forked from mirrors/linux
		
	 b57e622e6d
			
		
	
	
		b57e622e6d
		
	
	
	
	
		
			
			Convert to use vm_fault_t type as return type for fault handler. kbuild reported warning during testing of *mm-create-the-new-vm_fault_t-type.patch* available in below link - https://patchwork.kernel.org/patch/10752741/ kernel/memremap.c:46:34: warning: incorrect type in return expression (different base types) kernel/memremap.c:46:34: expected restricted vm_fault_t kernel/memremap.c:46:34: got int This patch has fixed the warnings and also hmm_devmem_fault() is converted to return vm_fault_t to avoid further warnings. [sfr@canb.auug.org.au: drm/nouveau/dmem: update for struct hmm_devmem_ops member change] Link: http://lkml.kernel.org/r/20190220174407.753d94e5@canb.auug.org.au Link: http://lkml.kernel.org/r/20190110145900.GA1317@jordon-HP-15-Notebook-PC Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Reviewed-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1240 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1240 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2013 Red Hat Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * Authors: Jérôme Glisse <jglisse@redhat.com>
 | |
|  */
 | |
| /*
 | |
|  * Refer to include/linux/hmm.h for information about heterogeneous memory
 | |
|  * management or HMM for short.
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hmm.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/jump_label.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| 
 | |
| #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HMM_MIRROR)
 | |
| static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
 | |
| 
 | |
| /*
 | |
|  * struct hmm - HMM per mm struct
 | |
|  *
 | |
|  * @mm: mm struct this HMM struct is bound to
 | |
|  * @lock: lock protecting ranges list
 | |
|  * @ranges: list of range being snapshotted
 | |
|  * @mirrors: list of mirrors for this mm
 | |
|  * @mmu_notifier: mmu notifier to track updates to CPU page table
 | |
|  * @mirrors_sem: read/write semaphore protecting the mirrors list
 | |
|  */
 | |
| struct hmm {
 | |
| 	struct mm_struct	*mm;
 | |
| 	spinlock_t		lock;
 | |
| 	struct list_head	ranges;
 | |
| 	struct list_head	mirrors;
 | |
| 	struct mmu_notifier	mmu_notifier;
 | |
| 	struct rw_semaphore	mirrors_sem;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * hmm_register - register HMM against an mm (HMM internal)
 | |
|  *
 | |
|  * @mm: mm struct to attach to
 | |
|  *
 | |
|  * This is not intended to be used directly by device drivers. It allocates an
 | |
|  * HMM struct if mm does not have one, and initializes it.
 | |
|  */
 | |
| static struct hmm *hmm_register(struct mm_struct *mm)
 | |
| {
 | |
| 	struct hmm *hmm = READ_ONCE(mm->hmm);
 | |
| 	bool cleanup = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The hmm struct can only be freed once the mm_struct goes away,
 | |
| 	 * hence we should always have pre-allocated an new hmm struct
 | |
| 	 * above.
 | |
| 	 */
 | |
| 	if (hmm)
 | |
| 		return hmm;
 | |
| 
 | |
| 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
 | |
| 	if (!hmm)
 | |
| 		return NULL;
 | |
| 	INIT_LIST_HEAD(&hmm->mirrors);
 | |
| 	init_rwsem(&hmm->mirrors_sem);
 | |
| 	hmm->mmu_notifier.ops = NULL;
 | |
| 	INIT_LIST_HEAD(&hmm->ranges);
 | |
| 	spin_lock_init(&hmm->lock);
 | |
| 	hmm->mm = mm;
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	if (!mm->hmm)
 | |
| 		mm->hmm = hmm;
 | |
| 	else
 | |
| 		cleanup = true;
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	if (cleanup)
 | |
| 		goto error;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should only get here if hold the mmap_sem in write mode ie on
 | |
| 	 * registration of first mirror through hmm_mirror_register()
 | |
| 	 */
 | |
| 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
 | |
| 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
 | |
| 		goto error_mm;
 | |
| 
 | |
| 	return mm->hmm;
 | |
| 
 | |
| error_mm:
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	if (mm->hmm == hmm)
 | |
| 		mm->hmm = NULL;
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| error:
 | |
| 	kfree(hmm);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void hmm_mm_destroy(struct mm_struct *mm)
 | |
| {
 | |
| 	kfree(mm->hmm);
 | |
| }
 | |
| 
 | |
| static int hmm_invalidate_range(struct hmm *hmm, bool device,
 | |
| 				const struct hmm_update *update)
 | |
| {
 | |
| 	struct hmm_mirror *mirror;
 | |
| 	struct hmm_range *range;
 | |
| 
 | |
| 	spin_lock(&hmm->lock);
 | |
| 	list_for_each_entry(range, &hmm->ranges, list) {
 | |
| 		unsigned long addr, idx, npages;
 | |
| 
 | |
| 		if (update->end < range->start || update->start >= range->end)
 | |
| 			continue;
 | |
| 
 | |
| 		range->valid = false;
 | |
| 		addr = max(update->start, range->start);
 | |
| 		idx = (addr - range->start) >> PAGE_SHIFT;
 | |
| 		npages = (min(range->end, update->end) - addr) >> PAGE_SHIFT;
 | |
| 		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
 | |
| 	}
 | |
| 	spin_unlock(&hmm->lock);
 | |
| 
 | |
| 	if (!device)
 | |
| 		return 0;
 | |
| 
 | |
| 	down_read(&hmm->mirrors_sem);
 | |
| 	list_for_each_entry(mirror, &hmm->mirrors, list) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = mirror->ops->sync_cpu_device_pagetables(mirror, update);
 | |
| 		if (!update->blockable && ret == -EAGAIN) {
 | |
| 			up_read(&hmm->mirrors_sem);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 	up_read(&hmm->mirrors_sem);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
 | |
| {
 | |
| 	struct hmm_mirror *mirror;
 | |
| 	struct hmm *hmm = mm->hmm;
 | |
| 
 | |
| 	down_write(&hmm->mirrors_sem);
 | |
| 	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
 | |
| 					  list);
 | |
| 	while (mirror) {
 | |
| 		list_del_init(&mirror->list);
 | |
| 		if (mirror->ops->release) {
 | |
| 			/*
 | |
| 			 * Drop mirrors_sem so callback can wait on any pending
 | |
| 			 * work that might itself trigger mmu_notifier callback
 | |
| 			 * and thus would deadlock with us.
