forked from mirrors/linux
		
	 1ecbd7170d
			
		
	
	
		1ecbd7170d
		
	
	
	
	
		
			
			Default value of pcc_subspace_idx is -1.
Make sure to check pcc_subspace_idx before using the same as array index.
This will avoid following KASAN warnings too.
[   15.113449] ==================================================================
[   15.116983] BUG: KASAN: global-out-of-bounds in cppc_get_perf_caps+0xf3/0x3b0
[   15.116983] Read of size 8 at addr ffffffffb9a5c0d8 by task swapper/0/1
[   15.116983] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 4.15.0-rc2+ #2
[   15.116983] Hardware name: Dell Inc. OptiPlex 7040/0Y7WYT, BIOS 1.2.8 01/26/2016
[   15.116983] Call Trace:
[   15.116983]  dump_stack+0x7c/0xbb
[   15.116983]  print_address_description+0x1df/0x290
[   15.116983]  kasan_report+0x28a/0x370
[   15.116983]  ? cppc_get_perf_caps+0xf3/0x3b0
[   15.116983]  cppc_get_perf_caps+0xf3/0x3b0
[   15.116983]  ? cpc_read+0x210/0x210
[   15.116983]  ? __rdmsr_on_cpu+0x90/0x90
[   15.116983]  ? rdmsrl_on_cpu+0xa9/0xe0
[   15.116983]  ? rdmsr_on_cpu+0x100/0x100
[   15.116983]  ? wrmsrl_on_cpu+0x9c/0xd0
[   15.116983]  ? wrmsrl_on_cpu+0x9c/0xd0
[   15.116983]  ? wrmsr_on_cpu+0xe0/0xe0
[   15.116983]  __intel_pstate_cpu_init.part.16+0x3a2/0x530
[   15.116983]  ? intel_pstate_init_cpu+0x197/0x390
[   15.116983]  ? show_no_turbo+0xe0/0xe0
[   15.116983]  ? __lockdep_init_map+0xa0/0x290
[   15.116983]  intel_pstate_cpu_init+0x30/0x60
[   15.116983]  cpufreq_online+0x155/0xac0
[   15.116983]  cpufreq_add_dev+0x9b/0xb0
[   15.116983]  subsys_interface_register+0x1ae/0x290
[   15.116983]  ? bus_unregister_notifier+0x40/0x40
[   15.116983]  ? mark_held_locks+0x83/0xb0
[   15.116983]  ? _raw_write_unlock_irqrestore+0x32/0x60
[   15.116983]  ? intel_pstate_setup+0xc/0x104
[   15.116983]  ? intel_pstate_setup+0xc/0x104
[   15.116983]  ? cpufreq_register_driver+0x1ce/0x2b0
[   15.116983]  cpufreq_register_driver+0x1ce/0x2b0
[   15.116983]  ? intel_pstate_setup+0x104/0x104
[   15.116983]  intel_pstate_register_driver+0x3a/0xa0
[   15.116983]  intel_pstate_init+0x3c4/0x434
[   15.116983]  ? intel_pstate_setup+0x104/0x104
[   15.116983]  ? intel_pstate_setup+0x104/0x104
[   15.116983]  do_one_initcall+0x9c/0x206
[   15.116983]  ? parameq+0xa0/0xa0
[   15.116983]  ? initcall_blacklisted+0x150/0x150
[   15.116983]  ? lock_downgrade+0x2c0/0x2c0
[   15.116983]  kernel_init_freeable+0x327/0x3f0
[   15.116983]  ? start_kernel+0x612/0x612
[   15.116983]  ? _raw_spin_unlock_irq+0x29/0x40
[   15.116983]  ? finish_task_switch+0xdd/0x320
[   15.116983]  ? finish_task_switch+0x8e/0x320
[   15.116983]  ? rest_init+0xd0/0xd0
[   15.116983]  kernel_init+0xf/0x11a
[   15.116983]  ? rest_init+0xd0/0xd0
[   15.116983]  ret_from_fork+0x24/0x30
[   15.116983] The buggy address belongs to the variable:
[   15.116983]  __key.36299+0x38/0x40
[   15.116983] Memory state around the buggy address:
[   15.116983]  ffffffffb9a5bf80: fa fa fa fa 00 fa fa fa fa fa fa fa 00 fa fa fa
[   15.116983]  ffffffffb9a5c000: fa fa fa fa 00 fa fa fa fa fa fa fa 00 fa fa fa
[   15.116983] >ffffffffb9a5c080: fa fa fa fa 00 fa fa fa fa fa fa fa 00 00 00 00
[   15.116983]                                                     ^
[   15.116983]  ffffffffb9a5c100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[   15.116983]  ffffffffb9a5c180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[   15.116983] ==================================================================
Fixes: 85b1407bf6 (ACPI / CPPC: Make CPPC ACPI driver aware of PCC subspace IDs)
Reported-by: Changbin Du <changbin.du@intel.com>
Signed-off-by: George Cherian <george.cherian@cavium.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
		
	
			
		
			
				
	
	
		
			1329 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1329 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
 | |
|  *
 | |
|  * (C) Copyright 2014, 2015 Linaro Ltd.
 | |
|  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; version 2
 | |
|  * of the License.
 | |
|  *
 | |
|  * CPPC describes a few methods for controlling CPU performance using
 | |
|  * information from a per CPU table called CPC. This table is described in
 | |
|  * the ACPI v5.0+ specification. The table consists of a list of
 | |
|  * registers which may be memory mapped or hardware registers and also may
 | |
|  * include some static integer values.
 | |
|  *
 | |
|  * CPU performance is on an abstract continuous scale as against a discretized
 | |
|  * P-state scale which is tied to CPU frequency only. In brief, the basic
 | |
|  * operation involves:
 | |
|  *
 | |
|  * - OS makes a CPU performance request. (Can provide min and max bounds)
 | |
|  *
 | |
|  * - Platform (such as BMC) is free to optimize request within requested bounds
 | |
|  *   depending on power/thermal budgets etc.
 | |
|  *
 | |
|  * - Platform conveys its decision back to OS
 | |
|  *
 | |
|  * The communication between OS and platform occurs through another medium
 | |
|  * called (PCC) Platform Communication Channel. This is a generic mailbox like
 | |
|  * mechanism which includes doorbell semantics to indicate register updates.
