forked from mirrors/linux
		
	 8df3aaaf9b
			
		
	
	
		8df3aaaf9b
		
	
	
	
	
		
			
			geo->keylen cannot be larger than 4. So we might as well make fixed-size allocations. Given the one remaining user, geo->keylen cannot even be larger than 1. Logfs used to have 64bit and 128bit keys, tcm_qla2xxx only has 32bit keys. But let's not break the code if we don't have to. Signed-off-by: Joern Engel <joern@purestorage.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			803 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			803 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * lib/btree.c	- Simple In-memory B+Tree
 | |
|  *
 | |
|  * As should be obvious for Linux kernel code, license is GPLv2
 | |
|  *
 | |
|  * Copyright (c) 2007-2008 Joern Engel <joern@purestorage.com>
 | |
|  * Bits and pieces stolen from Peter Zijlstra's code, which is
 | |
|  * Copyright 2007, Red Hat Inc. Peter Zijlstra
 | |
|  * GPLv2
 | |
|  *
 | |
|  * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch
 | |
|  *
 | |
|  * A relatively simple B+Tree implementation.  I have written it as a learning
 | |
|  * exercise to understand how B+Trees work.  Turned out to be useful as well.
 | |
|  *
 | |
|  * B+Trees can be used similar to Linux radix trees (which don't have anything
 | |
|  * in common with textbook radix trees, beware).  Prerequisite for them working
 | |
|  * well is that access to a random tree node is much faster than a large number
 | |
|  * of operations within each node.
 | |
|  *
 | |
|  * Disks have fulfilled the prerequisite for a long time.  More recently DRAM
 | |
|  * has gained similar properties, as memory access times, when measured in cpu
 | |
|  * cycles, have increased.  Cacheline sizes have increased as well, which also
 | |
|  * helps B+Trees.
 | |
|  *
 | |
|  * Compared to radix trees, B+Trees are more efficient when dealing with a
 | |
|  * sparsely populated address space.  Between 25% and 50% of the memory is
 | |
|  * occupied with valid pointers.  When densely populated, radix trees contain
 | |
|  * ~98% pointers - hard to beat.  Very sparse radix trees contain only ~2%
 | |
|  * pointers.
 | |
|  *
 | |
|  * This particular implementation stores pointers identified by a long value.
 | |
|  * Storing NULL pointers is illegal, lookup will return NULL when no entry
 | |
|  * was found.
 | |
|  *
 | |
|  * A tricks was used that is not commonly found in textbooks.  The lowest
 | |
|  * values are to the right, not to the left.  All used slots within a node
 | |
|  * are on the left, all unused slots contain NUL values.  Most operations
 | |
|  * simply loop once over all slots and terminate on the first NUL.
 | |
|  */
 | |
| 
 | |
| #include <linux/btree.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | |
| #define NODESIZE MAX(L1_CACHE_BYTES, 128)
 | |
| 
 | |
| struct btree_geo {
 | |
| 	int keylen;
 | |
| 	int no_pairs;
 | |
| 	int no_longs;
 | |
| };
 | |
| 
 | |
| struct btree_geo btree_geo32 = {
 | |
| 	.keylen = 1,
 | |
| 	.no_pairs = NODESIZE / sizeof(long) / 2,
 | |
| 	.no_longs = NODESIZE / sizeof(long) / 2,
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(btree_geo32);
 | |
| 
 | |
| #define LONG_PER_U64 (64 / BITS_PER_LONG)
 | |
| struct btree_geo btree_geo64 = {
 | |
| 	.keylen = LONG_PER_U64,
 | |
| 	.no_pairs = NODESIZE / sizeof(long) / (1 + LONG_PER_U64),
 | |
| 	.no_longs = LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + LONG_PER_U64)),
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(btree_geo64);
 | |
| 
 | |
| struct btree_geo btree_geo128 = {
