forked from mirrors/linux
		
	 933a90bf4f
			
		
	
	
		933a90bf4f
		
	
	
	
	
		
			
			Pull vfs mount updates from Al Viro: "The first part of mount updates. Convert filesystems to use the new mount API" * 'work.mount0' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits) mnt_init(): call shmem_init() unconditionally constify ksys_mount() string arguments don't bother with registering rootfs init_rootfs(): don't bother with init_ramfs_fs() vfs: Convert smackfs to use the new mount API vfs: Convert selinuxfs to use the new mount API vfs: Convert securityfs to use the new mount API vfs: Convert apparmorfs to use the new mount API vfs: Convert openpromfs to use the new mount API vfs: Convert xenfs to use the new mount API vfs: Convert gadgetfs to use the new mount API vfs: Convert oprofilefs to use the new mount API vfs: Convert ibmasmfs to use the new mount API vfs: Convert qib_fs/ipathfs to use the new mount API vfs: Convert efivarfs to use the new mount API vfs: Convert configfs to use the new mount API vfs: Convert binfmt_misc to use the new mount API convenience helper: get_tree_single() convenience helper get_tree_nodev() vfs: Kill sget_userns() ...
		
			
				
	
	
		
			2255 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2255 lines
		
	
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	An async IO implementation for Linux
 | |
|  *	Written by Benjamin LaHaise <bcrl@kvack.org>
 | |
|  *
 | |
|  *	Implements an efficient asynchronous io interface.
 | |
|  *
 | |
|  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
 | |
|  *	Copyright 2018 Christoph Hellwig.
 | |
|  *
 | |
|  *	See ../COPYING for licensing terms.
 | |
|  */
 | |
| #define pr_fmt(fmt) "%s: " fmt, __func__
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/aio_abi.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/refcount.h>
 | |
| #include <linux/uio.h>
 | |
| 
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mmu_context.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/aio.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/eventfd.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/compat.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/ramfs.h>
 | |
| #include <linux/percpu-refcount.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/pseudo_fs.h>
 | |
| 
 | |
| #include <asm/kmap_types.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/nospec.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| #define KIOCB_KEY		0
 | |
| 
 | |
| #define AIO_RING_MAGIC			0xa10a10a1
 | |
| #define AIO_RING_COMPAT_FEATURES	1
 | |
| #define AIO_RING_INCOMPAT_FEATURES	0
 | |
| struct aio_ring {
 | |
| 	unsigned	id;	/* kernel internal index number */
 | |
| 	unsigned	nr;	/* number of io_events */
 | |
| 	unsigned	head;	/* Written to by userland or under ring_lock
 | |
| 				 * mutex by aio_read_events_ring(). */
 | |
| 	unsigned	tail;
 | |
| 
 | |
| 	unsigned	magic;
 | |
| 	unsigned	compat_features;
 | |
| 	unsigned	incompat_features;
 | |
| 	unsigned	header_length;	/* size of aio_ring */
 | |
| 
 | |
| 
 | |
| 	struct io_event		io_events[0];
 | |
| }; /* 128 bytes + ring size */
 | |
| 
 | |
| /*
 | |
|  * Plugging is meant to work with larger batches of IOs. If we don't
 | |
|  * have more than the below, then don't bother setting up a plug.
