forked from mirrors/linux
		
	 26fb3dae0a
			
		
	
	
		26fb3dae0a
		
	
	
	
	
		
			
			As all the memblock allocation functions return NULL in case of error rather than panic(), the duplicates with _nopanic suffix can be removed. Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Petr Mladek <pmladek@suse.com> [printk] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			819 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			819 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * sparse memory mappings.
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include <asm/dma.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| 
 | |
| /*
 | |
|  * Permanent SPARSEMEM data:
 | |
|  *
 | |
|  * 1) mem_section	- memory sections, mem_map's for valid memory
 | |
|  */
 | |
| #ifdef CONFIG_SPARSEMEM_EXTREME
 | |
| struct mem_section **mem_section;
 | |
| #else
 | |
| struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
 | |
| 	____cacheline_internodealigned_in_smp;
 | |
| #endif
 | |
| EXPORT_SYMBOL(mem_section);
 | |
| 
 | |
| #ifdef NODE_NOT_IN_PAGE_FLAGS
 | |
| /*
 | |
|  * If we did not store the node number in the page then we have to
 | |
|  * do a lookup in the section_to_node_table in order to find which
 | |
|  * node the page belongs to.
 | |
|  */
 | |
| #if MAX_NUMNODES <= 256
 | |
| static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 | |
| #else
 | |
| static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
 | |
| #endif
 | |
| 
 | |
| int page_to_nid(const struct page *page)
 | |
| {
 | |
| 	return section_to_node_table[page_to_section(page)];
 | |
| }
 | |
| EXPORT_SYMBOL(page_to_nid);
 | |
| 
 | |
| static void set_section_nid(unsigned long section_nr, int nid)
 | |
| {
 | |
| 	section_to_node_table[section_nr] = nid;
 | |
| }
 | |
| #else /* !NODE_NOT_IN_PAGE_FLAGS */
 | |
| static inline void set_section_nid(unsigned long section_nr, int nid)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_EXTREME
 | |
| static noinline struct mem_section __ref *sparse_index_alloc(int nid)
 | |
| {
 | |
| 	struct mem_section *section = NULL;
 | |
| 	unsigned long array_size = SECTIONS_PER_ROOT *
 | |
| 				   sizeof(struct mem_section);
 | |
| 
 | |
| 	if (slab_is_available()) {
 | |
| 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
 | |
| 	} else {
 | |
| 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
 | |
| 					      nid);
 | |
| 		if (!section)
 | |
| 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
 | |
| 			      __func__, array_size, nid);
 | |
| 	}
 | |
| 
 | |
| 	return section;
 | |
| }
 | |
| 
 | |
| static int __meminit sparse_index_init(unsigned long section_nr, int nid)
 | |
| {
 | |
| 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
 | |
| 	struct mem_section *section;
 | |
| 
 | |
| 	if (mem_section[root])
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	section = sparse_index_alloc(nid);
 | |
| 	if (!section)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mem_section[root] = section;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else /* !SPARSEMEM_EXTREME */
 | |
| static inline int sparse_index_init(unsigned long section_nr, int nid)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_EXTREME
 | |
| int __section_nr(struct mem_section* ms)
 | |
| {
 | |
| 	unsigned long root_nr;
 | |
| 	struct mem_section *root = NULL;
 | |
| 
 | |
| 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
 | |
| 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
 | |
| 		if (!root)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
 | |
| 		     break;
 | |
| 	}
 | |
| 
 | |
| 	VM_BUG_ON(!root);
 | |
| 
 | |
| 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
 | |
| }
 | |
| #else
 | |
| int __section_nr(struct mem_section* ms)
 | |
| {
 | |
| 	return (int)(ms - mem_section[0]);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * During early boot, before section_mem_map is used for an actual
 | |
|  * mem_map, we use section_mem_map to store the section's NUMA
 | |
|  * node.  This keeps us from having to use another data structure.  The
 | |
|  * node information is cleared just before we store the real mem_map.