 | |
| 	.keylen = 2 * LONG_PER_U64,
 | |
| 	.no_pairs = NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64),
 | |
| 	.no_longs = 2 * LONG_PER_U64 * (NODESIZE / sizeof(long) / (1 + 2 * LONG_PER_U64)),
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(btree_geo128);
 | |
| 
 | |
| #define MAX_KEYLEN	(2 * LONG_PER_U64)
 | |
| 
 | |
| static struct kmem_cache *btree_cachep;
 | |
| 
 | |
| void *btree_alloc(gfp_t gfp_mask, void *pool_data)
 | |
| {
 | |
| 	return kmem_cache_alloc(btree_cachep, gfp_mask);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_alloc);
 | |
| 
 | |
| void btree_free(void *element, void *pool_data)
 | |
| {
 | |
| 	kmem_cache_free(btree_cachep, element);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_free);
 | |
| 
 | |
| static unsigned long *btree_node_alloc(struct btree_head *head, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long *node;
 | |
| 
 | |
| 	node = mempool_alloc(head->mempool, gfp);
 | |
| 	if (likely(node))
 | |
| 		memset(node, 0, NODESIZE);
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| static int longcmp(const unsigned long *l1, const unsigned long *l2, size_t n)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		if (l1[i] < l2[i])
 | |
| 			return -1;
 | |
| 		if (l1[i] > l2[i])
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long *longcpy(unsigned long *dest, const unsigned long *src,
 | |
| 		size_t n)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		dest[i] = src[i];
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| static unsigned long *longset(unsigned long *s, unsigned long c, size_t n)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < n; i++)
 | |
| 		s[i] = c;
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| static void dec_key(struct btree_geo *geo, unsigned long *key)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = geo->keylen - 1; i >= 0; i--) {
 | |
| 		val = key[i];
 | |
| 		key[i] = val - 1;
 | |
| 		if (val)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long *bkey(struct btree_geo *geo, unsigned long *node, int n)
 | |
| {
 | |
| 	return &node[n * geo->keylen];
 | |
| }
 | |
| 
 | |
| static void *bval(struct btree_geo *geo, unsigned long *node, int n)
 | |
| {
 | |
| 	return (void *)node[geo->no_longs + n];
 | |
| }
 | |
| 
 | |
| static void setkey(struct btree_geo *geo, unsigned long *node, int n,
 | |
| 		   unsigned long *key)
 | |
| {
 | |
| 	longcpy(bkey(geo, node, n), key, geo->keylen);
 | |
| }
 | |
| 
 | |
| static void setval(struct btree_geo *geo, unsigned long *node, int n,
 | |
| 		   void *val)
 | |
| {
 | |
| 	node[geo->no_longs + n] = (unsigned long) val;
 | |
| }
 | |
| 
 | |
| static void clearpair(struct btree_geo *geo, unsigned long *node, int n)
 | |
| {
 | |
| 	longset(bkey(geo, node, n), 0, geo->keylen);
 | |
| 	node[geo->no_longs + n] = 0;
 | |
| }
 | |
| 
 | |
| static inline void __btree_init(struct btree_head *head)
 | |
| {
 | |
| 	head->node = NULL;
 | |
| 	head->height = 0;
 | |
| }
 | |
| 
 | |
| void btree_init_mempool(struct btree_head *head, mempool_t *mempool)
 | |
| {
 | |
| 	__btree_init(head);
 | |
| 	head->mempool = mempool;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_init_mempool);
 | |
| 
 | |
| int btree_init(struct btree_head *head)
 | |
| {
 | |
| 	__btree_init(head);
 | |
| 	head->mempool = mempool_create(0, btree_alloc, btree_free, NULL);
 | |
| 	if (!head->mempool)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_init);
 | |
| 
 | |
| void btree_destroy(struct btree_head *head)
 | |
| {
 | |
| 	mempool_free(head->node, head->mempool);
