forked from mirrors/linux
		
	Pull x865 kdump updates from Thomas Gleixner:
 "Yet more kexec/kdump updates:
   - Properly support kexec when AMD's memory encryption (SME) is
     enabled
   - Pass reserved e820 ranges to the kexec kernel so both PCI and SME
     can work"
* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  fs/proc/vmcore: Enable dumping of encrypted memory when SEV was active
  x86/kexec: Set the C-bit in the identity map page table when SEV is active
  x86/kexec: Do not map kexec area as decrypted when SEV is active
  x86/crash: Add e820 reserved ranges to kdump kernel's e820 table
  x86/mm: Rework ioremap resource mapping determination
  x86/e820, ioport: Add a new I/O resource descriptor IORES_DESC_RESERVED
  x86/mm: Create a workarea in the kernel for SME early encryption
  x86/mm: Identify the end of the kernel area to be reserved
		
	
			
		
			
				
	
	
		
			583 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			583 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * AMD Memory Encryption Support
 | 
						|
 *
 | 
						|
 * Copyright (C) 2016 Advanced Micro Devices, Inc.
 | 
						|
 *
 | 
						|
 * Author: Tom Lendacky <thomas.lendacky@amd.com>
 | 
						|
 */
 | 
						|
 | 
						|
#define DISABLE_BRANCH_PROFILING
 | 
						|
 | 
						|
/*
 | 
						|
 * Since we're dealing with identity mappings, physical and virtual
 | 
						|
 * addresses are the same, so override these defines which are ultimately
 | 
						|
 * used by the headers in misc.h.
 | 
						|
 */
 | 
						|
#define __pa(x)  ((unsigned long)(x))
 | 
						|
#define __va(x)  ((void *)((unsigned long)(x)))
 | 
						|
 | 
						|
/*
 | 
						|
 * Special hack: we have to be careful, because no indirections are
 | 
						|
 * allowed here, and paravirt_ops is a kind of one. As it will only run in
 | 
						|
 * baremetal anyway, we just keep it from happening. (This list needs to
 | 
						|
 * be extended when new paravirt and debugging variants are added.)
 | 
						|
 */
 | 
						|
#undef CONFIG_PARAVIRT
 | 
						|
#undef CONFIG_PARAVIRT_XXL
 | 
						|
#undef CONFIG_PARAVIRT_SPINLOCKS
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/mem_encrypt.h>
 | 
						|
 | 
						|
#include <asm/setup.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/cmdline.h>
 | 
						|
 | 
						|
#include "mm_internal.h"
 | 
						|
 | 
						|
#define PGD_FLAGS		_KERNPG_TABLE_NOENC
 | 
						|
#define P4D_FLAGS		_KERNPG_TABLE_NOENC
 | 
						|
#define PUD_FLAGS		_KERNPG_TABLE_NOENC
 | 
						|
#define PMD_FLAGS		_KERNPG_TABLE_NOENC
 | 
						|
 | 
						|
#define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
 | 
						|
 | 
						|
#define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
 | 
						|
#define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
 | 
						|
				 (_PAGE_PAT | _PAGE_PWT))
 | 
						|
 | 
						|
#define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
 | 
						|
 | 
						|
#define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
 | 
						|
 | 
						|
#define PTE_FLAGS_DEC		PTE_FLAGS
 | 
						|
#define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
 | 
						|
				 (_PAGE_PAT | _PAGE_PWT))
 | 
						|
 | 
						|
#define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
 | 
						|
 | 
						|
struct sme_populate_pgd_data {
 | 
						|
	void    *pgtable_area;
 | 
						|
	pgd_t   *pgd;
 | 
						|
 | 
						|
	pmdval_t pmd_flags;
 | 
						|
	pteval_t pte_flags;
 | 
						|
	unsigned long paddr;
 | 
						|
 | 
						|
	unsigned long vaddr;
 | 
						|
	unsigned long vaddr_end;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * This work area lives in the .init.scratch section, which lives outside of
 | 
						|
 * the kernel proper. It is sized to hold the intermediate copy buffer and
 | 
						|
 * more than enough pagetable pages.