 | |
|  */
 | |
| static inline unsigned long sparse_encode_early_nid(int nid)
 | |
| {
 | |
| 	return (nid << SECTION_NID_SHIFT);
 | |
| }
 | |
| 
 | |
| static inline int sparse_early_nid(struct mem_section *section)
 | |
| {
 | |
| 	return (section->section_mem_map >> SECTION_NID_SHIFT);
 | |
| }
 | |
| 
 | |
| /* Validate the physical addressing limitations of the model */
 | |
| void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
 | |
| 						unsigned long *end_pfn)
 | |
| {
 | |
| 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity checks - do not allow an architecture to pass
 | |
| 	 * in larger pfns than the maximum scope of sparsemem:
 | |
| 	 */
 | |
| 	if (*start_pfn > max_sparsemem_pfn) {
 | |
| 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 | |
| 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 | |
| 			*start_pfn, *end_pfn, max_sparsemem_pfn);
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		*start_pfn = max_sparsemem_pfn;
 | |
| 		*end_pfn = max_sparsemem_pfn;
 | |
| 	} else if (*end_pfn > max_sparsemem_pfn) {
 | |
| 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
 | |
| 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
 | |
| 			*start_pfn, *end_pfn, max_sparsemem_pfn);
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		*end_pfn = max_sparsemem_pfn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are a number of times that we loop over NR_MEM_SECTIONS,
 | |
|  * looking for section_present() on each.  But, when we have very
 | |
|  * large physical address spaces, NR_MEM_SECTIONS can also be
 | |
|  * very large which makes the loops quite long.
 | |
|  *
 | |
|  * Keeping track of this gives us an easy way to break out of
 | |
|  * those loops early.
 | |
|  */
 | |
| int __highest_present_section_nr;
 | |
| static void section_mark_present(struct mem_section *ms)
 | |
| {
 | |
| 	int section_nr = __section_nr(ms);
 | |
| 
 | |
| 	if (section_nr > __highest_present_section_nr)
 | |
| 		__highest_present_section_nr = section_nr;
 | |
| 
 | |
| 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
 | |
| }
 | |
| 
 | |
| static inline int next_present_section_nr(int section_nr)
 | |
| {
 | |
| 	do {
 | |
| 		section_nr++;
 | |
| 		if (present_section_nr(section_nr))
 | |
| 			return section_nr;
 | |
| 	} while ((section_nr <= __highest_present_section_nr));
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| #define for_each_present_section_nr(start, section_nr)		\
 | |
| 	for (section_nr = next_present_section_nr(start-1);	\
 | |
| 	     ((section_nr != -1) &&				\
 | |
| 	      (section_nr <= __highest_present_section_nr));	\
 | |
| 	     section_nr = next_present_section_nr(section_nr))
 | |
| 
 | |
| static inline unsigned long first_present_section_nr(void)
 | |
| {
 | |
| 	return next_present_section_nr(-1);
 | |
| }
 | |
| 
 | |
| /* Record a memory area against a node. */
 | |
| void __init memory_present(int nid, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_EXTREME
 | |
| 	if (unlikely(!mem_section)) {
 | |
| 		unsigned long size, align;
 | |
| 
 | |
| 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
 | |
| 		align = 1 << (INTERNODE_CACHE_SHIFT);
 | |
| 		mem_section = memblock_alloc(size, align);
 | |
| 		if (!mem_section)
 | |
| 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 | |
| 			      __func__, size, align);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	start &= PAGE_SECTION_MASK;
 | |
| 	mminit_validate_memmodel_limits(&start, &end);
 | |
| 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
 | |
| 		unsigned long section = pfn_to_section_nr(pfn);
 | |
| 		struct mem_section *ms;
 | |
| 
 | |
| 		sparse_index_init(section, nid);
 | |
| 		set_section_nid(section, nid);
 | |
| 
 | |
| 		ms = __nr_to_section(section);
 | |
| 		if (!ms->section_mem_map) {
 | |
| 			ms->section_mem_map = sparse_encode_early_nid(nid) |
 | |
| 							SECTION_IS_ONLINE;
 | |
| 			section_mark_present(ms);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark all memblocks as present using memory_present(). This is a
 | |
|  * convienence function that is useful for a number of arches
 | |
|  * to mark all of the systems memory as present during initialization.
 | |
|  */
 | |
| void __init memblocks_present(void)
 | |
| {
 | |
| 	struct memblock_region *reg;
 | |
| 
 | |
| 	for_each_memblock(memory, reg) {
 | |
| 		memory_present(memblock_get_region_node(reg),
 | |
| 			       memblock_region_memory_base_pfn(reg),
 | |
| 			       memblock_region_memory_end_pfn(reg));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Subtle, we encode the real pfn into the mem_map such that
 | |
|  * the identity pfn - section_mem_map will return the actual
 | |
|  * physical page frame number.