 | |
| 	mempool_destroy(head->mempool);
 | |
| 	head->mempool = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_destroy);
 | |
| 
 | |
| void *btree_last(struct btree_head *head, struct btree_geo *geo,
 | |
| 		 unsigned long *key)
 | |
| {
 | |
| 	int height = head->height;
 | |
| 	unsigned long *node = head->node;
 | |
| 
 | |
| 	if (height == 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for ( ; height > 1; height--)
 | |
| 		node = bval(geo, node, 0);
 | |
| 
 | |
| 	longcpy(key, bkey(geo, node, 0), geo->keylen);
 | |
| 	return bval(geo, node, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_last);
 | |
| 
 | |
| static int keycmp(struct btree_geo *geo, unsigned long *node, int pos,
 | |
| 		  unsigned long *key)
 | |
| {
 | |
| 	return longcmp(bkey(geo, node, pos), key, geo->keylen);
 | |
| }
 | |
| 
 | |
| static int keyzero(struct btree_geo *geo, unsigned long *key)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < geo->keylen; i++)
 | |
| 		if (key[i])
 | |
| 			return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void *btree_lookup(struct btree_head *head, struct btree_geo *geo,
 | |
| 		unsigned long *key)
 | |
| {
 | |
| 	int i, height = head->height;
 | |
| 	unsigned long *node = head->node;
 | |
| 
 | |
| 	if (height == 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for ( ; height > 1; height--) {
 | |
| 		for (i = 0; i < geo->no_pairs; i++)
 | |
| 			if (keycmp(geo, node, i, key) <= 0)
 | |
| 				break;
 | |
| 		if (i == geo->no_pairs)
 | |
| 			return NULL;
 | |
| 		node = bval(geo, node, i);
 | |
| 		if (!node)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!node)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < geo->no_pairs; i++)
 | |
| 		if (keycmp(geo, node, i, key) == 0)
 | |
| 			return bval(geo, node, i);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_lookup);
 | |
| 
 | |
| int btree_update(struct btree_head *head, struct btree_geo *geo,
 | |
| 		 unsigned long *key, void *val)
 | |
| {
 | |
| 	int i, height = head->height;
 | |
| 	unsigned long *node = head->node;
 | |
| 
 | |
| 	if (height == 0)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	for ( ; height > 1; height--) {
 | |
| 		for (i = 0; i < geo->no_pairs; i++)
 | |
| 			if (keycmp(geo, node, i, key) <= 0)
 | |
| 				break;
 | |
| 		if (i == geo->no_pairs)
 | |
| 			return -ENOENT;
 | |
| 		node = bval(geo, node, i);
 | |
| 		if (!node)
 | |
| 			return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	if (!node)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	for (i = 0; i < geo->no_pairs; i++)
 | |
| 		if (keycmp(geo, node, i, key) == 0) {
 | |
| 			setval(geo, node, i, val);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return -ENOENT;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_update);
 | |
| 
 | |
| /*
 | |
|  * Usually this function is quite similar to normal lookup.  But the key of
 | |
|  * a parent node may be smaller than the smallest key of all its siblings.
 | |
|  * In such a case we cannot just return NULL, as we have only proven that no
 | |
|  * key smaller than __key, but larger than this parent key exists.
 | |
|  * So we set __key to the parent key and retry.  We have to use the smallest
 | |
|  * such parent key, which is the last parent key we encountered.
 | |
|  */
 | |
| void *btree_get_prev(struct btree_head *head, struct btree_geo *geo,
 | |
| 		     unsigned long *__key)
 | |
| {
 | |
| 	int i, height;
 | |
| 	unsigned long *node, *oldnode;
 | |
| 	unsigned long *retry_key = NULL, key[MAX_KEYLEN];
 | |
| 
