forked from mirrors/linux
		
	 ec288a2cf7
			
		
	
	
		ec288a2cf7
		
	
	
	
	
		
			
			bitmap_for_each_{set,clear}_region() are similar to for_each_bit()
macros in include/linux/find.h, but interface and implementation
of them are different.
This patch adds for_each_bitrange() macros and drops unused
bitmap_*_region() API in sake of unification.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Tested-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # For MMC
		
	
			
		
			
				
	
	
		
			558 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			558 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef __LINUX_BITMAP_H
 | |
| #define __LINUX_BITMAP_H
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| #include <linux/align.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/find.h>
 | |
| #include <linux/limits.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| struct device;
 | |
| 
 | |
| /*
 | |
|  * bitmaps provide bit arrays that consume one or more unsigned
 | |
|  * longs.  The bitmap interface and available operations are listed
 | |
|  * here, in bitmap.h
 | |
|  *
 | |
|  * Function implementations generic to all architectures are in
 | |
|  * lib/bitmap.c.  Functions implementations that are architecture
 | |
|  * specific are in various include/asm-<arch>/bitops.h headers
 | |
|  * and other arch/<arch> specific files.
 | |
|  *
 | |
|  * See lib/bitmap.c for more details.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * DOC: bitmap overview
 | |
|  *
 | |
|  * The available bitmap operations and their rough meaning in the
 | |
|  * case that the bitmap is a single unsigned long are thus:
 | |
|  *
 | |
|  * The generated code is more efficient when nbits is known at
 | |
|  * compile-time and at most BITS_PER_LONG.
 | |
|  *
 | |
|  * ::
 | |
|  *
 | |
|  *  bitmap_zero(dst, nbits)                     *dst = 0UL
 | |
|  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
 | |
|  *  bitmap_copy(dst, src, nbits)                *dst = *src
 | |
|  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
 | |
|  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
 | |
|  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
 | |
|  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
 | |
|  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
 | |
|  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
 | |
|  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
 | |
|  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
 | |
|  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
 | |
|  *  bitmap_full(src, nbits)                     Are all bits set in *src?
 | |
|  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
 | |
|  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
 | |
|  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
 | |
|  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
 | |
|  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
 | |
|  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
 | |
|  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
 | |
|  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
 | |
|  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
 | |
|  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
 | |
|  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
 | |
|  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
 | |
|  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
 | |
|  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
 | |
|  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
 | |
|  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
 | |
|  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
 | |
|  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
 | |
|  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
 | |
|  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
 | |
|  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
 | |
|  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
 | |
|  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
 | |
|  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
 | |
|  *
 | |
|  * Note, bitmap_zero() and bitmap_fill() operate over the region of
 | |
|  * unsigned longs, that is, bits behind bitmap till the unsigned long
 | |
|  * boundary will be zeroed or filled as well. Consider to use
 | |
|  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
 | |