 | |
|  */
 | |
| static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
 | |
| {
 | |
| 	unsigned long coded_mem_map =
 | |
| 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
 | |
| 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
 | |
| 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
 | |
| 	return coded_mem_map;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decode mem_map from the coded memmap
 | |
|  */
 | |
| struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
 | |
| {
 | |
| 	/* mask off the extra low bits of information */
 | |
| 	coded_mem_map &= SECTION_MAP_MASK;
 | |
| 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
 | |
| }
 | |
| 
 | |
| static void __meminit sparse_init_one_section(struct mem_section *ms,
 | |
| 		unsigned long pnum, struct page *mem_map,
 | |
| 		unsigned long *pageblock_bitmap)
 | |
| {
 | |
| 	ms->section_mem_map &= ~SECTION_MAP_MASK;
 | |
| 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
 | |
| 							SECTION_HAS_MEM_MAP;
 | |
|  	ms->pageblock_flags = pageblock_bitmap;
 | |
| }
 | |
| 
 | |
| unsigned long usemap_size(void)
 | |
| {
 | |
| 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| static unsigned long *__kmalloc_section_usemap(void)
 | |
| {
 | |
| 	return kmalloc(usemap_size(), GFP_KERNEL);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| static unsigned long * __init
 | |
| sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 | |
| 					 unsigned long size)
 | |
| {
 | |
| 	unsigned long goal, limit;
 | |
| 	unsigned long *p;
 | |
| 	int nid;
 | |
| 	/*
 | |
| 	 * A page may contain usemaps for other sections preventing the
 | |
| 	 * page being freed and making a section unremovable while
 | |
| 	 * other sections referencing the usemap remain active. Similarly,
 | |
| 	 * a pgdat can prevent a section being removed. If section A
 | |
| 	 * contains a pgdat and section B contains the usemap, both
 | |
| 	 * sections become inter-dependent. This allocates usemaps
 | |
| 	 * from the same section as the pgdat where possible to avoid
 | |
| 	 * this problem.
 | |
| 	 */
 | |
| 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
 | |
| 	limit = goal + (1UL << PA_SECTION_SHIFT);
 | |
| 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
 | |
| again:
 | |
| 	p = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
 | |
| 	if (!p && limit) {
 | |
| 		limit = 0;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 | |
| {
 | |
| 	unsigned long usemap_snr, pgdat_snr;
 | |
| 	static unsigned long old_usemap_snr;
 | |
| 	static unsigned long old_pgdat_snr;
 | |
| 	struct pglist_data *pgdat = NODE_DATA(nid);
 | |
| 	int usemap_nid;
 | |
| 
 | |
| 	/* First call */
 | |
| 	if (!old_usemap_snr) {
 | |
| 		old_usemap_snr = NR_MEM_SECTIONS;
 | |
| 		old_pgdat_snr = NR_MEM_SECTIONS;
 | |
| 	}
 | |
| 
 | |
| 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
 | |
| 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
 | |
| 	if (usemap_snr == pgdat_snr)
 | |
| 		return;
 | |
| 
 | |
| 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
 | |
| 		/* skip redundant message */
 | |
| 		return;
 | |
| 
 | |
| 	old_usemap_snr = usemap_snr;
 | |
| 	old_pgdat_snr = pgdat_snr;
 | |
| 
 | |
| 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
 | |
| 	if (usemap_nid != nid) {
 | |
| 		pr_info("node %d must be removed before remove section %ld\n",
 | |
| 			nid, usemap_snr);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * There is a circular dependency.
 | |
| 	 * Some platforms allow un-removable section because they will just
 | |
| 	 * gather other removable sections for dynamic partitioning.
 | |
| 	 * Just notify un-removable section's number here.