 | |
| 	if (keyzero(geo, __key))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (head->height == 0)
 | |
| 		return NULL;
 | |
| 	longcpy(key, __key, geo->keylen);
 | |
| retry:
 | |
| 	dec_key(geo, key);
 | |
| 
 | |
| 	node = head->node;
 | |
| 	for (height = head->height ; height > 1; height--) {
 | |
| 		for (i = 0; i < geo->no_pairs; i++)
 | |
| 			if (keycmp(geo, node, i, key) <= 0)
 | |
| 				break;
 | |
| 		if (i == geo->no_pairs)
 | |
| 			goto miss;
 | |
| 		oldnode = node;
 | |
| 		node = bval(geo, node, i);
 | |
| 		if (!node)
 | |
| 			goto miss;
 | |
| 		retry_key = bkey(geo, oldnode, i);
 | |
| 	}
 | |
| 
 | |
| 	if (!node)
 | |
| 		goto miss;
 | |
| 
 | |
| 	for (i = 0; i < geo->no_pairs; i++) {
 | |
| 		if (keycmp(geo, node, i, key) <= 0) {
 | |
| 			if (bval(geo, node, i)) {
 | |
| 				longcpy(__key, bkey(geo, node, i), geo->keylen);
 | |
| 				return bval(geo, node, i);
 | |
| 			} else
 | |
| 				goto miss;
 | |
| 		}
 | |
| 	}
 | |
| miss:
 | |
| 	if (retry_key) {
 | |
| 		longcpy(key, retry_key, geo->keylen);
 | |
| 		retry_key = NULL;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_get_prev);
 | |
| 
 | |
| static int getpos(struct btree_geo *geo, unsigned long *node,
 | |
| 		unsigned long *key)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < geo->no_pairs; i++) {
 | |
| 		if (keycmp(geo, node, i, key) <= 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static int getfill(struct btree_geo *geo, unsigned long *node, int start)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = start; i < geo->no_pairs; i++)
 | |
| 		if (!bval(geo, node, i))
 | |
| 			break;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * locate the correct leaf node in the btree
 | |
|  */
 | |
| static unsigned long *find_level(struct btree_head *head, struct btree_geo *geo,
 | |
| 		unsigned long *key, int level)
 | |
| {
 | |
| 	unsigned long *node = head->node;
 | |
| 	int i, height;
 | |
| 
 | |
| 	for (height = head->height; height > level; height--) {
 | |
| 		for (i = 0; i < geo->no_pairs; i++)
 | |
| 			if (keycmp(geo, node, i, key) <= 0)
 | |
| 				break;
 | |
| 
 | |
| 		if ((i == geo->no_pairs) || !bval(geo, node, i)) {
 | |
| 			/* right-most key is too large, update it */
 | |
| 			/* FIXME: If the right-most key on higher levels is
 | |
| 			 * always zero, this wouldn't be necessary. */
 | |
| 			i--;
 | |
| 			setkey(geo, node, i, key);
 | |
| 		}
 | |
| 		BUG_ON(i < 0);
 | |
| 		node = bval(geo, node, i);
 | |
| 	}
 | |
| 	BUG_ON(!node);
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| static int btree_grow(struct btree_head *head, struct btree_geo *geo,
 | |
| 		      gfp_t gfp)
 | |
| {
 | |
| 	unsigned long *node;
 | |
| 	int fill;
 | |
| 
 | |
| 	node = btree_node_alloc(head, gfp);
 | |
| 	if (!node)
 | |
| 		return -ENOMEM;
 | |
| 	if (head->node) {
 | |
| 		fill = getfill(geo, head->node, 0);
 | |
| 		setkey(geo, node, 0, bkey(geo, head->node, fill - 1));
 | |
| 		setval(geo, node, 0, head->node);
 | |
| 	}
 | |
| 	head->node = node;
 | |
| 	head->height++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btree_shrink(struct btree_head *head, struct btree_geo *geo)
 | |
| {
 | |
| 	unsigned long *node;
 | |
| 	int fill;
 | |
| 
 | |
| 	if (head->height <= 1)
 | |
| 		return;
 | |
| 
 | |
| 	node = head->node;
 | |
| 	fill = getfill(geo, node, 0);
 | |
| 	BUG_ON(fill > 1);
 | |
| 	head->node = bval(geo, node, 0);
 | |
| 	head->height--;
 | |
| 	mempool_free(node, head->mempool);
 | |
| }
 | |
| 
 | |
| static int btree_insert_level(struct btree_head *head, struct btree_geo *geo,
