forked from mirrors/linux
		
	 b44f71e3fa
			
		
	
	
		b44f71e3fa
		
	
	
	
	
		
			
			Use helper function va_size() to improve code readability. No functional modification involved. Link: https://lkml.kernel.org/r/20240906102539.3537207-1-zhangpeng362@huawei.com Signed-off-by: ZhangPeng <zhangpeng362@huawei.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
		
			
				
	
	
		
			5209 lines
		
	
	
	
		
			133 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5209 lines
		
	
	
	
		
			133 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  Copyright (C) 1993  Linus Torvalds
 | |
|  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 | |
|  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 | |
|  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
 | |
|  *  Numa awareness, Christoph Lameter, SGI, June 2005
 | |
|  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
 | |
|  */
 | |
| 
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/set_memory.h>
 | |
| #include <linux/debugobjects.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/rbtree.h>
 | |
| #include <linux/xarray.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/llist.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/rbtree_augmented.h>
 | |
| #include <linux/overflow.h>
 | |
| #include <linux/pgtable.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/shmparam.h>
 | |
| #include <linux/page_owner.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/vmalloc.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "pgalloc-track.h"
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 | |
| static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
 | |
| 
 | |
| static int __init set_nohugeiomap(char *str)
 | |
| {
 | |
| 	ioremap_max_page_shift = PAGE_SHIFT;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nohugeiomap", set_nohugeiomap);
 | |
| #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
 | |
| static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
 | |
| #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
 | |
| 
 | |
| #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
 | |
| static bool __ro_after_init vmap_allow_huge = true;
 | |
| 
 | |
| static int __init set_nohugevmalloc(char *str)
 | |
| {
 | |
| 	vmap_allow_huge = false;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nohugevmalloc", set_nohugevmalloc);
 | |
| #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
 | |
| static const bool vmap_allow_huge = false;
 | |
| #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
 | |
| 
 | |
| bool is_vmalloc_addr(const void *x)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
 | |
| 
 | |
| 	return addr >= VMALLOC_START && addr < VMALLOC_END;
 | |
| }
 | |
| EXPORT_SYMBOL(is_vmalloc_addr);
 | |
| 
 | |
| struct vfree_deferred {
 | |
| 	struct llist_head list;
 | |
| 	struct work_struct wq;
 | |
| };
 | |
| static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
 | |
| 
 | |
| /*** Page table manipulation functions ***/
 | |
| static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 | |
| 			phys_addr_t phys_addr, pgprot_t prot,
 | |
| 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 	u64 pfn;
 | |
| 	struct page *page;
 | |
| 	unsigned long size = PAGE_SIZE;
 | |
| 
 | |
| 	pfn = phys_addr >> PAGE_SHIFT;
 | |
| 	pte = pte_alloc_kernel_track(pmd, addr, mask);
 | |
| 	if (!pte)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		if (unlikely(!pte_none(ptep_get(pte)))) {
 | |
| 			if (pfn_valid(pfn)) {
 | |
| 				page = pfn_to_page(pfn);
 | |
| 				dump_page(page, "remapping already mapped page");
 | |
| 			}
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
 | |
| 		if (size != PAGE_SIZE) {
 | |
| 			pte_t entry = pfn_pte(pfn, prot);
 | |
| 
 | |
| 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
 | |
| 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
 | |
| 			pfn += PFN_DOWN(size);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
 | |
| 		pfn++;
 | |
| 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
 | |
| 	*mask |= PGTBL_PTE_MODIFIED;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
 | |
| 			phys_addr_t phys_addr, pgprot_t prot,
 | |
| 			unsigned int max_page_shift)
 | |
| {
 | |
| 	if (max_page_shift < PMD_SHIFT)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!arch_vmap_pmd_supported(prot))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((end - addr) != PMD_SIZE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!IS_ALIGNED(addr, PMD_SIZE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pmd_set_huge(pmd, phys_addr, prot);
 | |
| }
 | |
| 
 | |
| static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 | |
| 			phys_addr_t phys_addr, pgprot_t prot,
 | |
| 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 | |
| 	if (!pmd)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
 | |
| 					max_page_shift)) {
 | |
| 			*mask |= PGTBL_PMD_MODIFIED;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
 | |
| 			phys_addr_t phys_addr, pgprot_t prot,
 | |
| 			unsigned int max_page_shift)
 | |
| {
 | |
| 	if (max_page_shift < PUD_SHIFT)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!arch_vmap_pud_supported(prot))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((end - addr) != PUD_SIZE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!IS_ALIGNED(addr, PUD_SIZE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pud_set_huge(pud, phys_addr, prot);
 | |
| }
 | |
| 
 | |
| static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 | |
| 			phys_addr_t phys_addr, pgprot_t prot,
 | |
| 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 | |
| 	if (!pud)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 
 | |
| 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
 | |
| 					max_page_shift)) {
 | |
| 			*mask |= PGTBL_PUD_MODIFIED;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
 | |
| 					max_page_shift, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
 | |
| 			phys_addr_t phys_addr, pgprot_t prot,
 | |
| 			unsigned int max_page_shift)
 | |
| {
 | |
| 	if (max_page_shift < P4D_SHIFT)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!arch_vmap_p4d_supported(prot))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((end - addr) != P4D_SIZE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!IS_ALIGNED(addr, P4D_SIZE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
 | |
| 		return 0;
 | |
| 
 | |
| 	return p4d_set_huge(p4d, phys_addr, prot);
 | |
| }
 | |
| 
 | |
| static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 | |
| 			phys_addr_t phys_addr, pgprot_t prot,
 | |
| 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 | |
| 	if (!p4d)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 
 | |
| 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
 | |
| 					max_page_shift)) {
 | |
| 			*mask |= PGTBL_P4D_MODIFIED;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
 | |
| 					max_page_shift, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_range_noflush(unsigned long addr, unsigned long end,
 | |
| 			phys_addr_t phys_addr, pgprot_t prot,
 | |
| 			unsigned int max_page_shift)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long start;
 | |
| 	unsigned long next;
 | |
| 	int err;
 | |
| 	pgtbl_mod_mask mask = 0;
 | |
| 
 | |
| 	might_sleep();
 | |
| 	BUG_ON(addr >= end);
 | |
| 
 | |
| 	start = addr;
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
 | |
| 					max_page_shift, &mask);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
 | |
| 
 | |
| 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 | |
| 		arch_sync_kernel_mappings(start, end);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int vmap_page_range(unsigned long addr, unsigned long end,
 | |
| 		    phys_addr_t phys_addr, pgprot_t prot)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
 | |
| 				 ioremap_max_page_shift);
 | |
| 	flush_cache_vmap(addr, end);
 | |
| 	if (!err)
 | |
| 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
 | |
| 					       ioremap_max_page_shift);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int ioremap_page_range(unsigned long addr, unsigned long end,
 | |
| 		phys_addr_t phys_addr, pgprot_t prot)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	area = find_vm_area((void *)addr);
 | |
| 	if (!area || !(area->flags & VM_IOREMAP)) {
 | |
| 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (addr != (unsigned long)area->addr ||
 | |
| 	    (void *)end != area->addr + get_vm_area_size(area)) {
 | |
| 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
 | |
| 			  addr, end, (long)area->addr,
 | |
| 			  (long)area->addr + get_vm_area_size(area));
 | |
| 		return -ERANGE;
 | |
| 	}
 | |
| 	return vmap_page_range(addr, end, phys_addr, prot);
 | |
| }
 | |
| 
 | |
| static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 | |
| 			     pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	do {
 | |
| 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
 | |
| 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	*mask |= PGTBL_PTE_MODIFIED;
 | |
| }
 | |
| 
 | |
| static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
 | |
| 			     pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	int cleared;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 		cleared = pmd_clear_huge(pmd);
 | |
| 		if (cleared || pmd_bad(*pmd))
 | |
| 			*mask |= PGTBL_PMD_MODIFIED;
 | |
| 
 | |
| 		if (cleared)
 | |
| 			continue;
 | |
| 		if (pmd_none_or_clear_bad(pmd))
 | |
| 			continue;
 | |
| 		vunmap_pte_range(pmd, addr, next, mask);
 | |
| 
 | |
| 		cond_resched();
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 | |
| 			     pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	int cleared;
 | |
| 
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 
 | |
| 		cleared = pud_clear_huge(pud);
 | |
| 		if (cleared || pud_bad(*pud))
 | |
| 			*mask |= PGTBL_PUD_MODIFIED;
 | |
| 
 | |
| 		if (cleared)
 | |
| 			continue;
 | |
| 		if (pud_none_or_clear_bad(pud))
 | |
| 			continue;
 | |
| 		vunmap_pmd_range(pud, addr, next, mask);
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 | |
| 			     pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 
 | |
| 		p4d_clear_huge(p4d);
 | |
| 		if (p4d_bad(*p4d))
 | |
| 			*mask |= PGTBL_P4D_MODIFIED;
 | |
| 
 | |
| 		if (p4d_none_or_clear_bad(p4d))
 | |
| 			continue;
 | |
| 		vunmap_pud_range(p4d, addr, next, mask);
 | |
| 	} while (p4d++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vunmap_range_noflush is similar to vunmap_range, but does not
 | |
|  * flush caches or TLBs.
 | |
|  *
 | |
|  * The caller is responsible for calling flush_cache_vmap() before calling
 | |
|  * this function, and flush_tlb_kernel_range after it has returned
 | |
|  * successfully (and before the addresses are expected to cause a page fault
 | |
|  * or be re-mapped for something else, if TLB flushes are being delayed or
 | |
|  * coalesced).
 | |
|  *
 | |
|  * This is an internal function only. Do not use outside mm/.
 | |
|  */
 | |
| void __vunmap_range_noflush(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long addr = start;
 | |
| 	pgtbl_mod_mask mask = 0;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_bad(*pgd))
 | |
| 			mask |= PGTBL_PGD_MODIFIED;
 | |
| 		if (pgd_none_or_clear_bad(pgd))
 | |
| 			continue;
 | |
| 		vunmap_p4d_range(pgd, addr, next, &mask);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 
 | |
| 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 | |
| 		arch_sync_kernel_mappings(start, end);
 | |
| }
 | |
| 
 | |
| void vunmap_range_noflush(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	kmsan_vunmap_range_noflush(start, end);
 | |
| 	__vunmap_range_noflush(start, end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vunmap_range - unmap kernel virtual addresses
 | |
|  * @addr: start of the VM area to unmap
 | |
|  * @end: end of the VM area to unmap (non-inclusive)
 | |
|  *
 | |
|  * Clears any present PTEs in the virtual address range, flushes TLBs and
 | |
|  * caches. Any subsequent access to the address before it has been re-mapped
 | |
|  * is a kernel bug.
 | |
|  */
 | |
| void vunmap_range(unsigned long addr, unsigned long end)
 | |
| {
 | |
| 	flush_cache_vunmap(addr, end);
 | |
| 	vunmap_range_noflush(addr, end);
 | |
| 	flush_tlb_kernel_range(addr, end);
 | |
| }
 | |
| 
 | |
| static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 | |
| 		pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	/*
 | |
| 	 * nr is a running index into the array which helps higher level
 | |
| 	 * callers keep track of where we're up to.
 | |
| 	 */
 | |
| 
 | |
| 	pte = pte_alloc_kernel_track(pmd, addr, mask);
 | |
| 	if (!pte)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		struct page *page = pages[*nr];
 | |
| 
 | |
| 		if (WARN_ON(!pte_none(ptep_get(pte))))
 | |
| 			return -EBUSY;
 | |
| 		if (WARN_ON(!page))
 | |
| 			return -ENOMEM;
 | |
| 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 | |
| 		(*nr)++;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	*mask |= PGTBL_PTE_MODIFIED;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 | |
| 		pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 | |
| 	if (!pmd)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 | |
| 		pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 | |
| 	if (!pud)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
 | |
| 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 | |
| 		pgtbl_mod_mask *mask)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 | |
| 	if (!p4d)
 | |
| 		return -ENOMEM;
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
 | |
| 			return -ENOMEM;
 | |
| 	} while (p4d++, addr = next, addr != end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
 | |
| 		pgprot_t prot, struct page **pages)
 | |
| {
 | |
| 	unsigned long start = addr;
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 	int err = 0;
 | |
| 	int nr = 0;
 | |
| 	pgtbl_mod_mask mask = 0;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (pgd_bad(*pgd))
 | |
| 			mask |= PGTBL_PGD_MODIFIED;
 | |
| 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 
 | |
| 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 | |
| 		arch_sync_kernel_mappings(start, end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
 | |
|  * flush caches.
 | |
|  *
 | |
|  * The caller is responsible for calling flush_cache_vmap() after this
 | |
|  * function returns successfully and before the addresses are accessed.
 | |
|  *
 | |
|  * This is an internal function only. Do not use outside mm/.
 | |
|  */
 | |
| int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 | |
| 		pgprot_t prot, struct page **pages, unsigned int page_shift)
 | |
| {
 | |
| 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
 | |
| 
 | |
| 	WARN_ON(page_shift < PAGE_SHIFT);
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
 | |
| 			page_shift == PAGE_SHIFT)
 | |
| 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
 | |
| 
 | |
| 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
 | |
| 					page_to_phys(pages[i]), prot,
 | |
| 					page_shift);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		addr += 1UL << page_shift;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
 | |
| 		pgprot_t prot, struct page **pages, unsigned int page_shift)
 | |
| {
 | |
| 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
 | |
| 						 page_shift);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmap_pages_range - map pages to a kernel virtual address
 | |
|  * @addr: start of the VM area to map
 | |
|  * @end: end of the VM area to map (non-inclusive)
 | |
|  * @prot: page protection flags to use
 | |
|  * @pages: pages to map (always PAGE_SIZE pages)
 | |
|  * @page_shift: maximum shift that the pages may be mapped with, @pages must
 | |
|  * be aligned and contiguous up to at least this shift.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| static int vmap_pages_range(unsigned long addr, unsigned long end,
 | |
| 		pgprot_t prot, struct page **pages, unsigned int page_shift)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
 | |
| 	flush_cache_vmap(addr, end);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
 | |
| 				unsigned long end)
 | |
| {
 | |
| 	might_sleep();
 | |
| 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
 | |
| 		return -EINVAL;
 | |
| 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
 | |
| 		return -EINVAL;
 | |
| 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
 | |
| 		return -EINVAL;
 | |
| 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
 | |
| 		return -E2BIG;
 | |
| 	if (start < (unsigned long)area->addr ||
 | |
| 	    (void *)end > area->addr + get_vm_area_size(area))
 | |
| 		return -ERANGE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vm_area_map_pages - map pages inside given sparse vm_area
 | |
|  * @area: vm_area
 | |
|  * @start: start address inside vm_area
 | |
|  * @end: end address inside vm_area
 | |
|  * @pages: pages to map (always PAGE_SIZE pages)
 | |
|  */
 | |
| int vm_area_map_pages(struct vm_struct *area, unsigned long start,
 | |
| 		      unsigned long end, struct page **pages)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = check_sparse_vm_area(area, start, end);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
 | |
|  * @area: vm_area
 | |
|  * @start: start address inside vm_area
 | |
|  * @end: end address inside vm_area
 | |
|  */
 | |
| void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
 | |
| 			 unsigned long end)
 | |
| {
 | |
| 	if (check_sparse_vm_area(area, start, end))
 | |
| 		return;
 | |
| 
 | |
| 	vunmap_range(start, end);
 | |
| }
 | |
| 
 | |
| int is_vmalloc_or_module_addr(const void *x)
 | |
| {
 | |
| 	/*
 | |
| 	 * ARM, x86-64 and sparc64 put modules in a special place,
 | |
| 	 * and fall back on vmalloc() if that fails. Others
 | |
| 	 * just put it in the vmalloc space.
 | |
| 	 */
 | |
| #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
 | |
| 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
 | |
| 	if (addr >= MODULES_VADDR && addr < MODULES_END)
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return is_vmalloc_addr(x);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
 | |
| 
 | |
| /*
 | |
|  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
 | |
|  * return the tail page that corresponds to the base page address, which
 | |
|  * matches small vmap mappings.
 | |
|  */
 | |
| struct page *vmalloc_to_page(const void *vmalloc_addr)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) vmalloc_addr;
 | |
| 	struct page *page = NULL;
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *ptep, pte;
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 | |
| 	 * architectures that do not vmalloc module space
 | |
| 	 */
 | |
| 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return NULL;
 | |
| 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
 | |
| 		return NULL; /* XXX: no allowance for huge pgd */
 | |
| 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	if (p4d_none(*p4d))
 | |
| 		return NULL;
 | |
| 	if (p4d_leaf(*p4d))
 | |
| 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
 | |
| 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	if (pud_none(*pud))
 | |
| 		return NULL;
 | |
| 	if (pud_leaf(*pud))
 | |
| 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 | |
| 	if (WARN_ON_ONCE(pud_bad(*pud)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return NULL;
 | |
| 	if (pmd_leaf(*pmd))
 | |
| 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
 | |
| 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	ptep = pte_offset_kernel(pmd, addr);
 | |
| 	pte = ptep_get(ptep);
 | |
| 	if (pte_present(pte))
 | |
| 		page = pte_page(pte);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_to_page);
 | |
| 
 | |