 | |
| 	 */
 | |
| 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
 | |
| 		usemap_snr, pgdat_snr, nid);
 | |
| }
 | |
| #else
 | |
| static unsigned long * __init
 | |
| sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
 | |
| 					 unsigned long size)
 | |
| {
 | |
| 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
 | |
| }
 | |
| 
 | |
| static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTREMOVE */
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| static unsigned long __init section_map_size(void)
 | |
| {
 | |
| 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static unsigned long __init section_map_size(void)
 | |
| {
 | |
| 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
 | |
| }
 | |
| 
 | |
| struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long size = section_map_size();
 | |
| 	struct page *map = sparse_buffer_alloc(size);
 | |
| 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
 | |
| 
 | |
| 	if (map)
 | |
| 		return map;
 | |
| 
 | |
| 	map = memblock_alloc_try_nid(size,
 | |
| 					  PAGE_SIZE, addr,
 | |
| 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 | |
| 	if (!map)
 | |
| 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
 | |
| 		      __func__, size, PAGE_SIZE, nid, &addr);
 | |
| 
 | |
| 	return map;
 | |
| }
 | |
| #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| static void *sparsemap_buf __meminitdata;
 | |
| static void *sparsemap_buf_end __meminitdata;
 | |
| 
 | |
| static void __init sparse_buffer_init(unsigned long size, int nid)
 | |
| {
 | |
| 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
 | |
| 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
 | |
| 	sparsemap_buf =
 | |
| 		memblock_alloc_try_nid_raw(size, PAGE_SIZE,
 | |
| 						addr,
 | |
| 						MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 | |
| 	sparsemap_buf_end = sparsemap_buf + size;
 | |
| }
 | |
| 
 | |
| static void __init sparse_buffer_fini(void)
 | |
| {
 | |
| 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
 | |
| 
 | |
| 	if (sparsemap_buf && size > 0)
 | |
| 		memblock_free_early(__pa(sparsemap_buf), size);
 | |
| 	sparsemap_buf = NULL;
 | |
| }
 | |
| 
 | |
| void * __meminit sparse_buffer_alloc(unsigned long size)
 | |
| {
 | |
| 	void *ptr = NULL;
 | |
| 
 | |
| 	if (sparsemap_buf) {
 | |
| 		ptr = PTR_ALIGN(sparsemap_buf, size);
 | |
| 		if (ptr + size > sparsemap_buf_end)
 | |
| 			ptr = NULL;
 | |
| 		else
 | |
| 			sparsemap_buf = ptr + size;
 | |
| 	}
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| void __weak __meminit vmemmap_populate_print_last(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
 | |
|  * And number of present sections in this node is map_count.
 | |
|  */
 | |
| static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
 | |
| 				   unsigned long pnum_end,
 | |
| 				   unsigned long map_count)
 | |
| {
 | |
| 	unsigned long pnum, usemap_longs, *usemap;
 | |
| 	struct page *map;
 | |
| 
 | |
| 	usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS);
 | |
| 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
 | |
| 							  usemap_size() *
 | |
| 							  map_count);
 | |
| 	if (!usemap) {
 | |
| 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
 | |
| 		goto failed;
 | |
| 	}
 | |
| 	sparse_buffer_init(map_count * section_map_size(), nid);
 | |
| 	for_each_present_section_nr(pnum_begin, pnum) {
 | |
| 		if (pnum >= pnum_end)
 | |
| 			break;
 | |
| 
 | |
| 		map = sparse_mem_map_populate(pnum, nid, NULL);
 | |
| 		if (!map) {
 | |
| 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
 | |
| 			       __func__, nid);
 | |
| 			pnum_begin = pnum;
 | |
| 			goto failed;
 | |
| 		}
 | |
| 		check_usemap_section_nr(nid, usemap);
 | |
| 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap);
 | |
| 		usemap += usemap_longs;
 | |
| 	}
 | |
| 	sparse_buffer_fini();
 | |
| 	return;
 | |
| failed:
 | |
| 	/* We failed to allocate, mark all the following pnums as not present */
 | |
| 	for_each_present_section_nr(pnum_begin, pnum) {
 | |
| 		struct mem_section *ms;
 | |
| 
 | |
| 		if (pnum >= pnum_end)
 | |
| 			break;
 | |
| 		ms = __nr_to_section(pnum);
 | |
| 		ms->section_mem_map = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate the accumulated non-linear sections, allocate a mem_map
 | |
|  * for each and record the physical to section mapping.