|  * respectively.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * DOC: bitmap bitops
 | |
|  *
 | |
|  * Also the following operations in asm/bitops.h apply to bitmaps.::
 | |
|  *
 | |
|  *  set_bit(bit, addr)                  *addr |= bit
 | |
|  *  clear_bit(bit, addr)                *addr &= ~bit
 | |
|  *  change_bit(bit, addr)               *addr ^= bit
 | |
|  *  test_bit(bit, addr)                 Is bit set in *addr?
 | |
|  *  test_and_set_bit(bit, addr)         Set bit and return old value
 | |
|  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
 | |
|  *  test_and_change_bit(bit, addr)      Change bit and return old value
 | |
|  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
 | |
|  *  find_first_bit(addr, nbits)         Position first set bit in *addr
 | |
|  *  find_next_zero_bit(addr, nbits, bit)
 | |
|  *                                      Position next zero bit in *addr >= bit
 | |
|  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
 | |
|  *  find_next_and_bit(addr1, addr2, nbits, bit)
 | |
|  *                                      Same as find_next_bit, but in
 | |
|  *                                      (*addr1 & *addr2)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * DOC: declare bitmap
 | |
|  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
 | |
|  * to declare an array named 'name' of just enough unsigned longs to
 | |
|  * contain all bit positions from 0 to 'bits' - 1.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Allocation and deallocation of bitmap.
 | |
|  * Provided in lib/bitmap.c to avoid circular dependency.
 | |
|  */
 | |
| unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
 | |
| unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
 | |
| unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
 | |
| unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
 | |
| void bitmap_free(const unsigned long *bitmap);
 | |
| 
 | |
| /* Managed variants of the above. */
 | |
| unsigned long *devm_bitmap_alloc(struct device *dev,
 | |
| 				 unsigned int nbits, gfp_t flags);
 | |
| unsigned long *devm_bitmap_zalloc(struct device *dev,
 | |
| 				  unsigned int nbits, gfp_t flags);
 | |
| 
 | |
| /*
 | |
|  * lib/bitmap.c provides these functions:
 | |
|  */
 | |
| 
 | |
| int __bitmap_equal(const unsigned long *bitmap1,
 | |
| 		   const unsigned long *bitmap2, unsigned int nbits);
 | |
| bool __pure __bitmap_or_equal(const unsigned long *src1,
 | |
| 			      const unsigned long *src2,
 | |
| 			      const unsigned long *src3,
 | |
| 			      unsigned int nbits);
 | |
| void __bitmap_complement(unsigned long *dst, const unsigned long *src,
 | |
| 			 unsigned int nbits);
 | |
| void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 | |
| 			  unsigned int shift, unsigned int nbits);
 | |
| void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 | |
| 			 unsigned int shift, unsigned int nbits);
 | |
| void bitmap_cut(unsigned long *dst, const unsigned long *src,
 | |
| 		unsigned int first, unsigned int cut, unsigned int nbits);
 | |
| int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 		 const unsigned long *bitmap2, unsigned int nbits);
 | |
| void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 		 const unsigned long *bitmap2, unsigned int nbits);
 | |
| void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 		  const unsigned long *bitmap2, unsigned int nbits);
 | |
| int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 | |
| 		    const unsigned long *bitmap2, unsigned int nbits);
 | |
| void __bitmap_replace(unsigned long *dst,
 | |
| 		      const unsigned long *old, const unsigned long *new,
 | |
| 		      const unsigned long *mask, unsigned int nbits);
 | |
| int __bitmap_intersects(const unsigned long *bitmap1,
 | |
| 			const unsigned long *bitmap2, unsigned int nbits);
 | |
| int __bitmap_subset(const unsigned long *bitmap1,
 | |
| 		    const unsigned long *bitmap2, unsigned int nbits);
 | |
| int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
 | |
| void __bitmap_set(unsigned long *map, unsigned int start, int len);
 | |
| void __bitmap_clear(unsigned long *map, unsigned int start, int len);
 | |
| 
 | |
| unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 | |
| 					     unsigned long size,
 | |
| 					     unsigned long start,
 | |
| 					     unsigned int nr,
 | |
| 					     unsigned long align_mask,
 | |
| 					     unsigned long align_offset);
 | |
| 
 | |