 | |
| 			 */
 | |
| 			up_write(&hmm->mirrors_sem);
 | |
| 			mirror->ops->release(mirror);
 | |
| 			down_write(&hmm->mirrors_sem);
 | |
| 		}
 | |
| 		mirror = list_first_entry_or_null(&hmm->mirrors,
 | |
| 						  struct hmm_mirror, list);
 | |
| 	}
 | |
| 	up_write(&hmm->mirrors_sem);
 | |
| }
 | |
| 
 | |
| static int hmm_invalidate_range_start(struct mmu_notifier *mn,
 | |
| 			const struct mmu_notifier_range *range)
 | |
| {
 | |
| 	struct hmm_update update;
 | |
| 	struct hmm *hmm = range->mm->hmm;
 | |
| 
 | |
| 	VM_BUG_ON(!hmm);
 | |
| 
 | |
| 	update.start = range->start;
 | |
| 	update.end = range->end;
 | |
| 	update.event = HMM_UPDATE_INVALIDATE;
 | |
| 	update.blockable = range->blockable;
 | |
| 	return hmm_invalidate_range(hmm, true, &update);
 | |
| }
 | |
| 
 | |
| static void hmm_invalidate_range_end(struct mmu_notifier *mn,
 | |
| 			const struct mmu_notifier_range *range)
 | |
| {
 | |
| 	struct hmm_update update;
 | |
| 	struct hmm *hmm = range->mm->hmm;
 | |
| 
 | |
| 	VM_BUG_ON(!hmm);
 | |
| 
 | |
| 	update.start = range->start;
 | |
| 	update.end = range->end;
 | |
| 	update.event = HMM_UPDATE_INVALIDATE;
 | |
| 	update.blockable = true;
 | |
| 	hmm_invalidate_range(hmm, false, &update);
 | |
| }
 | |
| 
 | |
| static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
 | |
| 	.release		= hmm_release,
 | |
| 	.invalidate_range_start	= hmm_invalidate_range_start,
 | |
| 	.invalidate_range_end	= hmm_invalidate_range_end,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * hmm_mirror_register() - register a mirror against an mm
 | |
|  *
 | |
|  * @mirror: new mirror struct to register
 | |
|  * @mm: mm to register against
 | |
|  *
 | |
|  * To start mirroring a process address space, the device driver must register
 | |
|  * an HMM mirror struct.
 | |
|  *
 | |
|  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
 | |
|  */
 | |
| int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
 | |
| {
 | |
| 	/* Sanity check */
 | |
| 	if (!mm || !mirror || !mirror->ops)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| again:
 | |
| 	mirror->hmm = hmm_register(mm);
 | |
| 	if (!mirror->hmm)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	down_write(&mirror->hmm->mirrors_sem);
 | |
| 	if (mirror->hmm->mm == NULL) {
 | |
| 		/*
 | |
| 		 * A racing hmm_mirror_unregister() is about to destroy the hmm
 | |
| 		 * struct. Try again to allocate a new one.
 | |
| 		 */
 | |
| 		up_write(&mirror->hmm->mirrors_sem);
 | |
| 		mirror->hmm = NULL;
 | |
| 		goto again;
 | |
| 	} else {
 | |
| 		list_add(&mirror->list, &mirror->hmm->mirrors);
 | |
| 		up_write(&mirror->hmm->mirrors_sem);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_mirror_register);
 | |
| 
 | |
| /*
 | |
|  * hmm_mirror_unregister() - unregister a mirror
 | |
|  *
 | |
|  * @mirror: new mirror struct to register
 | |
|  *
 | |
|  * Stop mirroring a process address space, and cleanup.
