumer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
 | 
						|
					       void **array, int n)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock_irqsave(&r->consumer_lock, flags);
 | 
						|
	ret = __ptr_ring_consume_batched(r, array, n);
 | 
						|
	spin_unlock_irqrestore(&r->consumer_lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
 | 
						|
					      void **array, int n)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	spin_lock_bh(&r->consumer_lock);
 | 
						|
	ret = __ptr_ring_consume_batched(r, array, n);
 | 
						|
	spin_unlock_bh(&r->consumer_lock);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Cast to structure type and call a function without discarding from FIFO.
 | 
						|
 * Function must return a value.
 | 
						|
 * Callers must take consumer_lock.
 | 
						|
 */
 | 
						|
#define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
 | 
						|
 | 
						|
#define PTR_RING_PEEK_CALL(r, f) ({ \
 | 
						|
	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
 | 
						|
	\
 | 
						|
	spin_lock(&(r)->consumer_lock); \
 | 
						|
	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
 | 
						|
	spin_unlock(&(r)->consumer_lock); \
 | 
						|
	__PTR_RING_PEEK_CALL_v; \
 | 
						|
})
 | 
						|
 | 
						|
#define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
 | 
						|
	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
 | 
						|
	\
 | 
						|
	spin_lock_irq(&(r)->consumer_lock); \
 | 
						|
	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
 | 
						|
	spin_unlock_irq(&(r)->consumer_lock); \
 | 
						|
	__PTR_RING_PEEK_CALL_v; \
 | 
						|
})
 | 
						|
 | 
						|
#define PTR_RING_PEEK_CALL_BH(r, f) ({ \
 | 
						|
	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
 | 
						|
	\
 | 
						|
	spin_lock_bh(&(r)->consumer_lock); \
 | 
						|
	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
 | 
						|
	spin_unlock_bh(&(r)->consumer_lock); \
 | 
						|
	__PTR_RING_PEEK_CALL_v; \
 | 
						|
})
 | 
						|
 | 
						|
#define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
 | 
						|
	typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
 | 
						|
	unsigned long __PTR_RING_PEEK_CALL_f;\
 | 
						|
	\
 | 
						|
	spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
 | 
						|
	__PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
 | 
						|
	spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
 | 
						|
	__PTR_RING_PEEK_CALL_v; \
 | 
						|
})
 | 
						|
 | 
						|
/* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
 | 
						|
 * documentation for vmalloc for which of them are legal.
 | 
						|
 */
 | 
						|
static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
 | 
						|
{
 | 
						|
	if (size > KMALLOC_MAX_SIZE / sizeof(void *))
 | 
						|
		return NULL;
 | 
						|
	return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
 | 
						|
}
 | 
						|
 | 
						|
static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
 | 
						|
{
 | 
						|
	r->size = size;
 | 
						|
	r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
 | 
						|
	/* We need to set batch at least to 1 to make logic
 | 
						|
	 * in __ptr_ring_discard_one work correctly.
 | 
						|
	 * Batching too much (because ring is small) would cause a lot of
 | 
						|
	 * burstiness. Needs tuning, for now disable batching.
 | 
						|
	 */
 | 
						|
	if (r->batch > r->size / 2 || !r->batch)
 | 
						|
		r->batch = 1;
 | 
						|
}
 | 
						|
 | 
						|
static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
 | 
						|
{
 | 
						|
	r->queue = __ptr_ring_init_queue_alloc(size, gfp);
 | 
						|
	if (!r->queue)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	__ptr_ring_set_size(r, size);
 | 
						|
	r->producer = r->consumer_head = r->consumer_tail = 0;
 | 
						|
	spin_lock_init(&r->producer_lock);
 | 
						|
	spin_lock_init(&r->consumer_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return entries into ring. Destroy entries that don't fit.
 | 
						|
 *
 | 
						|
 * Note: this is expected to be a rare slow path operation.
 | 
						|
 *
 | 
						|
 * Note: producer lock is nested within consumer lock, so if you
 | 
						|
 * resize you must make sure all uses nest correctly.
 | 
						|
 * In particular if you consume ring in interrupt or BH context, you must
 | 
						|
 * disable interrupts/BH when doing so.
 | 
						|
 */
 | 
						|
static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
 | 
						|
				      void (*destroy)(void *))
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int head;
 | 
						|
 | 
						|
	spin_lock_irqsave(&r->consumer_lock, flags);
 | 
						|
	spin_lock(&r->producer_lock);
 | 
						|
 | 
						|
	if (!r->size)
 | 
						|
		goto done;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clean out buffered entries (for simplicity). This way following code
 | 
						|
	 * can test entries for NULL and if not assume they are valid.
 | 
						|
	 */
 | 
						|
	head = r->consumer_head - 1;
 | 
						|
	while (likely(head >= r->consumer_tail))
 | 
						|
		r->queue[head--] = NULL;
 | 
						|
	r->consumer_tail = r->consumer_head;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Go over entries in batch, start moving head back and copy entries.