 | 
						|
 *
 | 
						|
 * By using this section, the kernel can be encrypted in place and it
 | 
						|
 * avoids any possibility of boot parameters or initramfs images being
 | 
						|
 * placed such that the in-place encryption logic overwrites them.  This
 | 
						|
 * section is 2MB aligned to allow for simple pagetable setup using only
 | 
						|
 * PMD entries (see vmlinux.lds.S).
 | 
						|
 */
 | 
						|
static char sme_workarea[2 * PMD_PAGE_SIZE] __section(.init.scratch);
 | 
						|
 | 
						|
static char sme_cmdline_arg[] __initdata = "mem_encrypt";
 | 
						|
static char sme_cmdline_on[]  __initdata = "on";
 | 
						|
static char sme_cmdline_off[] __initdata = "off";
 | 
						|
 | 
						|
static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	unsigned long pgd_start, pgd_end, pgd_size;
 | 
						|
	pgd_t *pgd_p;
 | 
						|
 | 
						|
	pgd_start = ppd->vaddr & PGDIR_MASK;
 | 
						|
	pgd_end = ppd->vaddr_end & PGDIR_MASK;
 | 
						|
 | 
						|
	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
 | 
						|
 | 
						|
	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
 | 
						|
 | 
						|
	memset(pgd_p, 0, pgd_size);
 | 
						|
}
 | 
						|
 | 
						|
static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	pgd_t *pgd;
 | 
						|
	p4d_t *p4d;
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
 | 
						|
	pgd = ppd->pgd + pgd_index(ppd->vaddr);
 | 
						|
	if (pgd_none(*pgd)) {
 | 
						|
		p4d = ppd->pgtable_area;
 | 
						|
		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
 | 
						|
		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
 | 
						|
		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
 | 
						|
	}
 | 
						|
 | 
						|
	p4d = p4d_offset(pgd, ppd->vaddr);
 | 
						|
	if (p4d_none(*p4d)) {
 | 
						|
		pud = ppd->pgtable_area;
 | 
						|
		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
 | 
						|
		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
 | 
						|
		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
 | 
						|
	}
 | 
						|
 | 
						|
	pud = pud_offset(p4d, ppd->vaddr);
 | 
						|
	if (pud_none(*pud)) {
 | 
						|
		pmd = ppd->pgtable_area;
 | 
						|
		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
 | 
						|
		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
 | 
						|
		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
 | 
						|
	}
 | 
						|
 | 
						|
	if (pud_large(*pud))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return pud;
 | 
						|
}
 | 
						|
 | 
						|
static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
 | 
						|
	pud = sme_prepare_pgd(ppd);
 | 
						|
	if (!pud)
 | 
						|
		return;
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, ppd->vaddr);
 | 
						|
	if (pmd_large(*pmd))
 | 
						|
		return;
 | 
						|
 | 
						|
	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
 | 
						|
}
 | 
						|
 | 
						|
static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	pud_t *pud;
 | 
						|
	pmd_t *pmd;
 | 
						|
	pte_t *pte;
 | 
						|
 | 
						|
	pud = sme_prepare_pgd(ppd);
 | 
						|
	if (!pud)
 | 
						|
		return;
 | 
						|
 | 
						|
	pmd = pmd_offset(pud, ppd->vaddr);
 | 
						|
	if (pmd_none(*pmd)) {
 | 
						|
		pte = ppd->pgtable_area;
 | 
						|
		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
 | 
						|
		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
 | 
						|
		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
 | 
						|
	}
 | 
						|
 | 
						|
	if (pmd_large(*pmd))
 | 
						|
		return;
 | 
						|
 | 
						|
	pte = pte_offset_map(pmd, ppd->vaddr);
 | 
						|
	if (pte_none(*pte))
 | 
						|
		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
 | 
						|
}
 | 
						|
 | 
						|
static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	while (ppd->vaddr < ppd->vaddr_end) {
 | 
						|
		sme_populate_pgd_large(ppd);
 | 
						|
 | 
						|
		ppd->vaddr += PMD_PAGE_SIZE;
 | 
						|
		ppd->paddr += PMD_PAGE_SIZE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	while (ppd->vaddr < ppd->vaddr_end) {
 | 
						|