 | |
|  */
 | |
| void hmm_mirror_unregister(struct hmm_mirror *mirror)
 | |
| {
 | |
| 	bool should_unregister = false;
 | |
| 	struct mm_struct *mm;
 | |
| 	struct hmm *hmm;
 | |
| 
 | |
| 	if (mirror->hmm == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	hmm = mirror->hmm;
 | |
| 	down_write(&hmm->mirrors_sem);
 | |
| 	list_del_init(&mirror->list);
 | |
| 	should_unregister = list_empty(&hmm->mirrors);
 | |
| 	mirror->hmm = NULL;
 | |
| 	mm = hmm->mm;
 | |
| 	hmm->mm = NULL;
 | |
| 	up_write(&hmm->mirrors_sem);
 | |
| 
 | |
| 	if (!should_unregister || mm == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	if (mm->hmm == hmm)
 | |
| 		mm->hmm = NULL;
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	kfree(hmm);
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_mirror_unregister);
 | |
| 
 | |
| struct hmm_vma_walk {
 | |
| 	struct hmm_range	*range;
 | |
| 	unsigned long		last;
 | |
| 	bool			fault;
 | |
| 	bool			block;
 | |
| };
 | |
| 
 | |
| static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
 | |
| 			    bool write_fault, uint64_t *pfn)
 | |
| {
 | |
| 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	vm_fault_t ret;
 | |
| 
 | |
| 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
 | |
| 	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
 | |
| 	ret = handle_mm_fault(vma, addr, flags);
 | |
| 	if (ret & VM_FAULT_RETRY)
 | |
| 		return -EBUSY;
 | |
| 	if (ret & VM_FAULT_ERROR) {
 | |
| 		*pfn = range->values[HMM_PFN_ERROR];
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| static int hmm_pfns_bad(unsigned long addr,
 | |
| 			unsigned long end,
 | |
| 			struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	uint64_t *pfns = range->pfns;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 	for (; addr < end; addr += PAGE_SIZE, i++)
 | |
| 		pfns[i] = range->values[HMM_PFN_ERROR];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
 | |
|  * @start: range virtual start address (inclusive)
 | |
|  * @end: range virtual end address (exclusive)
 | |
|  * @fault: should we fault or not ?
 | |
|  * @write_fault: write fault ?
 | |
|  * @walk: mm_walk structure
 | |
|  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
 | |
|  *
 | |
|  * This function will be called whenever pmd_none() or pte_none() returns true,
 | |
|  * or whenever there is no page directory covering the virtual address range.
 | |
|  */
 | |
| static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
 | |
| 			      bool fault, bool write_fault,
 | |
| 			      struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	uint64_t *pfns = range->pfns;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	hmm_vma_walk->last = addr;
 | |
| 	i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 	for (; addr < end; addr += PAGE_SIZE, i++) {
 | |
| 		pfns[i] = range->values[HMM_PFN_NONE];
 | |
| 		if (fault || write_fault) {
 | |
| 			int ret;
 | |
| 
 | |
| 			ret = hmm_vma_do_fault(walk, addr, write_fault,
 | |
| 					       &pfns[i]);
 | |
| 			if (ret != -EAGAIN)
 | |
| 				return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (fault || write_fault) ? -EAGAIN : 0;
 | |
| }
 | |
| 
 | |
| static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 | |
| 				      uint64_t pfns, uint64_t cpu_flags,
 | |
| 				      bool *fault, bool *write_fault)
 | |
| {
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 
 | |
| 	*fault = *write_fault = false;
 | |
| 	if (!hmm_vma_walk->fault)
 | |
| 		return;
 | |
| 
 | |
| 	/* We aren't ask to do anything ... */
 | |
| 	if (!(pfns & range->flags[HMM_PFN_VALID]))
 | |
| 		return;
 | |
| 	/* If this is device memory than only fault if explicitly requested */
 | |
| 	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
 | |
| 		/* Do we fault on device memory ? */
 | |
| 		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
 | |
| 			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
 | |
| 			*fault = true;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* If CPU page table is not valid then we need to fault */
 | |
| 	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
 | |
| 	/* Need to write fault ? */
 | |
| 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
 | |
| 	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
 | |
| 		*write_fault = true;
 | |
| 		*fault = true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 | |
| 				 const uint64_t *pfns, unsigned long npages,
 | |
| 				 uint64_t cpu_flags, bool *fault,
 | |
| 				 bool *write_fault)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (!hmm_vma_walk->fault) {
 | |
| 		*fault = *write_fault = false;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < npages; ++i) {
 | |
| 		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
 | |
| 				   fault, write_fault);
 | |
| 		if ((*fault) || (*write_fault))
 | |
| 			return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
 | |
| 			     struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	bool fault, write_fault;
 | |
| 	unsigned long i, npages;
 | |
| 	uint64_t *pfns;
 | |
| 
 | |
| 	i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 	npages = (end - addr) >> PAGE_SHIFT;
 | |
| 	pfns = &range->pfns[i];
 | |
| 	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 | |
| 			     0, &fault, &write_fault);
 | |
| 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 | |
| }
 | |
| 
 | |