 | |
| 			      unsigned long *key, void *val, int level,
 | |
| 			      gfp_t gfp)
 | |
| {
 | |
| 	unsigned long *node;
 | |
| 	int i, pos, fill, err;
 | |
| 
 | |
| 	BUG_ON(!val);
 | |
| 	if (head->height < level) {
 | |
| 		err = btree_grow(head, geo, gfp);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	node = find_level(head, geo, key, level);
 | |
| 	pos = getpos(geo, node, key);
 | |
| 	fill = getfill(geo, node, pos);
 | |
| 	/* two identical keys are not allowed */
 | |
| 	BUG_ON(pos < fill && keycmp(geo, node, pos, key) == 0);
 | |
| 
 | |
| 	if (fill == geo->no_pairs) {
 | |
| 		/* need to split node */
 | |
| 		unsigned long *new;
 | |
| 
 | |
| 		new = btree_node_alloc(head, gfp);
 | |
| 		if (!new)
 | |
| 			return -ENOMEM;
 | |
| 		err = btree_insert_level(head, geo,
 | |
| 				bkey(geo, node, fill / 2 - 1),
 | |
| 				new, level + 1, gfp);
 | |
| 		if (err) {
 | |
| 			mempool_free(new, head->mempool);
 | |
| 			return err;
 | |
| 		}
 | |
| 		for (i = 0; i < fill / 2; i++) {
 | |
| 			setkey(geo, new, i, bkey(geo, node, i));
 | |
| 			setval(geo, new, i, bval(geo, node, i));
 | |
| 			setkey(geo, node, i, bkey(geo, node, i + fill / 2));
 | |
| 			setval(geo, node, i, bval(geo, node, i + fill / 2));
 | |
| 			clearpair(geo, node, i + fill / 2);
 | |
| 		}
 | |
| 		if (fill & 1) {
 | |
| 			setkey(geo, node, i, bkey(geo, node, fill - 1));
 | |
| 			setval(geo, node, i, bval(geo, node, fill - 1));
 | |
| 			clearpair(geo, node, fill - 1);
 | |
| 		}
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	BUG_ON(fill >= geo->no_pairs);
 | |
| 
 | |
| 	/* shift and insert */
 | |
| 	for (i = fill; i > pos; i--) {
 | |
| 		setkey(geo, node, i, bkey(geo, node, i - 1));
 | |
| 		setval(geo, node, i, bval(geo, node, i - 1));
 | |
| 	}
 | |
| 	setkey(geo, node, pos, key);
 | |
| 	setval(geo, node, pos, val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btree_insert(struct btree_head *head, struct btree_geo *geo,
 | |
| 		unsigned long *key, void *val, gfp_t gfp)
 | |
| {
 | |
| 	BUG_ON(!val);
 | |
| 	return btree_insert_level(head, geo, key, val, 1, gfp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_insert);
 | |
| 
 | |
| static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
 | |
| 		unsigned long *key, int level);
 | |
| static void merge(struct btree_head *head, struct btree_geo *geo, int level,
 | |
| 		unsigned long *left, int lfill,
 | |
| 		unsigned long *right, int rfill,
 | |
| 		unsigned long *parent, int lpos)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < rfill; i++) {
 | |
| 		/* Move all keys to the left */
 | |
| 		setkey(geo, left, lfill + i, bkey(geo, right, i));
 | |
| 		setval(geo, left, lfill + i, bval(geo, right, i));
 | |
| 	}
 | |
| 	/* Exchange left and right child in parent */
 | |
| 	setval(geo, parent, lpos, right);
 | |
| 	setval(geo, parent, lpos + 1, left);
 | |
| 	/* Remove left (formerly right) child from parent */
 | |
| 	btree_remove_level(head, geo, bkey(geo, parent, lpos), level + 1);
 | |
| 	mempool_free(right, head->mempool);
 | |
| }
 | |
| 
 | |
| static void rebalance(struct btree_head *head, struct btree_geo *geo,
 | |
| 		unsigned long *key, int level, unsigned long *child, int fill)
 | |
| {
 | |
| 	unsigned long *parent, *left = NULL, *right = NULL;
 | |
| 	int i, no_left, no_right;
 | |
| 
 | |
| 	if (fill == 0) {
 | |
| 		/* Because we don't steal entries from a neighbour, this case
 | |
| 		 * can happen.  Parent node contains a single child, this
 | |
| 		 * node, so merging with a sibling never happens.