		sme_populate_pgd(ppd);
 | 
						|
 | 
						|
		ppd->vaddr += PAGE_SIZE;
 | 
						|
		ppd->paddr += PAGE_SIZE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
 | 
						|
				   pmdval_t pmd_flags, pteval_t pte_flags)
 | 
						|
{
 | 
						|
	unsigned long vaddr_end;
 | 
						|
 | 
						|
	ppd->pmd_flags = pmd_flags;
 | 
						|
	ppd->pte_flags = pte_flags;
 | 
						|
 | 
						|
	/* Save original end value since we modify the struct value */
 | 
						|
	vaddr_end = ppd->vaddr_end;
 | 
						|
 | 
						|
	/* If start is not 2MB aligned, create PTE entries */
 | 
						|
	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
 | 
						|
	__sme_map_range_pte(ppd);
 | 
						|
 | 
						|
	/* Create PMD entries */
 | 
						|
	ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
 | 
						|
	__sme_map_range_pmd(ppd);
 | 
						|
 | 
						|
	/* If end is not 2MB aligned, create PTE entries */
 | 
						|
	ppd->vaddr_end = vaddr_end;
 | 
						|
	__sme_map_range_pte(ppd);
 | 
						|
}
 | 
						|
 | 
						|
static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
 | 
						|
}
 | 
						|
 | 
						|
static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
 | 
						|
}
 | 
						|
 | 
						|
static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
 | 
						|
{
 | 
						|
	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long __init sme_pgtable_calc(unsigned long len)
 | 
						|
{
 | 
						|
	unsigned long entries = 0, tables = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Perform a relatively simplistic calculation of the pagetable
 | 
						|
	 * entries that are needed. Those mappings will be covered mostly
 | 
						|
	 * by 2MB PMD entries so we can conservatively calculate the required
 | 
						|
	 * number of P4D, PUD and PMD structures needed to perform the
 | 
						|
	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
 | 
						|
	 * would be needed for the start and end portion of the address range
 | 
						|
	 * that fall outside of the 2MB alignment.  This results in, at most,
 | 
						|
	 * two extra pages to hold PTE entries for each range that is mapped.
 | 
						|
	 * Incrementing the count for each covers the case where the addresses
 | 
						|
	 * cross entries.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
 | 
						|
	if (PTRS_PER_P4D > 1)
 | 
						|
		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
 | 
						|
	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
 | 
						|
	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
 | 
						|
	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now calculate the added pagetable structures needed to populate
 | 
						|
	 * the new pagetables.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (PTRS_PER_P4D > 1)
 | 
						|
		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
 | 
						|
	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
 | 
						|
	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
 | 
						|
 | 
						|
	return entries + tables;
 | 
						|
}
 | 
						|
 | 
						|
void __init sme_encrypt_kernel(struct boot_params *bp)
 | 
						|
{
 | 
						|
	unsigned long workarea_start, workarea_end, workarea_len;
 | 
						|
	unsigned long execute_start, execute_end, execute_len;
 | 
						|
	unsigned long kernel_start, kernel_end, kernel_len;
 | 
						|
	unsigned long initrd_start, initrd_end, initrd_len;
 | 
						|
	struct sme_populate_pgd_data ppd;
 | 
						|
	unsigned long pgtable_area_len;
 | 
						|
	unsigned long decrypted_base;
 | 
						|
 | 
						|
	if (!sme_active())
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Prepare for encrypting the kernel and initrd by building new
 | 
						|
	 * pagetables with the necessary attributes needed to encrypt the
 | 
						|
	 * kernel in place.
 | 
						|
	 *
 | 
						|
	 *   One range of virtual addresses will map the memory occupied
 | 
						|
	 *   by the kernel and initrd as encrypted.
 | 
						|
	 *
 | 
						|
	 *   Another range of virtual addresses will map the memory occupied
 | 
						|
	 *   by the kernel and initrd as decrypted and write-protected.