 | |
|  */
 | |
| void __init sparse_init(void)
 | |
| {
 | |
| 	unsigned long pnum_begin = first_present_section_nr();
 | |
| 	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
 | |
| 	unsigned long pnum_end, map_count = 1;
 | |
| 
 | |
| 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
 | |
| 	set_pageblock_order();
 | |
| 
 | |
| 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
 | |
| 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
 | |
| 
 | |
| 		if (nid == nid_begin) {
 | |
| 			map_count++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* Init node with sections in range [pnum_begin, pnum_end) */
 | |
| 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
 | |
| 		nid_begin = nid;
 | |
| 		pnum_begin = pnum_end;
 | |
| 		map_count = 1;
 | |
| 	}
 | |
| 	/* cover the last node */
 | |
| 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
 | |
| 	vmemmap_populate_print_last();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| 
 | |
| /* Mark all memory sections within the pfn range as online */
 | |
| void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 | |
| 		unsigned long section_nr = pfn_to_section_nr(pfn);
 | |
| 		struct mem_section *ms;
 | |
| 
 | |
| 		/* onlining code should never touch invalid ranges */
 | |
| 		if (WARN_ON(!valid_section_nr(section_nr)))
 | |
| 			continue;
 | |
| 
 | |
| 		ms = __nr_to_section(section_nr);
 | |
| 		ms->section_mem_map |= SECTION_IS_ONLINE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| /* Mark all memory sections within the pfn range as online */
 | |
| void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 
 | |
| 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 | |
| 		unsigned long section_nr = pfn_to_section_nr(pfn);
 | |
| 		struct mem_section *ms;
 | |
| 
 | |
| 		/*
 | |
| 		 * TODO this needs some double checking. Offlining code makes
 | |
| 		 * sure to check pfn_valid but those checks might be just bogus
 | |
| 		 */
 | |
| 		if (WARN_ON(!valid_section_nr(section_nr)))
 | |
| 			continue;
 | |
| 
 | |
| 		ms = __nr_to_section(section_nr);
 | |
| 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	/* This will make the necessary allocations eventually. */
 | |
| 	return sparse_mem_map_populate(pnum, nid, altmap);
 | |
| }
 | |
| static void __kfree_section_memmap(struct page *memmap,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long start = (unsigned long)memmap;
 | |
| 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 | |
| 
 | |
| 	vmemmap_free(start, end, altmap);
 | |
| }
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| static void free_map_bootmem(struct page *memmap)
 | |
| {
 | |
| 	unsigned long start = (unsigned long)memmap;
 | |
| 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
 | |
| 
 | |
| 	vmemmap_free(start, end, NULL);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTREMOVE */
 | |
| #else
 | |
| static struct page *__kmalloc_section_memmap(void)
 | |
| {
 | |
| 	struct page *page, *ret;
 | |
| 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
 | |
| 
 | |
| 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
 | |
| 	if (page)
 | |
| 		goto got_map_page;
 | |
| 
 | |
| 	ret = vmalloc(memmap_size);
 | |
| 	if (ret)
 | |
| 		goto got_map_ptr;
 | |
| 
 | |
| 	return NULL;
 | |
| got_map_page:
 | |
| 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
 | |
| got_map_ptr:
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	return __kmalloc_section_memmap();
 | |
| }
 | |
| 
 | |
| static void __kfree_section_memmap(struct page *memmap,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	if (is_vmalloc_addr(memmap))
 | |
| 		vfree(memmap);
 | |
| 	else
 | |
| 		free_pages((unsigned long)memmap,
 | |
| 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| static void free_map_bootmem(struct page *memmap)
 | |
| {
 | |
| 	unsigned long maps_section_nr, removing_section_nr, i;
 | |
| 	unsigned long magic, nr_pages;
 | |
| 	struct page *page = virt_to_page(memmap);
 | |
| 
 | |
| 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
 | |
| 		>> PAGE_SHIFT;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++, page++) {
 | |
| 		magic = (unsigned long) page->freelist;
 | |
| 
 | |
| 		BUG_ON(magic == NODE_INFO);
 | |
| 
 | |
| 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
 | |
| 		removing_section_nr = page_private(page);
 | |
| 
 | |
| 		/*
 | |
| 		 * When this function is called, the removing section is
 | |
| 		 * logical offlined state. This means all pages are isolated
 | |
| 		 * from page allocator. If removing section's memmap is placed
 | |
| 		 * on the same section, it must not be freed.