| /*
 | |
|  * Map a vmalloc()-space virtual address to the physical page frame number.
 | |
|  */
 | |
| unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 | |
| {
 | |
| 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_to_pfn);
 | |
| 
 | |
| 
 | |
| /*** Global kva allocator ***/
 | |
| 
 | |
| #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 | |
| #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 | |
| 
 | |
| 
 | |
| static DEFINE_SPINLOCK(free_vmap_area_lock);
 | |
| static bool vmap_initialized __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * This kmem_cache is used for vmap_area objects. Instead of
 | |
|  * allocating from slab we reuse an object from this cache to
 | |
|  * make things faster. Especially in "no edge" splitting of
 | |
|  * free block.
 | |
|  */
 | |
| static struct kmem_cache *vmap_area_cachep;
 | |
| 
 | |
| /*
 | |
|  * This linked list is used in pair with free_vmap_area_root.
 | |
|  * It gives O(1) access to prev/next to perform fast coalescing.
 | |
|  */
 | |
| static LIST_HEAD(free_vmap_area_list);
 | |
| 
 | |
| /*
 | |
|  * This augment red-black tree represents the free vmap space.
 | |
|  * All vmap_area objects in this tree are sorted by va->va_start
 | |
|  * address. It is used for allocation and merging when a vmap
 | |
|  * object is released.
 | |
|  *
 | |
|  * Each vmap_area node contains a maximum available free block
 | |
|  * of its sub-tree, right or left. Therefore it is possible to
 | |
|  * find a lowest match of free area.
 | |
|  */
 | |
| static struct rb_root free_vmap_area_root = RB_ROOT;
 | |
| 
 | |
| /*
 | |
|  * Preload a CPU with one object for "no edge" split case. The
 | |
|  * aim is to get rid of allocations from the atomic context, thus
 | |
|  * to use more permissive allocation masks.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 | |
| 
 | |
| /*
 | |
|  * This structure defines a single, solid model where a list and
 | |
|  * rb-tree are part of one entity protected by the lock. Nodes are
 | |
|  * sorted in ascending order, thus for O(1) access to left/right
 | |
|  * neighbors a list is used as well as for sequential traversal.
 | |
|  */
 | |
| struct rb_list {
 | |
| 	struct rb_root root;
 | |
| 	struct list_head head;
 | |
| 	spinlock_t lock;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * A fast size storage contains VAs up to 1M size. A pool consists
 | |
|  * of linked between each other ready to go VAs of certain sizes.
 | |
|  * An index in the pool-array corresponds to number of pages + 1.
 | |
|  */
 | |
| #define MAX_VA_SIZE_PAGES 256
 | |
| 
 | |
| struct vmap_pool {
 | |
| 	struct list_head head;
 | |
| 	unsigned long len;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * An effective vmap-node logic. Users make use of nodes instead
 | |
|  * of a global heap. It allows to balance an access and mitigate
 | |
|  * contention.
 | |
|  */
 | |
| static struct vmap_node {
 | |
| 	/* Simple size segregated storage. */
 | |
| 	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
 | |
| 	spinlock_t pool_lock;
 | |
| 	bool skip_populate;
 | |
| 
 | |
| 	/* Bookkeeping data of this node. */
 | |
| 	struct rb_list busy;
 | |
| 	struct rb_list lazy;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ready-to-free areas.
 | |
| 	 */
 | |
| 	struct list_head purge_list;
 | |
| 	struct work_struct purge_work;
 | |
| 	unsigned long nr_purged;
 | |
| } single;
 | |
| 
 | |
| /*
 | |
|  * Initial setup consists of one single node, i.e. a balancing
 | |
|  * is fully disabled. Later on, after vmap is initialized these
 | |
|  * parameters are updated based on a system capacity.
 | |
|  */
 | |
| static struct vmap_node *vmap_nodes = &single;
 | |
| static __read_mostly unsigned int nr_vmap_nodes = 1;
 | |
| static __read_mostly unsigned int vmap_zone_size = 1;
 | |
| 
 | |
| static inline unsigned int
 | |
| addr_to_node_id(unsigned long addr)
 | |
| {
 | |
| 	return (addr / vmap_zone_size) % nr_vmap_nodes;
 | |
| }
 | |
| 
 | |
| static inline struct vmap_node *
 | |
| addr_to_node(unsigned long addr)
 | |
| {
 | |
| 	return &vmap_nodes[addr_to_node_id(addr)];
 | |
| }
 | |
| 
 | |
| static inline struct vmap_node *
 | |
| id_to_node(unsigned int id)
 | |
| {
 | |
| 	return &vmap_nodes[id % nr_vmap_nodes];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use the value 0 to represent "no node", that is why
 | |
|  * an encoded value will be the node-id incremented by 1.
 | |
|  * It is always greater then 0. A valid node_id which can
 | |
|  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
 | |
|  * is not valid 0 is returned.
 | |
|  */
 | |
| static unsigned int
 | |
| encode_vn_id(unsigned int node_id)
 | |
| {
 | |
| 	/* Can store U8_MAX [0:254] nodes. */
 | |
| 	if (node_id < nr_vmap_nodes)
 | |
| 		return (node_id + 1) << BITS_PER_BYTE;
 | |
| 
 | |
| 	/* Warn and no node encoded. */
 | |
| 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns an encoded node-id, the valid range is within
 | |
|  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
 | |
|  * returned if extracted data is wrong.
 | |
|  */
 | |
| static unsigned int
 | |
| decode_vn_id(unsigned int val)
 | |
| {
 | |
| 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
 | |
| 
 | |
| 	/* Can store U8_MAX [0:254] nodes. */
 | |
| 	if (node_id < nr_vmap_nodes)
 | |
| 		return node_id;
 | |
| 
 | |
| 	/* If it was _not_ zero, warn. */
 | |
| 	WARN_ONCE(node_id != UINT_MAX,
 | |
| 		"Decode wrong node id (%d)\n", node_id);
 | |
| 
 | |
| 	return nr_vmap_nodes;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| is_vn_id_valid(unsigned int node_id)
 | |
| {
 | |
| 	if (node_id < nr_vmap_nodes)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long
 | |
| va_size(struct vmap_area *va)
 | |
| {
 | |
| 	return (va->va_end - va->va_start);
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long
 | |
| get_subtree_max_size(struct rb_node *node)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	va = rb_entry_safe(node, struct vmap_area, rb_node);
 | |
| 	return va ? va->subtree_max_size : 0;
 | |
| }
 | |
| 
 | |
| RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 | |
| 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 | |
| 
 | |
| static void reclaim_and_purge_vmap_areas(void);
 | |
| static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 | |
| static void drain_vmap_area_work(struct work_struct *work);
 | |
| static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
 | |
| 
 | |
| static atomic_long_t nr_vmalloc_pages;
 | |
| 
 | |
| unsigned long vmalloc_nr_pages(void)
 | |
| {
 | |
| 	return atomic_long_read(&nr_vmalloc_pages);
 | |
| }
 | |
| 
 | |
| static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
 | |
| {
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 
 | |
| 	addr = (unsigned long)kasan_reset_tag((void *)addr);
 | |
| 
 | |
| 	while (n) {
 | |
| 		struct vmap_area *va;
 | |
| 
 | |
| 		va = rb_entry(n, struct vmap_area, rb_node);
 | |
| 		if (addr < va->va_start)
 | |
| 			n = n->rb_left;
 | |
| 		else if (addr >= va->va_end)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			return va;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Look up the first VA which satisfies addr < va_end, NULL if none. */
 | |
| static struct vmap_area *
 | |
| __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
 | |
| {
 | |
| 	struct vmap_area *va = NULL;
 | |
| 	struct rb_node *n = root->rb_node;
 | |
| 
 | |
| 	addr = (unsigned long)kasan_reset_tag((void *)addr);
 | |
| 
 | |
| 	while (n) {
 | |
| 		struct vmap_area *tmp;
 | |
| 
 | |
| 		tmp = rb_entry(n, struct vmap_area, rb_node);
 | |
| 		if (tmp->va_end > addr) {
 | |
| 			va = tmp;
 | |
| 			if (tmp->va_start <= addr)
 | |
| 				break;
 | |
| 
 | |
| 			n = n->rb_left;
 | |
| 		} else
 | |
| 			n = n->rb_right;
 | |
| 	}
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a node where a first VA, that satisfies addr < va_end, resides.
 | |
|  * If success, a node is locked. A user is responsible to unlock it when a
 | |
|  * VA is no longer needed to be accessed.
 | |
|  *
 | |
|  * Returns NULL if nothing found.
 | |
|  */
 | |
| static struct vmap_node *
 | |
| find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
 | |
| {
 | |
| 	unsigned long va_start_lowest;
 | |
| 	struct vmap_node *vn;
 | |
| 	int i;
 | |
| 
 | |
| repeat:
 | |
| 	for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
 | |
| 		vn = &vmap_nodes[i];
 | |
| 
 | |
| 		spin_lock(&vn->busy.lock);
 | |
| 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
 | |
| 
 | |
| 		if (*va)
 | |
| 			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
 | |
| 				va_start_lowest = (*va)->va_start;
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if found VA exists, it might have gone away.  In this case we
 | |
| 	 * repeat the search because a VA has been removed concurrently and we
 | |
| 	 * need to proceed to the next one, which is a rare case.
 | |
| 	 */
 | |
| 	if (va_start_lowest) {
 | |
| 		vn = addr_to_node(va_start_lowest);
 | |
| 
 | |
| 		spin_lock(&vn->busy.lock);
 | |
| 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
 | |
| 
 | |
| 		if (*va)
 | |
| 			return vn;
 | |
| 
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function returns back addresses of parent node
 | |
|  * and its left or right link for further processing.
 | |
|  *
 | |
|  * Otherwise NULL is returned. In that case all further
 | |
|  * steps regarding inserting of conflicting overlap range
 | |
|  * have to be declined and actually considered as a bug.
 | |
|  */
 | |
| static __always_inline struct rb_node **
 | |
| find_va_links(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct rb_node *from,
 | |
| 	struct rb_node **parent)
 | |
| {
 | |
| 	struct vmap_area *tmp_va;
 | |
| 	struct rb_node **link;
 | |
| 
 | |
| 	if (root) {
 | |
| 		link = &root->rb_node;
 | |
| 		if (unlikely(!*link)) {
 | |
| 			*parent = NULL;
 | |
| 			return link;
 | |
| 		}
 | |
| 	} else {
 | |
| 		link = &from;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Go to the bottom of the tree. When we hit the last point
 | |
| 	 * we end up with parent rb_node and correct direction, i name
 | |
| 	 * it link, where the new va->rb_node will be attached to.
 | |
| 	 */
 | |
| 	do {
 | |
| 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 | |
| 
 | |
| 		/*
 | |
| 		 * During the traversal we also do some sanity check.
 | |
| 		 * Trigger the BUG() if there are sides(left/right)
 | |
| 		 * or full overlaps.
 | |
| 		 */
 | |
| 		if (va->va_end <= tmp_va->va_start)
 | |
| 			link = &(*link)->rb_left;
 | |
| 		else if (va->va_start >= tmp_va->va_end)
 | |
| 			link = &(*link)->rb_right;
 | |
| 		else {
 | |
| 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 | |
| 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 | |
| 
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} while (*link);
 | |
| 
 | |
| 	*parent = &tmp_va->rb_node;
 | |
| 	return link;
 | |
| }
 | |
| 
 | |
| static __always_inline struct list_head *
 | |
| get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 | |
| {
 | |
| 	struct list_head *list;
 | |
| 
 | |
| 	if (unlikely(!parent))
 | |
| 		/*
 | |
| 		 * The red-black tree where we try to find VA neighbors
 | |
| 		 * before merging or inserting is empty, i.e. it means
 | |
| 		 * there is no free vmap space. Normally it does not
 | |
| 		 * happen but we handle this case anyway.
 | |
| 		 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 | |
| 	return (&parent->rb_right == link ? list->next : list);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| __link_va(struct vmap_area *va, struct rb_root *root,
 | |
| 	struct rb_node *parent, struct rb_node **link,
 | |
| 	struct list_head *head, bool augment)
 | |
| {
 | |
| 	/*
 | |
| 	 * VA is still not in the list, but we can
 | |
| 	 * identify its future previous list_head node.
 | |
| 	 */
 | |
| 	if (likely(parent)) {
 | |
| 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 | |
| 		if (&parent->rb_right != link)
 | |
| 			head = head->prev;
 | |
| 	}
 | |
| 
 | |
| 	/* Insert to the rb-tree */
 | |
| 	rb_link_node(&va->rb_node, parent, link);
 | |
| 	if (augment) {
 | |
| 		/*
 | |
| 		 * Some explanation here. Just perform simple insertion
 | |
| 		 * to the tree. We do not set va->subtree_max_size to
 | |
| 		 * its current size before calling rb_insert_augmented().
 | |
| 		 * It is because we populate the tree from the bottom
 | |
| 		 * to parent levels when the node _is_ in the tree.
 | |
| 		 *
 | |
| 		 * Therefore we set subtree_max_size to zero after insertion,
 | |
| 		 * to let __augment_tree_propagate_from() puts everything to
 | |
| 		 * the correct order later on.
 | |
| 		 */
 | |
| 		rb_insert_augmented(&va->rb_node,
 | |
| 			root, &free_vmap_area_rb_augment_cb);
 | |
| 		va->subtree_max_size = 0;
 | |
| 	} else {
 | |
| 		rb_insert_color(&va->rb_node, root);
 | |
| 	}
 | |
| 
 | |
| 	/* Address-sort this list */
 | |
| 	list_add(&va->list, head);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| link_va(struct vmap_area *va, struct rb_root *root,
 | |
| 	struct rb_node *parent, struct rb_node **link,
 | |
| 	struct list_head *head)
 | |
| {
 | |
| 	__link_va(va, root, parent, link, head, false);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| link_va_augment(struct vmap_area *va, struct rb_root *root,
 | |
| 	struct rb_node *parent, struct rb_node **link,
 | |
| 	struct list_head *head)
 | |
| {
 | |
| 	__link_va(va, root, parent, link, head, true);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
 | |
| {
 | |
| 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 | |
| 		return;
 | |
| 
 | |
| 	if (augment)
 | |
| 		rb_erase_augmented(&va->rb_node,
 | |
| 			root, &free_vmap_area_rb_augment_cb);
 | |
| 	else
 | |
| 		rb_erase(&va->rb_node, root);
 | |
| 
 | |
| 	list_del_init(&va->list);
 | |
| 	RB_CLEAR_NODE(&va->rb_node);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| unlink_va(struct vmap_area *va, struct rb_root *root)
 | |
| {
 | |
| 	__unlink_va(va, root, false);
 | |
| }
 | |
| 
 | |
| static __always_inline void
 | |
| unlink_va_augment(struct vmap_area *va, struct rb_root *root)
 | |
| {
 | |
| 	__unlink_va(va, root, true);
 | |
| }
 | |
| 
 | |
| #if DEBUG_AUGMENT_PROPAGATE_CHECK
 | |
| /*
 | |
|  * Gets called when remove the node and rotate.
 | |
|  */
 | |
| static __always_inline unsigned long
 | |
| compute_subtree_max_size(struct vmap_area *va)
 | |
| {
 | |
| 	return max3(va_size(va),
 | |
| 		get_subtree_max_size(va->rb_node.rb_left),
 | |
| 		get_subtree_max_size(va->rb_node.rb_right));
 | |
| }
 | |
| 
 | |
| static void
 | |
| augment_tree_propagate_check(void)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	unsigned long computed_size;
 | |
| 
 | |
| 	list_for_each_entry(va, &free_vmap_area_list, list) {
 | |
| 		computed_size = compute_subtree_max_size(va);
 | |
| 		if (computed_size != va->subtree_max_size)
 | |
| 			pr_emerg("tree is corrupted: %lu, %lu\n",
 | |
| 				va_size(va), va->subtree_max_size);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This function populates subtree_max_size from bottom to upper
 | |
|  * levels starting from VA point. The propagation must be done
 | |
|  * when VA size is modified by changing its va_start/va_end. Or
 | |
|  * in case of newly inserting of VA to the tree.
 | |
|  *
 | |
|  * It means that __augment_tree_propagate_from() must be called:
 | |
|  * - After VA has been inserted to the tree(free path);
 | |
|  * - After VA has been shrunk(allocation path);
 | |
|  * - After VA has been increased(merging path).
 | |
|  *
 | |
|  * Please note that, it does not mean that upper parent nodes
 | |
|  * and their subtree_max_size are recalculated all the time up
 | |
|  * to the root node.
 | |
|  *
 | |
|  *       4--8
 | |
|  *        /\
 | |
|  *       /  \
 | |
|  *      /    \
 | |
|  *    2--2  8--8
 | |
|  *
 | |
|  * For example if we modify the node 4, shrinking it to 2, then
 | |
|  * no any modification is required. If we shrink the node 2 to 1
 | |
|  * its subtree_max_size is updated only, and set to 1. If we shrink
 | |
|  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 | |
|  * node becomes 4--6.
 | |
|  */
 | |
| static __always_inline void
 | |
| augment_tree_propagate_from(struct vmap_area *va)
 | |
| {
 | |
| 	/*
 | |
| 	 * Populate the tree from bottom towards the root until
 | |
| 	 * the calculated maximum available size of checked node
 | |
| 	 * is equal to its current one.
 | |
| 	 */
 | |
| 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 | |
| 
 | |
| #if DEBUG_AUGMENT_PROPAGATE_CHECK
 | |
| 	augment_tree_propagate_check();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| insert_vmap_area(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct list_head *head)
 | |
| {
 | |
| 	struct rb_node **link;
 | |
| 	struct rb_node *parent;
 | |
| 
 | |
| 	link = find_va_links(va, root, NULL, &parent);
 | |
| 	if (link)
 | |
| 		link_va(va, root, parent, link, head);
 | |
| }
 | |
| 
 | |
| static void
 | |
| insert_vmap_area_augment(struct vmap_area *va,
 | |
| 	struct rb_node *from, struct rb_root *root,
 | |
| 	struct list_head *head)
 | |
| {
 | |
| 	struct rb_node **link;
 | |
| 	struct rb_node *parent;
 | |
| 
 | |
| 	if (from)
 | |
| 		link = find_va_links(va, NULL, from, &parent);
 | |
| 	else
 | |
| 		link = find_va_links(va, root, NULL, &parent);
 | |
| 
 | |
| 	if (link) {
 | |
| 		link_va_augment(va, root, parent, link, head);
 | |
| 		augment_tree_propagate_from(va);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge de-allocated chunk of VA memory with previous
 | |
|  * and next free blocks. If coalesce is not done a new
 | |
|  * free area is inserted. If VA has been merged, it is
 | |
|  * freed.
 | |
|  *
 | |
|  * Please note, it can return NULL in case of overlap
 | |
|  * ranges, followed by WARN() report. Despite it is a
 | |
|  * buggy behaviour, a system can be alive and keep
 | |
|  * ongoing.
 | |
|  */
 | |
| static __always_inline struct vmap_area *
 | |
| __merge_or_add_vmap_area(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct list_head *head, bool augment)
 | |
| {
 | |
| 	struct vmap_area *sibling;
 | |
| 	struct list_head *next;
 | |
| 	struct rb_node **link;
 | |
| 	struct rb_node *parent;
 | |
| 	bool merged = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a place in the tree where VA potentially will be
 | |
| 	 * inserted, unless it is merged with its sibling/siblings.
 | |
| 	 */
 | |
| 	link = find_va_links(va, root, NULL, &parent);
 | |
| 	if (!link)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get next node of VA to check if merging can be done.
 | |
| 	 */
 | |
| 	next = get_va_next_sibling(parent, link);
 | |
| 	if (unlikely(next == NULL))
 | |
| 		goto insert;
 | |
| 
 | |
| 	/*
 | |
| 	 * start            end
 | |
| 	 * |                |
 | |
| 	 * |<------VA------>|<-----Next----->|
 | |
| 	 *                  |                |
 | |
| 	 *                  start            end
 | |
| 	 */
 | |
| 	if (next != head) {
 | |
| 		sibling = list_entry(next, struct vmap_area, list);
 | |
| 		if (sibling->va_start == va->va_end) {
 | |
| 			sibling->va_start = va->va_start;
 | |
| 
 | |
| 			/* Free vmap_area object. */
 | |
| 			kmem_cache_free(vmap_area_cachep, va);
 | |
| 
 | |
| 			/* Point to the new merged area. */
 | |
| 			va = sibling;
 | |
| 			merged = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * start            end
 | |
| 	 * |                |
 | |
| 	 * |<-----Prev----->|<------VA------>|
 | |
| 	 *                  |                |
 | |
| 	 *                  start            end
 | |
| 	 */
 | |
| 	if (next->prev != head) {
 | |
| 		sibling = list_entry(next->prev, struct vmap_area, list);
 | |
| 		if (sibling->va_end == va->va_start) {
