forked from mirrors/linux
		
	 281d0c9627
			
		
	
	
		281d0c9627
		
	
	
	
	
		
			
			Enable FORTIFY_SOURCE support for Clang:
Use the new __pass_object_size and __overloadable attributes so that
Clang will have appropriate visibility into argument sizes such that
__builtin_object_size(p, 1) will behave correctly. Additional details
available here:
    https://github.com/llvm/llvm-project/issues/53516
    https://github.com/ClangBuiltLinux/linux/issues/1401
A bug with __builtin_constant_p() of globally defined variables was
fixed in Clang 13 (and backported to 12.0.1), so FORTIFY support must
depend on that version or later. Additional details here:
    https://bugs.llvm.org/show_bug.cgi?id=41459
    commit a52f8a59ae ("fortify: Explicitly disable Clang support")
A bug with Clang's -mregparm=3 and -m32 makes some builtins unusable,
so removing -ffreestanding (to gain the needed libcall optimizations
with Clang) cannot be done. Without the libcall optimizations, Clang
cannot provide appropriate FORTIFY coverage, so it must be disabled
for CONFIG_X86_32. Additional details here;
    https://github.com/llvm/llvm-project/issues/53645
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: George Burgess IV <gbiv@google.com>
Cc: llvm@lists.linux.dev
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/r/20220208225350.1331628-9-keescook@chromium.org
		
	
			
		
			
				
	
	
		