 | |
|  * See drivers/mailbox/pcc.c for details on PCC.
 | |
|  *
 | |
|  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
 | |
|  * above specifications.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt)	"ACPI CPPC: " fmt
 | |
| 
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/wait.h>
 | |
| 
 | |
| #include <acpi/cppc_acpi.h>
 | |
| 
 | |
| struct cppc_pcc_data {
 | |
| 	struct mbox_chan *pcc_channel;
 | |
| 	void __iomem *pcc_comm_addr;
 | |
| 	bool pcc_channel_acquired;
 | |
| 	ktime_t deadline;
 | |
| 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
 | |
| 
 | |
| 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
 | |
| 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
 | |
| 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock to provide controlled access to the PCC channel.
 | |
| 	 *
 | |
| 	 * For performance critical usecases(currently cppc_set_perf)
 | |
| 	 *	We need to take read_lock and check if channel belongs to OSPM
 | |
| 	 * before reading or writing to PCC subspace
 | |
| 	 *	We need to take write_lock before transferring the channel
 | |
| 	 * ownership to the platform via a Doorbell
 | |
| 	 *	This allows us to batch a number of CPPC requests if they happen
 | |
| 	 * to originate in about the same time
 | |
| 	 *
 | |
| 	 * For non-performance critical usecases(init)
 | |
| 	 *	Take write_lock for all purposes which gives exclusive access
 | |
| 	 */
 | |
| 	struct rw_semaphore pcc_lock;
 | |
| 
 | |
| 	/* Wait queue for CPUs whose requests were batched */
 | |
| 	wait_queue_head_t pcc_write_wait_q;
 | |
| 	ktime_t last_cmd_cmpl_time;
 | |
| 	ktime_t last_mpar_reset;
 | |
| 	int mpar_count;
 | |
| 	int refcount;
 | |
| };
 | |
| 
 | |
| /* Array  to represent the PCC channel per subspace id */
 | |
| static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
 | |
| /* The cpu_pcc_subspace_idx containsper CPU subspace id */
 | |
| static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
 | |
| 
 | |
| /*
 | |
|  * The cpc_desc structure contains the ACPI register details
 | |
|  * as described in the per CPU _CPC tables. The details
 | |
|  * include the type of register (e.g. PCC, System IO, FFH etc.)
 | |
|  * and destination addresses which lets us READ/WRITE CPU performance
 | |
|  * information using the appropriate I/O methods.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
 | |
| 
 | |
| /* pcc mapped address + header size + offset within PCC subspace */
 | |
| #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
 | |
| 						0x8 + (offs))
 | |
| 
 | |
| /* Check if a CPC register is in PCC */
 | |
| #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
 | |
| 				(cpc)->cpc_entry.reg.space_id ==	\
 | |
| 				ACPI_ADR_SPACE_PLATFORM_COMM)
 | |
| 
 | |
| /* Evalutes to True if reg is a NULL register descriptor */
 | |
| #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
 | |
| 				(reg)->address == 0 &&			\
 | |
| 				(reg)->bit_width == 0 &&		\
 | |
| 				(reg)->bit_offset == 0 &&		\
 | |
| 				(reg)->access_width == 0)
 | |
| 
 | |
| /* Evalutes to True if an optional cpc field is supported */
 | |
| #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
 | |
| 				!!(cpc)->cpc_entry.int_value :		\
 | |
| 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
 | |
| /*
 | |
|  * Arbitrary Retries in case the remote processor is slow to respond
 | |
|  * to PCC commands. Keeping it high enough to cover emulators where
 | |
|  * the processors run painfully slow.
 | |
|  */
 | |
| #define NUM_RETRIES 500
 | |
| 
 | |
| struct cppc_attr {
 | |
| 	struct attribute attr;
 | |
| 	ssize_t (*show)(struct kobject *kobj,
 | |
| 			struct attribute *attr, char *buf);
 | |
| 	ssize_t (*store)(struct kobject *kobj,
 | |
| 			struct attribute *attr, const char *c, ssize_t count);
 | |
| };
 | |
| 
 | |
| #define define_one_cppc_ro(_name)		\
 | |
| static struct cppc_attr _name =			\
 | |
| __ATTR(_name, 0444, show_##_name, NULL)
 | |
| 
 | |
| #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
 | |
| 
 | |
| #define show_cppc_data(access_fn, struct_name, member_name)		\
 | |
| 	static ssize_t show_##member_name(struct kobject *kobj,		\
 | |
| 					struct attribute *attr,	char *buf) \
 | |
| 	{								\
 | |
| 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
 | |
| 		struct struct_name st_name = {0};			\
 | |
| 		int ret;						\
 | |
| 									\
 | |
| 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
 | |
| 		if (ret)						\
 | |
| 			return ret;					\
 | |
| 									\
 | |
| 		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
 | |
| 				(u64)st_name.member_name);		\
 | |
| 	}								\
 | |
| 	define_one_cppc_ro(member_name)
 | |
| 
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
 | |
| show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
 | |
| show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
 | |
| show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
 | |
| 
 | |
| static ssize_t show_feedback_ctrs(struct kobject *kobj,
 | |
| 		struct attribute *attr, char *buf)
 | |
| {
 | |
| 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
 | |
| 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
 | |
| 			fb_ctrs.reference, fb_ctrs.delivered);
 | |
| }
 | |
| define_one_cppc_ro(feedback_ctrs);
 | |
| 
 | |
| static struct attribute *cppc_attrs[] = {
 | |
| 	&feedback_ctrs.attr,
 | |
| 	&reference_perf.attr,
 | |
| 	&wraparound_time.attr,
 | |
| 	&highest_perf.attr,
 | |
| 	&lowest_perf.attr,
 | |
| 	&lowest_nonlinear_perf.attr,
 | |
| 	&nominal_perf.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static struct kobj_type cppc_ktype = {
 | |
| 	.sysfs_ops = &kobj_sysfs_ops,
 | |
| 	.default_attrs = cppc_attrs,
 | |
| };
 | |
| 
 | |
| static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
 | |
| {
 | |
| 	int ret = -EIO, status = 0;
 | |
| 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
 | |
| 		pcc_ss_data->pcc_comm_addr;
 | |
| 	ktime_t next_deadline = ktime_add(ktime_get(),
 | |
| 					  pcc_ss_data->deadline);
 | |
| 
 | |
| 	if (!pcc_ss_data->platform_owns_pcc)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Retry in case the remote processor was too slow to catch up. */
 | |
| 	while (!ktime_after(ktime_get(), next_deadline)) {
 | |
| 		/*
 | |
| 		 * Per spec, prior to boot the PCC space wil be initialized by
 | |
| 		 * platform and should have set the command completion bit when
 | |
| 		 * PCC can be used by OSPM
 | |
| 		 */
 | |
| 		status = readw_relaxed(&generic_comm_base->status);
 | |
| 		if (status & PCC_CMD_COMPLETE_MASK) {
 | |
| 			ret = 0;
 | |
| 			if (chk_err_bit && (status & PCC_ERROR_MASK))
 | |
| 				ret = -EIO;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Reducing the bus traffic in case this loop takes longer than
 | |
| 		 * a few retries.