 | |
| 			/*
 | |
| 			 * If both neighbors are coalesced, it is important
 | |
| 			 * to unlink the "next" node first, followed by merging
 | |
| 			 * with "previous" one. Otherwise the tree might not be
 | |
| 			 * fully populated if a sibling's augmented value is
 | |
| 			 * "normalized" because of rotation operations.
 | |
| 			 */
 | |
| 			if (merged)
 | |
| 				__unlink_va(va, root, augment);
 | |
| 
 | |
| 			sibling->va_end = va->va_end;
 | |
| 
 | |
| 			/* Free vmap_area object. */
 | |
| 			kmem_cache_free(vmap_area_cachep, va);
 | |
| 
 | |
| 			/* Point to the new merged area. */
 | |
| 			va = sibling;
 | |
| 			merged = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| insert:
 | |
| 	if (!merged)
 | |
| 		__link_va(va, root, parent, link, head, augment);
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| static __always_inline struct vmap_area *
 | |
| merge_or_add_vmap_area(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct list_head *head)
 | |
| {
 | |
| 	return __merge_or_add_vmap_area(va, root, head, false);
 | |
| }
 | |
| 
 | |
| static __always_inline struct vmap_area *
 | |
| merge_or_add_vmap_area_augment(struct vmap_area *va,
 | |
| 	struct rb_root *root, struct list_head *head)
 | |
| {
 | |
| 	va = __merge_or_add_vmap_area(va, root, head, true);
 | |
| 	if (va)
 | |
| 		augment_tree_propagate_from(va);
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| is_within_this_va(struct vmap_area *va, unsigned long size,
 | |
| 	unsigned long align, unsigned long vstart)
 | |
| {
 | |
| 	unsigned long nva_start_addr;
 | |
| 
 | |
| 	if (va->va_start > vstart)
 | |
| 		nva_start_addr = ALIGN(va->va_start, align);
 | |
| 	else
 | |
| 		nva_start_addr = ALIGN(vstart, align);
 | |
| 
 | |
| 	/* Can be overflowed due to big size or alignment. */
 | |
| 	if (nva_start_addr + size < nva_start_addr ||
 | |
| 			nva_start_addr < vstart)
 | |
| 		return false;
 | |
| 
 | |
| 	return (nva_start_addr + size <= va->va_end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the first free block(lowest start address) in the tree,
 | |
|  * that will accomplish the request corresponding to passing
 | |
|  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
 | |
|  * a search length is adjusted to account for worst case alignment
 | |
|  * overhead.
 | |
|  */
 | |
| static __always_inline struct vmap_area *
 | |
| find_vmap_lowest_match(struct rb_root *root, unsigned long size,
 | |
| 	unsigned long align, unsigned long vstart, bool adjust_search_size)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct rb_node *node;
 | |
| 	unsigned long length;
 | |
| 
 | |
| 	/* Start from the root. */
 | |
| 	node = root->rb_node;
 | |
| 
 | |
| 	/* Adjust the search size for alignment overhead. */
 | |
| 	length = adjust_search_size ? size + align - 1 : size;
 | |
| 
 | |
| 	while (node) {
 | |
| 		va = rb_entry(node, struct vmap_area, rb_node);
 | |
| 
 | |
| 		if (get_subtree_max_size(node->rb_left) >= length &&
 | |
| 				vstart < va->va_start) {
 | |
| 			node = node->rb_left;
 | |
| 		} else {
 | |
| 			if (is_within_this_va(va, size, align, vstart))
 | |
| 				return va;
 | |
| 
 | |
| 			/*
 | |
| 			 * Does not make sense to go deeper towards the right
 | |
| 			 * sub-tree if it does not have a free block that is
 | |
| 			 * equal or bigger to the requested search length.
 | |
| 			 */
 | |
| 			if (get_subtree_max_size(node->rb_right) >= length) {
 | |
| 				node = node->rb_right;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * OK. We roll back and find the first right sub-tree,
 | |
| 			 * that will satisfy the search criteria. It can happen
 | |
| 			 * due to "vstart" restriction or an alignment overhead
 | |
| 			 * that is bigger then PAGE_SIZE.
 | |
| 			 */
 | |
| 			while ((node = rb_parent(node))) {
 | |
| 				va = rb_entry(node, struct vmap_area, rb_node);
 | |
| 				if (is_within_this_va(va, size, align, vstart))
 | |
| 					return va;
 | |
| 
 | |
| 				if (get_subtree_max_size(node->rb_right) >= length &&
 | |
| 						vstart <= va->va_start) {
 | |
| 					/*
 | |
| 					 * Shift the vstart forward. Please note, we update it with
 | |
| 					 * parent's start address adding "1" because we do not want
 | |
| 					 * to enter same sub-tree after it has already been checked
 | |
| 					 * and no suitable free block found there.
 | |
| 					 */
 | |
| 					vstart = va->va_start + 1;
 | |
| 					node = node->rb_right;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 | |
| #include <linux/random.h>
 | |
| 
 | |
| static struct vmap_area *
 | |
| find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
 | |
| 	unsigned long align, unsigned long vstart)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	list_for_each_entry(va, head, list) {
 | |
| 		if (!is_within_this_va(va, size, align, vstart))
 | |
| 			continue;
 | |
| 
 | |
| 		return va;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
 | |
| 			     unsigned long size, unsigned long align)
 | |
| {
 | |
| 	struct vmap_area *va_1, *va_2;
 | |
| 	unsigned long vstart;
 | |
| 	unsigned int rnd;
 | |
| 
 | |
| 	get_random_bytes(&rnd, sizeof(rnd));
 | |
| 	vstart = VMALLOC_START + rnd;
 | |
| 
 | |
| 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
 | |
| 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
 | |
| 
 | |
| 	if (va_1 != va_2)
 | |
| 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 | |
| 			va_1, va_2, vstart);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| enum fit_type {
 | |
| 	NOTHING_FIT = 0,
 | |
| 	FL_FIT_TYPE = 1,	/* full fit */
 | |
| 	LE_FIT_TYPE = 2,	/* left edge fit */
 | |
| 	RE_FIT_TYPE = 3,	/* right edge fit */
 | |
| 	NE_FIT_TYPE = 4		/* no edge fit */
 | |
| };
 | |
| 
 | |
| static __always_inline enum fit_type
 | |
| classify_va_fit_type(struct vmap_area *va,
 | |
| 	unsigned long nva_start_addr, unsigned long size)
 | |
| {
 | |
| 	enum fit_type type;
 | |
| 
 | |
| 	/* Check if it is within VA. */
 | |
| 	if (nva_start_addr < va->va_start ||
 | |
| 			nva_start_addr + size > va->va_end)
 | |
| 		return NOTHING_FIT;
 | |
| 
 | |
| 	/* Now classify. */
 | |
| 	if (va->va_start == nva_start_addr) {
 | |
| 		if (va->va_end == nva_start_addr + size)
 | |
| 			type = FL_FIT_TYPE;
 | |
| 		else
 | |
| 			type = LE_FIT_TYPE;
 | |
| 	} else if (va->va_end == nva_start_addr + size) {
 | |
| 		type = RE_FIT_TYPE;
 | |
| 	} else {
 | |
| 		type = NE_FIT_TYPE;
 | |
| 	}
 | |
| 
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| static __always_inline int
 | |
| va_clip(struct rb_root *root, struct list_head *head,
 | |
| 		struct vmap_area *va, unsigned long nva_start_addr,
 | |
| 		unsigned long size)
 | |
| {
 | |
| 	struct vmap_area *lva = NULL;
 | |
| 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
 | |
| 
 | |
| 	if (type == FL_FIT_TYPE) {
 | |
| 		/*
 | |
| 		 * No need to split VA, it fully fits.
 | |
| 		 *
 | |
| 		 * |               |
 | |
| 		 * V      NVA      V
 | |
| 		 * |---------------|
 | |
| 		 */
 | |
| 		unlink_va_augment(va, root);
 | |
| 		kmem_cache_free(vmap_area_cachep, va);
 | |
| 	} else if (type == LE_FIT_TYPE) {
 | |
| 		/*
 | |
| 		 * Split left edge of fit VA.
 | |
| 		 *
 | |
| 		 * |       |
 | |
| 		 * V  NVA  V   R
 | |
| 		 * |-------|-------|
 | |
| 		 */
 | |
| 		va->va_start += size;
 | |
| 	} else if (type == RE_FIT_TYPE) {
 | |
| 		/*
 | |
| 		 * Split right edge of fit VA.
 | |
| 		 *
 | |
| 		 *         |       |
 | |
| 		 *     L   V  NVA  V
 | |
| 		 * |-------|-------|
 | |
| 		 */
 | |
| 		va->va_end = nva_start_addr;
 | |
| 	} else if (type == NE_FIT_TYPE) {
 | |
| 		/*
 | |
| 		 * Split no edge of fit VA.
 | |
| 		 *
 | |
| 		 *     |       |
 | |
| 		 *   L V  NVA  V R
 | |
| 		 * |---|-------|---|
 | |
| 		 */
 | |
| 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
 | |
| 		if (unlikely(!lva)) {
 | |
| 			/*
 | |
| 			 * For percpu allocator we do not do any pre-allocation
 | |
| 			 * and leave it as it is. The reason is it most likely
 | |
| 			 * never ends up with NE_FIT_TYPE splitting. In case of
 | |
| 			 * percpu allocations offsets and sizes are aligned to
 | |
| 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
 | |
| 			 * are its main fitting cases.
 | |
| 			 *
 | |
| 			 * There are a few exceptions though, as an example it is
 | |
| 			 * a first allocation (early boot up) when we have "one"
 | |
| 			 * big free space that has to be split.
 | |
| 			 *
 | |
| 			 * Also we can hit this path in case of regular "vmap"
 | |
| 			 * allocations, if "this" current CPU was not preloaded.
 | |
| 			 * See the comment in alloc_vmap_area() why. If so, then
 | |
| 			 * GFP_NOWAIT is used instead to get an extra object for
 | |
| 			 * split purpose. That is rare and most time does not
 | |
| 			 * occur.
 | |
| 			 *
 | |
| 			 * What happens if an allocation gets failed. Basically,
 | |
| 			 * an "overflow" path is triggered to purge lazily freed
 | |
| 			 * areas to free some memory, then, the "retry" path is
 | |
| 			 * triggered to repeat one more time. See more details
 | |
| 			 * in alloc_vmap_area() function.
 | |
| 			 */
 | |
| 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
 | |
| 			if (!lva)
 | |
| 				return -1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Build the remainder.
 | |
| 		 */
 | |
| 		lva->va_start = va->va_start;
 | |
| 		lva->va_end = nva_start_addr;
 | |
| 
 | |
| 		/*
 | |
| 		 * Shrink this VA to remaining size.
 | |
| 		 */
 | |
| 		va->va_start = nva_start_addr + size;
 | |
| 	} else {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (type != FL_FIT_TYPE) {
 | |
| 		augment_tree_propagate_from(va);
 | |
| 
 | |
| 		if (lva)	/* type == NE_FIT_TYPE */
 | |
| 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| va_alloc(struct vmap_area *va,
 | |
| 		struct rb_root *root, struct list_head *head,
 | |
| 		unsigned long size, unsigned long align,
 | |
| 		unsigned long vstart, unsigned long vend)
 | |
| {
 | |
| 	unsigned long nva_start_addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (va->va_start > vstart)
 | |
| 		nva_start_addr = ALIGN(va->va_start, align);
 | |
| 	else
 | |
| 		nva_start_addr = ALIGN(vstart, align);
 | |
| 
 | |
| 	/* Check the "vend" restriction. */
 | |
| 	if (nva_start_addr + size > vend)
 | |
| 		return vend;
 | |
| 
 | |
| 	/* Update the free vmap_area. */
 | |
| 	ret = va_clip(root, head, va, nva_start_addr, size);
 | |
| 	if (WARN_ON_ONCE(ret))
 | |
| 		return vend;
 | |
| 
 | |
| 	return nva_start_addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a start address of the newly allocated area, if success.
 | |
|  * Otherwise a vend is returned that indicates failure.
 | |
|  */
 | |
| static __always_inline unsigned long
 | |
| __alloc_vmap_area(struct rb_root *root, struct list_head *head,
 | |
| 	unsigned long size, unsigned long align,
 | |
| 	unsigned long vstart, unsigned long vend)
 | |
| {
 | |
| 	bool adjust_search_size = true;
 | |
| 	unsigned long nva_start_addr;
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not adjust when:
 | |
| 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
 | |
| 	 *      All blocks(their start addresses) are at least PAGE_SIZE
 | |
| 	 *      aligned anyway;
 | |
| 	 *   b) a short range where a requested size corresponds to exactly
 | |
| 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
 | |
| 	 *      With adjusted search length an allocation would not succeed.
 | |
| 	 */
 | |
| 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
 | |
| 		adjust_search_size = false;
 | |
| 
 | |
| 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
 | |
| 	if (unlikely(!va))
 | |
| 		return vend;
 | |
| 
 | |
| 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
 | |
| 	if (nva_start_addr == vend)
 | |
| 		return vend;
 | |
| 
 | |
| #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 | |
| 	find_vmap_lowest_match_check(root, head, size, align);
 | |
| #endif
 | |
| 
 | |
| 	return nva_start_addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a region of KVA allocated by alloc_vmap_area
 | |
|  */
 | |
| static void free_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	struct vmap_node *vn = addr_to_node(va->va_start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove from the busy tree/list.
 | |
| 	 */
 | |
| 	spin_lock(&vn->busy.lock);
 | |
| 	unlink_va(va, &vn->busy.root);
 | |
| 	spin_unlock(&vn->busy.lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Insert/Merge it back to the free tree/list.
 | |
| 	 */
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
 | |
| {
 | |
| 	struct vmap_area *va = NULL, *tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Preload this CPU with one extra vmap_area object. It is used
 | |
| 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
 | |
| 	 * a CPU that does an allocation is preloaded.
 | |
| 	 *
 | |
| 	 * We do it in non-atomic context, thus it allows us to use more
 | |
| 	 * permissive allocation masks to be more stable under low memory
 | |
| 	 * condition and high memory pressure.
 | |
| 	 */
 | |
| 	if (!this_cpu_read(ne_fit_preload_node))
 | |
| 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 | |
| 
 | |
| 	spin_lock(lock);
 | |
| 
 | |
| 	tmp = NULL;
 | |
| 	if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
 | |
| 		kmem_cache_free(vmap_area_cachep, va);
 | |
| }
 | |
| 
 | |
| static struct vmap_pool *
 | |
| size_to_va_pool(struct vmap_node *vn, unsigned long size)
 | |
| {
 | |
| 	unsigned int idx = (size - 1) / PAGE_SIZE;
 | |
| 
 | |
| 	if (idx < MAX_VA_SIZE_PAGES)
 | |
| 		return &vn->pool[idx];
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
 | |
| {
 | |
| 	struct vmap_pool *vp;
 | |
| 
 | |
| 	vp = size_to_va_pool(n, va_size(va));
 | |
| 	if (!vp)
 | |
| 		return false;
 | |
| 
 | |
| 	spin_lock(&n->pool_lock);
 | |
| 	list_add(&va->list, &vp->head);
 | |
| 	WRITE_ONCE(vp->len, vp->len + 1);
 | |
| 	spin_unlock(&n->pool_lock);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct vmap_area *
 | |
| node_pool_del_va(struct vmap_node *vn, unsigned long size,
 | |
| 		unsigned long align, unsigned long vstart,
 | |
| 		unsigned long vend)
 | |
| {
 | |
| 	struct vmap_area *va = NULL;
 | |
| 	struct vmap_pool *vp;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	vp = size_to_va_pool(vn, size);
 | |
| 	if (!vp || list_empty(&vp->head))
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock(&vn->pool_lock);
 | |
| 	if (!list_empty(&vp->head)) {
 | |
| 		va = list_first_entry(&vp->head, struct vmap_area, list);
 | |
| 
 | |
| 		if (IS_ALIGNED(va->va_start, align)) {
 | |
| 			/*
 | |
| 			 * Do some sanity check and emit a warning
 | |
| 			 * if one of below checks detects an error.
 | |
| 			 */
 | |
| 			err |= (va_size(va) != size);
 | |
| 			err |= (va->va_start < vstart);
 | |
| 			err |= (va->va_end > vend);
 | |
| 
 | |
| 			if (!WARN_ON_ONCE(err)) {
 | |
| 				list_del_init(&va->list);
 | |
| 				WRITE_ONCE(vp->len, vp->len - 1);
 | |
| 			} else {
 | |
| 				va = NULL;
 | |
| 			}
 | |
| 		} else {
 | |
| 			list_move_tail(&va->list, &vp->head);
 | |
| 			va = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&vn->pool_lock);
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| static struct vmap_area *
 | |
| node_alloc(unsigned long size, unsigned long align,
 | |
| 		unsigned long vstart, unsigned long vend,
 | |
| 		unsigned long *addr, unsigned int *vn_id)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	*vn_id = 0;
 | |
| 	*addr = vend;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fallback to a global heap if not vmalloc or there
 | |
| 	 * is only one node.
 | |
| 	 */
 | |
| 	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
 | |
| 			nr_vmap_nodes == 1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
 | |
| 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
 | |
| 	*vn_id = encode_vn_id(*vn_id);
 | |
| 
 | |
| 	if (va)
 | |
| 		*addr = va->va_start;
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| static inline void setup_vmalloc_vm(struct vm_struct *vm,
 | |
| 	struct vmap_area *va, unsigned long flags, const void *caller)
 | |
| {
 | |
| 	vm->flags = flags;
 | |
| 	vm->addr = (void *)va->va_start;
 | |
| 	vm->size = va_size(va);
 | |
| 	vm->caller = caller;
 | |
| 	va->vm = vm;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a region of KVA of the specified size and alignment, within the
 | |
|  * vstart and vend. If vm is passed in, the two will also be bound.
 | |
|  */
 | |
| static struct vmap_area *alloc_vmap_area(unsigned long size,
 | |
| 				unsigned long align,
 | |
| 				unsigned long vstart, unsigned long vend,
 | |
| 				int node, gfp_t gfp_mask,
 | |
| 				unsigned long va_flags, struct vm_struct *vm)
 | |
| {
 | |
| 	struct vmap_node *vn;
 | |
| 	struct vmap_area *va;
 | |
| 	unsigned long freed;
 | |
| 	unsigned long addr;
 | |
| 	unsigned int vn_id;
 | |
| 	int purged = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	if (unlikely(!vmap_initialized))
 | |
| 		return ERR_PTR(-EBUSY);
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	/*
 | |
| 	 * If a VA is obtained from a global heap(if it fails here)
 | |
| 	 * it is anyway marked with this "vn_id" so it is returned
 | |
| 	 * to this pool's node later. Such way gives a possibility
 | |
| 	 * to populate pools based on users demand.
 | |
| 	 *
 | |
| 	 * On success a ready to go VA is returned.
 | |
| 	 */
 | |
| 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
 | |
| 	if (!va) {
 | |
| 		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
 | |
| 
 | |
| 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
 | |
| 		if (unlikely(!va))
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 		/*
 | |
| 		 * Only scan the relevant parts containing pointers to other objects
 | |
| 		 * to avoid false negatives.
 | |
| 		 */
 | |
| 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
 | |
| 	}
 | |
| 
 | |
| retry:
 | |
| 	if (addr == vend) {
 | |
| 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
 | |
| 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
 | |
| 			size, align, vstart, vend);
 | |
| 		spin_unlock(&free_vmap_area_lock);
 | |
| 	}
 | |
| 
 | |
| 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
 | |
| 
 | |
| 	/*
 | |
| 	 * If an allocation fails, the "vend" address is
 | |
| 	 * returned. Therefore trigger the overflow path.
 | |
| 	 */
 | |
| 	if (unlikely(addr == vend))
 | |
| 		goto overflow;
 | |
| 
 | |
| 	va->va_start = addr;
 | |
| 	va->va_end = addr + size;
 | |
| 	va->vm = NULL;
 | |
| 	va->flags = (va_flags | vn_id);
 | |
| 
 | |
| 	if (vm) {
 | |
| 		vm->addr = (void *)va->va_start;
 | |
| 		vm->size = va_size(va);
 | |
| 		va->vm = vm;
 | |
| 	}
 | |
| 
 | |
| 	vn = addr_to_node(va->va_start);
 | |
| 
 | |
| 	spin_lock(&vn->busy.lock);
 | |
| 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
 | |
| 	spin_unlock(&vn->busy.lock);
 | |
| 
 | |
| 	BUG_ON(!IS_ALIGNED(va->va_start, align));
 | |
| 	BUG_ON(va->va_start < vstart);
 | |
| 	BUG_ON(va->va_end > vend);
 | |
| 
 | |
| 	ret = kasan_populate_vmalloc(addr, size);
 | |
| 	if (ret) {
 | |
| 		free_vmap_area(va);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	return va;
 | |
| 
 | |
| overflow:
 | |
| 	if (!purged) {
 | |
| 		reclaim_and_purge_vmap_areas();
 | |
| 		purged = 1;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	freed = 0;
 | |
| 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 | |
| 
 | |
| 	if (freed > 0) {
 | |
| 		purged = 0;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
 | |
| 		pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
 | |
| 				size, vstart, vend);
 | |
| 
 | |
| 	kmem_cache_free(vmap_area_cachep, va);
 | |
| 	return ERR_PTR(-EBUSY);
 | |
| }
 | |
| 
 | |
| int register_vmap_purge_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 | |
| 
 | |