| static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
 | |
| {
 | |
| 	if (pmd_protnone(pmd))
 | |
| 		return 0;
 | |
| 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
 | |
| 				range->flags[HMM_PFN_WRITE] :
 | |
| 				range->flags[HMM_PFN_VALID];
 | |
| }
 | |
| 
 | |
| static int hmm_vma_handle_pmd(struct mm_walk *walk,
 | |
| 			      unsigned long addr,
 | |
| 			      unsigned long end,
 | |
| 			      uint64_t *pfns,
 | |
| 			      pmd_t pmd)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	unsigned long pfn, npages, i;
 | |
| 	bool fault, write_fault;
 | |
| 	uint64_t cpu_flags;
 | |
| 
 | |
| 	npages = (end - addr) >> PAGE_SHIFT;
 | |
| 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
 | |
| 	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
 | |
| 			     &fault, &write_fault);
 | |
| 
 | |
| 	if (pmd_protnone(pmd) || fault || write_fault)
 | |
| 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 | |
| 
 | |
| 	pfn = pmd_pfn(pmd) + pte_index(addr);
 | |
| 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
 | |
| 		pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
 | |
| 	hmm_vma_walk->last = end;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
 | |
| {
 | |
| 	if (pte_none(pte) || !pte_present(pte))
 | |
| 		return 0;
 | |
| 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
 | |
| 				range->flags[HMM_PFN_WRITE] :
 | |
| 				range->flags[HMM_PFN_VALID];
 | |
| }
 | |
| 
 | |
| static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
 | |
| 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
 | |
| 			      uint64_t *pfn)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	bool fault, write_fault;
 | |
| 	uint64_t cpu_flags;
 | |
| 	pte_t pte = *ptep;
 | |
| 	uint64_t orig_pfn = *pfn;
 | |
| 
 | |
| 	*pfn = range->values[HMM_PFN_NONE];
 | |
| 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
 | |
| 	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 | |
| 			   &fault, &write_fault);
 | |
| 
 | |
| 	if (pte_none(pte)) {
 | |
| 		if (fault || write_fault)
 | |
| 			goto fault;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!pte_present(pte)) {
 | |
| 		swp_entry_t entry = pte_to_swp_entry(pte);
 | |
| 
 | |
| 		if (!non_swap_entry(entry)) {
 | |
| 			if (fault || write_fault)
 | |
| 				goto fault;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This is a special swap entry, ignore migration, use
 | |
| 		 * device and report anything else as error.
 | |
| 		 */
 | |
| 		if (is_device_private_entry(entry)) {
 | |
| 			cpu_flags = range->flags[HMM_PFN_VALID] |
 | |
| 				range->flags[HMM_PFN_DEVICE_PRIVATE];
 | |
| 			cpu_flags |= is_write_device_private_entry(entry) ?
 | |
| 				range->flags[HMM_PFN_WRITE] : 0;
 | |
| 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 | |
| 					   &fault, &write_fault);
 | |
| 			if (fault || write_fault)
 | |
| 				goto fault;
 | |
| 			*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
 | |
| 			*pfn |= cpu_flags;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (is_migration_entry(entry)) {
 | |
| 			if (fault || write_fault) {
 | |
| 				pte_unmap(ptep);
 | |
| 				hmm_vma_walk->last = addr;
 | |
| 				migration_entry_wait(vma->vm_mm,
 | |
| 						     pmdp, addr);
 | |
| 				return -EAGAIN;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Report error for everything else */
 | |
| 		*pfn = range->values[HMM_PFN_ERROR];
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	if (fault || write_fault)
 | |
| 		goto fault;
 | |
| 
 | |
| 	*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
 | |
| 	return 0;
 | |
| 
 | |
| fault:
 | |
| 	pte_unmap(ptep);
 | |
| 	/* Fault any virtual address we were asked to fault */
 | |
| 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 | |
| }
 | |
| 
 | |
| static int hmm_vma_walk_pmd(pmd_t *pmdp,
 | |
| 			    unsigned long start,
 | |
| 			    unsigned long end,
 | |
| 			    struct mm_walk *walk)
 | |
| {
 | |
| 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
 | |
| 	struct hmm_range *range = hmm_vma_walk->range;
 | |
| 	struct vm_area_struct *vma = walk->vma;
 | |
| 	uint64_t *pfns = range->pfns;
 | |
| 	unsigned long addr = start, i;
 | |
| 	pte_t *ptep;
 | |
| 	pmd_t pmd;
 | |
| 
 | |
| 
 | |
| again:
 | |
| 	pmd = READ_ONCE(*pmdp);
 | |
| 	if (pmd_none(pmd))
 | |
| 		return hmm_vma_walk_hole(start, end, walk);
 | |
| 
 | |
| 	if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
 | |
| 		return hmm_pfns_bad(start, end, walk);
 | |
| 
 | |
| 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
 | |
| 		bool fault, write_fault;
 | |
| 		unsigned long npages;
 | |
| 		uint64_t *pfns;
 | |
| 
 | |
| 		i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 		npages = (end - addr) >> PAGE_SHIFT;
 | |
| 		pfns = &range->pfns[i];
 | |
| 
 | |
| 		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 | |
| 				     0, &fault, &write_fault);
 | |
| 		if (fault || write_fault) {
 | |
| 			hmm_vma_walk->last = addr;
 | |
| 			pmd_migration_entry_wait(vma->vm_mm, pmdp);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	} else if (!pmd_present(pmd))
 | |
| 		return hmm_pfns_bad(start, end, walk);
 | |
| 
 | |
| 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
 | |
| 		/*
 | |
| 		 * No need to take pmd_lock here, even if some other threads
 | |
| 		 * is splitting the huge pmd we will get that event through
 | |
| 		 * mmu_notifier callback.