 | |
| 		 */
 | |
| 		btree_remove_level(head, geo, key, level + 1);
 | |
| 		mempool_free(child, head->mempool);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	parent = find_level(head, geo, key, level + 1);
 | |
| 	i = getpos(geo, parent, key);
 | |
| 	BUG_ON(bval(geo, parent, i) != child);
 | |
| 
 | |
| 	if (i > 0) {
 | |
| 		left = bval(geo, parent, i - 1);
 | |
| 		no_left = getfill(geo, left, 0);
 | |
| 		if (fill + no_left <= geo->no_pairs) {
 | |
| 			merge(head, geo, level,
 | |
| 					left, no_left,
 | |
| 					child, fill,
 | |
| 					parent, i - 1);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if (i + 1 < getfill(geo, parent, i)) {
 | |
| 		right = bval(geo, parent, i + 1);
 | |
| 		no_right = getfill(geo, right, 0);
 | |
| 		if (fill + no_right <= geo->no_pairs) {
 | |
| 			merge(head, geo, level,
 | |
| 					child, fill,
 | |
| 					right, no_right,
 | |
| 					parent, i);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * We could also try to steal one entry from the left or right
 | |
| 	 * neighbor.  By not doing so we changed the invariant from
 | |
| 	 * "all nodes are at least half full" to "no two neighboring
 | |
| 	 * nodes can be merged".  Which means that the average fill of
 | |
| 	 * all nodes is still half or better.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static void *btree_remove_level(struct btree_head *head, struct btree_geo *geo,
 | |
| 		unsigned long *key, int level)
 | |
| {
 | |
| 	unsigned long *node;
 | |
| 	int i, pos, fill;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (level > head->height) {
 | |
| 		/* we recursed all the way up */
 | |
| 		head->height = 0;
 | |
| 		head->node = NULL;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	node = find_level(head, geo, key, level);
 | |
| 	pos = getpos(geo, node, key);
 | |
| 	fill = getfill(geo, node, pos);
 | |
| 	if ((level == 1) && (keycmp(geo, node, pos, key) != 0))
 | |
| 		return NULL;
 | |
| 	ret = bval(geo, node, pos);
 | |
| 
 | |
| 	/* remove and shift */
 | |
| 	for (i = pos; i < fill - 1; i++) {
 | |
| 		setkey(geo, node, i, bkey(geo, node, i + 1));
 | |
| 		setval(geo, node, i, bval(geo, node, i + 1));
 | |
| 	}
 | |
| 	clearpair(geo, node, fill - 1);
 | |
| 
 | |
| 	if (fill - 1 < geo->no_pairs / 2) {
 | |
| 		if (level < head->height)
 | |
| 			rebalance(head, geo, key, level, node, fill - 1);
 | |
| 		else if (fill - 1 == 1)
 | |
| 			btree_shrink(head, geo);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *btree_remove(struct btree_head *head, struct btree_geo *geo,
 | |
| 		unsigned long *key)
 | |
| {
 | |
| 	if (head->height == 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return btree_remove_level(head, geo, key, 1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_remove);
 | |
| 
 | |
| int btree_merge(struct btree_head *target, struct btree_head *victim,
 | |
| 		struct btree_geo *geo, gfp_t gfp)
 | |
| {
 | |
| 	unsigned long key[MAX_KEYLEN];
 | |
| 	unsigned long dup[MAX_KEYLEN];
 | |
| 	void *val;
 | |
| 	int err;
 | |
| 
 | |
| 	BUG_ON(target == victim);
 | |
| 
 | |
| 	if (!(target->node)) {
 | |
| 		/* target is empty, just copy fields over */
 | |
| 		target->node = victim->node;
 | |
| 		target->height = victim->height;
 | |
| 		__btree_init(victim);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: This needs some optimizations.  Currently we do three tree
 | |
| 	 * walks to remove a single object from the victim.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		if (!btree_last(victim, geo, key))
 | |
| 			break;
 | |
| 		val = btree_lookup(victim, geo, key);
 | |
| 		err = btree_insert(target, geo, key, val, gfp);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		/* We must make a copy of the key, as the original will get
 | |
| 		 * mangled inside btree_remove. */
 | |
| 		longcpy(dup, key, geo->keylen);
 | |
| 		btree_remove(victim, geo, dup);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_merge);
 | |
| 
 | |
| static size_t __btree_for_each(struct btree_head *head, struct btree_geo *geo,
 | |