			477 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			477 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_FORTIFY_STRING_H_
 | |
| #define _LINUX_FORTIFY_STRING_H_
 | |
| 
 | |
| #include <linux/const.h>
 | |
| 
 | |
| #define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable
 | |
| #define __RENAME(x) __asm__(#x)
 | |
| 
 | |
| void fortify_panic(const char *name) __noreturn __cold;
 | |
| void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)");
 | |
| void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)");
 | |
| void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?");
 | |
| void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)");
 | |
| void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?");
 | |
| 
 | |
| #define __compiletime_strlen(p)					\
 | |
| ({								\
 | |
| 	unsigned char *__p = (unsigned char *)(p);		\
 | |
| 	size_t __ret = (size_t)-1;				\
 | |
| 	size_t __p_size = __builtin_object_size(p, 1);		\
 | |
| 	if (__p_size != (size_t)-1) {				\
 | |
| 		size_t __p_len = __p_size - 1;			\
 | |
| 		if (__builtin_constant_p(__p[__p_len]) &&	\
 | |
| 		    __p[__p_len] == '\0')			\
 | |
| 			__ret = __builtin_strlen(__p);		\
 | |
| 	}							\
 | |
| 	__ret;							\
 | |
| })
 | |
| 
 | |
| #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
 | |
| extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr);
 | |
| extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp);
 | |
| extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy);
 | |
| extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove);
 | |
| extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset);
 | |
| extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat);
 | |
| extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy);
 | |
| extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen);
 | |
| extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat);
 | |
| extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy);
 | |
| #else
 | |
| #define __underlying_memchr	__builtin_memchr
 | |
| #define __underlying_memcmp	__builtin_memcmp
 | |
| #define __underlying_memcpy	__builtin_memcpy
 | |
| #define __underlying_memmove	__builtin_memmove
 | |
| #define __underlying_memset	__builtin_memset
 | |
| #define __underlying_strcat	__builtin_strcat
 | |
| #define __underlying_strcpy	__builtin_strcpy
 | |
| #define __underlying_strlen	__builtin_strlen
 | |
| #define __underlying_strncat	__builtin_strncat
 | |
| #define __underlying_strncpy	__builtin_strncpy
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Clang's use of __builtin_object_size() within inlines needs hinting via
 | |
|  * __pass_object_size(). The preference is to only ever use type 1 (member
 | |
|  * size, rather than struct size), but there remain some stragglers using
 | |
|  * type 0 that will be converted in the future.
 | |
|  */
 | |
| #define POS	__pass_object_size(1)
 | |
| #define POS0	__pass_object_size(0)
 | |
| 
 | |
| __FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3)
 | |
| char *strncpy(char * const POS p, const char *q, __kernel_size_t size)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 1);
 | |
| 
 | |
| 	if (__builtin_constant_p(size) && p_size < size)
 | |
| 		__write_overflow();
 | |
| 	if (p_size < size)
 | |
| 		fortify_panic(__func__);
 | |
| 	return __underlying_strncpy(p, q, size);
 | |
| }
 | |
| 
 | |
| __FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2)
 | |
| char *strcat(char * const POS p, const char *q)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 1);
 | |
| 
 | |
| 	if (p_size == (size_t)-1)
 | |
| 		return __underlying_strcat(p, q);
 | |
| 	if (strlcat(p, q, p_size) >= p_size)
 | |
| 		fortify_panic(__func__);
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen);
 | |
| __FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 1);
 | |
| 	size_t p_len = __compiletime_strlen(p);
 | |
| 	size_t ret;
 | |
| 
 | |
| 	/* We can take compile-time actions when maxlen is const. */
 | |
| 	if (__builtin_constant_p(maxlen) && p_len != (size_t)-1) {
 | |
| 		/* If p is const, we can use its compile-time-known len. */
 | |
| 		if (maxlen >= p_size)
 | |
| 			return p_len;
 | |
| 	}
 | |
| 
 | |
| 	/* Do not check characters beyond the end of p. */
 | |
| 	ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size);
 | |
| 	if (p_size <= ret && maxlen != ret)
 | |
| 		fortify_panic(__func__);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Defined after fortified strnlen to reuse it. However, it must still be
 | |
|  * possible for strlen() to be used on compile-time strings for use in
 | |
|  * static initializers (i.e. as a constant expression).
 | |
|  */
 | |
| #define strlen(p)							\
 | |
| 	__builtin_choose_expr(__is_constexpr(__builtin_strlen(p)),	\