 | |
| 		 *
 | |
| 		 * So just read pmd value and check again its a transparent
 | |
| 		 * huge or device mapping one and compute corresponding pfn
 | |
| 		 * values.
 | |
| 		 */
 | |
| 		pmd = pmd_read_atomic(pmdp);
 | |
| 		barrier();
 | |
| 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
 | |
| 			goto again;
 | |
| 
 | |
| 		i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have handled all the valid case above ie either none, migration,
 | |
| 	 * huge or transparent huge. At this point either it is a valid pmd
 | |
| 	 * entry pointing to pte directory or it is a bad pmd that will not
 | |
| 	 * recover.
 | |
| 	 */
 | |
| 	if (pmd_bad(pmd))
 | |
| 		return hmm_pfns_bad(start, end, walk);
 | |
| 
 | |
| 	ptep = pte_offset_map(pmdp, addr);
 | |
| 	i = (addr - range->start) >> PAGE_SHIFT;
 | |
| 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
 | |
| 		int r;
 | |
| 
 | |
| 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
 | |
| 		if (r) {
 | |
| 			/* hmm_vma_handle_pte() did unmap pte directory */
 | |
| 			hmm_vma_walk->last = addr;
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 	pte_unmap(ptep - 1);
 | |
| 
 | |
| 	hmm_vma_walk->last = addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hmm_pfns_clear(struct hmm_range *range,
 | |
| 			   uint64_t *pfns,
 | |
| 			   unsigned long addr,
 | |
| 			   unsigned long end)
 | |
| {
 | |
| 	for (; addr < end; addr += PAGE_SIZE, pfns++)
 | |
| 		*pfns = range->values[HMM_PFN_NONE];
 | |
| }
 | |
| 
 | |
| static void hmm_pfns_special(struct hmm_range *range)
 | |
| {
 | |
| 	unsigned long addr = range->start, i = 0;
 | |
| 
 | |
| 	for (; addr < range->end; addr += PAGE_SIZE, i++)
 | |
| 		range->pfns[i] = range->values[HMM_PFN_SPECIAL];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
 | |
|  * @range: range being snapshotted
 | |
|  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
 | |
|  *          vma permission, 0 success
 | |
|  *
 | |
|  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
 | |
|  * validity is tracked by range struct. See hmm_vma_range_done() for further
 | |
|  * information.
 | |
|  *
 | |
|  * The range struct is initialized here. It tracks the CPU page table, but only
 | |
|  * if the function returns success (0), in which case the caller must then call
 | |
|  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
 | |
|  *
 | |
|  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
 | |
|  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
 | |
|  */
 | |
| int hmm_vma_get_pfns(struct hmm_range *range)
 | |
| {
 | |
| 	struct vm_area_struct *vma = range->vma;
 | |
| 	struct hmm_vma_walk hmm_vma_walk;
 | |
| 	struct mm_walk mm_walk;
 | |
| 	struct hmm *hmm;
 | |
| 
 | |
| 	/* Sanity check, this really should not happen ! */
 | |
| 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
 | |
| 		return -EINVAL;
 | |
| 	if (range->end < vma->vm_start || range->end > vma->vm_end)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hmm = hmm_register(vma->vm_mm);
 | |
| 	if (!hmm)
 | |
| 		return -ENOMEM;
 | |
| 	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
 | |
| 	if (!hmm->mmu_notifier.ops)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* FIXME support hugetlb fs */
 | |
| 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
 | |
| 			vma_is_dax(vma)) {
 | |
| 		hmm_pfns_special(range);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_READ)) {
 | |
| 		/*
 | |
| 		 * If vma do not allow read access, then assume that it does
 | |
| 		 * not allow write access, either. Architecture that allow
 | |
| 		 * write without read access are not supported by HMM, because
 | |
| 		 * operations such has atomic access would not work.
 | |
| 		 */
 | |
| 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize range to track CPU page table update */
 | |
| 	spin_lock(&hmm->lock);
 | |
| 	range->valid = true;
 | |
| 	list_add_rcu(&range->list, &hmm->ranges);
 | |
| 	spin_unlock(&hmm->lock);
 | |
| 
 | |
| 	hmm_vma_walk.fault = false;
 | |
| 	hmm_vma_walk.range = range;
 | |
| 	mm_walk.private = &hmm_vma_walk;
 | |
| 
 | |
| 	mm_walk.vma = vma;
 | |
| 	mm_walk.mm = vma->vm_mm;
 | |
| 	mm_walk.pte_entry = NULL;
 | |
| 	mm_walk.test_walk = NULL;
 | |
| 	mm_walk.hugetlb_entry = NULL;
 | |
| 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
 | |
| 	mm_walk.pte_hole = hmm_vma_walk_hole;
 | |
| 
 | |
| 	walk_page_range(range->start, range->end, &mm_walk);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_vma_get_pfns);
 | |
| 
 | |
| /*
 | |
|  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
 | |
|  * @range: range being tracked
 | |
|  * Returns: false if range data has been invalidated, true otherwise
 | |
|  *
 | |
|  * Range struct is used to track updates to the CPU page table after a call to
 | |
|  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
 | |
|  * using the data,  or wants to lock updates to the data it got from those
 | |
|  * functions, it must call the hmm_vma_range_done() function, which will then
 | |
|  * stop tracking CPU page table updates.