| int unregister_vmap_purge_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 | |
| 
 | |
| /*
 | |
|  * lazy_max_pages is the maximum amount of virtual address space we gather up
 | |
|  * before attempting to purge with a TLB flush.
 | |
|  *
 | |
|  * There is a tradeoff here: a larger number will cover more kernel page tables
 | |
|  * and take slightly longer to purge, but it will linearly reduce the number of
 | |
|  * global TLB flushes that must be performed. It would seem natural to scale
 | |
|  * this number up linearly with the number of CPUs (because vmapping activity
 | |
|  * could also scale linearly with the number of CPUs), however it is likely
 | |
|  * that in practice, workloads might be constrained in other ways that mean
 | |
|  * vmap activity will not scale linearly with CPUs. Also, I want to be
 | |
|  * conservative and not introduce a big latency on huge systems, so go with
 | |
|  * a less aggressive log scale. It will still be an improvement over the old
 | |
|  * code, and it will be simple to change the scale factor if we find that it
 | |
|  * becomes a problem on bigger systems.
 | |
|  */
 | |
| static unsigned long lazy_max_pages(void)
 | |
| {
 | |
| 	unsigned int log;
 | |
| 
 | |
| 	log = fls(num_online_cpus());
 | |
| 
 | |
| 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
 | |
| 
 | |
| /*
 | |
|  * Serialize vmap purging.  There is no actual critical section protected
 | |
|  * by this lock, but we want to avoid concurrent calls for performance
 | |
|  * reasons and to make the pcpu_get_vm_areas more deterministic.
 | |
|  */
 | |
| static DEFINE_MUTEX(vmap_purge_lock);
 | |
| 
 | |
| /* for per-CPU blocks */
 | |
| static void purge_fragmented_blocks_allcpus(void);
 | |
| static cpumask_t purge_nodes;
 | |
| 
 | |
| static void
 | |
| reclaim_list_global(struct list_head *head)
 | |
| {
 | |
| 	struct vmap_area *va, *n;
 | |
| 
 | |
| 	if (list_empty(head))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 	list_for_each_entry_safe(va, n, head, list)
 | |
| 		merge_or_add_vmap_area_augment(va,
 | |
| 			&free_vmap_area_root, &free_vmap_area_list);
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| }
 | |
| 
 | |
| static void
 | |
| decay_va_pool_node(struct vmap_node *vn, bool full_decay)
 | |
| {
 | |
| 	LIST_HEAD(decay_list);
 | |
| 	struct rb_root decay_root = RB_ROOT;
 | |
| 	struct vmap_area *va, *nva;
 | |
| 	unsigned long n_decay;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
 | |
| 		LIST_HEAD(tmp_list);
 | |
| 
 | |
| 		if (list_empty(&vn->pool[i].head))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Detach the pool, so no-one can access it. */
 | |
| 		spin_lock(&vn->pool_lock);
 | |
| 		list_replace_init(&vn->pool[i].head, &tmp_list);
 | |
| 		spin_unlock(&vn->pool_lock);
 | |
| 
 | |
| 		if (full_decay)
 | |
| 			WRITE_ONCE(vn->pool[i].len, 0);
 | |
| 
 | |
| 		/* Decay a pool by ~25% out of left objects. */
 | |
| 		n_decay = vn->pool[i].len >> 2;
 | |
| 
 | |
| 		list_for_each_entry_safe(va, nva, &tmp_list, list) {
 | |
| 			list_del_init(&va->list);
 | |
| 			merge_or_add_vmap_area(va, &decay_root, &decay_list);
 | |
| 
 | |
| 			if (!full_decay) {
 | |
| 				WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
 | |
| 
 | |
| 				if (!--n_decay)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Attach the pool back if it has been partly decayed.
 | |
| 		 * Please note, it is supposed that nobody(other contexts)
 | |
| 		 * can populate the pool therefore a simple list replace
 | |
| 		 * operation takes place here.
 | |
| 		 */
 | |
| 		if (!full_decay && !list_empty(&tmp_list)) {
 | |
| 			spin_lock(&vn->pool_lock);
 | |
| 			list_replace_init(&tmp_list, &vn->pool[i].head);
 | |
| 			spin_unlock(&vn->pool_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reclaim_list_global(&decay_list);
 | |
| }
 | |
| 
 | |
| static void purge_vmap_node(struct work_struct *work)
 | |
| {
 | |
| 	struct vmap_node *vn = container_of(work,
 | |
| 		struct vmap_node, purge_work);
 | |
| 	struct vmap_area *va, *n_va;
 | |
| 	LIST_HEAD(local_list);
 | |
| 
 | |
| 	vn->nr_purged = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
 | |
| 		unsigned long nr = va_size(va) >> PAGE_SHIFT;
 | |
| 		unsigned long orig_start = va->va_start;
 | |
| 		unsigned long orig_end = va->va_end;
 | |
| 		unsigned int vn_id = decode_vn_id(va->flags);
 | |
| 
 | |
| 		list_del_init(&va->list);
 | |
| 
 | |
| 		if (is_vmalloc_or_module_addr((void *)orig_start))
 | |
| 			kasan_release_vmalloc(orig_start, orig_end,
 | |
| 					      va->va_start, va->va_end);
 | |
| 
 | |
| 		atomic_long_sub(nr, &vmap_lazy_nr);
 | |
| 		vn->nr_purged++;
 | |
| 
 | |
| 		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
 | |
| 			if (node_pool_add_va(vn, va))
 | |
| 				continue;
 | |
| 
 | |
| 		/* Go back to global. */
 | |
| 		list_add(&va->list, &local_list);
 | |
| 	}
 | |
| 
 | |
| 	reclaim_list_global(&local_list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Purges all lazily-freed vmap areas.
 | |
|  */
 | |
| static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
 | |
| 		bool full_pool_decay)
 | |
| {
 | |
| 	unsigned long nr_purged_areas = 0;
 | |
| 	unsigned int nr_purge_helpers;
 | |
| 	unsigned int nr_purge_nodes;
 | |
| 	struct vmap_node *vn;
 | |
| 	int i;
 | |
| 
 | |
| 	lockdep_assert_held(&vmap_purge_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use cpumask to mark which node has to be processed.
 | |
| 	 */
 | |
| 	purge_nodes = CPU_MASK_NONE;
 | |
| 
 | |
| 	for (i = 0; i < nr_vmap_nodes; i++) {
 | |
| 		vn = &vmap_nodes[i];
 | |
| 
 | |
| 		INIT_LIST_HEAD(&vn->purge_list);
 | |
| 		vn->skip_populate = full_pool_decay;
 | |
| 		decay_va_pool_node(vn, full_pool_decay);
 | |
| 
 | |
| 		if (RB_EMPTY_ROOT(&vn->lazy.root))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&vn->lazy.lock);
 | |
| 		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
 | |
| 		list_replace_init(&vn->lazy.head, &vn->purge_list);
 | |
| 		spin_unlock(&vn->lazy.lock);
 | |
| 
 | |
| 		start = min(start, list_first_entry(&vn->purge_list,
 | |
| 			struct vmap_area, list)->va_start);
 | |
| 
 | |
| 		end = max(end, list_last_entry(&vn->purge_list,
 | |
| 			struct vmap_area, list)->va_end);
 | |
| 
 | |
| 		cpumask_set_cpu(i, &purge_nodes);
 | |
| 	}
 | |
| 
 | |
| 	nr_purge_nodes = cpumask_weight(&purge_nodes);
 | |
| 	if (nr_purge_nodes > 0) {
 | |
| 		flush_tlb_kernel_range(start, end);
 | |
| 
 | |
| 		/* One extra worker is per a lazy_max_pages() full set minus one. */
 | |
| 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
 | |
| 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
 | |
| 
 | |
| 		for_each_cpu(i, &purge_nodes) {
 | |
| 			vn = &vmap_nodes[i];
 | |
| 
 | |
| 			if (nr_purge_helpers > 0) {
 | |
| 				INIT_WORK(&vn->purge_work, purge_vmap_node);
 | |
| 
 | |
| 				if (cpumask_test_cpu(i, cpu_online_mask))
 | |
| 					schedule_work_on(i, &vn->purge_work);
 | |
| 				else
 | |
| 					schedule_work(&vn->purge_work);
 | |
| 
 | |
| 				nr_purge_helpers--;
 | |
| 			} else {
 | |
| 				vn->purge_work.func = NULL;
 | |
| 				purge_vmap_node(&vn->purge_work);
 | |
| 				nr_purged_areas += vn->nr_purged;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for_each_cpu(i, &purge_nodes) {
 | |
| 			vn = &vmap_nodes[i];
 | |
| 
 | |
| 			if (vn->purge_work.func) {
 | |
| 				flush_work(&vn->purge_work);
 | |
| 				nr_purged_areas += vn->nr_purged;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
 | |
| 	return nr_purged_areas > 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
 | |
|  */
 | |
| static void reclaim_and_purge_vmap_areas(void)
 | |
| 
 | |
| {
 | |
| 	mutex_lock(&vmap_purge_lock);
 | |
| 	purge_fragmented_blocks_allcpus();
 | |
| 	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
 | |
| 	mutex_unlock(&vmap_purge_lock);
 | |
| }
 | |
| 
 | |
| static void drain_vmap_area_work(struct work_struct *work)
 | |
| {
 | |
| 	mutex_lock(&vmap_purge_lock);
 | |
| 	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
 | |
| 	mutex_unlock(&vmap_purge_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a vmap area, caller ensuring that the area has been unmapped,
 | |
|  * unlinked and flush_cache_vunmap had been called for the correct
 | |
|  * range previously.
 | |
|  */
 | |
| static void free_vmap_area_noflush(struct vmap_area *va)
 | |
| {
 | |
| 	unsigned long nr_lazy_max = lazy_max_pages();
 | |
| 	unsigned long va_start = va->va_start;
 | |
| 	unsigned int vn_id = decode_vn_id(va->flags);
 | |
| 	struct vmap_node *vn;
 | |
| 	unsigned long nr_lazy;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!list_empty(&va->list)))
 | |
| 		return;
 | |
| 
 | |
| 	nr_lazy = atomic_long_add_return(va_size(va) >> PAGE_SHIFT,
 | |
| 					 &vmap_lazy_nr);
 | |
| 
 | |
| 	/*
 | |
| 	 * If it was request by a certain node we would like to
 | |
| 	 * return it to that node, i.e. its pool for later reuse.
 | |
| 	 */
 | |
| 	vn = is_vn_id_valid(vn_id) ?
 | |
| 		id_to_node(vn_id):addr_to_node(va->va_start);
 | |
| 
 | |
| 	spin_lock(&vn->lazy.lock);
 | |
| 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
 | |
| 	spin_unlock(&vn->lazy.lock);
 | |
| 
 | |
| 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
 | |
| 
 | |
| 	/* After this point, we may free va at any time */
 | |
| 	if (unlikely(nr_lazy > nr_lazy_max))
 | |
| 		schedule_work(&drain_vmap_work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free and unmap a vmap area
 | |
|  */
 | |
| static void free_unmap_vmap_area(struct vmap_area *va)
 | |
| {
 | |
| 	flush_cache_vunmap(va->va_start, va->va_end);
 | |
| 	vunmap_range_noflush(va->va_start, va->va_end);
 | |
| 	if (debug_pagealloc_enabled_static())
 | |
| 		flush_tlb_kernel_range(va->va_start, va->va_end);
 | |
| 
 | |
| 	free_vmap_area_noflush(va);
 | |
| }
 | |
| 
 | |
| struct vmap_area *find_vmap_area(unsigned long addr)
 | |
| {
 | |
| 	struct vmap_node *vn;
 | |
| 	struct vmap_area *va;
 | |
| 	int i, j;
 | |
| 
 | |
| 	if (unlikely(!vmap_initialized))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * An addr_to_node_id(addr) converts an address to a node index
 | |
| 	 * where a VA is located. If VA spans several zones and passed
 | |
| 	 * addr is not the same as va->va_start, what is not common, we
 | |
| 	 * may need to scan extra nodes. See an example:
 | |
| 	 *
 | |
| 	 *      <----va---->
 | |
| 	 * -|-----|-----|-----|-----|-
 | |
| 	 *     1     2     0     1
 | |
| 	 *
 | |
| 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
 | |
| 	 * addr is within 2 or 0 nodes we should do extra work.
 | |
| 	 */
 | |
| 	i = j = addr_to_node_id(addr);
 | |
| 	do {
 | |
| 		vn = &vmap_nodes[i];
 | |
| 
 | |
| 		spin_lock(&vn->busy.lock);
 | |
| 		va = __find_vmap_area(addr, &vn->busy.root);
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 
 | |
| 		if (va)
 | |
| 			return va;
 | |
| 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
 | |
| {
 | |
| 	struct vmap_node *vn;
 | |
| 	struct vmap_area *va;
 | |
| 	int i, j;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check the comment in the find_vmap_area() about the loop.
 | |
| 	 */
 | |
| 	i = j = addr_to_node_id(addr);
 | |
| 	do {
 | |
| 		vn = &vmap_nodes[i];
 | |
| 
 | |
| 		spin_lock(&vn->busy.lock);
 | |
| 		va = __find_vmap_area(addr, &vn->busy.root);
 | |
| 		if (va)
 | |
| 			unlink_va(va, &vn->busy.root);
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 
 | |
| 		if (va)
 | |
| 			return va;
 | |
| 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*** Per cpu kva allocator ***/
 | |
| 
 | |
| /*
 | |
|  * vmap space is limited especially on 32 bit architectures. Ensure there is
 | |
|  * room for at least 16 percpu vmap blocks per CPU.
 | |
|  */
 | |
| /*
 | |
|  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 | |
|  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
 | |
|  * instead (we just need a rough idea)
 | |
|  */
 | |
| #if BITS_PER_LONG == 32
 | |
| #define VMALLOC_SPACE		(128UL*1024*1024)
 | |
| #else
 | |
| #define VMALLOC_SPACE		(128UL*1024*1024*1024)
 | |
| #endif
 | |
| 
 | |
| #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
 | |
| #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
 | |
| #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
 | |
| #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
 | |
| #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
 | |
| #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
 | |
| #define VMAP_BBMAP_BITS		\
 | |
| 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
 | |
| 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
 | |
| 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 | |
| 
 | |
| #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
 | |
| 
 | |
| /*
 | |
|  * Purge threshold to prevent overeager purging of fragmented blocks for
 | |
|  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
 | |
|  */
 | |
| #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
 | |
| 
 | |
| #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
 | |
| #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
 | |
| #define VMAP_FLAGS_MASK		0x3
 | |
| 
 | |
| struct vmap_block_queue {
 | |
| 	spinlock_t lock;
 | |
| 	struct list_head free;
 | |
| 
 | |
| 	/*
 | |
| 	 * An xarray requires an extra memory dynamically to
 | |
| 	 * be allocated. If it is an issue, we can use rb-tree
 | |
| 	 * instead.
 | |
| 	 */
 | |
| 	struct xarray vmap_blocks;
 | |
| };
 | |
| 
 | |
| struct vmap_block {
 | |
| 	spinlock_t lock;
 | |
| 	struct vmap_area *va;
 | |
| 	unsigned long free, dirty;
 | |
| 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
 | |
| 	unsigned long dirty_min, dirty_max; /*< dirty range */
 | |
| 	struct list_head free_list;
 | |
| 	struct rcu_head rcu_head;
 | |
| 	struct list_head purge;
 | |
| 	unsigned int cpu;
 | |
| };
 | |
| 
 | |
| /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 | |
| static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 | |
| 
 | |
| /*
 | |
|  * In order to fast access to any "vmap_block" associated with a
 | |
|  * specific address, we use a hash.
 | |
|  *
 | |
|  * A per-cpu vmap_block_queue is used in both ways, to serialize
 | |
|  * an access to free block chains among CPUs(alloc path) and it
 | |
|  * also acts as a vmap_block hash(alloc/free paths). It means we
 | |
|  * overload it, since we already have the per-cpu array which is
 | |
|  * used as a hash table. When used as a hash a 'cpu' passed to
 | |
|  * per_cpu() is not actually a CPU but rather a hash index.
 | |
|  *
 | |
|  * A hash function is addr_to_vb_xa() which hashes any address
 | |
|  * to a specific index(in a hash) it belongs to. This then uses a
 | |
|  * per_cpu() macro to access an array with generated index.
 | |
|  *
 | |
|  * An example:
 | |
|  *
 | |
|  *  CPU_1  CPU_2  CPU_0
 | |
|  *    |      |      |
 | |
|  *    V      V      V
 | |
|  * 0     10     20     30     40     50     60
 | |
|  * |------|------|------|------|------|------|...<vmap address space>
 | |
|  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
 | |
|  *
 | |
|  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
 | |
|  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
 | |
|  *
 | |
|  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
 | |
|  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
 | |
|  *
 | |
|  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
 | |
|  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
 | |
|  *
 | |
|  * This technique almost always avoids lock contention on insert/remove,
 | |
|  * however xarray spinlocks protect against any contention that remains.
 | |
|  */
 | |
| static struct xarray *
 | |
| addr_to_vb_xa(unsigned long addr)
 | |
| {
 | |
| 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
 | |
| 
 | |
| 	/*
 | |
| 	 * Please note, nr_cpu_ids points on a highest set
 | |
| 	 * possible bit, i.e. we never invoke cpumask_next()
 | |
| 	 * if an index points on it which is nr_cpu_ids - 1.
 | |
| 	 */
 | |
| 	if (!cpu_possible(index))
 | |
| 		index = cpumask_next(index, cpu_possible_mask);
 | |
| 
 | |
| 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We should probably have a fallback mechanism to allocate virtual memory
 | |
|  * out of partially filled vmap blocks. However vmap block sizing should be
 | |
|  * fairly reasonable according to the vmalloc size, so it shouldn't be a
 | |
|  * big problem.
 | |
|  */
 | |
| 
 | |
| static unsigned long addr_to_vb_idx(unsigned long addr)
 | |
| {
 | |
| 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 | |
| 	addr /= VMAP_BLOCK_SIZE;
 | |
| 	return addr;
 | |
| }
 | |
| 
 | |
| static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	addr = va_start + (pages_off << PAGE_SHIFT);
 | |
| 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 | |
| 	return (void *)addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 | |
|  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 | |
|  * @order:    how many 2^order pages should be occupied in newly allocated block
 | |
|  * @gfp_mask: flags for the page level allocator
 | |
|  *
 | |
|  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
 | |
|  */
 | |
| static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct vmap_block_queue *vbq;
 | |
| 	struct vmap_block *vb;
 | |
| 	struct vmap_area *va;
 | |
| 	struct xarray *xa;
 | |
| 	unsigned long vb_idx;
 | |
| 	int node, err;
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	node = numa_node_id();
 | |
| 
 | |
| 	vb = kmalloc_node(sizeof(struct vmap_block),
 | |
| 			gfp_mask & GFP_RECLAIM_MASK, node);
 | |
| 	if (unlikely(!vb))
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 | |
| 					VMALLOC_START, VMALLOC_END,
 | |
| 					node, gfp_mask,
 | |
| 					VMAP_RAM|VMAP_BLOCK, NULL);
 | |
| 	if (IS_ERR(va)) {
 | |
| 		kfree(vb);
 | |
| 		return ERR_CAST(va);
 | |
| 	}
 | |
| 
 | |
| 	vaddr = vmap_block_vaddr(va->va_start, 0);
 | |
| 	spin_lock_init(&vb->lock);
 | |
| 	vb->va = va;
 | |
| 	/* At least something should be left free */
 | |
| 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 | |
| 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
 | |
| 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
 | |
| 	vb->dirty = 0;
 | |
| 	vb->dirty_min = VMAP_BBMAP_BITS;
 | |
| 	vb->dirty_max = 0;
 | |
| 	bitmap_set(vb->used_map, 0, (1UL << order));
 | |
| 	INIT_LIST_HEAD(&vb->free_list);
 | |
| 
 | |
| 	xa = addr_to_vb_xa(va->va_start);
 | |
| 	vb_idx = addr_to_vb_idx(va->va_start);
 | |
| 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
 | |
| 	if (err) {
 | |
| 		kfree(vb);
 | |
| 		free_vmap_area(va);
 | |
| 		return ERR_PTR(err);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * list_add_tail_rcu could happened in another core
 | |
| 	 * rather than vb->cpu due to task migration, which
 | |
| 	 * is safe as list_add_tail_rcu will ensure the list's
 | |
| 	 * integrity together with list_for_each_rcu from read
 | |
| 	 * side.
 | |
| 	 */
 | |
| 	vb->cpu = raw_smp_processor_id();
 | |
| 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
 | |
| 	spin_lock(&vbq->lock);
 | |
| 	list_add_tail_rcu(&vb->free_list, &vbq->free);
 | |
| 	spin_unlock(&vbq->lock);
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static void free_vmap_block(struct vmap_block *vb)
 | |
| {
 | |
| 	struct vmap_node *vn;
 | |
| 	struct vmap_block *tmp;
 | |
| 	struct xarray *xa;
 | |
| 
 | |
| 	xa = addr_to_vb_xa(vb->va->va_start);
 | |
| 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
 | |
| 	BUG_ON(tmp != vb);
 | |
| 
 | |
| 	vn = addr_to_node(vb->va->va_start);
 | |
| 	spin_lock(&vn->busy.lock);
 | |
| 	unlink_va(vb->va, &vn->busy.root);
 | |
| 	spin_unlock(&vn->busy.lock);
 | |
| 
 | |
| 	free_vmap_area_noflush(vb->va);
 | |
| 	kfree_rcu(vb, rcu_head);
 | |
| }
 | |