 | |
|  */
 | |
| #define AIO_PLUG_THRESHOLD	2
 | |
| 
 | |
| #define AIO_RING_PAGES	8
 | |
| 
 | |
| struct kioctx_table {
 | |
| 	struct rcu_head		rcu;
 | |
| 	unsigned		nr;
 | |
| 	struct kioctx __rcu	*table[];
 | |
| };
 | |
| 
 | |
| struct kioctx_cpu {
 | |
| 	unsigned		reqs_available;
 | |
| };
 | |
| 
 | |
| struct ctx_rq_wait {
 | |
| 	struct completion comp;
 | |
| 	atomic_t count;
 | |
| };
 | |
| 
 | |
| struct kioctx {
 | |
| 	struct percpu_ref	users;
 | |
| 	atomic_t		dead;
 | |
| 
 | |
| 	struct percpu_ref	reqs;
 | |
| 
 | |
| 	unsigned long		user_id;
 | |
| 
 | |
| 	struct __percpu kioctx_cpu *cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * For percpu reqs_available, number of slots we move to/from global
 | |
| 	 * counter at a time:
 | |
| 	 */
 | |
| 	unsigned		req_batch;
 | |
| 	/*
 | |
| 	 * This is what userspace passed to io_setup(), it's not used for
 | |
| 	 * anything but counting against the global max_reqs quota.
 | |
| 	 *
 | |
| 	 * The real limit is nr_events - 1, which will be larger (see
 | |
| 	 * aio_setup_ring())
 | |
| 	 */
 | |
| 	unsigned		max_reqs;
 | |
| 
 | |
| 	/* Size of ringbuffer, in units of struct io_event */
 | |
| 	unsigned		nr_events;
 | |
| 
 | |
| 	unsigned long		mmap_base;
 | |
| 	unsigned long		mmap_size;
 | |
| 
 | |
| 	struct page		**ring_pages;
 | |
| 	long			nr_pages;
 | |
| 
 | |
| 	struct rcu_work		free_rwork;	/* see free_ioctx() */
 | |
| 
 | |
| 	/*
 | |
| 	 * signals when all in-flight requests are done
 | |
| 	 */
 | |
| 	struct ctx_rq_wait	*rq_wait;
 | |
| 
 | |
| 	struct {
 | |
| 		/*
 | |
| 		 * This counts the number of available slots in the ringbuffer,
 | |
| 		 * so we avoid overflowing it: it's decremented (if positive)
 | |
| 		 * when allocating a kiocb and incremented when the resulting
 | |
| 		 * io_event is pulled off the ringbuffer.
 | |
| 		 *
 | |
| 		 * We batch accesses to it with a percpu version.
 | |
| 		 */
 | |
| 		atomic_t	reqs_available;
 | |
| 	} ____cacheline_aligned_in_smp;
 | |
| 
 | |
| 	struct {
 | |
| 		spinlock_t	ctx_lock;
 | |
| 		struct list_head active_reqs;	/* used for cancellation */
 | |
| 	} ____cacheline_aligned_in_smp;
 | |
| 
 | |
| 	struct {
 | |
| 		struct mutex	ring_lock;
 | |
| 		wait_queue_head_t wait;
 | |
| 	} ____cacheline_aligned_in_smp;
 | |
| 
 | |
| 	struct {
 | |
| 		unsigned	tail;
 | |
| 		unsigned	completed_events;
 | |
| 		spinlock_t	completion_lock;
 | |
| 	} ____cacheline_aligned_in_smp;
 | |
| 
 | |
| 	struct page		*internal_pages[AIO_RING_PAGES];
 | |
| 	struct file		*aio_ring_file;
 | |
| 
 | |
| 	unsigned		id;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * First field must be the file pointer in all the
 | |
|  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
 | |
|  */
 | |
| struct fsync_iocb {
 | |
| 	struct file		*file;
 | |
| 	struct work_struct	work;
 | |
| 	bool			datasync;
 | |
| };
 | |
| 
 | |
| struct poll_iocb {
 | |
| 	struct file		*file;
 | |
| 	struct wait_queue_head	*head;
 | |
| 	__poll_t		events;
 | |
| 	bool			done;
 | |
| 	bool			cancelled;
 | |
| 	struct wait_queue_entry	wait;
 | |
| 	struct work_struct	work;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * NOTE! Each of the iocb union members has the file pointer
 | |