 | 
						|
	 * Stop when we run into previously unconsumed entries.
 | 
						|
	 */
 | 
						|
	while (n) {
 | 
						|
		head = r->consumer_head - 1;
 | 
						|
		if (head < 0)
 | 
						|
			head = r->size - 1;
 | 
						|
		if (r->queue[head]) {
 | 
						|
			/* This batch entry will have to be destroyed. */
 | 
						|
			goto done;
 | 
						|
		}
 | 
						|
		r->queue[head] = batch[--n];
 | 
						|
		r->consumer_tail = head;
 | 
						|
		/* matching READ_ONCE in __ptr_ring_empty for lockless tests */
 | 
						|
		WRITE_ONCE(r->consumer_head, head);
 | 
						|
	}
 | 
						|
 | 
						|
done:
 | 
						|
	/* Destroy all entries left in the batch. */
 | 
						|
	while (n)
 | 
						|
		destroy(batch[--n]);
 | 
						|
	spin_unlock(&r->producer_lock);
 | 
						|
	spin_unlock_irqrestore(&r->consumer_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
 | 
						|
					   int size, gfp_t gfp,
 | 
						|
					   void (*destroy)(void *))
 | 
						|
{
 | 
						|
	int producer = 0;
 | 
						|
	void **old;
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	while ((ptr = __ptr_ring_consume(r)))
 | 
						|
		if (producer < size)
 | 
						|
			queue[producer++] = ptr;
 | 
						|
		else if (destroy)
 | 
						|
			destroy(ptr);
 | 
						|
 | 
						|
	if (producer >= size)
 | 
						|
		producer = 0;
 | 
						|
	__ptr_ring_set_size(r, size);
 | 
						|
	r->producer = producer;
 | 
						|
	r->consumer_head = 0;
 | 
						|
	r->consumer_tail = 0;
 | 
						|
	old = r->queue;
 | 
						|
	r->queue = queue;
 | 
						|
 | 
						|
	return old;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: producer lock is nested within consumer lock, so if you
 | 
						|
 * resize you must make sure all uses nest correctly.
 | 
						|
 * In particular if you consume ring in interrupt or BH context, you must
 | 
						|
 * disable interrupts/BH when doing so.
 | 
						|
 */
 | 
						|
static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
 | 
						|
				  void (*destroy)(void *))
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	void **queue = __ptr_ring_init_queue_alloc(size, gfp);
 | 
						|
	void **old;
 | 
						|
 | 
						|
	if (!queue)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	spin_lock_irqsave(&(r)->consumer_lock, flags);
 | 
						|
	spin_lock(&(r)->producer_lock);
 | 
						|
 | 
						|
	old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
 | 
						|
 | 
						|
	spin_unlock(&(r)->producer_lock);
 | 
						|
	spin_unlock_irqrestore(&(r)->consumer_lock, flags);
 | 
						|
 | 
						|
	kvfree(old);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note: producer lock is nested within consumer lock, so if you
 | 
						|
 * resize you must make sure all uses nest correctly.
 | 
						|
 * In particular if you consume ring in interrupt or BH context, you must
 | 
						|
 * disable interrupts/BH when doing so.
 | 
						|
 */
 | 
						|
static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
 | 
						|
					   unsigned int nrings,
 | 
						|
					   int size,
 | 
						|
					   gfp_t gfp, void (*destroy)(void *))
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	void ***queues;
 | 
						|
	int i;
 | 
						|
 | 
						|
	queues = kmalloc_array(nrings, sizeof(*queues), gfp);
 | 
						|
	if (!queues)
 | 
						|
		goto noqueues;
 | 
						|
 | 
						|
	for (i = 0; i < nrings; ++i) {
 | 
						|
		queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
 | 
						|
		if (!queues[i])
 | 
						|
			goto nomem;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < nrings; ++i) {
 | 
						|
		spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
 | 
						|
		spin_lock(&(rings[i])->producer_lock);
 | 
						|
		queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
 | 
						|
						  size, gfp, destroy);
 | 
						|
		spin_unlock(&(rings[i])->producer_lock);
 | 
						|
		spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < nrings; ++i)
 | 
						|
		kvfree(queues[i]);
 | 
						|
 | 
						|
	kfree(queues);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
nomem:
 | 
						|
	while (--i >= 0)
 | 
						|
		kvfree(queues[i]);
 | 
						|
 | 
						|
	kfree(queues);
 | 
						|
 | 
						|
noqueues:
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
 | 
						|
{
 | 
						|
	void *ptr;
 | 
						|
 | 
						|
	if (destroy)
 | 
						|
		while ((ptr = ptr_ring_consume(r)))
 | 
						|
			destroy(ptr);
 | 
						|
	kvfree(r->queue);
 | 
						|
}
 | 
						|
 | 
						|
#endif /* _LINUX_PTR_RING_H  */
 |