| 			       unsigned long *node, unsigned long opaque,
 | |
| 			       void (*func)(void *elem, unsigned long opaque,
 | |
| 					    unsigned long *key, size_t index,
 | |
| 					    void *func2),
 | |
| 			       void *func2, int reap, int height, size_t count)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long *child;
 | |
| 
 | |
| 	for (i = 0; i < geo->no_pairs; i++) {
 | |
| 		child = bval(geo, node, i);
 | |
| 		if (!child)
 | |
| 			break;
 | |
| 		if (height > 1)
 | |
| 			count = __btree_for_each(head, geo, child, opaque,
 | |
| 					func, func2, reap, height - 1, count);
 | |
| 		else
 | |
| 			func(child, opaque, bkey(geo, node, i), count++,
 | |
| 					func2);
 | |
| 	}
 | |
| 	if (reap)
 | |
| 		mempool_free(node, head->mempool);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void empty(void *elem, unsigned long opaque, unsigned long *key,
 | |
| 		  size_t index, void *func2)
 | |
| {
 | |
| }
 | |
| 
 | |
| void visitorl(void *elem, unsigned long opaque, unsigned long *key,
 | |
| 	      size_t index, void *__func)
 | |
| {
 | |
| 	visitorl_t func = __func;
 | |
| 
 | |
| 	func(elem, opaque, *key, index);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(visitorl);
 | |
| 
 | |
| void visitor32(void *elem, unsigned long opaque, unsigned long *__key,
 | |
| 	       size_t index, void *__func)
 | |
| {
 | |
| 	visitor32_t func = __func;
 | |
| 	u32 *key = (void *)__key;
 | |
| 
 | |
| 	func(elem, opaque, *key, index);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(visitor32);
 | |
| 
 | |
| void visitor64(void *elem, unsigned long opaque, unsigned long *__key,
 | |
| 	       size_t index, void *__func)
 | |
| {
 | |
| 	visitor64_t func = __func;
 | |
| 	u64 *key = (void *)__key;
 | |
| 
 | |
| 	func(elem, opaque, *key, index);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(visitor64);
 | |
| 
 | |
| void visitor128(void *elem, unsigned long opaque, unsigned long *__key,
 | |
| 		size_t index, void *__func)
 | |
| {
 | |
| 	visitor128_t func = __func;
 | |
| 	u64 *key = (void *)__key;
 | |
| 
 | |
| 	func(elem, opaque, key[0], key[1], index);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(visitor128);
 | |
| 
 | |
| size_t btree_visitor(struct btree_head *head, struct btree_geo *geo,
 | |
| 		     unsigned long opaque,
 | |
| 		     void (*func)(void *elem, unsigned long opaque,
 | |
| 		     		  unsigned long *key,
 | |
| 		     		  size_t index, void *func2),
 | |
| 		     void *func2)
 | |
| {
 | |
| 	size_t count = 0;
 | |
| 
 | |
| 	if (!func2)
 | |
| 		func = empty;
 | |
| 	if (head->node)
 | |
| 		count = __btree_for_each(head, geo, head->node, opaque, func,
 | |
| 				func2, 0, head->height, 0);
 | |
| 	return count;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_visitor);
 | |
| 
 | |
| size_t btree_grim_visitor(struct btree_head *head, struct btree_geo *geo,
 | |
| 			  unsigned long opaque,
 | |
| 			  void (*func)(void *elem, unsigned long opaque,
 | |
| 				       unsigned long *key,
 | |
| 				       size_t index, void *func2),
 | |
| 			  void *func2)
 | |
| {
 | |
| 	size_t count = 0;
 | |
| 
 | |
| 	if (!func2)
 | |
| 		func = empty;
 | |
| 	if (head->node)
 | |
| 		count = __btree_for_each(head, geo, head->node, opaque, func,
 | |
| 				func2, 1, head->height, 0);
 | |
| 	__btree_init(head);
 | |
| 	return count;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(btree_grim_visitor);
 | |
| 
 | |
| static int __init btree_module_init(void)
 | |
| {
 | |
| 	btree_cachep = kmem_cache_create("btree_node", NODESIZE, 0,
 | |
| 			SLAB_HWCACHE_ALIGN, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit btree_module_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(btree_cachep);
 | |
| }
 | |
| 
 | |
| /* If core code starts using btree, initialization should happen even earlier */
 | |
| module_init(btree_module_init);
 | |
| module_exit(btree_module_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Joern Engel <joern@logfs.org>");
 | |
| MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
 | |
| MODULE_LICENSE("GPL");
 |