 | 
						|
	 *
 | 
						|
	 *     The use of write-protect attribute will prevent any of the
 | 
						|
	 *     memory from being cached.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Physical addresses gives us the identity mapped virtual addresses */
 | 
						|
	kernel_start = __pa_symbol(_text);
 | 
						|
	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
 | 
						|
	kernel_len = kernel_end - kernel_start;
 | 
						|
 | 
						|
	initrd_start = 0;
 | 
						|
	initrd_end = 0;
 | 
						|
	initrd_len = 0;
 | 
						|
#ifdef CONFIG_BLK_DEV_INITRD
 | 
						|
	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
 | 
						|
		     ((unsigned long)bp->ext_ramdisk_size << 32);
 | 
						|
	if (initrd_len) {
 | 
						|
		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
 | 
						|
			       ((unsigned long)bp->ext_ramdisk_image << 32);
 | 
						|
		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
 | 
						|
		initrd_len = initrd_end - initrd_start;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're running identity mapped, so we must obtain the address to the
 | 
						|
	 * SME encryption workarea using rip-relative addressing.
 | 
						|
	 */
 | 
						|
	asm ("lea sme_workarea(%%rip), %0"
 | 
						|
	     : "=r" (workarea_start)
 | 
						|
	     : "p" (sme_workarea));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Calculate required number of workarea bytes needed:
 | 
						|
	 *   executable encryption area size:
 | 
						|
	 *     stack page (PAGE_SIZE)
 | 
						|
	 *     encryption routine page (PAGE_SIZE)
 | 
						|
	 *     intermediate copy buffer (PMD_PAGE_SIZE)
 | 
						|
	 *   pagetable structures for the encryption of the kernel
 | 
						|
	 *   pagetable structures for workarea (in case not currently mapped)
 | 
						|
	 */
 | 
						|
	execute_start = workarea_start;
 | 
						|
	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
 | 
						|
	execute_len = execute_end - execute_start;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * One PGD for both encrypted and decrypted mappings and a set of
 | 
						|
	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
 | 
						|
	 */
 | 
						|
	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
 | 
						|
	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
 | 
						|
	if (initrd_len)
 | 
						|
		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
 | 
						|
 | 
						|
	/* PUDs and PMDs needed in the current pagetables for the workarea */
 | 
						|
	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The total workarea includes the executable encryption area and
 | 
						|
	 * the pagetable area. The start of the workarea is already 2MB
 | 
						|
	 * aligned, align the end of the workarea on a 2MB boundary so that
 | 
						|
	 * we don't try to create/allocate PTE entries from the workarea
 | 
						|
	 * before it is mapped.
 | 
						|
	 */
 | 
						|
	workarea_len = execute_len + pgtable_area_len;
 | 
						|
	workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Set the address to the start of where newly created pagetable
 | 
						|
	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
 | 
						|
	 * structures are created when the workarea is added to the current
 | 
						|
	 * pagetables and when the new encrypted and decrypted kernel
 | 
						|
	 * mappings are populated.
 | 
						|
	 */
 | 
						|
	ppd.pgtable_area = (void *)execute_end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Make sure the current pagetable structure has entries for
 | 
						|
	 * addressing the workarea.
 | 
						|
	 */
 | 
						|
	ppd.pgd = (pgd_t *)native_read_cr3_pa();
 | 
						|
	ppd.paddr = workarea_start;
 | 
						|
	ppd.vaddr = workarea_start;
 | 
						|
	ppd.vaddr_end = workarea_end;
 | 
						|
	sme_map_range_decrypted(&ppd);
 | 
						|
 | 
						|
	/* Flush the TLB - no globals so cr3 is enough */
 | 
						|
	native_write_cr3(__native_read_cr3());
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A new pagetable structure is being built to allow for the kernel
 | 
						|
	 * and initrd to be encrypted. It starts with an empty PGD that will
 | 
						|
	 * then be populated with new PUDs and PMDs as the encrypted and
 | 
						|
	 * decrypted kernel mappings are created.
 | 
						|
	 */
 | 
						|
	ppd.pgd = ppd.pgtable_area;
 | 
						|
	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
 | 
						|
	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A different PGD index/entry must be used to get different
 | 
						|
	 * pagetable entries for the decrypted mapping. Choose the next
 | 
						|
	 * PGD index and convert it to a virtual address to be used as
 | 
						|
	 * the base of the mapping.