| /**
 | |
|  * bitmap_find_next_zero_area - find a contiguous aligned zero area
 | |
|  * @map: The address to base the search on
 | |
|  * @size: The bitmap size in bits
 | |
|  * @start: The bitnumber to start searching at
 | |
|  * @nr: The number of zeroed bits we're looking for
 | |
|  * @align_mask: Alignment mask for zero area
 | |
|  *
 | |
|  * The @align_mask should be one less than a power of 2; the effect is that
 | |
|  * the bit offset of all zero areas this function finds is multiples of that
 | |
|  * power of 2. A @align_mask of 0 means no alignment is required.
 | |
|  */
 | |
| static inline unsigned long
 | |
| bitmap_find_next_zero_area(unsigned long *map,
 | |
| 			   unsigned long size,
 | |
| 			   unsigned long start,
 | |
| 			   unsigned int nr,
 | |
| 			   unsigned long align_mask)
 | |
| {
 | |
| 	return bitmap_find_next_zero_area_off(map, size, start, nr,
 | |
| 					      align_mask, 0);
 | |
| }
 | |
| 
 | |
| int bitmap_parse(const char *buf, unsigned int buflen,
 | |
| 			unsigned long *dst, int nbits);
 | |
| int bitmap_parse_user(const char __user *ubuf, unsigned int ulen,
 | |
| 			unsigned long *dst, int nbits);
 | |
| int bitmap_parselist(const char *buf, unsigned long *maskp,
 | |
| 			int nmaskbits);
 | |
| int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen,
 | |
| 			unsigned long *dst, int nbits);
 | |
| void bitmap_remap(unsigned long *dst, const unsigned long *src,
 | |
| 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
 | |
| int bitmap_bitremap(int oldbit,
 | |
| 		const unsigned long *old, const unsigned long *new, int bits);
 | |
| void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 | |
| 		const unsigned long *relmap, unsigned int bits);
 | |
| void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 | |
| 		unsigned int sz, unsigned int nbits);
 | |
| int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order);
 | |
| void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order);
 | |
| int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order);
 | |
| 
 | |
| #ifdef __BIG_ENDIAN
 | |
| void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits);
 | |
| #else
 | |
| #define bitmap_copy_le bitmap_copy
 | |
| #endif
 | |
| unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits);
 | |
| int bitmap_print_to_pagebuf(bool list, char *buf,
 | |
| 				   const unsigned long *maskp, int nmaskbits);
 | |
| 
 | |
| extern int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
 | |
| 				      int nmaskbits, loff_t off, size_t count);
 | |
| 
 | |
| extern int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
 | |
| 				      int nmaskbits, loff_t off, size_t count);
 | |
| 
 | |
| #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
 | |
| #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
 | |
| 
 | |
| static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
 | |
| 	memset(dst, 0, len);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
 | |
| {
 | |
| 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
 | |
| 	memset(dst, 0xff, len);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
 | |
| 			unsigned int nbits)
 | |
| {
 | |
| 	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
 | |
| 	memcpy(dst, src, len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy bitmap and clear tail bits in last word.
 | |
|  */
 | |
| static inline void bitmap_copy_clear_tail(unsigned long *dst,
 | |
| 		const unsigned long *src, unsigned int nbits)
 | |
| {
 | |
| 	bitmap_copy(dst, src, nbits);
 | |
| 	if (nbits % BITS_PER_LONG)
 | |
| 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On 32-bit systems bitmaps are represented as u32 arrays internally, and
 | |
|  * therefore conversion is not needed when copying data from/to arrays of u32.
 | |
|  */
 | |
| #if BITS_PER_LONG == 64
 | |
| void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
 | |
| 							unsigned int nbits);
 | |
| void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
 | |
| 							unsigned int nbits);
 | |
| #else
 | |
| #define bitmap_from_arr32(bitmap, buf, nbits)			\
 | |
| 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
 | |
| 			(const unsigned long *) (buf), (nbits))
 | |
| #define bitmap_to_arr32(buf, bitmap, nbits)			\
 | |
| 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
 | |
| 			(const unsigned long *) (bitmap), (nbits))
 | |
| #endif
 | |
| 
 | |
| static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