 | |
| 		 */
 | |
| 		udelay(3);
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!ret))
 | |
| 		pcc_ss_data->platform_owns_pcc = false;
 | |
| 	else
 | |
| 		pr_err("PCC check channel failed. Status=%x\n", status);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function transfers the ownership of the PCC to the platform
 | |
|  * So it must be called while holding write_lock(pcc_lock)
 | |
|  */
 | |
| static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
 | |
| {
 | |
| 	int ret = -EIO, i;
 | |
| 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	struct acpi_pcct_shared_memory *generic_comm_base =
 | |
| 		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
 | |
| 	unsigned int time_delta;
 | |
| 
 | |
| 	/*
 | |
| 	 * For CMD_WRITE we know for a fact the caller should have checked
 | |
| 	 * the channel before writing to PCC space
 | |
| 	 */
 | |
| 	if (cmd == CMD_READ) {
 | |
| 		/*
 | |
| 		 * If there are pending cpc_writes, then we stole the channel
 | |
| 		 * before write completion, so first send a WRITE command to
 | |
| 		 * platform
 | |
| 		 */
 | |
| 		if (pcc_ss_data->pending_pcc_write_cmd)
 | |
| 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
 | |
| 
 | |
| 		ret = check_pcc_chan(pcc_ss_id, false);
 | |
| 		if (ret)
 | |
| 			goto end;
 | |
| 	} else /* CMD_WRITE */
 | |
| 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the Minimum Request Turnaround Time(MRTT)
 | |
| 	 * "The minimum amount of time that OSPM must wait after the completion
 | |
| 	 * of a command before issuing the next command, in microseconds"
 | |
| 	 */
 | |
| 	if (pcc_ss_data->pcc_mrtt) {
 | |
| 		time_delta = ktime_us_delta(ktime_get(),
 | |
| 					    pcc_ss_data->last_cmd_cmpl_time);
 | |
| 		if (pcc_ss_data->pcc_mrtt > time_delta)
 | |
| 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
 | |
| 	 * "The maximum number of periodic requests that the subspace channel can
 | |
| 	 * support, reported in commands per minute. 0 indicates no limitation."
 | |
| 	 *
 | |
| 	 * This parameter should be ideally zero or large enough so that it can
 | |
| 	 * handle maximum number of requests that all the cores in the system can
 | |
| 	 * collectively generate. If it is not, we will follow the spec and just
 | |
| 	 * not send the request to the platform after hitting the MPAR limit in
 | |
| 	 * any 60s window
 | |
| 	 */
 | |
| 	if (pcc_ss_data->pcc_mpar) {
 | |
| 		if (pcc_ss_data->mpar_count == 0) {
 | |
| 			time_delta = ktime_ms_delta(ktime_get(),
 | |
| 						    pcc_ss_data->last_mpar_reset);
 | |
| 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
 | |
| 				pr_debug("PCC cmd not sent due to MPAR limit");
 | |
| 				ret = -EIO;
 | |
| 				goto end;
 | |
| 			}
 | |
| 			pcc_ss_data->last_mpar_reset = ktime_get();
 | |
| 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
 | |
| 		}
 | |
| 		pcc_ss_data->mpar_count--;
 | |
| 	}
 | |
| 
 | |
| 	/* Write to the shared comm region. */
 | |
| 	writew_relaxed(cmd, &generic_comm_base->command);
 | |
| 
 | |
| 	/* Flip CMD COMPLETE bit */
 | |
| 	writew_relaxed(0, &generic_comm_base->status);
 | |
| 
 | |
| 	pcc_ss_data->platform_owns_pcc = true;
 | |
| 
 | |
| 	/* Ring doorbell */
 | |
| 	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
 | |
| 	if (ret < 0) {
 | |
| 		pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
 | |
| 				cmd, ret);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	/* wait for completion and check for PCC errro bit */
 | |
| 	ret = check_pcc_chan(pcc_ss_id, true);
 | |
| 
 | |
| 	if (pcc_ss_data->pcc_mrtt)
 | |
| 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
 | |
| 
 | |
| 	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
 | |
| 		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
 | |
| 	else
 | |
| 		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
 | |
| 
 | |
| end:
 | |
| 	if (cmd == CMD_WRITE) {
 | |
| 		if (unlikely(ret)) {
 | |
| 			for_each_possible_cpu(i) {
 | |
| 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
 | |
| 				if (!desc)
 | |
| 					continue;
 | |
| 
 | |
| 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
 | |
| 					desc->write_cmd_status = ret;
 | |
| 			}
 | |
| 		}
 | |
| 		pcc_ss_data->pcc_write_cnt++;
 | |
| 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
 | |
| {
 | |
| 	if (ret < 0)
 | |
| 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
 | |
| 				*(u16 *)msg, ret);
 | |
| 	else
 | |
| 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
 | |
| 				*(u16 *)msg, ret);
 | |
| }
 | |
| 
 | |
| struct mbox_client cppc_mbox_cl = {
 | |
| 	.tx_done = cppc_chan_tx_done,
 | |
| 	.knows_txdone = true,
 | |
| };
 | |
| 
 | |
| static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
 | |
| {
 | |
| 	int result = -EFAULT;
 | |
| 	acpi_status status = AE_OK;
 | |
| 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
 | |
| 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
 | |
| 	struct acpi_buffer state = {0, NULL};
 | |
| 	union acpi_object  *psd = NULL;
 | |
| 	struct acpi_psd_package *pdomain;
 | |
| 
 | |
| 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
 | |
| 			ACPI_TYPE_PACKAGE);
 | |
| 	if (ACPI_FAILURE(status))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	psd = buffer.pointer;
 | |
| 	if (!psd || psd->package.count != 1) {
 | |
| 		pr_debug("Invalid _PSD data\n");
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	pdomain = &(cpc_ptr->domain_info);
 | |
| 
 | |
| 	state.length = sizeof(struct acpi_psd_package);
 | |
| 	state.pointer = pdomain;
 | |
| 
 | |
| 	status = acpi_extract_package(&(psd->package.elements[0]),
 | |
| 		&format, &state);
 | |
| 	if (ACPI_FAILURE(status)) {
 | |
| 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
 | |
| 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
 | |
| 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
 | |
| 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
 | |
| 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
 | |
| 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
 | |
| 		goto end;
 | |
| 	}
 | |
| 
 | |
| 	result = 0;
 | |
| end:
 | |
| 	kfree(buffer.pointer);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acpi_get_psd_map - Map the CPUs in a common freq domain.