| 
 | |
| static bool purge_fragmented_block(struct vmap_block *vb,
 | |
| 		struct list_head *purge_list, bool force_purge)
 | |
| {
 | |
| 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
 | |
| 
 | |
| 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
 | |
| 	    vb->dirty == VMAP_BBMAP_BITS)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Don't overeagerly purge usable blocks unless requested */
 | |
| 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
 | |
| 		return false;
 | |
| 
 | |
| 	/* prevent further allocs after releasing lock */
 | |
| 	WRITE_ONCE(vb->free, 0);
 | |
| 	/* prevent purging it again */
 | |
| 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
 | |
| 	vb->dirty_min = 0;
 | |
| 	vb->dirty_max = VMAP_BBMAP_BITS;
 | |
| 	spin_lock(&vbq->lock);
 | |
| 	list_del_rcu(&vb->free_list);
 | |
| 	spin_unlock(&vbq->lock);
 | |
| 	list_add_tail(&vb->purge, purge_list);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void free_purged_blocks(struct list_head *purge_list)
 | |
| {
 | |
| 	struct vmap_block *vb, *n_vb;
 | |
| 
 | |
| 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
 | |
| 		list_del(&vb->purge);
 | |
| 		free_vmap_block(vb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void purge_fragmented_blocks(int cpu)
 | |
| {
 | |
| 	LIST_HEAD(purge);
 | |
| 	struct vmap_block *vb;
 | |
| 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | |
| 		unsigned long free = READ_ONCE(vb->free);
 | |
| 		unsigned long dirty = READ_ONCE(vb->dirty);
 | |
| 
 | |
| 		if (free + dirty != VMAP_BBMAP_BITS ||
 | |
| 		    dirty == VMAP_BBMAP_BITS)
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&vb->lock);
 | |
| 		purge_fragmented_block(vb, &purge, true);
 | |
| 		spin_unlock(&vb->lock);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| 	free_purged_blocks(&purge);
 | |
| }
 | |
| 
 | |
| static void purge_fragmented_blocks_allcpus(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		purge_fragmented_blocks(cpu);
 | |
| }
 | |
| 
 | |
| static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct vmap_block_queue *vbq;
 | |
| 	struct vmap_block *vb;
 | |
| 	void *vaddr = NULL;
 | |
| 	unsigned int order;
 | |
| 
 | |
| 	BUG_ON(offset_in_page(size));
 | |
| 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 | |
| 	if (WARN_ON(size == 0)) {
 | |
| 		/*
 | |
| 		 * Allocating 0 bytes isn't what caller wants since
 | |
| 		 * get_order(0) returns funny result. Just warn and terminate
 | |
| 		 * early.
 | |
| 		 */
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 	order = get_order(size);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	vbq = raw_cpu_ptr(&vmap_block_queue);
 | |
| 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 | |
| 		unsigned long pages_off;
 | |
| 
 | |
| 		if (READ_ONCE(vb->free) < (1UL << order))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&vb->lock);
 | |
| 		if (vb->free < (1UL << order)) {
 | |
| 			spin_unlock(&vb->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pages_off = VMAP_BBMAP_BITS - vb->free;
 | |
| 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 | |
| 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
 | |
| 		bitmap_set(vb->used_map, pages_off, (1UL << order));
 | |
| 		if (vb->free == 0) {
 | |
| 			spin_lock(&vbq->lock);
 | |
| 			list_del_rcu(&vb->free_list);
 | |
| 			spin_unlock(&vbq->lock);
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&vb->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	/* Allocate new block if nothing was found */
 | |
| 	if (!vaddr)
 | |
| 		vaddr = new_vmap_block(order, gfp_mask);
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static void vb_free(unsigned long addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 	unsigned int order;
 | |
| 	struct vmap_block *vb;
 | |
| 	struct xarray *xa;
 | |
| 
 | |
| 	BUG_ON(offset_in_page(size));
 | |
| 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 | |
| 
 | |
| 	flush_cache_vunmap(addr, addr + size);
 | |
| 
 | |
| 	order = get_order(size);
 | |
| 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
 | |
| 
 | |
| 	xa = addr_to_vb_xa(addr);
 | |
| 	vb = xa_load(xa, addr_to_vb_idx(addr));
 | |
| 
 | |
| 	spin_lock(&vb->lock);
 | |
| 	bitmap_clear(vb->used_map, offset, (1UL << order));
 | |
| 	spin_unlock(&vb->lock);
 | |
| 
 | |
| 	vunmap_range_noflush(addr, addr + size);
 | |
| 
 | |
| 	if (debug_pagealloc_enabled_static())
 | |
| 		flush_tlb_kernel_range(addr, addr + size);
 | |
| 
 | |
| 	spin_lock(&vb->lock);
 | |
| 
 | |
| 	/* Expand the not yet TLB flushed dirty range */
 | |
| 	vb->dirty_min = min(vb->dirty_min, offset);
 | |
| 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
 | |
| 
 | |
| 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
 | |
| 	if (vb->dirty == VMAP_BBMAP_BITS) {
 | |
| 		BUG_ON(vb->free);
 | |
| 		spin_unlock(&vb->lock);
 | |
| 		free_vmap_block(vb);
 | |
| 	} else
 | |
| 		spin_unlock(&vb->lock);
 | |
| }
 | |
| 
 | |
| static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
 | |
| {
 | |
| 	LIST_HEAD(purge_list);
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (unlikely(!vmap_initialized))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&vmap_purge_lock);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 | |
| 		struct vmap_block *vb;
 | |
| 		unsigned long idx;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
 | |
| 			spin_lock(&vb->lock);
 | |
| 
 | |
| 			/*
 | |
| 			 * Try to purge a fragmented block first. If it's
 | |
| 			 * not purgeable, check whether there is dirty
 | |
| 			 * space to be flushed.
 | |
| 			 */
 | |
| 			if (!purge_fragmented_block(vb, &purge_list, false) &&
 | |
| 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
 | |
| 				unsigned long va_start = vb->va->va_start;
 | |
| 				unsigned long s, e;
 | |
| 
 | |
| 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
 | |
| 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
 | |
| 
 | |
| 				start = min(s, start);
 | |
| 				end   = max(e, end);
 | |
| 
 | |
| 				/* Prevent that this is flushed again */
 | |
| 				vb->dirty_min = VMAP_BBMAP_BITS;
 | |
| 				vb->dirty_max = 0;
 | |
| 
 | |
| 				flush = 1;
 | |
| 			}
 | |
| 			spin_unlock(&vb->lock);
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 	free_purged_blocks(&purge_list);
 | |
| 
 | |
| 	if (!__purge_vmap_area_lazy(start, end, false) && flush)
 | |
| 		flush_tlb_kernel_range(start, end);
 | |
| 	mutex_unlock(&vmap_purge_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
 | |
|  *
 | |
|  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
 | |
|  * to amortize TLB flushing overheads. What this means is that any page you
 | |
|  * have now, may, in a former life, have been mapped into kernel virtual
 | |
|  * address by the vmap layer and so there might be some CPUs with TLB entries
 | |
|  * still referencing that page (additional to the regular 1:1 kernel mapping).
 | |
|  *
 | |
|  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
 | |
|  * be sure that none of the pages we have control over will have any aliases
 | |
|  * from the vmap layer.
 | |
|  */
 | |
| void vm_unmap_aliases(void)
 | |
| {
 | |
| 	unsigned long start = ULONG_MAX, end = 0;
 | |
| 	int flush = 0;
 | |
| 
 | |
| 	_vm_unmap_aliases(start, end, flush);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vm_unmap_aliases);
 | |
| 
 | |
| /**
 | |
|  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
 | |
|  * @mem: the pointer returned by vm_map_ram
 | |
|  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
 | |
|  */
 | |
| void vm_unmap_ram(const void *mem, unsigned int count)
 | |
| {
 | |
| 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
 | |
| 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	might_sleep();
 | |
| 	BUG_ON(!addr);
 | |
| 	BUG_ON(addr < VMALLOC_START);
 | |
| 	BUG_ON(addr > VMALLOC_END);
 | |
| 	BUG_ON(!PAGE_ALIGNED(addr));
 | |
| 
 | |
| 	kasan_poison_vmalloc(mem, size);
 | |
| 
 | |
| 	if (likely(count <= VMAP_MAX_ALLOC)) {
 | |
| 		debug_check_no_locks_freed(mem, size);
 | |
| 		vb_free(addr, size);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	va = find_unlink_vmap_area(addr);
 | |
| 	if (WARN_ON_ONCE(!va))
 | |
| 		return;
 | |
| 
 | |
| 	debug_check_no_locks_freed((void *)va->va_start, va_size(va));
 | |
| 	free_unmap_vmap_area(va);
 | |
| }
 | |
| EXPORT_SYMBOL(vm_unmap_ram);
 | |
| 
 | |
| /**
 | |
|  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
 | |
|  * @pages: an array of pointers to the pages to be mapped
 | |
|  * @count: number of pages
 | |
|  * @node: prefer to allocate data structures on this node
 | |
|  *
 | |
|  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
 | |
|  * faster than vmap so it's good.  But if you mix long-life and short-life
 | |
|  * objects with vm_map_ram(), it could consume lots of address space through
 | |
|  * fragmentation (especially on a 32bit machine).  You could see failures in
 | |
|  * the end.  Please use this function for short-lived objects.
 | |
|  *
 | |
|  * Returns: a pointer to the address that has been mapped, or %NULL on failure
 | |
|  */
 | |
| void *vm_map_ram(struct page **pages, unsigned int count, int node)
 | |
| {
 | |
| 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
 | |
| 	unsigned long addr;
 | |
| 	void *mem;
 | |
| 
 | |
| 	if (likely(count <= VMAP_MAX_ALLOC)) {
 | |
| 		mem = vb_alloc(size, GFP_KERNEL);
 | |
| 		if (IS_ERR(mem))
 | |
| 			return NULL;
 | |
| 		addr = (unsigned long)mem;
 | |
| 	} else {
 | |
| 		struct vmap_area *va;
 | |
| 		va = alloc_vmap_area(size, PAGE_SIZE,
 | |
| 				VMALLOC_START, VMALLOC_END,
 | |
| 				node, GFP_KERNEL, VMAP_RAM,
 | |
| 				NULL);
 | |
| 		if (IS_ERR(va))
 | |
| 			return NULL;
 | |
| 
 | |
| 		addr = va->va_start;
 | |
| 		mem = (void *)addr;
 | |
| 	}
 | |
| 
 | |
| 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
 | |
| 				pages, PAGE_SHIFT) < 0) {
 | |
| 		vm_unmap_ram(mem, count);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the pages as accessible, now that they are mapped.
 | |
| 	 * With hardware tag-based KASAN, marking is skipped for
 | |
| 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
 | |
| 	 */
 | |
| 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
 | |
| 
 | |
| 	return mem;
 | |
| }
 | |
| EXPORT_SYMBOL(vm_map_ram);
 | |
| 
 | |
| static struct vm_struct *vmlist __initdata;
 | |
| 
 | |
| static inline unsigned int vm_area_page_order(struct vm_struct *vm)
 | |
| {
 | |
| #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
 | |
| 	return vm->page_order;
 | |
| #else
 | |
| 	return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
 | |
| {
 | |
| #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
 | |
| 	vm->page_order = order;
 | |
| #else
 | |
| 	BUG_ON(order != 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vm_area_add_early - add vmap area early during boot
 | |
|  * @vm: vm_struct to add
 | |
|  *
 | |
|  * This function is used to add fixed kernel vm area to vmlist before
 | |
|  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
 | |
|  * should contain proper values and the other fields should be zero.
 | |
|  *
 | |
|  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 | |
|  */
 | |
| void __init vm_area_add_early(struct vm_struct *vm)
 | |
| {
 | |
| 	struct vm_struct *tmp, **p;
 | |
| 
 | |
| 	BUG_ON(vmap_initialized);
 | |
| 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
 | |
| 		if (tmp->addr >= vm->addr) {
 | |
| 			BUG_ON(tmp->addr < vm->addr + vm->size);
 | |
| 			break;
 | |
| 		} else
 | |
| 			BUG_ON(tmp->addr + tmp->size > vm->addr);
 | |
| 	}
 | |
| 	vm->next = *p;
 | |
| 	*p = vm;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vm_area_register_early - register vmap area early during boot
 | |
|  * @vm: vm_struct to register
 | |
|  * @align: requested alignment
 | |
|  *
 | |
|  * This function is used to register kernel vm area before
 | |
|  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
 | |
|  * proper values on entry and other fields should be zero.  On return,
 | |
|  * vm->addr contains the allocated address.
 | |
|  *
 | |
|  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
 | |
|  */
 | |
| void __init vm_area_register_early(struct vm_struct *vm, size_t align)
 | |
| {
 | |
| 	unsigned long addr = ALIGN(VMALLOC_START, align);
 | |
| 	struct vm_struct *cur, **p;
 | |
| 
 | |
| 	BUG_ON(vmap_initialized);
 | |
| 
 | |
| 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
 | |
| 		if ((unsigned long)cur->addr - addr >= vm->size)
 | |
| 			break;
 | |
| 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(addr > VMALLOC_END - vm->size);
 | |
| 	vm->addr = (void *)addr;
 | |
| 	vm->next = *p;
 | |
| 	*p = vm;
 | |
| 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
 | |
| }
 | |
| 
 | |
| static void clear_vm_uninitialized_flag(struct vm_struct *vm)
 | |
| {
 | |
| 	/*
 | |
| 	 * Before removing VM_UNINITIALIZED,
 | |
| 	 * we should make sure that vm has proper values.
 | |
| 	 * Pair with smp_rmb() in show_numa_info().
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	vm->flags &= ~VM_UNINITIALIZED;
 | |
| }
 | |
| 
 | |
| static struct vm_struct *__get_vm_area_node(unsigned long size,
 | |
| 		unsigned long align, unsigned long shift, unsigned long flags,
 | |
| 		unsigned long start, unsigned long end, int node,
 | |
| 		gfp_t gfp_mask, const void *caller)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long requested_size = size;
 | |
| 
 | |
| 	BUG_ON(in_interrupt());
 | |
| 	size = ALIGN(size, 1ul << shift);
 | |
| 	if (unlikely(!size))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (flags & VM_IOREMAP)
 | |
| 		align = 1ul << clamp_t(int, get_count_order_long(size),
 | |
| 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
 | |
| 
 | |
| 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
 | |
| 	if (unlikely(!area))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!(flags & VM_NO_GUARD))
 | |
| 		size += PAGE_SIZE;
 | |
| 
 | |
| 	area->flags = flags;
 | |
| 	area->caller = caller;
 | |
| 
 | |
| 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
 | |
| 	if (IS_ERR(va)) {
 | |
| 		kfree(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
 | |
| 	 * best-effort approach, as they can be mapped outside of vmalloc code.
 | |
| 	 * For VM_ALLOC mappings, the pages are marked as accessible after
 | |
| 	 * getting mapped in __vmalloc_node_range().
 | |
| 	 * With hardware tag-based KASAN, marking is skipped for
 | |
| 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
 | |
| 	 */
 | |
| 	if (!(flags & VM_ALLOC))
 | |
| 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
 | |
| 						    KASAN_VMALLOC_PROT_NORMAL);
 | |
| 
 | |
| 	return area;
 | |
| }
 | |
| 
 | |
| struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
 | |
| 				       unsigned long start, unsigned long end,
 | |
| 				       const void *caller)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
 | |
| 				  NUMA_NO_NODE, GFP_KERNEL, caller);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_vm_area - reserve a contiguous kernel virtual area
 | |
|  * @size:	 size of the area
 | |
|  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
 | |
|  *
 | |
|  * Search an area of @size in the kernel virtual mapping area,
 | |
|  * and reserved it for out purposes.  Returns the area descriptor
 | |
|  * on success or %NULL on failure.
 | |
|  *
 | |
|  * Return: the area descriptor on success or %NULL on failure.
 | |
|  */
 | |
| struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
 | |
| 				  VMALLOC_START, VMALLOC_END,
 | |
| 				  NUMA_NO_NODE, GFP_KERNEL,
 | |
| 				  __builtin_return_address(0));
 | |
| }
 | |
| 
 | |
| struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
 | |
| 				const void *caller)
 | |
| {
 | |
| 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
 | |
| 				  VMALLOC_START, VMALLOC_END,
 | |
| 				  NUMA_NO_NODE, GFP_KERNEL, caller);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_vm_area - find a continuous kernel virtual area
 | |
|  * @addr:	  base address
 | |
|  *
 | |
|  * Search for the kernel VM area starting at @addr, and return it.
 | |
|  * It is up to the caller to do all required locking to keep the returned
 | |
|  * pointer valid.
 | |
|  *
 | |
|  * Return: the area descriptor on success or %NULL on failure.
 | |
|  */
 | |
| struct vm_struct *find_vm_area(const void *addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 
 | |
| 	va = find_vmap_area((unsigned long)addr);
 | |
| 	if (!va)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return va->vm;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * remove_vm_area - find and remove a continuous kernel virtual area
 | |
|  * @addr:	    base address
 | |
|  *
 | |
|  * Search for the kernel VM area starting at @addr, and remove it.
 | |
|  * This function returns the found VM area, but using it is NOT safe
 | |
|  * on SMP machines, except for its size or flags.
 | |
|  *
 | |
|  * Return: the area descriptor on success or %NULL on failure.
 | |
|  */
 | |
| struct vm_struct *remove_vm_area(const void *addr)
 | |
| {
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *vm;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
 | |
| 			addr))
 | |
| 		return NULL;
 | |
| 
 | |
| 	va = find_unlink_vmap_area((unsigned long)addr);
 | |
| 	if (!va || !va->vm)
 | |
| 		return NULL;
 | |
| 	vm = va->vm;
 | |
| 
 | |
| 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
 | |
| 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
 | |
| 	kasan_free_module_shadow(vm);
 | |
| 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
 | |
| 
 | |
| 	free_unmap_vmap_area(va);
 | |
| 	return vm;
 | |
| }
 | |
| 
 | |
| static inline void set_area_direct_map(const struct vm_struct *area,
 | |
| 				       int (*set_direct_map)(struct page *page))
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* HUGE_VMALLOC passes small pages to set_direct_map */
 | |
| 	for (i = 0; i < area->nr_pages; i++)
 | |
| 		if (page_address(area->pages[i]))
 | |
| 			set_direct_map(area->pages[i]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush the vm mapping and reset the direct map.
 | |
|  */
 | |
| static void vm_reset_perms(struct vm_struct *area)
 | |
| {
 | |
| 	unsigned long start = ULONG_MAX, end = 0;
 | |
| 	unsigned int page_order = vm_area_page_order(area);
 | |
| 	int flush_dmap = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the start and end range of the direct mappings to make sure that
 | |
| 	 * the vm_unmap_aliases() flush includes the direct map.
 | |
| 	 */
 | |
| 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
 | |
| 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
 | |
| 
 | |
| 		if (addr) {
 | |
| 			unsigned long page_size;
 | |
| 
 | |
| 			page_size = PAGE_SIZE << page_order;
 | |
| 			start = min(addr, start);
 | |
| 			end = max(addr + page_size, end);
 | |
| 			flush_dmap = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set direct map to something invalid so that it won't be cached if
 | |
| 	 * there are any accesses after the TLB flush, then flush the TLB and
 | |
| 	 * reset the direct map permissions to the default.
 | |
| 	 */
 | |
| 	set_area_direct_map(area, set_direct_map_invalid_noflush);
 | |
| 	_vm_unmap_aliases(start, end, flush_dmap);
 | |
| 	set_area_direct_map(area, set_direct_map_default_noflush);
 | |
| }
 | |
| 
 | |
| static void delayed_vfree_work(struct work_struct *w)
 | |
| {
 | |
| 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
 | |
| 	struct llist_node *t, *llnode;
 | |
| 
 | |
| 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
 | |
| 		vfree(llnode);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vfree_atomic - release memory allocated by vmalloc()
 | |
|  * @addr:	  memory base address
 | |
|  *
 | |