 | |
| 			const unsigned long *src2, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
 | |
| 	return __bitmap_and(dst, src1, src2, nbits);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
 | |
| 			const unsigned long *src2, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		*dst = *src1 | *src2;
 | |
| 	else
 | |
| 		__bitmap_or(dst, src1, src2, nbits);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
 | |
| 			const unsigned long *src2, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		*dst = *src1 ^ *src2;
 | |
| 	else
 | |
| 		__bitmap_xor(dst, src1, src2, nbits);
 | |
| }
 | |
| 
 | |
| static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
 | |
| 			const unsigned long *src2, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
 | |
| 	return __bitmap_andnot(dst, src1, src2, nbits);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
 | |
| 			unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		*dst = ~(*src);
 | |
| 	else
 | |
| 		__bitmap_complement(dst, src, nbits);
 | |
| }
 | |
| 
 | |
| #ifdef __LITTLE_ENDIAN
 | |
| #define BITMAP_MEM_ALIGNMENT 8
 | |
| #else
 | |
| #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
 | |
| #endif
 | |
| #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
 | |
| 
 | |
| static inline int bitmap_equal(const unsigned long *src1,
 | |
| 			const unsigned long *src2, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
 | |
| 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
 | |
| 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
 | |
| 		return !memcmp(src1, src2, nbits / 8);
 | |
| 	return __bitmap_equal(src1, src2, nbits);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
 | |
|  * @src1:	Pointer to bitmap 1
 | |
|  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
 | |
|  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
 | |
|  * @nbits:	number of bits in each of these bitmaps
 | |
|  *
 | |
|  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
 | |
|  */
 | |
| static inline bool bitmap_or_equal(const unsigned long *src1,
 | |
| 				   const unsigned long *src2,
 | |
| 				   const unsigned long *src3,
 | |
| 				   unsigned int nbits)
 | |
| {
 | |
| 	if (!small_const_nbits(nbits))
 | |
| 		return __bitmap_or_equal(src1, src2, src3, nbits);
 | |
| 
 | |
| 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
 | |
| }
 | |
| 
 | |
| static inline int bitmap_intersects(const unsigned long *src1,
 | |
| 			const unsigned long *src2, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
 | |
| 	else
 | |
| 		return __bitmap_intersects(src1, src2, nbits);
 | |
| }
 | |
| 
 | |
| static inline int bitmap_subset(const unsigned long *src1,
 | |
| 			const unsigned long *src2, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
 | |
| 	else
 | |
| 		return __bitmap_subset(src1, src2, nbits);
 | |
| }
 | |
| 
 | |
| static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
 | |
| 
 | |
| 	return find_first_bit(src, nbits) == nbits;
 | |
| }
 | |
| 
 | |
| static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
 | |
| 
 | |
| 	return find_first_zero_bit(src, nbits) == nbits;
 | |
| }
 | |
| 
 | |
| static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
 | |
| 	return __bitmap_weight(src, nbits);
 | |
| }
 | |
| 
 | |
| static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
 | |
| 		unsigned int nbits)
 | |
| {
 | |
| 	if (__builtin_constant_p(nbits) && nbits == 1)
 | |
| 		__set_bit(start, map);
 | |
| 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
 | |
| 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
 | |
| 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
 | |
| 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
 | |
| 		memset((char *)map + start / 8, 0xff, nbits / 8);
 | |
| 	else
 | |
| 		__bitmap_set(map, start, nbits);
 | |
| }
 | |
| 
 | |
| static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
 | |
| 		unsigned int nbits)
 | |
| {
 | |
| 	if (__builtin_constant_p(nbits) && nbits == 1)
 | |
| 		__clear_bit(start, map);
 | |
| 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
 | |
| 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
 | |
| 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
 | |
| 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
 | |
| 		memset((char *)map + start / 8, 0, nbits / 8);
 | |
| 	else
 | |
| 		__bitmap_clear(map, start, nbits);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 | |