 | |
|  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
 | |
|  *
 | |
|  *	Return: 0 for success or negative value for err.
 | |
|  */
 | |
| int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
 | |
| {
 | |
| 	int count_target;
 | |
| 	int retval = 0;
 | |
| 	unsigned int i, j;
 | |
| 	cpumask_var_t covered_cpus;
 | |
| 	struct cppc_cpudata *pr, *match_pr;
 | |
| 	struct acpi_psd_package *pdomain;
 | |
| 	struct acpi_psd_package *match_pdomain;
 | |
| 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we have _PSD data from all CPUs, lets setup P-state
 | |
| 	 * domain info.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		pr = all_cpu_data[i];
 | |
| 		if (!pr)
 | |
| 			continue;
 | |
| 
 | |
| 		if (cpumask_test_cpu(i, covered_cpus))
 | |
| 			continue;
 | |
| 
 | |
| 		cpc_ptr = per_cpu(cpc_desc_ptr, i);
 | |
| 		if (!cpc_ptr) {
 | |
| 			retval = -EFAULT;
 | |
| 			goto err_ret;
 | |
| 		}
 | |
| 
 | |
| 		pdomain = &(cpc_ptr->domain_info);
 | |
| 		cpumask_set_cpu(i, pr->shared_cpu_map);
 | |
| 		cpumask_set_cpu(i, covered_cpus);
 | |
| 		if (pdomain->num_processors <= 1)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Validate the Domain info */
 | |
| 		count_target = pdomain->num_processors;
 | |
| 		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
 | |
| 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 | |
| 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
 | |
| 			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
 | |
| 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
 | |
| 			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
 | |
| 
 | |
| 		for_each_possible_cpu(j) {
 | |
| 			if (i == j)
 | |
| 				continue;
 | |
| 
 | |
| 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
 | |
| 			if (!match_cpc_ptr) {
 | |
| 				retval = -EFAULT;
 | |
| 				goto err_ret;
 | |
| 			}
 | |
| 
 | |
| 			match_pdomain = &(match_cpc_ptr->domain_info);
 | |
| 			if (match_pdomain->domain != pdomain->domain)
 | |
| 				continue;
 | |
| 
 | |
| 			/* Here i and j are in the same domain */
 | |
| 			if (match_pdomain->num_processors != count_target) {
 | |
| 				retval = -EFAULT;
 | |
| 				goto err_ret;
 | |
| 			}
 | |
| 
 | |
| 			if (pdomain->coord_type != match_pdomain->coord_type) {
 | |
| 				retval = -EFAULT;
 | |
| 				goto err_ret;
 | |
| 			}
 | |
| 
 | |
| 			cpumask_set_cpu(j, covered_cpus);
 | |
| 			cpumask_set_cpu(j, pr->shared_cpu_map);
 | |
| 		}
 | |
| 
 | |
| 		for_each_possible_cpu(j) {
 | |
| 			if (i == j)
 | |
| 				continue;
 | |
| 
 | |
| 			match_pr = all_cpu_data[j];
 | |
| 			if (!match_pr)
 | |
| 				continue;
 | |
| 
 | |
| 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
 | |
| 			if (!match_cpc_ptr) {
 | |
| 				retval = -EFAULT;
 | |
| 				goto err_ret;
 | |
| 			}
 | |
| 
 | |
| 			match_pdomain = &(match_cpc_ptr->domain_info);
 | |
| 			if (match_pdomain->domain != pdomain->domain)
 | |
| 				continue;
 | |
| 
 | |
| 			match_pr->shared_type = pr->shared_type;
 | |
| 			cpumask_copy(match_pr->shared_cpu_map,
 | |
| 				     pr->shared_cpu_map);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| err_ret:
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		pr = all_cpu_data[i];
 | |
| 		if (!pr)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Assume no coordination on any error parsing domain info */
 | |
| 		if (retval) {
 | |
| 			cpumask_clear(pr->shared_cpu_map);
 | |
| 			cpumask_set_cpu(i, pr->shared_cpu_map);
 | |
| 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_cpumask_var(covered_cpus);
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(acpi_get_psd_map);
 | |
| 
 | |
| static int register_pcc_channel(int pcc_ss_idx)
 | |
| {
 | |
| 	struct acpi_pcct_hw_reduced *cppc_ss;
 | |
| 	u64 usecs_lat;
 | |
| 
 | |
| 	if (pcc_ss_idx >= 0) {
 | |
| 		pcc_data[pcc_ss_idx]->pcc_channel =
 | |
| 			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
 | |
| 
 | |
| 		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
 | |
| 			pr_err("Failed to find PCC communication channel\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The PCC mailbox controller driver should
 | |
| 		 * have parsed the PCCT (global table of all
 | |
| 		 * PCC channels) and stored pointers to the
 | |
| 		 * subspace communication region in con_priv.
 | |
| 		 */
 | |
| 		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
 | |
| 
 | |
| 		if (!cppc_ss) {
 | |
| 			pr_err("No PCC subspace found for CPPC\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * cppc_ss->latency is just a Nominal value. In reality
 | |
| 		 * the remote processor could be much slower to reply.