|  * This one is just like vfree() but can be called in any atomic context
 | |
|  * except NMIs.
 | |
|  */
 | |
| void vfree_atomic(const void *addr)
 | |
| {
 | |
| 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
 | |
| 
 | |
| 	BUG_ON(in_nmi());
 | |
| 	kmemleak_free(addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use raw_cpu_ptr() because this can be called from preemptible
 | |
| 	 * context. Preemption is absolutely fine here, because the llist_add()
 | |
| 	 * implementation is lockless, so it works even if we are adding to
 | |
| 	 * another cpu's list. schedule_work() should be fine with this too.
 | |
| 	 */
 | |
| 	if (addr && llist_add((struct llist_node *)addr, &p->list))
 | |
| 		schedule_work(&p->wq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vfree - Release memory allocated by vmalloc()
 | |
|  * @addr:  Memory base address
 | |
|  *
 | |
|  * Free the virtually continuous memory area starting at @addr, as obtained
 | |
|  * from one of the vmalloc() family of APIs.  This will usually also free the
 | |
|  * physical memory underlying the virtual allocation, but that memory is
 | |
|  * reference counted, so it will not be freed until the last user goes away.
 | |
|  *
 | |
|  * If @addr is NULL, no operation is performed.
 | |
|  *
 | |
|  * Context:
 | |
|  * May sleep if called *not* from interrupt context.
 | |
|  * Must not be called in NMI context (strictly speaking, it could be
 | |
|  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
 | |
|  * conventions for vfree() arch-dependent would be a really bad idea).
 | |
|  */
 | |
| void vfree(const void *addr)
 | |
| {
 | |
| 	struct vm_struct *vm;
 | |
| 	int i;
 | |
| 
 | |
| 	if (unlikely(in_interrupt())) {
 | |
| 		vfree_atomic(addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(in_nmi());
 | |
| 	kmemleak_free(addr);
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 
 | |
| 	vm = remove_vm_area(addr);
 | |
| 	if (unlikely(!vm)) {
 | |
| 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
 | |
| 				addr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
 | |
| 		vm_reset_perms(vm);
 | |
| 	for (i = 0; i < vm->nr_pages; i++) {
 | |
| 		struct page *page = vm->pages[i];
 | |
| 
 | |
| 		BUG_ON(!page);
 | |
| 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
 | |
| 		/*
 | |
| 		 * High-order allocs for huge vmallocs are split, so
 | |
| 		 * can be freed as an array of order-0 allocations
 | |
| 		 */
 | |
| 		__free_page(page);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
 | |
| 	kvfree(vm->pages);
 | |
| 	kfree(vm);
 | |
| }
 | |
| EXPORT_SYMBOL(vfree);
 | |
| 
 | |
| /**
 | |
|  * vunmap - release virtual mapping obtained by vmap()
 | |
|  * @addr:   memory base address
 | |
|  *
 | |
|  * Free the virtually contiguous memory area starting at @addr,
 | |
|  * which was created from the page array passed to vmap().
 | |
|  *
 | |
|  * Must not be called in interrupt context.
 | |
|  */
 | |
| void vunmap(const void *addr)
 | |
| {
 | |
| 	struct vm_struct *vm;
 | |
| 
 | |
| 	BUG_ON(in_interrupt());
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 	vm = remove_vm_area(addr);
 | |
| 	if (unlikely(!vm)) {
 | |
| 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
 | |
| 				addr);
 | |
| 		return;
 | |
| 	}
 | |
| 	kfree(vm);
 | |
| }
 | |
| EXPORT_SYMBOL(vunmap);
 | |
| 
 | |
| /**
 | |
|  * vmap - map an array of pages into virtually contiguous space
 | |
|  * @pages: array of page pointers
 | |
|  * @count: number of pages to map
 | |
|  * @flags: vm_area->flags
 | |
|  * @prot: page protection for the mapping
 | |
|  *
 | |
|  * Maps @count pages from @pages into contiguous kernel virtual space.
 | |
|  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
 | |
|  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
 | |
|  * are transferred from the caller to vmap(), and will be freed / dropped when
 | |
|  * vfree() is called on the return value.
 | |
|  *
 | |
|  * Return: the address of the area or %NULL on failure
 | |
|  */
 | |
| void *vmap(struct page **pages, unsigned int count,
 | |
| 	   unsigned long flags, pgprot_t prot)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long addr;
 | |
| 	unsigned long size;		/* In bytes */
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Your top guard is someone else's bottom guard. Not having a top
 | |
| 	 * guard compromises someone else's mappings too.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
 | |
| 		flags &= ~VM_NO_GUARD;
 | |
| 
 | |
| 	if (count > totalram_pages())
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = (unsigned long)count << PAGE_SHIFT;
 | |
| 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 
 | |
| 	addr = (unsigned long)area->addr;
 | |
| 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
 | |
| 				pages, PAGE_SHIFT) < 0) {
 | |
| 		vunmap(area->addr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (flags & VM_MAP_PUT_PAGES) {
 | |
| 		area->pages = pages;
 | |
| 		area->nr_pages = count;
 | |
| 	}
 | |
| 	return area->addr;
 | |
| }
 | |
| EXPORT_SYMBOL(vmap);
 | |
| 
 | |
| #ifdef CONFIG_VMAP_PFN
 | |
| struct vmap_pfn_data {
 | |
| 	unsigned long	*pfns;
 | |
| 	pgprot_t	prot;
 | |
| 	unsigned int	idx;
 | |
| };
 | |
| 
 | |
| static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
 | |
| {
 | |
| 	struct vmap_pfn_data *data = private;
 | |
| 	unsigned long pfn = data->pfns[data->idx];
 | |
| 	pte_t ptent;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(pfn_valid(pfn)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
 | |
| 	set_pte_at(&init_mm, addr, pte, ptent);
 | |
| 
 | |
| 	data->idx++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vmap_pfn - map an array of PFNs into virtually contiguous space
 | |
|  * @pfns: array of PFNs
 | |
|  * @count: number of pages to map
 | |
|  * @prot: page protection for the mapping
 | |
|  *
 | |
|  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
 | |
|  * the start address of the mapping.
 | |
|  */
 | |
| void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
 | |
| {
 | |
| 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
 | |
| 	struct vm_struct *area;
 | |
| 
 | |
| 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
 | |
| 			__builtin_return_address(0));
 | |
| 	if (!area)
 | |
| 		return NULL;
 | |
| 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
 | |
| 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
 | |
| 		free_vm_area(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	flush_cache_vmap((unsigned long)area->addr,
 | |
| 			 (unsigned long)area->addr + count * PAGE_SIZE);
 | |
| 
 | |
| 	return area->addr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vmap_pfn);
 | |
| #endif /* CONFIG_VMAP_PFN */
 | |
| 
 | |
| static inline unsigned int
 | |
| vm_area_alloc_pages(gfp_t gfp, int nid,
 | |
| 		unsigned int order, unsigned int nr_pages, struct page **pages)
 | |
| {
 | |
| 	unsigned int nr_allocated = 0;
 | |
| 	struct page *page;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * For order-0 pages we make use of bulk allocator, if
 | |
| 	 * the page array is partly or not at all populated due
 | |
| 	 * to fails, fallback to a single page allocator that is
 | |
| 	 * more permissive.
 | |
| 	 */
 | |
| 	if (!order) {
 | |
| 		while (nr_allocated < nr_pages) {
 | |
| 			unsigned int nr, nr_pages_request;
 | |
| 
 | |
| 			/*
 | |
| 			 * A maximum allowed request is hard-coded and is 100
 | |
| 			 * pages per call. That is done in order to prevent a
 | |
| 			 * long preemption off scenario in the bulk-allocator
 | |
| 			 * so the range is [1:100].
 | |
| 			 */
 | |
| 			nr_pages_request = min(100U, nr_pages - nr_allocated);
 | |
| 
 | |
| 			/* memory allocation should consider mempolicy, we can't
 | |
| 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
 | |
| 			 * otherwise memory may be allocated in only one node,
 | |
| 			 * but mempolicy wants to alloc memory by interleaving.
 | |
| 			 */
 | |
| 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
 | |
| 				nr = alloc_pages_bulk_array_mempolicy_noprof(gfp,
 | |
| 							nr_pages_request,
 | |
| 							pages + nr_allocated);
 | |
| 			else
 | |
| 				nr = alloc_pages_bulk_array_node_noprof(gfp, nid,
 | |
| 							nr_pages_request,
 | |
| 							pages + nr_allocated);
 | |
| 
 | |
| 			nr_allocated += nr;
 | |
| 			cond_resched();
 | |
| 
 | |
| 			/*
 | |
| 			 * If zero or pages were obtained partly,
 | |
| 			 * fallback to a single page allocator.
 | |
| 			 */
 | |
| 			if (nr != nr_pages_request)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* High-order pages or fallback path if "bulk" fails. */
 | |
| 	while (nr_allocated < nr_pages) {
 | |
| 		if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
 | |
| 			break;
 | |
| 
 | |
| 		if (nid == NUMA_NO_NODE)
 | |
| 			page = alloc_pages_noprof(gfp, order);
 | |
| 		else
 | |
| 			page = alloc_pages_node_noprof(nid, gfp, order);
 | |
| 
 | |
| 		if (unlikely(!page))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Higher order allocations must be able to be treated as
 | |
| 		 * independent small pages by callers (as they can with
 | |
| 		 * small-page vmallocs). Some drivers do their own refcounting
 | |
| 		 * on vmalloc_to_page() pages, some use page->mapping,
 | |
| 		 * page->lru, etc.
 | |
| 		 */
 | |
| 		if (order)
 | |
| 			split_page(page, order);
 | |
| 
 | |
| 		/*
 | |
| 		 * Careful, we allocate and map page-order pages, but
 | |
| 		 * tracking is done per PAGE_SIZE page so as to keep the
 | |
| 		 * vm_struct APIs independent of the physical/mapped size.
 | |
| 		 */
 | |
| 		for (i = 0; i < (1U << order); i++)
 | |
| 			pages[nr_allocated + i] = page + i;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		nr_allocated += 1U << order;
 | |
| 	}
 | |
| 
 | |
| 	return nr_allocated;
 | |
| }
 | |
| 
 | |
| static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
 | |
| 				 pgprot_t prot, unsigned int page_shift,
 | |
| 				 int node)
 | |
| {
 | |
| 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
 | |
| 	bool nofail = gfp_mask & __GFP_NOFAIL;
 | |
| 	unsigned long addr = (unsigned long)area->addr;
 | |
| 	unsigned long size = get_vm_area_size(area);
 | |
| 	unsigned long array_size;
 | |
| 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
 | |
| 	unsigned int page_order;
 | |
| 	unsigned int flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
 | |
| 
 | |
| 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
 | |
| 		gfp_mask |= __GFP_HIGHMEM;
 | |
| 
 | |
| 	/* Please note that the recursion is strictly bounded. */
 | |
| 	if (array_size > PAGE_SIZE) {
 | |
| 		area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
 | |
| 					area->caller);
 | |
| 	} else {
 | |
| 		area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
 | |
| 	}
 | |
| 
 | |
| 	if (!area->pages) {
 | |
| 		warn_alloc(gfp_mask, NULL,
 | |
| 			"vmalloc error: size %lu, failed to allocated page array size %lu",
 | |
| 			nr_small_pages * PAGE_SIZE, array_size);
 | |
| 		free_vm_area(area);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
 | |
| 	page_order = vm_area_page_order(area);
 | |
| 
 | |
| 	/*
 | |
| 	 * Higher order nofail allocations are really expensive and
 | |
| 	 * potentially dangerous (pre-mature OOM, disruptive reclaim
 | |
| 	 * and compaction etc.
 | |
| 	 *
 | |
| 	 * Please note, the __vmalloc_node_range_noprof() falls-back
 | |
| 	 * to order-0 pages if high-order attempt is unsuccessful.
 | |
| 	 */
 | |
| 	area->nr_pages = vm_area_alloc_pages((page_order ?
 | |
| 		gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN,
 | |
| 		node, page_order, nr_small_pages, area->pages);
 | |
| 
 | |
| 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
 | |
| 	if (gfp_mask & __GFP_ACCOUNT) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < area->nr_pages; i++)
 | |
| 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If not enough pages were obtained to accomplish an
 | |
| 	 * allocation request, free them via vfree() if any.
 | |
| 	 */
 | |
| 	if (area->nr_pages != nr_small_pages) {
 | |
| 		/*
 | |
| 		 * vm_area_alloc_pages() can fail due to insufficient memory but
 | |
| 		 * also:-
 | |
| 		 *
 | |
| 		 * - a pending fatal signal
 | |
| 		 * - insufficient huge page-order pages
 | |
| 		 *
 | |
| 		 * Since we always retry allocations at order-0 in the huge page
 | |
| 		 * case a warning for either is spurious.
 | |
| 		 */
 | |
| 		if (!fatal_signal_pending(current) && page_order == 0)
 | |
| 			warn_alloc(gfp_mask, NULL,
 | |
| 				"vmalloc error: size %lu, failed to allocate pages",
 | |
| 				area->nr_pages * PAGE_SIZE);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * page tables allocations ignore external gfp mask, enforce it
 | |
| 	 * by the scope API
 | |
| 	 */
 | |
| 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
 | |
| 		flags = memalloc_nofs_save();
 | |
| 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
 | |
| 		flags = memalloc_noio_save();
 | |
| 
 | |
| 	do {
 | |
| 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
 | |
| 			page_shift);
 | |
| 		if (nofail && (ret < 0))
 | |
| 			schedule_timeout_uninterruptible(1);
 | |
| 	} while (nofail && (ret < 0));
 | |
| 
 | |
| 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
 | |
| 		memalloc_nofs_restore(flags);
 | |
| 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
 | |
| 		memalloc_noio_restore(flags);
 | |
| 
 | |
| 	if (ret < 0) {
 | |
| 		warn_alloc(gfp_mask, NULL,
 | |
| 			"vmalloc error: size %lu, failed to map pages",
 | |
| 			area->nr_pages * PAGE_SIZE);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	return area->addr;
 | |
| 
 | |
| fail:
 | |
| 	vfree(area->addr);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __vmalloc_node_range - allocate virtually contiguous memory
 | |
|  * @size:		  allocation size
 | |
|  * @align:		  desired alignment
 | |
|  * @start:		  vm area range start
 | |
|  * @end:		  vm area range end
 | |
|  * @gfp_mask:		  flags for the page level allocator
 | |
|  * @prot:		  protection mask for the allocated pages
 | |
|  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
 | |
|  * @node:		  node to use for allocation or NUMA_NO_NODE
 | |
|  * @caller:		  caller's return address
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator with @gfp_mask flags. Please note that the full set of gfp
 | |
|  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
 | |
|  * supported.
 | |
|  * Zone modifiers are not supported. From the reclaim modifiers
 | |
|  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
 | |
|  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
 | |
|  * __GFP_RETRY_MAYFAIL are not supported).
 | |
|  *
 | |
|  * __GFP_NOWARN can be used to suppress failures messages.
 | |
|  *
 | |
|  * Map them into contiguous kernel virtual space, using a pagetable
 | |
|  * protection of @prot.
 | |
|  *
 | |
|  * Return: the address of the area or %NULL on failure
 | |
|  */
 | |
| void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
 | |
| 			unsigned long start, unsigned long end, gfp_t gfp_mask,
 | |
| 			pgprot_t prot, unsigned long vm_flags, int node,
 | |
| 			const void *caller)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	void *ret;
 | |
| 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
 | |
| 	unsigned long real_size = size;
 | |
| 	unsigned long real_align = align;
 | |
| 	unsigned int shift = PAGE_SHIFT;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!size))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
 | |
| 		warn_alloc(gfp_mask, NULL,
 | |
| 			"vmalloc error: size %lu, exceeds total pages",
 | |
| 			real_size);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
 | |
| 		unsigned long size_per_node;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
 | |
| 		 * others like modules don't yet expect huge pages in
 | |
| 		 * their allocations due to apply_to_page_range not
 | |
| 		 * supporting them.
 | |
| 		 */
 | |
| 
 | |
| 		size_per_node = size;
 | |
| 		if (node == NUMA_NO_NODE)
 | |
| 			size_per_node /= num_online_nodes();
 | |
| 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
 | |
| 			shift = PMD_SHIFT;
 | |
| 		else
 | |
| 			shift = arch_vmap_pte_supported_shift(size_per_node);
 | |
| 
 | |
| 		align = max(real_align, 1UL << shift);
 | |
| 		size = ALIGN(real_size, 1UL << shift);
 | |
| 	}
 | |
| 
 | |
| again:
 | |
| 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
 | |
| 				  VM_UNINITIALIZED | vm_flags, start, end, node,
 | |
| 				  gfp_mask, caller);
 | |
| 	if (!area) {
 | |
| 		bool nofail = gfp_mask & __GFP_NOFAIL;
 | |
| 		warn_alloc(gfp_mask, NULL,
 | |
| 			"vmalloc error: size %lu, vm_struct allocation failed%s",
 | |
| 			real_size, (nofail) ? ". Retrying." : "");
 | |
| 		if (nofail) {
 | |
| 			schedule_timeout_uninterruptible(1);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare arguments for __vmalloc_area_node() and
 | |
| 	 * kasan_unpoison_vmalloc().
 | |
| 	 */
 | |
| 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
 | |
| 		if (kasan_hw_tags_enabled()) {
 | |
| 			/*
 | |
| 			 * Modify protection bits to allow tagging.
 | |
| 			 * This must be done before mapping.
 | |
| 			 */
 | |
| 			prot = arch_vmap_pgprot_tagged(prot);
 | |
| 
 | |
| 			/*
 | |
| 			 * Skip page_alloc poisoning and zeroing for physical
 | |
| 			 * pages backing VM_ALLOC mapping. Memory is instead
 | |
| 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
 | |
| 			 */
 | |
| 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
 | |
| 		}
 | |
| 
 | |
| 		/* Take note that the mapping is PAGE_KERNEL. */
 | |
| 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate physical pages and map them into vmalloc space. */
 | |
| 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
 | |
| 	if (!ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the pages as accessible, now that they are mapped.
 | |
| 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
 | |
| 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
 | |
| 	 * to make sure that memory is initialized under the same conditions.
 | |
| 	 * Tag-based KASAN modes only assign tags to normal non-executable
 | |
| 	 * allocations, see __kasan_unpoison_vmalloc().
 | |
| 	 */
 | |
| 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
 | |
| 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
 | |
| 	    (gfp_mask & __GFP_SKIP_ZERO))
 | |
| 		kasan_flags |= KASAN_VMALLOC_INIT;
 | |
| 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
 | |
| 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
 | |
| 	 * flag. It means that vm_struct is not fully initialized.
 | |
| 	 * Now, it is fully initialized, so remove this flag here.
 | |
| 	 */
 | |
| 	clear_vm_uninitialized_flag(area);
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
 | |
| 		kmemleak_vmalloc(area, size, gfp_mask);
 | |
| 
 | |
| 	return area->addr;
 | |
| 
 | |
| fail:
 | |
| 	if (shift > PAGE_SHIFT) {
 | |
| 		shift = PAGE_SHIFT;
 | |
| 		align = real_align;
 | |
| 		size = real_size;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __vmalloc_node - allocate virtually contiguous memory
 | |
|  * @size:	    allocation size
 | |
|  * @align:	    desired alignment
 | |
|  * @gfp_mask:	    flags for the page level allocator
 | |
|  * @node:	    node to use for allocation or NUMA_NO_NODE
 | |
|  * @caller:	    caller's return address
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level allocator with
 | |
|  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
 | |
|  * and __GFP_NOFAIL are not supported
 | |
|  *
 | |
|  * Any use of gfp flags outside of GFP_KERNEL should be consulted
 | |
|  * with mm people.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
 | |
| 			    gfp_t gfp_mask, int node, const void *caller)