 | 
						|
	 */
 | 
						|
	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
 | 
						|
	if (initrd_len) {
 | 
						|
		unsigned long check_base;
 | 
						|
 | 
						|
		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
 | 
						|
		decrypted_base = max(decrypted_base, check_base);
 | 
						|
	}
 | 
						|
	decrypted_base <<= PGDIR_SHIFT;
 | 
						|
 | 
						|
	/* Add encrypted kernel (identity) mappings */
 | 
						|
	ppd.paddr = kernel_start;
 | 
						|
	ppd.vaddr = kernel_start;
 | 
						|
	ppd.vaddr_end = kernel_end;
 | 
						|
	sme_map_range_encrypted(&ppd);
 | 
						|
 | 
						|
	/* Add decrypted, write-protected kernel (non-identity) mappings */
 | 
						|
	ppd.paddr = kernel_start;
 | 
						|
	ppd.vaddr = kernel_start + decrypted_base;
 | 
						|
	ppd.vaddr_end = kernel_end + decrypted_base;
 | 
						|
	sme_map_range_decrypted_wp(&ppd);
 | 
						|
 | 
						|
	if (initrd_len) {
 | 
						|
		/* Add encrypted initrd (identity) mappings */
 | 
						|
		ppd.paddr = initrd_start;
 | 
						|
		ppd.vaddr = initrd_start;
 | 
						|
		ppd.vaddr_end = initrd_end;
 | 
						|
		sme_map_range_encrypted(&ppd);
 | 
						|
		/*
 | 
						|
		 * Add decrypted, write-protected initrd (non-identity) mappings
 | 
						|
		 */
 | 
						|
		ppd.paddr = initrd_start;
 | 
						|
		ppd.vaddr = initrd_start + decrypted_base;
 | 
						|
		ppd.vaddr_end = initrd_end + decrypted_base;
 | 
						|
		sme_map_range_decrypted_wp(&ppd);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Add decrypted workarea mappings to both kernel mappings */
 | 
						|
	ppd.paddr = workarea_start;
 | 
						|
	ppd.vaddr = workarea_start;
 | 
						|
	ppd.vaddr_end = workarea_end;
 | 
						|
	sme_map_range_decrypted(&ppd);
 | 
						|
 | 
						|
	ppd.paddr = workarea_start;
 | 
						|
	ppd.vaddr = workarea_start + decrypted_base;
 | 
						|
	ppd.vaddr_end = workarea_end + decrypted_base;
 | 
						|
	sme_map_range_decrypted(&ppd);
 | 
						|
 | 
						|
	/* Perform the encryption */
 | 
						|
	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
 | 
						|
			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
 | 
						|
 | 
						|
	if (initrd_len)
 | 
						|
		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
 | 
						|
				    initrd_len, workarea_start,
 | 
						|
				    (unsigned long)ppd.pgd);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point we are running encrypted.  Remove the mappings for
 | 
						|
	 * the decrypted areas - all that is needed for this is to remove
 | 
						|
	 * the PGD entry/entries.
 | 
						|
	 */
 | 
						|
	ppd.vaddr = kernel_start + decrypted_base;
 | 
						|
	ppd.vaddr_end = kernel_end + decrypted_base;
 | 
						|
	sme_clear_pgd(&ppd);
 | 
						|
 | 
						|
	if (initrd_len) {
 | 
						|
		ppd.vaddr = initrd_start + decrypted_base;
 | 
						|
		ppd.vaddr_end = initrd_end + decrypted_base;
 | 
						|
		sme_clear_pgd(&ppd);
 | 
						|
	}
 | 
						|
 | 
						|
	ppd.vaddr = workarea_start + decrypted_base;
 | 
						|
	ppd.vaddr_end = workarea_end + decrypted_base;
 | 
						|
	sme_clear_pgd(&ppd);
 | 
						|
 | 
						|
	/* Flush the TLB - no globals so cr3 is enough */
 | 
						|
	native_write_cr3(__native_read_cr3());
 | 
						|
}
 | 
						|
 | 
						|
void __init sme_enable(struct boot_params *bp)
 | 
						|
{
 | 
						|
	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
 | 
						|
	unsigned int eax, ebx, ecx, edx;
 | 
						|
	unsigned long feature_mask;
 | 
						|
	bool active_by_default;
 | 
						|
	unsigned long me_mask;
 | 
						|
	char buffer[16];
 | 
						|
	u64 msr;
 | 
						|
 | 
						|
	/* Check for the SME/SEV support leaf */
 | 
						|
	eax = 0x80000000;
 | 
						|
	ecx = 0;
 | 
						|
	native_cpuid(&eax, &ebx, &ecx, &edx);
 | 
						|
	if (eax < 0x8000001f)
 | 
						|
		return;
 | 
						|
 | 
						|
#define AMD_SME_BIT	BIT(0)
 | 
						|
#define AMD_SEV_BIT	BIT(1)
 | 
						|
	/*
 | 
						|
	 * Set the feature mask (SME or SEV) based on whether we are
 | 
						|
	 * running under a hypervisor.