 | |
| 		 * So add an arbitrary amount of wait on top of Nominal.
 | |
| 		 */
 | |
| 		usecs_lat = NUM_RETRIES * cppc_ss->latency;
 | |
| 		pcc_data[pcc_ss_idx]->deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
 | |
| 		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
 | |
| 		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
 | |
| 		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
 | |
| 
 | |
| 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
 | |
| 			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
 | |
| 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
 | |
| 			pr_err("Failed to ioremap PCC comm region mem\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		/* Set flag so that we dont come here for each CPU. */
 | |
| 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpc_ffh_supported() - check if FFH reading supported
 | |
|  *
 | |
|  * Check if the architecture has support for functional fixed hardware
 | |
|  * read/write capability.
 | |
|  *
 | |
|  * Return: true for supported, false for not supported
 | |
|  */
 | |
| bool __weak cpc_ffh_supported(void)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 | |
|  *
 | |
|  * Check and allocate the cppc_pcc_data memory.
 | |
|  * In some processor configurations it is possible that same subspace
 | |
|  * is shared between multiple CPU's. This is seen especially in CPU's
 | |
|  * with hardware multi-threading support.
 | |
|  *
 | |
|  * Return: 0 for success, errno for failure
 | |
|  */
 | |
| int pcc_data_alloc(int pcc_ss_id)
 | |
| {
 | |
| 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pcc_data[pcc_ss_id]) {
 | |
| 		pcc_data[pcc_ss_id]->refcount++;
 | |
| 	} else {
 | |
| 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
 | |
| 					      GFP_KERNEL);
 | |
| 		if (!pcc_data[pcc_ss_id])
 | |
| 			return -ENOMEM;
 | |
| 		pcc_data[pcc_ss_id]->refcount++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| /*
 | |
|  * An example CPC table looks like the following.
 | |
|  *
 | |
|  *	Name(_CPC, Package()
 | |
|  *			{
 | |
|  *			17,
 | |
|  *			NumEntries
 | |
|  *			1,
 | |
|  *			// Revision
 | |
|  *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 | |
|  *			// Highest Performance
 | |
|  *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 | |
|  *			// Nominal Performance
 | |
|  *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 | |
|  *			// Lowest Nonlinear Performance
 | |
|  *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 | |
|  *			// Lowest Performance
 | |
|  *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 | |
|  *			// Guaranteed Performance Register
 | |
|  *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 | |
|  *			// Desired Performance Register
 | |
|  *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 | |
|  *			..
 | |
|  *			..
 | |
|  *			..
 | |
|  *
 | |
|  *		}
 | |
|  * Each Register() encodes how to access that specific register.
 | |
|  * e.g. a sample PCC entry has the following encoding:
 | |
|  *
 | |
|  *	Register (
 | |
|  *		PCC,
 | |
|  *		AddressSpaceKeyword
 | |
|  *		8,
 | |
|  *		//RegisterBitWidth
 | |
|  *		8,
 | |
|  *		//RegisterBitOffset
 | |
|  *		0x30,
 | |
|  *		//RegisterAddress
 | |
|  *		9
 | |
|  *		//AccessSize (subspace ID)
 | |
|  *		0
 | |
|  *		)
 | |
|  *	}
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 | |
|  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 | |
|  *
 | |
|  *	Return: 0 for success or negative value for err.
 | |
|  */
 | |
| int acpi_cppc_processor_probe(struct acpi_processor *pr)
 | |
| {
 | |
| 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
 | |
| 	union acpi_object *out_obj, *cpc_obj;
 | |
| 	struct cpc_desc *cpc_ptr;
 | |
| 	struct cpc_reg *gas_t;
 | |
| 	struct device *cpu_dev;
 | |
| 	acpi_handle handle = pr->handle;
 | |
| 	unsigned int num_ent, i, cpc_rev;
 | |
| 	int pcc_subspace_id = -1;
 | |
| 	acpi_status status;
 | |
| 	int ret = -EFAULT;
 | |
| 
 | |
| 	/* Parse the ACPI _CPC table for this cpu. */
 | |
| 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
 | |
| 			ACPI_TYPE_PACKAGE);
 | |
| 	if (ACPI_FAILURE(status)) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_buf_free;
 | |
| 	}
 | |
| 
 | |
| 	out_obj = (union acpi_object *) output.pointer;
 | |
| 
 | |
| 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
 | |
| 	if (!cpc_ptr) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_buf_free;
 | |
| 	}
 | |
| 
 | |
| 	/* First entry is NumEntries. */
 | |
| 	cpc_obj = &out_obj->package.elements[0];
 | |
| 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 | |
| 		num_ent = cpc_obj->integer.value;
 | |
| 	} else {
 | |
| 		pr_debug("Unexpected entry type(%d) for NumEntries\n",
 | |
| 				cpc_obj->type);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Only support CPPCv2. Bail otherwise. */
 | |
| 	if (num_ent != CPPC_NUM_ENT) {
 | |
| 		pr_debug("Firmware exports %d entries. Expected: %d\n",
 | |
| 				num_ent, CPPC_NUM_ENT);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	cpc_ptr->num_entries = num_ent;
 | |
| 
 | |
| 	/* Second entry should be revision. */
 | |
| 	cpc_obj = &out_obj->package.elements[1];
 | |
| 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 | |
| 		cpc_rev = cpc_obj->integer.value;
 | |
| 	} else {
 | |
| 		pr_debug("Unexpected entry type(%d) for Revision\n",
 | |
| 				cpc_obj->type);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	if (cpc_rev != CPPC_REV) {
 | |
| 		pr_debug("Firmware exports revision:%d. Expected:%d\n",
 | |
| 				cpc_rev, CPPC_REV);
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Iterate through remaining entries in _CPC */
 | |
| 	for (i = 2; i < num_ent; i++) {
 | |
| 		cpc_obj = &out_obj->package.elements[i];
 | |
| 
 | |
| 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 | |
| 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
 | |
| 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
 | |
| 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
 | |
| 			gas_t = (struct cpc_reg *)
 | |
| 				cpc_obj->buffer.pointer;
 | |
| 
 | |
| 			/*
 | |
| 			 * The PCC Subspace index is encoded inside
 | |
| 			 * the CPC table entries. The same PCC index
 | |
| 			 * will be used for all the PCC entries,
 | |
| 			 * so extract it only once.