 | |
|  *
 | |
|  * Note that device driver must still implement general CPU page table update
 | |
|  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
 | |
|  * the mmu_notifier API directly.
 | |
|  *
 | |
|  * CPU page table update tracking done through hmm_range is only temporary and
 | |
|  * to be used while trying to duplicate CPU page table contents for a range of
 | |
|  * virtual addresses.
 | |
|  *
 | |
|  * There are two ways to use this :
 | |
|  * again:
 | |
|  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
 | |
|  *   trans = device_build_page_table_update_transaction(pfns);
 | |
|  *   device_page_table_lock();
 | |
|  *   if (!hmm_vma_range_done(range)) {
 | |
|  *     device_page_table_unlock();
 | |
|  *     goto again;
 | |
|  *   }
 | |
|  *   device_commit_transaction(trans);
 | |
|  *   device_page_table_unlock();
 | |
|  *
 | |
|  * Or:
 | |
|  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
 | |
|  *   device_page_table_lock();
 | |
|  *   hmm_vma_range_done(range);
 | |
|  *   device_update_page_table(range->pfns);
 | |
|  *   device_page_table_unlock();
 | |
|  */
 | |
| bool hmm_vma_range_done(struct hmm_range *range)
 | |
| {
 | |
| 	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
 | |
| 	struct hmm *hmm;
 | |
| 
 | |
| 	if (range->end <= range->start) {
 | |
| 		BUG();
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	hmm = hmm_register(range->vma->vm_mm);
 | |
| 	if (!hmm) {
 | |
| 		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&hmm->lock);
 | |
| 	list_del_rcu(&range->list);
 | |
| 	spin_unlock(&hmm->lock);
 | |
| 
 | |
| 	return range->valid;
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_vma_range_done);
 | |
| 
 | |
| /*
 | |
|  * hmm_vma_fault() - try to fault some address in a virtual address range
 | |
|  * @range: range being faulted
 | |
|  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
 | |
|  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
 | |
|  *
 | |
|  * This is similar to a regular CPU page fault except that it will not trigger
 | |
|  * any memory migration if the memory being faulted is not accessible by CPUs.
 | |
|  *
 | |
|  * On error, for one virtual address in the range, the function will mark the
 | |
|  * corresponding HMM pfn entry with an error flag.
 | |
|  *
 | |
|  * Expected use pattern:
 | |
|  * retry:
 | |
|  *   down_read(&mm->mmap_sem);
 | |
|  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
 | |
|  *   // array accordingly
 | |
|  *   ret = hmm_vma_fault(range, write, block);
 | |
|  *   switch (ret) {
 | |
|  *   case -EAGAIN:
 | |
|  *     hmm_vma_range_done(range);
 | |
|  *     // You might want to rate limit or yield to play nicely, you may
 | |
|  *     // also commit any valid pfn in the array assuming that you are
 | |
|  *     // getting true from hmm_vma_range_monitor_end()
 | |
|  *     goto retry;
 | |
|  *   case 0:
 | |
|  *     break;
 | |
|  *   case -ENOMEM:
 | |
|  *   case -EINVAL:
 | |
|  *   case -EPERM:
 | |
|  *   default:
 | |
|  *     // Handle error !
 | |
|  *     up_read(&mm->mmap_sem)
 | |
|  *     return;
 | |
|  *   }
 | |
|  *   // Take device driver lock that serialize device page table update
 | |
|  *   driver_lock_device_page_table_update();
 | |
|  *   hmm_vma_range_done(range);
 | |
|  *   // Commit pfns we got from hmm_vma_fault()
 | |
|  *   driver_unlock_device_page_table_update();
 | |
|  *   up_read(&mm->mmap_sem)
 | |
|  *
 | |
|  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
 | |
|  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
 | |
|  *
 | |
|  * YOU HAVE BEEN WARNED !
 | |
|  */
 | |
| int hmm_vma_fault(struct hmm_range *range, bool block)
 | |
| {
 | |
| 	struct vm_area_struct *vma = range->vma;
 | |
| 	unsigned long start = range->start;
 | |
| 	struct hmm_vma_walk hmm_vma_walk;
 | |
| 	struct mm_walk mm_walk;
 | |
| 	struct hmm *hmm;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Sanity check, this really should not happen ! */
 | |
| 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
 | |
| 		return -EINVAL;
 | |
| 	if (range->end < vma->vm_start || range->end > vma->vm_end)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hmm = hmm_register(vma->vm_mm);
 | |
| 	if (!hmm) {
 | |
| 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	/* Caller must have registered a mirror using hmm_mirror_register() */
 | |
| 	if (!hmm->mmu_notifier.ops)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* FIXME support hugetlb fs */
 | |
| 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
 | |
| 			vma_is_dax(vma)) {
 | |
| 		hmm_pfns_special(range);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!(vma->vm_flags & VM_READ)) {
 | |
| 		/*
 | |
| 		 * If vma do not allow read access, then assume that it does
 | |
| 		 * not allow write access, either. Architecture that allow
 | |
| 		 * write without read access are not supported by HMM, because
 | |
| 		 * operations such has atomic access would not work.