 | |
| 		 * If it is freed, page allocator may allocate it which will
 | |
| 		 * be removed physically soon.
 | |
| 		 */
 | |
| 		if (maps_section_nr != removing_section_nr)
 | |
| 			put_page_bootmem(page);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTREMOVE */
 | |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */
 | |
| 
 | |
| /*
 | |
|  * returns the number of sections whose mem_maps were properly
 | |
|  * set.  If this is <=0, then that means that the passed-in
 | |
|  * map was not consumed and must be freed.
 | |
|  */
 | |
| int __meminit sparse_add_one_section(int nid, unsigned long start_pfn,
 | |
| 				     struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
 | |
| 	struct mem_section *ms;
 | |
| 	struct page *memmap;
 | |
| 	unsigned long *usemap;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * no locking for this, because it does its own
 | |
| 	 * plus, it does a kmalloc
 | |
| 	 */
 | |
| 	ret = sparse_index_init(section_nr, nid);
 | |
| 	if (ret < 0 && ret != -EEXIST)
 | |
| 		return ret;
 | |
| 	ret = 0;
 | |
| 	memmap = kmalloc_section_memmap(section_nr, nid, altmap);
 | |
| 	if (!memmap)
 | |
| 		return -ENOMEM;
 | |
| 	usemap = __kmalloc_section_usemap();
 | |
| 	if (!usemap) {
 | |
| 		__kfree_section_memmap(memmap, altmap);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ms = __pfn_to_section(start_pfn);
 | |
| 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
 | |
| 		ret = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Poison uninitialized struct pages in order to catch invalid flags
 | |
| 	 * combinations.
 | |
| 	 */
 | |
| 	page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION);
 | |
| 
 | |
| 	section_mark_present(ms);
 | |
| 	sparse_init_one_section(ms, section_nr, memmap, usemap);
 | |
| 
 | |
| out:
 | |
| 	if (ret < 0) {
 | |
| 		kfree(usemap);
 | |
| 		__kfree_section_memmap(memmap, altmap);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTREMOVE
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!memmap)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * A further optimization is to have per section refcounted
 | |
| 	 * num_poisoned_pages.  But that would need more space per memmap, so
 | |
| 	 * for now just do a quick global check to speed up this routine in the
 | |
| 	 * absence of bad pages.
 | |
| 	 */
 | |
| 	if (atomic_long_read(&num_poisoned_pages) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		if (PageHWPoison(&memmap[i])) {
 | |
| 			atomic_long_sub(1, &num_poisoned_pages);
 | |
| 			ClearPageHWPoison(&memmap[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void free_section_usemap(struct page *memmap, unsigned long *usemap,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	struct page *usemap_page;
 | |
| 
 | |
| 	if (!usemap)
 | |
| 		return;
 | |
| 
 | |
| 	usemap_page = virt_to_page(usemap);
 | |
| 	/*
 | |
| 	 * Check to see if allocation came from hot-plug-add
 | |
| 	 */
 | |
| 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
 | |
| 		kfree(usemap);
 | |
| 		if (memmap)
 | |
| 			__kfree_section_memmap(memmap, altmap);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The usemap came from bootmem. This is packed with other usemaps
 | |
| 	 * on the section which has pgdat at boot time. Just keep it as is now.
 | |
| 	 */
 | |
| 
 | |
| 	if (memmap)
 | |
| 		free_map_bootmem(memmap);
 | |
| }
 | |
| 
 | |
| void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
 | |
| 		unsigned long map_offset, struct vmem_altmap *altmap)
 | |
| {
 | |
| 	struct page *memmap = NULL;
 | |
| 	unsigned long *usemap = NULL;
 | |
| 
 | |
| 	if (ms->section_mem_map) {
 | |
| 		usemap = ms->pageblock_flags;
 | |
| 		memmap = sparse_decode_mem_map(ms->section_mem_map,
 | |
| 						__section_nr(ms));
 | |
| 		ms->section_mem_map = 0;
 | |
| 		ms->pageblock_flags = NULL;
 | |
| 	}
 | |
| 
 | |
| 	clear_hwpoisoned_pages(memmap + map_offset,
 | |
| 			PAGES_PER_SECTION - map_offset);
 | |
| 	free_section_usemap(memmap, usemap, altmap);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTREMOVE */
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 |