 | |
| 			 */
 | |
| 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
 | |
| 				if (pcc_subspace_id < 0) {
 | |
| 					pcc_subspace_id = gas_t->access_width;
 | |
| 					if (pcc_data_alloc(pcc_subspace_id))
 | |
| 						goto out_free;
 | |
| 				} else if (pcc_subspace_id != gas_t->access_width) {
 | |
| 					pr_debug("Mismatched PCC ids.\n");
 | |
| 					goto out_free;
 | |
| 				}
 | |
| 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 | |
| 				if (gas_t->address) {
 | |
| 					void __iomem *addr;
 | |
| 
 | |
| 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
 | |
| 					if (!addr)
 | |
| 						goto out_free;
 | |
| 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
 | |
| 				}
 | |
| 			} else {
 | |
| 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
 | |
| 					/* Support only PCC ,SYS MEM and FFH type regs */
 | |
| 					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
 | |
| 					goto out_free;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
 | |
| 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
 | |
| 		} else {
 | |
| 			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	}
 | |
| 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
 | |
| 	/* Store CPU Logical ID */
 | |
| 	cpc_ptr->cpu_id = pr->id;
 | |
| 
 | |
| 	/* Parse PSD data for this CPU */
 | |
| 	ret = acpi_get_psd(cpc_ptr, handle);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* Register PCC channel once for all PCC subspace id. */
 | |
| 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
 | |
| 		ret = register_pcc_channel(pcc_subspace_id);
 | |
| 		if (ret)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
 | |
| 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
 | |
| 	}
 | |
| 
 | |
| 	/* Everything looks okay */
 | |
| 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
 | |
| 
 | |
| 	/* Add per logical CPU nodes for reading its feedback counters. */
 | |
| 	cpu_dev = get_cpu_device(pr->id);
 | |
| 	if (!cpu_dev) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Plug PSD data into this CPUs CPC descriptor. */
 | |
| 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
 | |
| 
 | |
| 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
 | |
| 			"acpi_cppc");
 | |
| 	if (ret) {
 | |
| 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	kfree(output.pointer);
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	/* Free all the mapped sys mem areas for this CPU */
 | |
| 	for (i = 2; i < cpc_ptr->num_entries; i++) {
 | |
| 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 | |
| 
 | |
| 		if (addr)
 | |
| 			iounmap(addr);
 | |
| 	}
 | |
| 	kfree(cpc_ptr);
 | |
| 
 | |
| out_buf_free:
 | |
| 	kfree(output.pointer);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
 | |
| 
 | |
| /**
 | |
|  * acpi_cppc_processor_exit - Cleanup CPC structs.
 | |
|  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
 | |
|  *
 | |
|  * Return: Void
 | |
|  */
 | |
| void acpi_cppc_processor_exit(struct acpi_processor *pr)
 | |
| {
 | |
| 	struct cpc_desc *cpc_ptr;
 | |
| 	unsigned int i;
 | |
| 	void __iomem *addr;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
 | |
| 
 | |
| 	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
 | |
| 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
 | |
| 			pcc_data[pcc_ss_id]->refcount--;
 | |
| 			if (!pcc_data[pcc_ss_id]->refcount) {
 | |
| 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
 | |
| 				pcc_data[pcc_ss_id]->pcc_channel_acquired = 0;
 | |
| 				kfree(pcc_data[pcc_ss_id]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
 | |
| 	if (!cpc_ptr)
 | |
| 		return;
 | |
| 
 | |
| 	/* Free all the mapped sys mem areas for this CPU */
 | |
| 	for (i = 2; i < cpc_ptr->num_entries; i++) {
 | |
| 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 | |
| 		if (addr)
 | |
| 			iounmap(addr);
 | |
| 	}
 | |
| 
 | |
| 	kobject_put(&cpc_ptr->kobj);
 | |
| 	kfree(cpc_ptr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
 | |
| 
 | |
| /**
 | |
|  * cpc_read_ffh() - Read FFH register
 | |
|  * @cpunum:	cpu number to read
 | |
|  * @reg:	cppc register information
 | |
|  * @val:	place holder for return value
 | |
|  *
 | |
|  * Read bit_width bits from a specified address and bit_offset
 | |
|  *
 | |
|  * Return: 0 for success and error code
 | |
|  */
 | |
| int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
 | |
| {
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cpc_write_ffh() - Write FFH register
 | |
|  * @cpunum:	cpu number to write
 | |
|  * @reg:	cppc register information
 | |
|  * @val:	value to write
 | |
|  *
 | |
|  * Write value of bit_width bits to a specified address and bit_offset
 | |
|  *
 | |
|  * Return: 0 for success and error code
 | |
|  */
 | |
| int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
 | |
| {
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 | |
|  * as fast as possible. We have already mapped the PCC subspace during init, so
 | |
|  * we can directly write to it.