 | |
| 		 */
 | |
| 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize range to track CPU page table update */
 | |
| 	spin_lock(&hmm->lock);
 | |
| 	range->valid = true;
 | |
| 	list_add_rcu(&range->list, &hmm->ranges);
 | |
| 	spin_unlock(&hmm->lock);
 | |
| 
 | |
| 	hmm_vma_walk.fault = true;
 | |
| 	hmm_vma_walk.block = block;
 | |
| 	hmm_vma_walk.range = range;
 | |
| 	mm_walk.private = &hmm_vma_walk;
 | |
| 	hmm_vma_walk.last = range->start;
 | |
| 
 | |
| 	mm_walk.vma = vma;
 | |
| 	mm_walk.mm = vma->vm_mm;
 | |
| 	mm_walk.pte_entry = NULL;
 | |
| 	mm_walk.test_walk = NULL;
 | |
| 	mm_walk.hugetlb_entry = NULL;
 | |
| 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
 | |
| 	mm_walk.pte_hole = hmm_vma_walk_hole;
 | |
| 
 | |
| 	do {
 | |
| 		ret = walk_page_range(start, range->end, &mm_walk);
 | |
| 		start = hmm_vma_walk.last;
 | |
| 	} while (ret == -EAGAIN);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		unsigned long i;
 | |
| 
 | |
| 		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
 | |
| 		hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
 | |
| 			       range->end);
 | |
| 		hmm_vma_range_done(range);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_vma_fault);
 | |
| #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
 | |
| 
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
 | |
| struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
 | |
| 				       unsigned long addr)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 	lock_page(page);
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
 | |
| 
 | |
| 
 | |
| static void hmm_devmem_ref_release(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct hmm_devmem *devmem;
 | |
| 
 | |
| 	devmem = container_of(ref, struct hmm_devmem, ref);
 | |
| 	complete(&devmem->completion);
 | |
| }
 | |
| 
 | |
| static void hmm_devmem_ref_exit(void *data)
 | |
| {
 | |
| 	struct percpu_ref *ref = data;
 | |
| 	struct hmm_devmem *devmem;
 | |
| 
 | |
| 	devmem = container_of(ref, struct hmm_devmem, ref);
 | |
| 	wait_for_completion(&devmem->completion);
 | |
| 	percpu_ref_exit(ref);
 | |
| }
 | |
| 
 | |
| static void hmm_devmem_ref_kill(struct percpu_ref *ref)
 | |
| {
 | |
| 	percpu_ref_kill(ref);
 | |
| }
 | |
| 
 | |
| static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
 | |
| 			    unsigned long addr,
 | |
| 			    const struct page *page,
 | |
| 			    unsigned int flags,
 | |
| 			    pmd_t *pmdp)
 | |
| {
 | |
| 	struct hmm_devmem *devmem = page->pgmap->data;
 | |
| 
 | |
| 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
 | |
| }
 | |
| 
 | |
| static void hmm_devmem_free(struct page *page, void *data)
 | |
| {
 | |
| 	struct hmm_devmem *devmem = data;
 | |
| 
 | |
| 	page->mapping = NULL;
 | |
| 
 | |
| 	devmem->ops->free(devmem, page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
 | |
|  *
 | |
|  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
 | |
|  * @device: device struct to bind the resource too
 | |
|  * @size: size in bytes of the device memory to add
 | |
|  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
 | |
|  *
 | |
|  * This function first finds an empty range of physical address big enough to
 | |
|  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
 | |
|  * in turn allocates struct pages. It does not do anything beyond that; all
 | |
|  * events affecting the memory will go through the various callbacks provided
 | |
|  * by hmm_devmem_ops struct.
 | |
|  *
 | |
|  * Device driver should call this function during device initialization and
 | |
|  * is then responsible of memory management. HMM only provides helpers.
 | |
|  */
 | |
| struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
 | |
| 				  struct device *device,
 | |
| 				  unsigned long size)
 | |
| {
 | |
| 	struct hmm_devmem *devmem;
 | |
| 	resource_size_t addr;
 | |
| 	void *result;
 | |
| 	int ret;
 | |
| 
 | |
| 	dev_pagemap_get_ops();
 | |
| 
 | |
| 	devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
 | |
| 	if (!devmem)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	init_completion(&devmem->completion);
 | |
| 	devmem->pfn_first = -1UL;
 | |
| 	devmem->pfn_last = -1UL;
 | |
| 	devmem->resource = NULL;
 | |
| 	devmem->device = device;
 | |
| 	devmem->ops = ops;
 | |
| 
 | |
| 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
 | |
| 			      0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	size = ALIGN(size, PA_SECTION_SIZE);
 | |
| 	addr = min((unsigned long)iomem_resource.end,
 | |
| 		   (1UL << MAX_PHYSMEM_BITS) - 1);
 | |
| 	addr = addr - size + 1UL;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME add a new helper to quickly walk resource tree and find free
 | |
| 	 * range
 | |
| 	 *
 | |
| 	 * FIXME what about ioport_resource resource ?