 | |
| {
 | |
| 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
 | |
| 				gfp_mask, PAGE_KERNEL, 0, node, caller);
 | |
| }
 | |
| /*
 | |
|  * This is only for performance analysis of vmalloc and stress purpose.
 | |
|  * It is required by vmalloc test module, therefore do not use it other
 | |
|  * than that.
 | |
|  */
 | |
| #ifdef CONFIG_TEST_VMALLOC_MODULE
 | |
| EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
 | |
| #endif
 | |
| 
 | |
| void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
 | |
| {
 | |
| 	return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(__vmalloc_noprof);
 | |
| 
 | |
| /**
 | |
|  * vmalloc - allocate virtually contiguous memory
 | |
|  * @size:    allocation size
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  * For tight control over page level allocator and protection flags
 | |
|  * use __vmalloc() instead.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_noprof(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_noprof);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
 | |
|  * @size:      allocation size
 | |
|  * @gfp_mask:  flags for the page level allocator
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  * If @size is greater than or equal to PMD_SIZE, allow using
 | |
|  * huge pages for the memory
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
 | |
| {
 | |
| 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
 | |
| 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
 | |
| 				    NUMA_NO_NODE, __builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
 | |
| 
 | |
| /**
 | |
|  * vzalloc - allocate virtually contiguous memory with zero fill
 | |
|  * @size:    allocation size
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  * The memory allocated is set to zero.
 | |
|  *
 | |
|  * For tight control over page level allocator and protection flags
 | |
|  * use __vmalloc() instead.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vzalloc_noprof(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vzalloc_noprof);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 | |
|  * @size: allocation size
 | |
|  *
 | |
|  * The resulting memory area is zeroed so it can be mapped to userspace
 | |
|  * without leaking data.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_user_noprof(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
 | |
| 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
 | |
| 				    VM_USERMAP, NUMA_NO_NODE,
 | |
| 				    __builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_user_noprof);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_node - allocate memory on a specific node
 | |
|  * @size:	  allocation size
 | |
|  * @node:	  numa node
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  * For tight control over page level allocator and protection flags
 | |
|  * use __vmalloc() instead.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_node_noprof(unsigned long size, int node)
 | |
| {
 | |
| 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
 | |
| 			__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_node_noprof);
 | |
| 
 | |
| /**
 | |
|  * vzalloc_node - allocate memory on a specific node with zero fill
 | |
|  * @size:	allocation size
 | |
|  * @node:	numa node
 | |
|  *
 | |
|  * Allocate enough pages to cover @size from the page level
 | |
|  * allocator and map them into contiguous kernel virtual space.
 | |
|  * The memory allocated is set to zero.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vzalloc_node_noprof(unsigned long size, int node)
 | |
| {
 | |
| 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
 | |
| 				__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vzalloc_node_noprof);
 | |
| 
 | |
| /**
 | |
|  * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
 | |
|  * @p: object to reallocate memory for
 | |
|  * @size: the size to reallocate
 | |
|  * @flags: the flags for the page level allocator
 | |
|  *
 | |
|  * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
 | |
|  * @p is not a %NULL pointer, the object pointed to is freed.
 | |
|  *
 | |
|  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
 | |
|  * initial memory allocation, every subsequent call to this API for the same
 | |
|  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
 | |
|  * __GFP_ZERO is not fully honored by this API.
 | |
|  *
 | |
|  * In any case, the contents of the object pointed to are preserved up to the
 | |
|  * lesser of the new and old sizes.
 | |
|  *
 | |
|  * This function must not be called concurrently with itself or vfree() for the
 | |
|  * same memory allocation.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
 | |
|  *         failure
 | |
|  */
 | |
| void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
 | |
| {
 | |
| 	size_t old_size = 0;
 | |
| 	void *n;
 | |
| 
 | |
| 	if (!size) {
 | |
| 		vfree(p);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (p) {
 | |
| 		struct vm_struct *vm;
 | |
| 
 | |
| 		vm = find_vm_area(p);
 | |
| 		if (unlikely(!vm)) {
 | |
| 			WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		old_size = get_vm_area_size(vm);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
 | |
| 	 * would be a good heuristic for when to shrink the vm_area?
 | |
| 	 */
 | |
| 	if (size <= old_size) {
 | |
| 		/* Zero out spare memory. */
 | |
| 		if (want_init_on_alloc(flags))
 | |
| 			memset((void *)p + size, 0, old_size - size);
 | |
| 
 | |
| 		return (void *)p;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
 | |
| 	n = __vmalloc_noprof(size, flags);
 | |
| 	if (!n)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (p) {
 | |
| 		memcpy(n, p, old_size);
 | |
| 		vfree(p);
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
 | |
| #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
 | |
| #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
 | |
| #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
 | |
| #else
 | |
| /*
 | |
|  * 64b systems should always have either DMA or DMA32 zones. For others
 | |
|  * GFP_DMA32 should do the right thing and use the normal zone.
 | |
|  */
 | |
| #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
 | |
|  * @size:	allocation size
 | |
|  *
 | |
|  * Allocate enough 32bit PA addressable pages to cover @size from the
 | |
|  * page level allocator and map them into contiguous kernel virtual space.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_32_noprof(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
 | |
| 			__builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_32_noprof);
 | |
| 
 | |
| /**
 | |
|  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 | |
|  * @size:	     allocation size
 | |
|  *
 | |
|  * The resulting memory area is 32bit addressable and zeroed so it can be
 | |
|  * mapped to userspace without leaking data.
 | |
|  *
 | |
|  * Return: pointer to the allocated memory or %NULL on error
 | |
|  */
 | |
| void *vmalloc_32_user_noprof(unsigned long size)
 | |
| {
 | |
| 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
 | |
| 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
 | |
| 				    VM_USERMAP, NUMA_NO_NODE,
 | |
| 				    __builtin_return_address(0));
 | |
| }
 | |
| EXPORT_SYMBOL(vmalloc_32_user_noprof);
 | |
| 
 | |
| /*
 | |
|  * Atomically zero bytes in the iterator.
 | |
|  *
 | |
|  * Returns the number of zeroed bytes.
 | |
|  */
 | |
| static size_t zero_iter(struct iov_iter *iter, size_t count)
 | |
| {
 | |
| 	size_t remains = count;
 | |
| 
 | |
| 	while (remains > 0) {
 | |
| 		size_t num, copied;
 | |
| 
 | |
| 		num = min_t(size_t, remains, PAGE_SIZE);
 | |
| 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
 | |
| 		remains -= copied;
 | |
| 
 | |
| 		if (copied < num)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return count - remains;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * small helper routine, copy contents to iter from addr.
 | |
|  * If the page is not present, fill zero.
 | |
|  *
 | |
|  * Returns the number of copied bytes.
 | |
|  */
 | |
| static size_t aligned_vread_iter(struct iov_iter *iter,
 | |
| 				 const char *addr, size_t count)
 | |
| {
 | |
| 	size_t remains = count;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	while (remains > 0) {
 | |
| 		unsigned long offset, length;
 | |
| 		size_t copied = 0;
 | |
| 
 | |
| 		offset = offset_in_page(addr);
 | |
| 		length = PAGE_SIZE - offset;
 | |
| 		if (length > remains)
 | |
| 			length = remains;
 | |
| 		page = vmalloc_to_page(addr);
 | |
| 		/*
 | |
| 		 * To do safe access to this _mapped_ area, we need lock. But
 | |
| 		 * adding lock here means that we need to add overhead of
 | |
| 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
 | |
| 		 * used. Instead of that, we'll use an local mapping via
 | |
| 		 * copy_page_to_iter_nofault() and accept a small overhead in
 | |
| 		 * this access function.
 | |
| 		 */
 | |
| 		if (page)
 | |
| 			copied = copy_page_to_iter_nofault(page, offset,
 | |
| 							   length, iter);
 | |
| 		else
 | |
| 			copied = zero_iter(iter, length);
 | |
| 
 | |
| 		addr += copied;
 | |
| 		remains -= copied;
 | |
| 
 | |
| 		if (copied != length)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return count - remains;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read from a vm_map_ram region of memory.
 | |
|  *
 | |
|  * Returns the number of copied bytes.
 | |
|  */
 | |
| static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
 | |
| 				  size_t count, unsigned long flags)
 | |
| {
 | |
| 	char *start;
 | |
| 	struct vmap_block *vb;
 | |
| 	struct xarray *xa;
 | |
| 	unsigned long offset;
 | |
| 	unsigned int rs, re;
 | |
| 	size_t remains, n;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's area created by vm_map_ram() interface directly, but
 | |
| 	 * not further subdividing and delegating management to vmap_block,
 | |
| 	 * handle it here.
 | |
| 	 */
 | |
| 	if (!(flags & VMAP_BLOCK))
 | |
| 		return aligned_vread_iter(iter, addr, count);
 | |
| 
 | |
| 	remains = count;
 | |
| 
 | |
| 	/*
 | |
| 	 * Area is split into regions and tracked with vmap_block, read out
 | |
| 	 * each region and zero fill the hole between regions.
 | |
| 	 */
 | |
| 	xa = addr_to_vb_xa((unsigned long) addr);
 | |
| 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
 | |
| 	if (!vb)
 | |
| 		goto finished_zero;
 | |
| 
 | |
| 	spin_lock(&vb->lock);
 | |
| 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
 | |
| 		spin_unlock(&vb->lock);
 | |
| 		goto finished_zero;
 | |
| 	}
 | |
| 
 | |
| 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
 | |
| 		size_t copied;
 | |
| 
 | |
| 		if (remains == 0)
 | |
| 			goto finished;
 | |
| 
 | |
| 		start = vmap_block_vaddr(vb->va->va_start, rs);
 | |
| 
 | |
| 		if (addr < start) {
 | |
| 			size_t to_zero = min_t(size_t, start - addr, remains);
 | |
| 			size_t zeroed = zero_iter(iter, to_zero);
 | |
| 
 | |
| 			addr += zeroed;
 | |
| 			remains -= zeroed;
 | |
| 
 | |
| 			if (remains == 0 || zeroed != to_zero)
 | |
| 				goto finished;
 | |
| 		}
 | |
| 
 | |
| 		/*it could start reading from the middle of used region*/
 | |
| 		offset = offset_in_page(addr);
 | |
| 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
 | |
| 		if (n > remains)
 | |
| 			n = remains;
 | |
| 
 | |
| 		copied = aligned_vread_iter(iter, start + offset, n);
 | |
| 
 | |
| 		addr += copied;
 | |
| 		remains -= copied;
 | |
| 
 | |
| 		if (copied != n)
 | |
| 			goto finished;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&vb->lock);
 | |
| 
 | |
| finished_zero:
 | |
| 	/* zero-fill the left dirty or free regions */
 | |
| 	return count - remains + zero_iter(iter, remains);
 | |
| finished:
 | |
| 	/* We couldn't copy/zero everything */
 | |
| 	spin_unlock(&vb->lock);
 | |
| 	return count - remains;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vread_iter() - read vmalloc area in a safe way to an iterator.
 | |
|  * @iter:         the iterator to which data should be written.
 | |
|  * @addr:         vm address.
 | |
|  * @count:        number of bytes to be read.
 | |
|  *
 | |
|  * This function checks that addr is a valid vmalloc'ed area, and
 | |
|  * copy data from that area to a given buffer. If the given memory range
 | |
|  * of [addr...addr+count) includes some valid address, data is copied to
 | |
|  * proper area of @buf. If there are memory holes, they'll be zero-filled.
 | |
|  * IOREMAP area is treated as memory hole and no copy is done.
 | |
|  *
 | |
|  * If [addr...addr+count) doesn't includes any intersects with alive
 | |
|  * vm_struct area, returns 0. @buf should be kernel's buffer.
 | |
|  *
 | |
|  * Note: In usual ops, vread() is never necessary because the caller
 | |
|  * should know vmalloc() area is valid and can use memcpy().
 | |
|  * This is for routines which have to access vmalloc area without
 | |
|  * any information, as /proc/kcore.
 | |
|  *
 | |
|  * Return: number of bytes for which addr and buf should be increased
 | |
|  * (same number as @count) or %0 if [addr...addr+count) doesn't
 | |
|  * include any intersection with valid vmalloc area
 | |
|  */
 | |
| long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
 | |
| {
 | |
| 	struct vmap_node *vn;
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *vm;
 | |
| 	char *vaddr;
 | |
| 	size_t n, size, flags, remains;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	addr = kasan_reset_tag(addr);
 | |
| 
 | |
| 	/* Don't allow overflow */
 | |
| 	if ((unsigned long) addr + count < count)
 | |
| 		count = -(unsigned long) addr;
 | |
| 
 | |
| 	remains = count;
 | |
| 
 | |
| 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
 | |
| 	if (!vn)
 | |
| 		goto finished_zero;
 | |
| 
 | |
| 	/* no intersects with alive vmap_area */
 | |
| 	if ((unsigned long)addr + remains <= va->va_start)
 | |
| 		goto finished_zero;
 | |
| 
 | |
| 	do {
 | |
| 		size_t copied;
 | |
| 
 | |
| 		if (remains == 0)
 | |
| 			goto finished;
 | |
| 
 | |
| 		vm = va->vm;
 | |
| 		flags = va->flags & VMAP_FLAGS_MASK;
 | |
| 		/*
 | |
| 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
 | |
| 		 * be set together with VMAP_RAM.
 | |
| 		 */
 | |
| 		WARN_ON(flags == VMAP_BLOCK);
 | |
| 
 | |
| 		if (!vm && !flags)
 | |
| 			goto next_va;
 | |
| 
 | |
| 		if (vm && (vm->flags & VM_UNINITIALIZED))
 | |
| 			goto next_va;
 | |
| 
 | |
| 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		vaddr = (char *) va->va_start;
 | |
| 		size = vm ? get_vm_area_size(vm) : va_size(va);
 | |
| 
 | |
| 		if (addr >= vaddr + size)
 | |
| 			goto next_va;
 | |
| 
 | |
| 		if (addr < vaddr) {
 | |
| 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
 | |
| 			size_t zeroed = zero_iter(iter, to_zero);
 | |
| 
 | |
| 			addr += zeroed;
 | |
| 			remains -= zeroed;
 | |
| 
 | |
| 			if (remains == 0 || zeroed != to_zero)
 | |
| 				goto finished;
 | |
| 		}
 | |
| 
 | |
| 		n = vaddr + size - addr;
 | |
| 		if (n > remains)
 | |
| 			n = remains;
 | |
| 
 | |
| 		if (flags & VMAP_RAM)
 | |
| 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
 | |
| 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
 | |
| 			copied = aligned_vread_iter(iter, addr, n);
 | |
| 		else /* IOREMAP | SPARSE area is treated as memory hole */
 | |
| 			copied = zero_iter(iter, n);
 | |
| 
 | |
| 		addr += copied;
 | |
| 		remains -= copied;
 | |
| 
 | |
| 		if (copied != n)
 | |
| 			goto finished;
 | |
| 
 | |
| 	next_va:
 | |
| 		next = va->va_end;
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
 | |
| 
 | |
| finished_zero:
 | |
| 	if (vn)
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 
 | |
| 	/* zero-fill memory holes */
 | |
| 	return count - remains + zero_iter(iter, remains);
 | |
| finished:
 | |
| 	/* Nothing remains, or We couldn't copy/zero everything. */
 | |
| 	if (vn)
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 
 | |
| 	return count - remains;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * remap_vmalloc_range_partial - map vmalloc pages to userspace
 | |
|  * @vma:		vma to cover
 | |
|  * @uaddr:		target user address to start at
 | |
|  * @kaddr:		virtual address of vmalloc kernel memory
 | |
|  * @pgoff:		offset from @kaddr to start at
 | |
|  * @size:		size of map area
 | |
|  *
 | |
|  * Returns:	0 for success, -Exxx on failure
 | |
|  *
 | |
|  * This function checks that @kaddr is a valid vmalloc'ed area,
 | |
|  * and that it is big enough to cover the range starting at
 | |
|  * @uaddr in @vma. Will return failure if that criteria isn't
 | |
|  * met.
 | |
|  *
 | |
|  * Similar to remap_pfn_range() (see mm/memory.c)
 | |
|  */
 | |
| int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
 | |
| 				void *kaddr, unsigned long pgoff,
 | |
| 				unsigned long size)
 | |
| {
 | |
| 	struct vm_struct *area;
 | |
| 	unsigned long off;
 | |
| 	unsigned long end_index;
 | |
| 
 | |
| 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	size = PAGE_ALIGN(size);
 | |
| 
 | |
| 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	area = find_vm_area(kaddr);
 | |
| 	if (!area)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (check_add_overflow(size, off, &end_index) ||
 | |
| 	    end_index > get_vm_area_size(area))
 | |
| 		return -EINVAL;
 | |
| 	kaddr += off;
 | |
| 
 | |
| 	do {
 | |
| 		struct page *page = vmalloc_to_page(kaddr);
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = vm_insert_page(vma, uaddr, page);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		uaddr += PAGE_SIZE;
 | |
| 		kaddr += PAGE_SIZE;
 | |
| 		size -= PAGE_SIZE;
 | |
| 	} while (size > 0);
 | |
| 
 | |
| 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * remap_vmalloc_range - map vmalloc pages to userspace
 | |
|  * @vma:		vma to cover (map full range of vma)
 | |
|  * @addr:		vmalloc memory
 | |
|  * @pgoff:		number of pages into addr before first page to map
 | |
|  *
 | |
|  * Returns:	0 for success, -Exxx on failure
 | |
|  *
 | |
|  * This function checks that addr is a valid vmalloc'ed area, and
 | |
|  * that it is big enough to cover the vma. Will return failure if
 | |
|  * that criteria isn't met.
 | |
|  *
 | |
|  * Similar to remap_pfn_range() (see mm/memory.c)
 | |
|  */
 | |
| int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
 | |
| 						unsigned long pgoff)
 | |
| {
 | |
| 	return remap_vmalloc_range_partial(vma, vma->vm_start,
 | |
| 					   addr, pgoff,
 | |
| 					   vma->vm_end - vma->vm_start);
 | |
| }
 | |
| EXPORT_SYMBOL(remap_vmalloc_range);
 | |
| 
 | |
| void free_vm_area(struct vm_struct *area)
 | |
| {
 | |
| 	struct vm_struct *ret;
 | |
| 	ret = remove_vm_area(area->addr);
 | |
| 	BUG_ON(ret != area);
 | |
| 	kfree(area);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(free_vm_area);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static struct vmap_area *node_to_va(struct rb_node *n)
 | |
| {
 | |
| 	return rb_entry_safe(n, struct vmap_area, rb_node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
 | |
|  * @addr: target address
 | |
|  *
 | |
|  * Returns: vmap_area if it is found. If there is no such area
 | |
|  *   the first highest(reverse order) vmap_area is returned
 | |
|  *   i.e. va->va_start < addr && va->va_end < addr or NULL
 | |
|  *   if there are no any areas before @addr.
 | |
|  */
 | |
| static struct vmap_area *
 | |
| pvm_find_va_enclose_addr(unsigned long addr)
 | |
| {
 | |
| 	struct vmap_area *va, *tmp;
 | |
| 	struct rb_node *n;
 | |
| 
 | |
| 	n = free_vmap_area_root.rb_node;
 | |
| 	va = NULL;
 | |
| 
 | |
| 	while (n) {
 | |
| 		tmp = rb_entry(n, struct vmap_area, rb_node);
 | |
| 		if (tmp->va_start <= addr) {
 | |
| 			va = tmp;
 | |
| 			if (tmp->va_end >= addr)
 | |
| 				break;
 | |
| 
 | |
| 			n = n->rb_right;
 | |
| 		} else {
 | |