 | 
						|
	 */
 | 
						|
	eax = 1;
 | 
						|
	ecx = 0;
 | 
						|
	native_cpuid(&eax, &ebx, &ecx, &edx);
 | 
						|
	feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for the SME/SEV feature:
 | 
						|
	 *   CPUID Fn8000_001F[EAX]
 | 
						|
	 *   - Bit 0 - Secure Memory Encryption support
 | 
						|
	 *   - Bit 1 - Secure Encrypted Virtualization support
 | 
						|
	 *   CPUID Fn8000_001F[EBX]
 | 
						|
	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
 | 
						|
	 */
 | 
						|
	eax = 0x8000001f;
 | 
						|
	ecx = 0;
 | 
						|
	native_cpuid(&eax, &ebx, &ecx, &edx);
 | 
						|
	if (!(eax & feature_mask))
 | 
						|
		return;
 | 
						|
 | 
						|
	me_mask = 1UL << (ebx & 0x3f);
 | 
						|
 | 
						|
	/* Check if memory encryption is enabled */
 | 
						|
	if (feature_mask == AMD_SME_BIT) {
 | 
						|
		/* For SME, check the SYSCFG MSR */
 | 
						|
		msr = __rdmsr(MSR_K8_SYSCFG);
 | 
						|
		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
 | 
						|
			return;
 | 
						|
	} else {
 | 
						|
		/* For SEV, check the SEV MSR */
 | 
						|
		msr = __rdmsr(MSR_AMD64_SEV);
 | 
						|
		if (!(msr & MSR_AMD64_SEV_ENABLED))
 | 
						|
			return;
 | 
						|
 | 
						|
		/* SEV state cannot be controlled by a command line option */
 | 
						|
		sme_me_mask = me_mask;
 | 
						|
		sev_enabled = true;
 | 
						|
		physical_mask &= ~sme_me_mask;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Fixups have not been applied to phys_base yet and we're running
 | 
						|
	 * identity mapped, so we must obtain the address to the SME command
 | 
						|
	 * line argument data using rip-relative addressing.
 | 
						|
	 */
 | 
						|
	asm ("lea sme_cmdline_arg(%%rip), %0"
 | 
						|
	     : "=r" (cmdline_arg)
 | 
						|
	     : "p" (sme_cmdline_arg));
 | 
						|
	asm ("lea sme_cmdline_on(%%rip), %0"
 | 
						|
	     : "=r" (cmdline_on)
 | 
						|
	     : "p" (sme_cmdline_on));
 | 
						|
	asm ("lea sme_cmdline_off(%%rip), %0"
 | 
						|
	     : "=r" (cmdline_off)
 | 
						|
	     : "p" (sme_cmdline_off));
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
 | 
						|
		active_by_default = true;
 | 
						|
	else
 | 
						|
		active_by_default = false;
 | 
						|
 | 
						|
	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
 | 
						|
				     ((u64)bp->ext_cmd_line_ptr << 32));
 | 
						|
 | 
						|
	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
 | 
						|
 | 
						|
	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
 | 
						|
		sme_me_mask = me_mask;
 | 
						|
	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
 | 
						|
		sme_me_mask = 0;
 | 
						|
	else
 | 
						|
		sme_me_mask = active_by_default ? me_mask : 0;
 | 
						|
 | 
						|
	physical_mask &= ~sme_me_mask;
 | 
						|
}
 |