 | |
| 		__builtin_strlen(p), __fortify_strlen(p))
 | |
| __FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1)
 | |
| __kernel_size_t __fortify_strlen(const char * const POS p)
 | |
| {
 | |
| 	__kernel_size_t ret;
 | |
| 	size_t p_size = __builtin_object_size(p, 1);
 | |
| 
 | |
| 	/* Give up if we don't know how large p is. */
 | |
| 	if (p_size == (size_t)-1)
 | |
| 		return __underlying_strlen(p);
 | |
| 	ret = strnlen(p, p_size);
 | |
| 	if (p_size <= ret)
 | |
| 		fortify_panic(__func__);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* defined after fortified strlen to reuse it */
 | |
| extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy);
 | |
| __FORTIFY_INLINE size_t strlcpy(char * const POS p, const char * const POS q, size_t size)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 1);
 | |
| 	size_t q_size = __builtin_object_size(q, 1);
 | |
| 	size_t q_len;	/* Full count of source string length. */
 | |
| 	size_t len;	/* Count of characters going into destination. */
 | |
| 
 | |
| 	if (p_size == (size_t)-1 && q_size == (size_t)-1)
 | |
| 		return __real_strlcpy(p, q, size);
 | |
| 	q_len = strlen(q);
 | |
| 	len = (q_len >= size) ? size - 1 : q_len;
 | |
| 	if (__builtin_constant_p(size) && __builtin_constant_p(q_len) && size) {
 | |
| 		/* Write size is always larger than destination. */
 | |
| 		if (len >= p_size)
 | |
| 			__write_overflow();
 | |
| 	}
 | |
| 	if (size) {
 | |
| 		if (len >= p_size)
 | |
| 			fortify_panic(__func__);
 | |
| 		__underlying_memcpy(p, q, len);
 | |
| 		p[len] = '\0';
 | |
| 	}
 | |
| 	return q_len;
 | |
| }
 | |
| 
 | |
| /* defined after fortified strnlen to reuse it */
 | |
| extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(strscpy);
 | |
| __FORTIFY_INLINE ssize_t strscpy(char * const POS p, const char * const POS q, size_t size)
 | |
| {
 | |
| 	size_t len;
 | |
| 	/* Use string size rather than possible enclosing struct size. */
 | |
| 	size_t p_size = __builtin_object_size(p, 1);
 | |
| 	size_t q_size = __builtin_object_size(q, 1);
 | |
| 
 | |
| 	/* If we cannot get size of p and q default to call strscpy. */
 | |
| 	if (p_size == (size_t) -1 && q_size == (size_t) -1)
 | |
| 		return __real_strscpy(p, q, size);
 | |
| 
 | |
| 	/*
 | |
| 	 * If size can be known at compile time and is greater than
 | |
| 	 * p_size, generate a compile time write overflow error.
 | |
| 	 */
 | |
| 	if (__builtin_constant_p(size) && size > p_size)
 | |
| 		__write_overflow();
 | |
| 
 | |
| 	/*
 | |
| 	 * This call protects from read overflow, because len will default to q
 | |
| 	 * length if it smaller than size.
 | |
| 	 */
 | |
| 	len = strnlen(q, size);
 | |
| 	/*
 | |
| 	 * If len equals size, we will copy only size bytes which leads to
 | |
| 	 * -E2BIG being returned.
 | |
| 	 * Otherwise we will copy len + 1 because of the final '\O'.
 | |
| 	 */
 | |
| 	len = len == size ? size : len + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate a runtime write overflow error if len is greater than
 | |
| 	 * p_size.
 | |
| 	 */
 | |
| 	if (len > p_size)
 | |
| 		fortify_panic(__func__);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can now safely call vanilla strscpy because we are protected from:
 | |
| 	 * 1. Read overflow thanks to call to strnlen().
 | |
| 	 * 2. Write overflow thanks to above ifs.
 | |
| 	 */
 | |
| 	return __real_strscpy(p, q, len);
 | |
| }
 | |
| 
 | |
| /* defined after fortified strlen and strnlen to reuse them */
 | |
| __FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3)
 | |
| char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count)
 | |
| {
 | |
| 	size_t p_len, copy_len;
 | |
| 	size_t p_size = __builtin_object_size(p, 1);
 | |
| 	size_t q_size = __builtin_object_size(q, 1);
 | |
| 
 | |
| 	if (p_size == (size_t)-1 && q_size == (size_t)-1)
 | |
| 		return __underlying_strncat(p, q, count);
 | |
| 	p_len = strlen(p);
 | |
| 	copy_len = strnlen(q, count);
 | |
| 	if (p_size < p_len + copy_len + 1)
 | |
| 		fortify_panic(__func__);
 | |
| 	__underlying_memcpy(p + p_len, q, copy_len);
 | |
| 	p[p_len + copy_len] = '\0';
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| __FORTIFY_INLINE void fortify_memset_chk(__kernel_size_t size,
 | |
| 					 const size_t p_size,
 | |
| 					 const size_t p_size_field)
 | |
| {
 | |
| 	if (__builtin_constant_p(size)) {
 | |
| 		/*
 | |
| 		 * Length argument is a constant expression, so we
 | |
| 		 * can perform compile-time bounds checking where
 | |
| 		 * buffer sizes are known.
 | |
| 		 */
 | |
| 
 | |
| 		/* Error when size is larger than enclosing struct. */
 | |
| 		if (p_size > p_size_field && p_size < size)
 | |
| 			__write_overflow();
 | |
| 
 | |
| 		/* Warn when write size is larger than dest field. */
 | |
| 		if (p_size_field < size)
 | |