| 			n = n->rb_left;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return va;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pvm_determine_end_from_reverse - find the highest aligned address
 | |
|  * of free block below VMALLOC_END
 | |
|  * @va:
 | |
|  *   in - the VA we start the search(reverse order);
 | |
|  *   out - the VA with the highest aligned end address.
 | |
|  * @align: alignment for required highest address
 | |
|  *
 | |
|  * Returns: determined end address within vmap_area
 | |
|  */
 | |
| static unsigned long
 | |
| pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
 | |
| {
 | |
| 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	if (likely(*va)) {
 | |
| 		list_for_each_entry_from_reverse((*va),
 | |
| 				&free_vmap_area_list, list) {
 | |
| 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
 | |
| 			if ((*va)->va_start < addr)
 | |
| 				return addr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
 | |
|  * @offsets: array containing offset of each area
 | |
|  * @sizes: array containing size of each area
 | |
|  * @nr_vms: the number of areas to allocate
 | |
|  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
 | |
|  *
 | |
|  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
 | |
|  *	    vm_structs on success, %NULL on failure
 | |
|  *
 | |
|  * Percpu allocator wants to use congruent vm areas so that it can
 | |
|  * maintain the offsets among percpu areas.  This function allocates
 | |
|  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
 | |
|  * be scattered pretty far, distance between two areas easily going up
 | |
|  * to gigabytes.  To avoid interacting with regular vmallocs, these
 | |
|  * areas are allocated from top.
 | |
|  *
 | |
|  * Despite its complicated look, this allocator is rather simple. It
 | |
|  * does everything top-down and scans free blocks from the end looking
 | |
|  * for matching base. While scanning, if any of the areas do not fit the
 | |
|  * base address is pulled down to fit the area. Scanning is repeated till
 | |
|  * all the areas fit and then all necessary data structures are inserted
 | |
|  * and the result is returned.
 | |
|  */
 | |
| struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
 | |
| 				     const size_t *sizes, int nr_vms,
 | |
| 				     size_t align)
 | |
| {
 | |
| 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
 | |
| 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
 | |
| 	struct vmap_area **vas, *va;
 | |
| 	struct vm_struct **vms;
 | |
| 	int area, area2, last_area, term_area;
 | |
| 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
 | |
| 	bool purged = false;
 | |
| 
 | |
| 	/* verify parameters and allocate data structures */
 | |
| 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
 | |
| 	for (last_area = 0, area = 0; area < nr_vms; area++) {
 | |
| 		start = offsets[area];
 | |
| 		end = start + sizes[area];
 | |
| 
 | |
| 		/* is everything aligned properly? */
 | |
| 		BUG_ON(!IS_ALIGNED(offsets[area], align));
 | |
| 		BUG_ON(!IS_ALIGNED(sizes[area], align));
 | |
| 
 | |
| 		/* detect the area with the highest address */
 | |
| 		if (start > offsets[last_area])
 | |
| 			last_area = area;
 | |
| 
 | |
| 		for (area2 = area + 1; area2 < nr_vms; area2++) {
 | |
| 			unsigned long start2 = offsets[area2];
 | |
| 			unsigned long end2 = start2 + sizes[area2];
 | |
| 
 | |
| 			BUG_ON(start2 < end && start < end2);
 | |
| 		}
 | |
| 	}
 | |
| 	last_end = offsets[last_area] + sizes[last_area];
 | |
| 
 | |
| 	if (vmalloc_end - vmalloc_start < last_end) {
 | |
| 		WARN_ON(true);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
 | |
| 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
 | |
| 	if (!vas || !vms)
 | |
| 		goto err_free2;
 | |
| 
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
 | |
| 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
 | |
| 		if (!vas[area] || !vms[area])
 | |
| 			goto err_free;
 | |
| 	}
 | |
| retry:
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 
 | |
| 	/* start scanning - we scan from the top, begin with the last area */
 | |
| 	area = term_area = last_area;
 | |
| 	start = offsets[area];
 | |
| 	end = start + sizes[area];
 | |
| 
 | |
| 	va = pvm_find_va_enclose_addr(vmalloc_end);
 | |
| 	base = pvm_determine_end_from_reverse(&va, align) - end;
 | |
| 
 | |
| 	while (true) {
 | |
| 		/*
 | |
| 		 * base might have underflowed, add last_end before
 | |
| 		 * comparing.
 | |
| 		 */
 | |
| 		if (base + last_end < vmalloc_start + last_end)
 | |
| 			goto overflow;
 | |
| 
 | |
| 		/*
 | |
| 		 * Fitting base has not been found.
 | |
| 		 */
 | |
| 		if (va == NULL)
 | |
| 			goto overflow;
 | |
| 
 | |
| 		/*
 | |
| 		 * If required width exceeds current VA block, move
 | |
| 		 * base downwards and then recheck.
 | |
| 		 */
 | |
| 		if (base + end > va->va_end) {
 | |
| 			base = pvm_determine_end_from_reverse(&va, align) - end;
 | |
| 			term_area = area;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If this VA does not fit, move base downwards and recheck.
 | |
| 		 */
 | |
| 		if (base + start < va->va_start) {
 | |
| 			va = node_to_va(rb_prev(&va->rb_node));
 | |
| 			base = pvm_determine_end_from_reverse(&va, align) - end;
 | |
| 			term_area = area;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * This area fits, move on to the previous one.  If
 | |
| 		 * the previous one is the terminal one, we're done.
 | |
| 		 */
 | |
| 		area = (area + nr_vms - 1) % nr_vms;
 | |
| 		if (area == term_area)
 | |
| 			break;
 | |
| 
 | |
| 		start = offsets[area];
 | |
| 		end = start + sizes[area];
 | |
| 		va = pvm_find_va_enclose_addr(base + end);
 | |
| 	}
 | |
| 
 | |
| 	/* we've found a fitting base, insert all va's */
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		start = base + offsets[area];
 | |
| 		size = sizes[area];
 | |
| 
 | |
| 		va = pvm_find_va_enclose_addr(start);
 | |
| 		if (WARN_ON_ONCE(va == NULL))
 | |
| 			/* It is a BUG(), but trigger recovery instead. */
 | |
| 			goto recovery;
 | |
| 
 | |
| 		ret = va_clip(&free_vmap_area_root,
 | |
| 			&free_vmap_area_list, va, start, size);
 | |
| 		if (WARN_ON_ONCE(unlikely(ret)))
 | |
| 			/* It is a BUG(), but trigger recovery instead. */
 | |
| 			goto recovery;
 | |
| 
 | |
| 		/* Allocated area. */
 | |
| 		va = vas[area];
 | |
| 		va->va_start = start;
 | |
| 		va->va_end = start + size;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| 
 | |
| 	/* populate the kasan shadow space */
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
 | |
| 			goto err_free_shadow;
 | |
| 	}
 | |
| 
 | |
| 	/* insert all vm's */
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
 | |
| 
 | |
| 		spin_lock(&vn->busy.lock);
 | |
| 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
 | |
| 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
 | |
| 				 pcpu_get_vm_areas);
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark allocated areas as accessible. Do it now as a best-effort
 | |
| 	 * approach, as they can be mapped outside of vmalloc code.
 | |
| 	 * With hardware tag-based KASAN, marking is skipped for
 | |
| 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
 | |
| 	 */
 | |
| 	for (area = 0; area < nr_vms; area++)
 | |
| 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
 | |
| 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
 | |
| 
 | |
| 	kfree(vas);
 | |
| 	return vms;
 | |
| 
 | |
| recovery:
 | |
| 	/*
 | |
| 	 * Remove previously allocated areas. There is no
 | |
| 	 * need in removing these areas from the busy tree,
 | |
| 	 * because they are inserted only on the final step
 | |
| 	 * and when pcpu_get_vm_areas() is success.
 | |
| 	 */
 | |
| 	while (area--) {
 | |
| 		orig_start = vas[area]->va_start;
 | |
| 		orig_end = vas[area]->va_end;
 | |
| 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
 | |
| 				&free_vmap_area_list);
 | |
| 		if (va)
 | |
| 			kasan_release_vmalloc(orig_start, orig_end,
 | |
| 				va->va_start, va->va_end);
 | |
| 		vas[area] = NULL;
 | |
| 	}
 | |
| 
 | |
| overflow:
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| 	if (!purged) {
 | |
| 		reclaim_and_purge_vmap_areas();
 | |
| 		purged = true;
 | |
| 
 | |
| 		/* Before "retry", check if we recover. */
 | |
| 		for (area = 0; area < nr_vms; area++) {
 | |
| 			if (vas[area])
 | |
| 				continue;
 | |
| 
 | |
| 			vas[area] = kmem_cache_zalloc(
 | |
| 				vmap_area_cachep, GFP_KERNEL);
 | |
| 			if (!vas[area])
 | |
| 				goto err_free;
 | |
| 		}
 | |
| 
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| err_free:
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		if (vas[area])
 | |
| 			kmem_cache_free(vmap_area_cachep, vas[area]);
 | |
| 
 | |
| 		kfree(vms[area]);
 | |
| 	}
 | |
| err_free2:
 | |
| 	kfree(vas);
 | |
| 	kfree(vms);
 | |
| 	return NULL;
 | |
| 
 | |
| err_free_shadow:
 | |
| 	spin_lock(&free_vmap_area_lock);
 | |
| 	/*
 | |
| 	 * We release all the vmalloc shadows, even the ones for regions that
 | |
| 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
 | |
| 	 * being able to tolerate this case.
 | |
| 	 */
 | |
| 	for (area = 0; area < nr_vms; area++) {
 | |
| 		orig_start = vas[area]->va_start;
 | |
| 		orig_end = vas[area]->va_end;
 | |
| 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
 | |
| 				&free_vmap_area_list);
 | |
| 		if (va)
 | |
| 			kasan_release_vmalloc(orig_start, orig_end,
 | |
| 				va->va_start, va->va_end);
 | |
| 		vas[area] = NULL;
 | |
| 		kfree(vms[area]);
 | |
| 	}
 | |
| 	spin_unlock(&free_vmap_area_lock);
 | |
| 	kfree(vas);
 | |
| 	kfree(vms);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
 | |
|  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
 | |
|  * @nr_vms: the number of allocated areas
 | |
|  *
 | |
|  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
 | |
|  */
 | |
| void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_vms; i++)
 | |
| 		free_vm_area(vms[i]);
 | |
| 	kfree(vms);
 | |
| }
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| bool vmalloc_dump_obj(void *object)
 | |
| {
 | |
| 	const void *caller;
 | |
| 	struct vm_struct *vm;
 | |
| 	struct vmap_area *va;
 | |
| 	struct vmap_node *vn;
 | |
| 	unsigned long addr;
 | |
| 	unsigned int nr_pages;
 | |
| 
 | |
| 	addr = PAGE_ALIGN((unsigned long) object);
 | |
| 	vn = addr_to_node(addr);
 | |
| 
 | |
| 	if (!spin_trylock(&vn->busy.lock))
 | |
| 		return false;
 | |
| 
 | |
| 	va = __find_vmap_area(addr, &vn->busy.root);
 | |
| 	if (!va || !va->vm) {
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	vm = va->vm;
 | |
| 	addr = (unsigned long) vm->addr;
 | |
| 	caller = vm->caller;
 | |
| 	nr_pages = vm->nr_pages;
 | |
| 	spin_unlock(&vn->busy.lock);
 | |
| 
 | |
| 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
 | |
| 		nr_pages, addr, caller);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static void show_numa_info(struct seq_file *m, struct vm_struct *v)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_NUMA)) {
 | |
| 		unsigned int nr, *counters = m->private;
 | |
| 		unsigned int step = 1U << vm_area_page_order(v);
 | |
| 
 | |
| 		if (!counters)
 | |
| 			return;
 | |
| 
 | |
| 		if (v->flags & VM_UNINITIALIZED)
 | |
| 			return;
 | |
| 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
 | |
| 
 | |
| 		for (nr = 0; nr < v->nr_pages; nr += step)
 | |
| 			counters[page_to_nid(v->pages[nr])] += step;
 | |
| 		for_each_node_state(nr, N_HIGH_MEMORY)
 | |
| 			if (counters[nr])
 | |
| 				seq_printf(m, " N%u=%u", nr, counters[nr]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void show_purge_info(struct seq_file *m)
 | |
| {
 | |
| 	struct vmap_node *vn;
 | |
| 	struct vmap_area *va;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_vmap_nodes; i++) {
 | |
| 		vn = &vmap_nodes[i];
 | |
| 
 | |
| 		spin_lock(&vn->lazy.lock);
 | |
| 		list_for_each_entry(va, &vn->lazy.head, list) {
 | |
| 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
 | |
| 				(void *)va->va_start, (void *)va->va_end,
 | |
| 				va_size(va));
 | |
| 		}
 | |
| 		spin_unlock(&vn->lazy.lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vmalloc_info_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	struct vmap_node *vn;
 | |
| 	struct vmap_area *va;
 | |
| 	struct vm_struct *v;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_vmap_nodes; i++) {
 | |
| 		vn = &vmap_nodes[i];
 | |
| 
 | |
| 		spin_lock(&vn->busy.lock);
 | |
| 		list_for_each_entry(va, &vn->busy.head, list) {
 | |
| 			if (!va->vm) {
 | |
| 				if (va->flags & VMAP_RAM)
 | |
| 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
 | |
| 						(void *)va->va_start, (void *)va->va_end,
 | |
| 						va_size(va));
 | |
| 
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			v = va->vm;
 | |
| 
 | |
| 			seq_printf(m, "0x%pK-0x%pK %7ld",
 | |
| 				v->addr, v->addr + v->size, v->size);
 | |
| 
 | |
| 			if (v->caller)
 | |
| 				seq_printf(m, " %pS", v->caller);
 | |
| 
 | |
| 			if (v->nr_pages)
 | |
| 				seq_printf(m, " pages=%d", v->nr_pages);
 | |
| 
 | |
| 			if (v->phys_addr)
 | |
| 				seq_printf(m, " phys=%pa", &v->phys_addr);
 | |
| 
 | |
| 			if (v->flags & VM_IOREMAP)
 | |
| 				seq_puts(m, " ioremap");
 | |
| 
 | |
| 			if (v->flags & VM_SPARSE)
 | |
| 				seq_puts(m, " sparse");
 | |
| 
 | |
| 			if (v->flags & VM_ALLOC)
 | |
| 				seq_puts(m, " vmalloc");
 | |
| 
 | |
| 			if (v->flags & VM_MAP)
 | |
| 				seq_puts(m, " vmap");
 | |
| 
 | |
| 			if (v->flags & VM_USERMAP)
 | |
| 				seq_puts(m, " user");
 | |
| 
 | |
| 			if (v->flags & VM_DMA_COHERENT)
 | |
| 				seq_puts(m, " dma-coherent");
 | |
| 
 | |
| 			if (is_vmalloc_addr(v->pages))
 | |
| 				seq_puts(m, " vpages");
 | |
| 
 | |
| 			show_numa_info(m, v);
 | |
| 			seq_putc(m, '\n');
 | |
| 		}
 | |
| 		spin_unlock(&vn->busy.lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * As a final step, dump "unpurged" areas.
 | |
| 	 */
 | |
| 	show_purge_info(m);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init proc_vmalloc_init(void)
 | |
| {
 | |
| 	void *priv_data = NULL;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_NUMA))
 | |
| 		priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
 | |
| 
 | |
| 	proc_create_single_data("vmallocinfo",
 | |
| 		0400, NULL, vmalloc_info_show, priv_data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| module_init(proc_vmalloc_init);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void __init vmap_init_free_space(void)
 | |
| {
 | |
| 	unsigned long vmap_start = 1;
 | |
| 	const unsigned long vmap_end = ULONG_MAX;
 | |
| 	struct vmap_area *free;
 | |
| 	struct vm_struct *busy;
 | |
| 
 | |
| 	/*
 | |
| 	 *     B     F     B     B     B     F
 | |
| 	 * -|-----|.....|-----|-----|-----|.....|-
 | |
| 	 *  |           The KVA space           |
 | |
| 	 *  |<--------------------------------->|
 | |
| 	 */
 | |
| 	for (busy = vmlist; busy; busy = busy->next) {
 | |
| 		if ((unsigned long) busy->addr - vmap_start > 0) {
 | |
| 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
 | |
| 			if (!WARN_ON_ONCE(!free)) {
 | |
| 				free->va_start = vmap_start;
 | |
| 				free->va_end = (unsigned long) busy->addr;
 | |
| 
 | |
| 				insert_vmap_area_augment(free, NULL,
 | |
| 					&free_vmap_area_root,
 | |
| 						&free_vmap_area_list);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		vmap_start = (unsigned long) busy->addr + busy->size;
 | |
| 	}
 | |
| 
 | |
| 	if (vmap_end - vmap_start > 0) {
 | |
| 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
 | |
| 		if (!WARN_ON_ONCE(!free)) {
 | |
| 			free->va_start = vmap_start;
 | |
| 			free->va_end = vmap_end;
 | |
| 
 | |
| 			insert_vmap_area_augment(free, NULL,
 | |
| 				&free_vmap_area_root,
 | |
| 					&free_vmap_area_list);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void vmap_init_nodes(void)
 | |
| {
 | |
| 	struct vmap_node *vn;
 | |
| 	int i, n;
 | |
| 
 | |
| #if BITS_PER_LONG == 64
 | |
| 	/*
 | |
| 	 * A high threshold of max nodes is fixed and bound to 128,
 | |
| 	 * thus a scale factor is 1 for systems where number of cores
 | |
| 	 * are less or equal to specified threshold.
 | |
| 	 *
 | |
| 	 * As for NUMA-aware notes. For bigger systems, for example
 | |
| 	 * NUMA with multi-sockets, where we can end-up with thousands
 | |
| 	 * of cores in total, a "sub-numa-clustering" should be added.
 | |
| 	 *
 | |
| 	 * In this case a NUMA domain is considered as a single entity
 | |
| 	 * with dedicated sub-nodes in it which describe one group or
 | |
| 	 * set of cores. Therefore a per-domain purging is supposed to
 | |
| 	 * be added as well as a per-domain balancing.
 | |
| 	 */
 | |
| 	n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
 | |
| 
 | |
| 	if (n > 1) {
 | |
| 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
 | |
| 		if (vn) {
 | |
| 			/* Node partition is 16 pages. */
 | |
| 			vmap_zone_size = (1 << 4) * PAGE_SIZE;
 | |
| 			nr_vmap_nodes = n;
 | |
| 			vmap_nodes = vn;
 | |
| 		} else {
 | |
| 			pr_err("Failed to allocate an array. Disable a node layer\n");
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	for (n = 0; n < nr_vmap_nodes; n++) {
 | |
| 		vn = &vmap_nodes[n];
 | |
| 		vn->busy.root = RB_ROOT;
 | |
| 		INIT_LIST_HEAD(&vn->busy.head);
 | |
| 		spin_lock_init(&vn->busy.lock);
 | |
| 
 | |
| 		vn->lazy.root = RB_ROOT;
 | |
| 		INIT_LIST_HEAD(&vn->lazy.head);
 | |
| 		spin_lock_init(&vn->lazy.lock);
 | |
| 
 | |
| 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
 | |
| 			INIT_LIST_HEAD(&vn->pool[i].head);
 | |
| 			WRITE_ONCE(vn->pool[i].len, 0);
 | |
| 		}
 | |
| 
 | |
| 		spin_lock_init(&vn->pool_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	unsigned long count;
 | |
| 	struct vmap_node *vn;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
 | |
| 		vn = &vmap_nodes[i];
 | |
| 
 | |
| 		for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
 | |
| 			count += READ_ONCE(vn->pool[j].len);
 | |
| 	}
 | |
| 
 | |
| 	return count ? count : SHRINK_EMPTY;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_vmap_nodes; i++)
 | |
| 		decay_va_pool_node(&vmap_nodes[i], true);
 | |
| 
 | |
| 	return SHRINK_STOP;
 | |
| }
 | |
| 
 | |
| void __init vmalloc_init(void)
 | |
| {
 | |
| 	struct shrinker *vmap_node_shrinker;
 | |
| 	struct vmap_area *va;
 | |
| 	struct vmap_node *vn;
 | |
| 	struct vm_struct *tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Create the cache for vmap_area objects.
 | |
| 	 */
 | |
| 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct vmap_block_queue *vbq;
 | |
| 		struct vfree_deferred *p;
 | |
| 
 | |
| 		vbq = &per_cpu(vmap_block_queue, i);
 | |
| 		spin_lock_init(&vbq->lock);
 | |
| 		INIT_LIST_HEAD(&vbq->free);
 | |
| 		p = &per_cpu(vfree_deferred, i);
 | |
| 		init_llist_head(&p->list);
 | |
| 		INIT_WORK(&p->wq, delayed_vfree_work);
 | |
| 		xa_init(&vbq->vmap_blocks);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup nodes before importing vmlist.
 | |
| 	 */
 | |
| 	vmap_init_nodes();
 | |
| 
 | |
| 	/* Import existing vmlist entries. */
 | |
| 	for (tmp = vmlist; tmp; tmp = tmp->next) {
 | |
| 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
 | |
| 		if (WARN_ON_ONCE(!va))
 | |
| 			continue;
 | |
| 
 | |
| 		va->va_start = (unsigned long)tmp->addr;
 | |
| 		va->va_end = va->va_start + tmp->size;
 | |
| 		va->vm = tmp;
 | |
| 
 | |
| 		vn = addr_to_node(va->va_start);
 | |
| 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we can initialize a free vmap space.
 | |
| 	 */
 | |
| 	vmap_init_free_space();
 | |
| 	vmap_initialized = true;
 | |
| 
 | |
| 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
 | |
| 	if (!vmap_node_shrinker) {
 | |
| 		pr_err("Failed to allocate vmap-node shrinker!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
 | |
| 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
 | |
| 	shrinker_register(vmap_node_shrinker);
 | |
| }
 |