 | |
|  */
 | |
| 
 | |
| static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
 | |
| {
 | |
| 	int ret_val = 0;
 | |
| 	void __iomem *vaddr = 0;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cpc_reg *reg = ®_res->cpc_entry.reg;
 | |
| 
 | |
| 	if (reg_res->type == ACPI_TYPE_INTEGER) {
 | |
| 		*val = reg_res->cpc_entry.int_value;
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 
 | |
| 	*val = 0;
 | |
| 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
 | |
| 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
 | |
| 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 | |
| 		vaddr = reg_res->sys_mem_vaddr;
 | |
| 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
 | |
| 		return cpc_read_ffh(cpu, reg, val);
 | |
| 	else
 | |
| 		return acpi_os_read_memory((acpi_physical_address)reg->address,
 | |
| 				val, reg->bit_width);
 | |
| 
 | |
| 	switch (reg->bit_width) {
 | |
| 		case 8:
 | |
| 			*val = readb_relaxed(vaddr);
 | |
| 			break;
 | |
| 		case 16:
 | |
| 			*val = readw_relaxed(vaddr);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			*val = readl_relaxed(vaddr);
 | |
| 			break;
 | |
| 		case 64:
 | |
| 			*val = readq_relaxed(vaddr);
 | |
| 			break;
 | |
| 		default:
 | |
| 			pr_debug("Error: Cannot read %u bit width from PCC\n",
 | |
| 					reg->bit_width);
 | |
| 			ret_val = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
 | |
| {
 | |
| 	int ret_val = 0;
 | |
| 	void __iomem *vaddr = 0;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cpc_reg *reg = ®_res->cpc_entry.reg;
 | |
| 
 | |
| 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
 | |
| 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
 | |
| 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 | |
| 		vaddr = reg_res->sys_mem_vaddr;
 | |
| 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
 | |
| 		return cpc_write_ffh(cpu, reg, val);
 | |
| 	else
 | |
| 		return acpi_os_write_memory((acpi_physical_address)reg->address,
 | |
| 				val, reg->bit_width);
 | |
| 
 | |
| 	switch (reg->bit_width) {
 | |
| 		case 8:
 | |
| 			writeb_relaxed(val, vaddr);
 | |
| 			break;
 | |
| 		case 16:
 | |
| 			writew_relaxed(val, vaddr);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			writel_relaxed(val, vaddr);
 | |
| 			break;
 | |
| 		case 64:
 | |
| 			writeq_relaxed(val, vaddr);
 | |
| 			break;
 | |
| 		default:
 | |
| 			pr_debug("Error: Cannot write %u bit width to PCC\n",
 | |
| 					reg->bit_width);
 | |
| 			ret_val = -EFAULT;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cppc_get_perf_caps - Get a CPUs performance capabilities.
 | |
|  * @cpunum: CPU from which to get capabilities info.
 | |
|  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
 | |
|  *
 | |
|  * Return: 0 for success with perf_caps populated else -ERRNO.
 | |
|  */
 | |
| int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
 | |
| {
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
 | |
| 	struct cpc_register_resource *highest_reg, *lowest_reg,
 | |
| 		*lowest_non_linear_reg, *nominal_reg;
 | |
| 	u64 high, low, nom, min_nonlinear;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
 | |
| 	struct cppc_pcc_data *pcc_ss_data;
 | |
| 	int ret = 0, regs_in_pcc = 0;
 | |
| 
 | |
| 	if (!cpc_desc || pcc_ss_id < 0) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
 | |
| 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
 | |
| 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
 | |
| 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
 | |
| 
 | |
| 	/* Are any of the regs PCC ?*/
 | |
| 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
 | |
| 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
 | |
| 		regs_in_pcc = 1;
 | |
| 		down_write(&pcc_ss_data->pcc_lock);
 | |
| 		/* Ring doorbell once to update PCC subspace */
 | |
| 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
 | |
| 			ret = -EIO;
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpc_read(cpunum, highest_reg, &high);
 | |
| 	perf_caps->highest_perf = high;
 | |
| 
 | |
| 	cpc_read(cpunum, lowest_reg, &low);
 | |
| 	perf_caps->lowest_perf = low;
 | |
| 
 | |
| 	cpc_read(cpunum, nominal_reg, &nom);
 | |
| 	perf_caps->nominal_perf = nom;
 | |
| 
 | |
| 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
 | |
| 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
 | |
| 
 | |
| 	if (!high || !low || !nom || !min_nonlinear)
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| out_err:
 | |
| 	if (regs_in_pcc)
 | |
| 		up_write(&pcc_ss_data->pcc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
 | |
|  * @cpunum: CPU from which to read counters.
 | |
|  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
 | |
|  *
 | |
|  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
 | |
|  */
 | |
| int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
 | |
| {
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
 | |
| 	struct cpc_register_resource *delivered_reg, *reference_reg,
 | |
| 		*ref_perf_reg, *ctr_wrap_reg;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
 | |
| 	struct cppc_pcc_data *pcc_ss_data;
 | |
| 	u64 delivered, reference, ref_perf, ctr_wrap_time;
 | |
| 	int ret = 0, regs_in_pcc = 0;
 | |
| 
 | |
| 	if (!cpc_desc || pcc_ss_id < 0) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
 | |
| 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
 | |
| 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
 | |
| 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
 | |
| 
 | |
| 	/*
 | |
| 	 * If refernce perf register is not supported then we should
 | |
| 	 * use the nominal perf value
 | |
| 	 */
 | |
| 	if (!CPC_SUPPORTED(ref_perf_reg))
 | |
| 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
 | |
| 
 | |
| 	/* Are any of the regs PCC ?*/
 | |
| 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
 | |
| 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
 | |
| 		down_write(&pcc_ss_data->pcc_lock);
 | |
| 		regs_in_pcc = 1;
 | |
| 		/* Ring doorbell once to update PCC subspace */
 | |
| 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
 | |
| 			ret = -EIO;
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cpc_read(cpunum, delivered_reg, &delivered);
 | |
| 	cpc_read(cpunum, reference_reg, &reference);
 | |
| 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
 | |
| 
 | |
| 	/*
 | |
| 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
 | |
| 	 * performance counters are assumed to never wrap during the lifetime of
 | |
| 	 * platform
 | |
| 	 */
 | |
| 	ctr_wrap_time = (u64)(~((u64)0));
 | |
| 	if (CPC_SUPPORTED(ctr_wrap_reg))
 | |
| 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
 | |
| 
 | |
| 	if (!delivered || !reference ||	!ref_perf) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	perf_fb_ctrs->delivered = delivered;
 | |
| 	perf_fb_ctrs->reference = reference;
 | |
| 	perf_fb_ctrs->reference_perf = ref_perf;
 | |
| 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
 | |
| out_err:
 | |
| 	if (regs_in_pcc)
 | |
| 		up_write(&pcc_ss_data->pcc_lock);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
 | |
| 
 | |
| /**
 | |
|  * cppc_set_perf - Set a CPUs performance controls.
 | |
|  * @cpu: CPU for which to set performance controls.
 | |
|  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
 | |
|  *
 | |
|  * Return: 0 for success, -ERRNO otherwise.