| 			__write_overflow_field(p_size_field, size);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * At this point, length argument may not be a constant expression,
 | |
| 	 * so run-time bounds checking can be done where buffer sizes are
 | |
| 	 * known. (This is not an "else" because the above checks may only
 | |
| 	 * be compile-time warnings, and we want to still warn for run-time
 | |
| 	 * overflows.)
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Always stop accesses beyond the struct that contains the
 | |
| 	 * field, when the buffer's remaining size is known.
 | |
| 	 * (The -1 test is to optimize away checks where the buffer
 | |
| 	 * lengths are unknown.)
 | |
| 	 */
 | |
| 	if (p_size != (size_t)(-1) && p_size < size)
 | |
| 		fortify_panic("memset");
 | |
| }
 | |
| 
 | |
| #define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({	\
 | |
| 	size_t __fortify_size = (size_t)(size);				\
 | |
| 	fortify_memset_chk(__fortify_size, p_size, p_size_field),	\
 | |
| 	__underlying_memset(p, c, __fortify_size);			\
 | |
| })
 | |
| 
 | |
| /*
 | |
|  * __builtin_object_size() must be captured here to avoid evaluating argument
 | |
|  * side-effects further into the macro layers.
 | |
|  */
 | |
| #define memset(p, c, s) __fortify_memset_chk(p, c, s,			\
 | |
| 		__builtin_object_size(p, 0), __builtin_object_size(p, 1))
 | |
| 
 | |
| /*
 | |
|  * To make sure the compiler can enforce protection against buffer overflows,
 | |
|  * memcpy(), memmove(), and memset() must not be used beyond individual
 | |
|  * struct members. If you need to copy across multiple members, please use
 | |
|  * struct_group() to create a named mirror of an anonymous struct union.
 | |
|  * (e.g. see struct sk_buff.) Read overflow checking is currently only
 | |
|  * done when a write overflow is also present, or when building with W=1.
 | |
|  *
 | |
|  * Mitigation coverage matrix
 | |
|  *					Bounds checking at:
 | |
|  *					+-------+-------+-------+-------+
 | |
|  *					| Compile time  |   Run time    |
 | |
|  * memcpy() argument sizes:		| write | read  | write | read  |
 | |
|  *        dest     source   length      +-------+-------+-------+-------+
 | |
|  * memcpy(known,   known,   constant)	|   y   |   y   |  n/a  |  n/a  |
 | |
|  * memcpy(known,   unknown, constant)	|   y   |   n   |  n/a  |   V   |
 | |
|  * memcpy(known,   known,   dynamic)	|   n   |   n   |   B   |   B   |
 | |
|  * memcpy(known,   unknown, dynamic)	|   n   |   n   |   B   |   V   |
 | |
|  * memcpy(unknown, known,   constant)	|   n   |   y   |   V   |  n/a  |
 | |
|  * memcpy(unknown, unknown, constant)	|   n   |   n   |   V   |   V   |
 | |
|  * memcpy(unknown, known,   dynamic)	|   n   |   n   |   V   |   B   |
 | |
|  * memcpy(unknown, unknown, dynamic)	|   n   |   n   |   V   |   V   |
 | |
|  *					+-------+-------+-------+-------+
 | |
|  *
 | |
|  * y = perform deterministic compile-time bounds checking
 | |
|  * n = cannot perform deterministic compile-time bounds checking
 | |
|  * n/a = no run-time bounds checking needed since compile-time deterministic
 | |
|  * B = can perform run-time bounds checking (currently unimplemented)
 | |
|  * V = vulnerable to run-time overflow (will need refactoring to solve)
 | |
|  *
 | |
|  */
 | |
| __FORTIFY_INLINE void fortify_memcpy_chk(__kernel_size_t size,
 | |
| 					 const size_t p_size,
 | |
| 					 const size_t q_size,
 | |
| 					 const size_t p_size_field,
 | |
| 					 const size_t q_size_field,
 | |
| 					 const char *func)
 | |
| {
 | |
| 	if (__builtin_constant_p(size)) {
 | |
| 		/*
 | |
| 		 * Length argument is a constant expression, so we
 | |
| 		 * can perform compile-time bounds checking where
 | |
| 		 * buffer sizes are known.
 | |
| 		 */
 | |
| 
 | |
| 		/* Error when size is larger than enclosing struct. */
 | |
| 		if (p_size > p_size_field && p_size < size)
 | |
| 			__write_overflow();
 | |
| 		if (q_size > q_size_field && q_size < size)
 | |
| 			__read_overflow2();
 | |
| 
 | |
| 		/* Warn when write size argument larger than dest field. */
 | |
| 		if (p_size_field < size)
 | |
| 			__write_overflow_field(p_size_field, size);
 | |
| 		/*
 | |
| 		 * Warn for source field over-read when building with W=1
 | |
| 		 * or when an over-write happened, so both can be fixed at
 | |
| 		 * the same time.
 | |
| 		 */
 | |
| 		if ((IS_ENABLED(KBUILD_EXTRA_WARN1) || p_size_field < size) &&
 | |
| 		    q_size_field < size)
 | |
| 			__read_overflow2_field(q_size_field, size);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * At this point, length argument may not be a constant expression,
 | |
| 	 * so run-time bounds checking can be done where buffer sizes are
 | |
| 	 * known. (This is not an "else" because the above checks may only
 | |
| 	 * be compile-time warnings, and we want to still warn for run-time