| 				unsigned int shift, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
 | |
| 	else
 | |
| 		__bitmap_shift_right(dst, src, shift, nbits);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 | |
| 				unsigned int shift, unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
 | |
| 	else
 | |
| 		__bitmap_shift_left(dst, src, shift, nbits);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_replace(unsigned long *dst,
 | |
| 				  const unsigned long *old,
 | |
| 				  const unsigned long *new,
 | |
| 				  const unsigned long *mask,
 | |
| 				  unsigned int nbits)
 | |
| {
 | |
| 	if (small_const_nbits(nbits))
 | |
| 		*dst = (*old & ~(*mask)) | (*new & *mask);
 | |
| 	else
 | |
| 		__bitmap_replace(dst, old, new, mask, nbits);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_next_set_region(unsigned long *bitmap,
 | |
| 					  unsigned int *rs, unsigned int *re,
 | |
| 					  unsigned int end)
 | |
| {
 | |
| 	*rs = find_next_bit(bitmap, end, *rs);
 | |
| 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
 | |
|  * @n: u64 value
 | |
|  *
 | |
|  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
 | |
|  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
 | |
|  *
 | |
|  * There are four combinations of endianness and length of the word in linux
 | |
|  * ABIs: LE64, BE64, LE32 and BE32.
 | |
|  *
 | |
|  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
 | |
|  * bitmaps and therefore don't require any special handling.
 | |
|  *
 | |
|  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
 | |
|  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
 | |
|  * other hand is represented as an array of 32-bit words and the position of
 | |
|  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
 | |
|  * word.  For example, bit #42 is located at 10th position of 2nd word.
 | |
|  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
 | |
|  * values in memory as it usually does. But for BE we need to swap hi and lo
 | |
|  * words manually.
 | |
|  *
 | |
|  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
 | |
|  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
 | |
|  * hi and lo words, as is expected by bitmap.
 | |
|  */
 | |
| #if __BITS_PER_LONG == 64
 | |
| #define BITMAP_FROM_U64(n) (n)
 | |
| #else
 | |
| #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
 | |
| 				((unsigned long) ((u64)(n) >> 32))
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * bitmap_from_u64 - Check and swap words within u64.
 | |
|  *  @mask: source bitmap
 | |
|  *  @dst:  destination bitmap
 | |
|  *
 | |
|  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
 | |
|  * to read u64 mask, we will get the wrong word.
 | |
|  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
 | |
|  * but we expect the lower 32-bits of u64.
 | |
|  */
 | |
| static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
 | |
| {
 | |
| 	dst[0] = mask & ULONG_MAX;
 | |
| 
 | |
| 	if (sizeof(mask) > sizeof(unsigned long))
 | |
| 		dst[1] = mask >> 32;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_get_value8 - get an 8-bit value within a memory region
 | |
|  * @map: address to the bitmap memory region
 | |
|  * @start: bit offset of the 8-bit value; must be a multiple of 8
 | |
|  *
 | |
|  * Returns the 8-bit value located at the @start bit offset within the @src
 | |
|  * memory region.
 | |
|  */
 | |
| static inline unsigned long bitmap_get_value8(const unsigned long *map,
 | |
| 					      unsigned long start)
 | |
| {
 | |
| 	const size_t index = BIT_WORD(start);
 | |
| 	const unsigned long offset = start % BITS_PER_LONG;
 | |
| 
 | |
| 	return (map[index] >> offset) & 0xFF;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * bitmap_set_value8 - set an 8-bit value within a memory region
 | |
|  * @map: address to the bitmap memory region
 | |
|  * @value: the 8-bit value; values wider than 8 bits may clobber bitmap
 | |
|  * @start: bit offset of the 8-bit value; must be a multiple of 8
 | |
|  */
 | |
| static inline void bitmap_set_value8(unsigned long *map, unsigned long value,
 | |
| 				     unsigned long start)
 | |
| {
 | |
| 	const size_t index = BIT_WORD(start);
 | |
| 	const unsigned long offset = start % BITS_PER_LONG;
 | |
| 
 | |
| 	map[index] &= ~(0xFFUL << offset);
 | |
| 	map[index] |= value << offset;
 | |
| }
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| #endif /* __LINUX_BITMAP_H */
 |