 | |
|  */
 | |
| int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
 | |
| {
 | |
| 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
 | |
| 	struct cpc_register_resource *desired_reg;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 | |
| 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!cpc_desc || pcc_ss_id < 0) {
 | |
| 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
 | |
| 
 | |
| 	/*
 | |
| 	 * This is Phase-I where we want to write to CPC registers
 | |
| 	 * -> We want all CPUs to be able to execute this phase in parallel
 | |
| 	 *
 | |
| 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
 | |
| 	 * achieve that goal here
 | |
| 	 */
 | |
| 	if (CPC_IN_PCC(desired_reg)) {
 | |
| 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
 | |
| 		if (pcc_ss_data->platform_owns_pcc) {
 | |
| 			ret = check_pcc_chan(pcc_ss_id, false);
 | |
| 			if (ret) {
 | |
| 				up_read(&pcc_ss_data->pcc_lock);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Update the pending_write to make sure a PCC CMD_READ will not
 | |
| 		 * arrive and steal the channel during the switch to write lock
 | |
| 		 */
 | |
| 		pcc_ss_data->pending_pcc_write_cmd = true;
 | |
| 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
 | |
| 		cpc_desc->write_cmd_status = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip writing MIN/MAX until Linux knows how to come up with
 | |
| 	 * useful values.
 | |
| 	 */
 | |
| 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
 | |
| 
 | |
| 	if (CPC_IN_PCC(desired_reg))
 | |
| 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
 | |
| 	/*
 | |
| 	 * This is Phase-II where we transfer the ownership of PCC to Platform
 | |
| 	 *
 | |
| 	 * Short Summary: Basically if we think of a group of cppc_set_perf
 | |
| 	 * requests that happened in short overlapping interval. The last CPU to
 | |
| 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
 | |
| 	 *
 | |
| 	 * We have the following requirements for Phase-II:
 | |
| 	 *     1. We want to execute Phase-II only when there are no CPUs
 | |
| 	 * currently executing in Phase-I
 | |
| 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
 | |
| 	 * entering Phase-I.
 | |
| 	 *     3. We want only one CPU among all those who went through Phase-I
 | |
| 	 * to run phase-II
 | |
| 	 *
 | |
| 	 * If write_trylock fails to get the lock and doesn't transfer the
 | |
| 	 * PCC ownership to the platform, then one of the following will be TRUE
 | |
| 	 *     1. There is at-least one CPU in Phase-I which will later execute
 | |
| 	 * write_trylock, so the CPUs in Phase-I will be responsible for
 | |
| 	 * executing the Phase-II.
 | |
| 	 *     2. Some other CPU has beaten this CPU to successfully execute the
 | |
| 	 * write_trylock and has already acquired the write_lock. We know for a
 | |
| 	 * fact it(other CPU acquiring the write_lock) couldn't have happened
 | |
| 	 * before this CPU's Phase-I as we held the read_lock.
 | |
| 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
 | |
| 	 * down_write, in which case, send_pcc_cmd will check for pending
 | |
| 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
 | |
| 	 * So this CPU can be certain that its request will be delivered
 | |
| 	 *    So in all cases, this CPU knows that its request will be delivered
 | |
| 	 * by another CPU and can return
 | |
| 	 *
 | |
| 	 * After getting the down_write we still need to check for
 | |
| 	 * pending_pcc_write_cmd to take care of the following scenario
 | |
| 	 *    The thread running this code could be scheduled out between
 | |
| 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
 | |
| 	 * could have delivered the request to Platform by triggering the
 | |
| 	 * doorbell and transferred the ownership of PCC to platform. So this
 | |
| 	 * avoids triggering an unnecessary doorbell and more importantly before
 | |
| 	 * triggering the doorbell it makes sure that the PCC channel ownership
 | |
| 	 * is still with OSPM.
 | |
| 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
 | |
| 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
 | |
| 	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
 | |
| 	 * case during a CMD_READ and if there are pending writes it delivers
 | |
| 	 * the write command before servicing the read command
 | |
| 	 */
 | |
| 	if (CPC_IN_PCC(desired_reg)) {
 | |
| 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
 | |
| 			/* Update only if there are pending write commands */
 | |
| 			if (pcc_ss_data->pending_pcc_write_cmd)
 | |
| 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
 | |
| 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
 | |
| 		} else
 | |
| 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
 | |
| 			wait_event(pcc_ss_data->pcc_write_wait_q,
 | |
| 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
 | |
| 
 | |
| 		/* send_pcc_cmd updates the status in case of failure */
 | |
| 		ret = cpc_desc->write_cmd_status;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_set_perf);
 | |
| 
 | |
| /**
 | |
|  * cppc_get_transition_latency - returns frequency transition latency in ns
 | |
|  *
 | |
|  * ACPI CPPC does not explicitly specifiy how a platform can specify the
 | |
|  * transition latency for perfromance change requests. The closest we have
 | |
|  * is the timing information from the PCCT tables which provides the info
 | |
|  * on the number and frequency of PCC commands the platform can handle.
 | |
|  */
 | |
| unsigned int cppc_get_transition_latency(int cpu_num)
 | |
| {
 | |
| 	/*
 | |
| 	 * Expected transition latency is based on the PCCT timing values
 | |
| 	 * Below are definition from ACPI spec:
 | |
| 	 * pcc_nominal- Expected latency to process a command, in microseconds
 | |
| 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
 | |
| 	 *              channel can support, reported in commands per minute. 0
 | |
| 	 *              indicates no limitation.
 | |
| 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
 | |
| 	 *              completion of a command before issuing the next command,
 | |
| 	 *              in microseconds.
 | |
| 	 */
 | |
| 	unsigned int latency_ns = 0;
 | |
| 	struct cpc_desc *cpc_desc;
 | |
| 	struct cpc_register_resource *desired_reg;
 | |
| 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
 | |
| 	struct cppc_pcc_data *pcc_ss_data;
 | |
| 
 | |
| 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
 | |
| 	if (!cpc_desc)
 | |
| 		return CPUFREQ_ETERNAL;
 | |
| 
 | |
| 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
 | |
| 	if (!CPC_IN_PCC(desired_reg))
 | |
| 		return CPUFREQ_ETERNAL;
 | |
| 
 | |
| 	if (pcc_ss_id < 0)
 | |
| 		return CPUFREQ_ETERNAL;
 | |
| 
 | |
| 	pcc_ss_data = pcc_data[pcc_ss_id];
 | |
| 	if (pcc_ss_data->pcc_mpar)
 | |
| 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
 | |
| 
 | |
| 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
 | |
| 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
 | |
| 
 | |
| 	return latency_ns;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
 |