 | |
| 	 * overflows.)
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Always stop accesses beyond the struct that contains the
 | |
| 	 * field, when the buffer's remaining size is known.
 | |
| 	 * (The -1 test is to optimize away checks where the buffer
 | |
| 	 * lengths are unknown.)
 | |
| 	 */
 | |
| 	if ((p_size != (size_t)(-1) && p_size < size) ||
 | |
| 	    (q_size != (size_t)(-1) && q_size < size))
 | |
| 		fortify_panic(func);
 | |
| }
 | |
| 
 | |
| #define __fortify_memcpy_chk(p, q, size, p_size, q_size,		\
 | |
| 			     p_size_field, q_size_field, op) ({		\
 | |
| 	size_t __fortify_size = (size_t)(size);				\
 | |
| 	fortify_memcpy_chk(__fortify_size, p_size, q_size,		\
 | |
| 			   p_size_field, q_size_field, #op);		\
 | |
| 	__underlying_##op(p, q, __fortify_size);			\
 | |
| })
 | |
| 
 | |
| /*
 | |
|  * __builtin_object_size() must be captured here to avoid evaluating argument
 | |
|  * side-effects further into the macro layers.
 | |
|  */
 | |
| #define memcpy(p, q, s)  __fortify_memcpy_chk(p, q, s,			\
 | |
| 		__builtin_object_size(p, 0), __builtin_object_size(q, 0), \
 | |
| 		__builtin_object_size(p, 1), __builtin_object_size(q, 1), \
 | |
| 		memcpy)
 | |
| #define memmove(p, q, s)  __fortify_memcpy_chk(p, q, s,			\
 | |
| 		__builtin_object_size(p, 0), __builtin_object_size(q, 0), \
 | |
| 		__builtin_object_size(p, 1), __builtin_object_size(q, 1), \
 | |
| 		memmove)
 | |
| 
 | |
| extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan);
 | |
| __FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 0);
 | |
| 
 | |
| 	if (__builtin_constant_p(size) && p_size < size)
 | |
| 		__read_overflow();
 | |
| 	if (p_size < size)
 | |
| 		fortify_panic(__func__);
 | |
| 	return __real_memscan(p, c, size);
 | |
| }
 | |
| 
 | |
| __FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3)
 | |
| int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 0);
 | |
| 	size_t q_size = __builtin_object_size(q, 0);
 | |
| 
 | |
| 	if (__builtin_constant_p(size)) {
 | |
| 		if (p_size < size)
 | |
| 			__read_overflow();
 | |
| 		if (q_size < size)
 | |
| 			__read_overflow2();
 | |
| 	}
 | |
| 	if (p_size < size || q_size < size)
 | |
| 		fortify_panic(__func__);
 | |
| 	return __underlying_memcmp(p, q, size);
 | |
| }
 | |
| 
 | |
| __FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3)
 | |
| void *memchr(const void * const POS0 p, int c, __kernel_size_t size)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 0);
 | |
| 
 | |
| 	if (__builtin_constant_p(size) && p_size < size)
 | |
| 		__read_overflow();
 | |
| 	if (p_size < size)
 | |
| 		fortify_panic(__func__);
 | |
| 	return __underlying_memchr(p, c, size);
 | |
| }
 | |
| 
 | |
| void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv);
 | |
| __FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 0);
 | |
| 
 | |
| 	if (__builtin_constant_p(size) && p_size < size)
 | |
| 		__read_overflow();
 | |
| 	if (p_size < size)
 | |
| 		fortify_panic(__func__);
 | |
| 	return __real_memchr_inv(p, c, size);
 | |
| }
 | |
| 
 | |
| extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup);
 | |
| __FORTIFY_INLINE void *kmemdup(const void * const POS0 p, size_t size, gfp_t gfp)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 0);
 | |
| 
 | |
| 	if (__builtin_constant_p(size) && p_size < size)
 | |
| 		__read_overflow();
 | |
| 	if (p_size < size)
 | |
| 		fortify_panic(__func__);
 | |
| 	return __real_kmemdup(p, size, gfp);
 | |
| }
 | |
| 
 | |
| /* Defined after fortified strlen to reuse it. */
 | |
| __FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2)
 | |
| char *strcpy(char * const POS p, const char * const POS q)
 | |
| {
 | |
| 	size_t p_size = __builtin_object_size(p, 1);
 | |
| 	size_t q_size = __builtin_object_size(q, 1);
 | |
| 	size_t size;
 | |
| 
 | |
| 	/* If neither buffer size is known, immediately give up. */
 | |
| 	if (p_size == (size_t)-1 && q_size == (size_t)-1)
 | |
| 		return __underlying_strcpy(p, q);
 | |
| 	size = strlen(q) + 1;
 | |
| 	/* Compile-time check for const size overflow. */
 | |
| 	if (__builtin_constant_p(size) && p_size < size)
 | |
| 		__write_overflow();
 | |
| 	/* Run-time check for dynamic size overflow. */
 | |
| 	if (p_size < size)
 | |
| 		fortify_panic(__func__);
 | |
| 	__underlying_memcpy(p, q, size);
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /* Don't use these outside the FORITFY_SOURCE implementation */
 | |
| #undef __underlying_memchr
 | |
| #undef __underlying_memcmp
 | |
| #undef __underlying_strcat
 | |
| #undef __underlying_strcpy
 | |
| #undef __underlying_strlen
 | |
| #undef __underlying_strncat
 | |
| #undef __underlying_strncpy
 | |
| 
 | |
| #undef POS
 | |
| #undef POS0
 | |
| 
 | |
| #endif /* _LINUX_FORTIFY_STRING_H_ */
 |