 | |
| 	 */
 | |
| 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
 | |
| 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
 | |
| 		if (ret != REGION_DISJOINT)
 | |
| 			continue;
 | |
| 
 | |
| 		devmem->resource = devm_request_mem_region(device, addr, size,
 | |
| 							   dev_name(device));
 | |
| 		if (!devmem->resource)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (!devmem->resource)
 | |
| 		return ERR_PTR(-ERANGE);
 | |
| 
 | |
| 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
 | |
| 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
 | |
| 	devmem->pfn_last = devmem->pfn_first +
 | |
| 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
 | |
| 	devmem->page_fault = hmm_devmem_fault;
 | |
| 
 | |
| 	devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
 | |
| 	devmem->pagemap.res = *devmem->resource;
 | |
| 	devmem->pagemap.page_free = hmm_devmem_free;
 | |
| 	devmem->pagemap.altmap_valid = false;
 | |
| 	devmem->pagemap.ref = &devmem->ref;
 | |
| 	devmem->pagemap.data = devmem;
 | |
| 	devmem->pagemap.kill = hmm_devmem_ref_kill;
 | |
| 
 | |
| 	result = devm_memremap_pages(devmem->device, &devmem->pagemap);
 | |
| 	if (IS_ERR(result))
 | |
| 		return result;
 | |
| 	return devmem;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hmm_devmem_add);
 | |
| 
 | |
| struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
 | |
| 					   struct device *device,
 | |
| 					   struct resource *res)
 | |
| {
 | |
| 	struct hmm_devmem *devmem;
 | |
| 	void *result;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	dev_pagemap_get_ops();
 | |
| 
 | |
| 	devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
 | |
| 	if (!devmem)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	init_completion(&devmem->completion);
 | |
| 	devmem->pfn_first = -1UL;
 | |
| 	devmem->pfn_last = -1UL;
 | |
| 	devmem->resource = res;
 | |
| 	devmem->device = device;
 | |
| 	devmem->ops = ops;
 | |
| 
 | |
| 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
 | |
| 			      0, GFP_KERNEL);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
 | |
| 			&devmem->ref);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
 | |
| 	devmem->pfn_last = devmem->pfn_first +
 | |
| 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
 | |
| 	devmem->page_fault = hmm_devmem_fault;
 | |
| 
 | |
| 	devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
 | |
| 	devmem->pagemap.res = *devmem->resource;
 | |
| 	devmem->pagemap.page_free = hmm_devmem_free;
 | |
| 	devmem->pagemap.altmap_valid = false;
 | |
| 	devmem->pagemap.ref = &devmem->ref;
 | |
| 	devmem->pagemap.data = devmem;
 | |
| 	devmem->pagemap.kill = hmm_devmem_ref_kill;
 | |
| 
 | |
| 	result = devm_memremap_pages(devmem->device, &devmem->pagemap);
 | |
| 	if (IS_ERR(result))
 | |
| 		return result;
 | |
| 	return devmem;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
 | |
| 
 | |
| /*
 | |
|  * A device driver that wants to handle multiple devices memory through a
 | |
|  * single fake device can use hmm_device to do so. This is purely a helper
 | |
|  * and it is not needed to make use of any HMM functionality.
 | |
|  */
 | |
| #define HMM_DEVICE_MAX 256
 | |
| 
 | |
| static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
 | |
| static DEFINE_SPINLOCK(hmm_device_lock);
 | |
| static struct class *hmm_device_class;
 | |
| static dev_t hmm_device_devt;
 | |
| 
 | |
| static void hmm_device_release(struct device *device)
 | |
| {
 | |
| 	struct hmm_device *hmm_device;
 | |
| 
 | |
| 	hmm_device = container_of(device, struct hmm_device, device);
 | |
| 	spin_lock(&hmm_device_lock);
 | |
| 	clear_bit(hmm_device->minor, hmm_device_mask);
 | |
| 	spin_unlock(&hmm_device_lock);
 | |
| 
 | |
| 	kfree(hmm_device);
 | |
| }
 | |
| 
 | |
| struct hmm_device *hmm_device_new(void *drvdata)
 | |
| {
 | |
| 	struct hmm_device *hmm_device;
 | |
| 
 | |
| 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
 | |
| 	if (!hmm_device)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	spin_lock(&hmm_device_lock);
 | |
| 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
 | |
| 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
 | |
| 		spin_unlock(&hmm_device_lock);
 | |
| 		kfree(hmm_device);
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 	}
 | |
| 	set_bit(hmm_device->minor, hmm_device_mask);
 | |
| 	spin_unlock(&hmm_device_lock);
 | |
| 
 | |
| 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
 | |
| 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
 | |
| 					hmm_device->minor);
 | |
| 	hmm_device->device.release = hmm_device_release;
 | |
| 	dev_set_drvdata(&hmm_device->device, drvdata);
 | |
| 	hmm_device->device.class = hmm_device_class;
 | |
| 	device_initialize(&hmm_device->device);
 | |
| 
 | |
| 	return hmm_device;
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_device_new);
 | |
| 
 | |
| void hmm_device_put(struct hmm_device *hmm_device)
 | |
| {
 | |
| 	put_device(&hmm_device->device);
 | |
| }
 | |
| EXPORT_SYMBOL(hmm_device_put);
 | |
| 
 | |
| static int __init hmm_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
 | |
| 				  HMM_DEVICE_MAX,
 | |
| 				  "hmm_device");
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
 | |
| 	if (IS_ERR(hmm_device_class)) {
 | |
| 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
 | |
| 		return PTR_ERR(hmm_device_class);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| device_initcall(hmm_init);
 | |
| #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
 |