|  * as the first entry in their struct definition. So you can
 | |
|  * access the file pointer through any of the sub-structs,
 | |
|  * or directly as just 'ki_filp' in this struct.
 | |
|  */
 | |
| struct aio_kiocb {
 | |
| 	union {
 | |
| 		struct file		*ki_filp;
 | |
| 		struct kiocb		rw;
 | |
| 		struct fsync_iocb	fsync;
 | |
| 		struct poll_iocb	poll;
 | |
| 	};
 | |
| 
 | |
| 	struct kioctx		*ki_ctx;
 | |
| 	kiocb_cancel_fn		*ki_cancel;
 | |
| 
 | |
| 	struct io_event		ki_res;
 | |
| 
 | |
| 	struct list_head	ki_list;	/* the aio core uses this
 | |
| 						 * for cancellation */
 | |
| 	refcount_t		ki_refcnt;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the aio_resfd field of the userspace iocb is not zero,
 | |
| 	 * this is the underlying eventfd context to deliver events to.
 | |
| 	 */
 | |
| 	struct eventfd_ctx	*ki_eventfd;
 | |
| };
 | |
| 
 | |
| /*------ sysctl variables----*/
 | |
| static DEFINE_SPINLOCK(aio_nr_lock);
 | |
| unsigned long aio_nr;		/* current system wide number of aio requests */
 | |
| unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 | |
| /*----end sysctl variables---*/
 | |
| 
 | |
| static struct kmem_cache	*kiocb_cachep;
 | |
| static struct kmem_cache	*kioctx_cachep;
 | |
| 
 | |
| static struct vfsmount *aio_mnt;
 | |
| 
 | |
| static const struct file_operations aio_ring_fops;
 | |
| static const struct address_space_operations aio_ctx_aops;
 | |
| 
 | |
| static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 | |
| {
 | |
| 	struct file *file;
 | |
| 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return ERR_CAST(inode);
 | |
| 
 | |
| 	inode->i_mapping->a_ops = &aio_ctx_aops;
 | |
| 	inode->i_mapping->private_data = ctx;
 | |
| 	inode->i_size = PAGE_SIZE * nr_pages;
 | |
| 
 | |
| 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
 | |
| 				O_RDWR, &aio_ring_fops);
 | |
| 	if (IS_ERR(file))
 | |
| 		iput(inode);
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| static int aio_init_fs_context(struct fs_context *fc)
 | |
| {
 | |
| 	if (!init_pseudo(fc, AIO_RING_MAGIC))
 | |
| 		return -ENOMEM;
 | |
| 	fc->s_iflags |= SB_I_NOEXEC;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* aio_setup
 | |
|  *	Creates the slab caches used by the aio routines, panic on
 | |
|  *	failure as this is done early during the boot sequence.
 | |
|  */
 | |
| static int __init aio_setup(void)
 | |
| {
 | |
| 	static struct file_system_type aio_fs = {
 | |
| 		.name		= "aio",
 | |
| 		.init_fs_context = aio_init_fs_context,
 | |
| 		.kill_sb	= kill_anon_super,
 | |
| 	};
 | |
| 	aio_mnt = kern_mount(&aio_fs);
 | |
| 	if (IS_ERR(aio_mnt))
 | |
| 		panic("Failed to create aio fs mount.");
 | |
| 
 | |
| 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 | |
| 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(aio_setup);
 | |
| 
 | |
| static void put_aio_ring_file(struct kioctx *ctx)
 | |
| {
 | |
| 	struct file *aio_ring_file = ctx->aio_ring_file;
 | |
| 	struct address_space *i_mapping;
 | |
| 
 | |
| 	if (aio_ring_file) {
 | |
| 		truncate_setsize(file_inode(aio_ring_file), 0);
 | |
| 
 | |
| 		/* Prevent further access to the kioctx from migratepages */
 | |
| 		i_mapping = aio_ring_file->f_mapping;
 | |
| 		spin_lock(&i_mapping->private_lock);
 | |
| 		i_mapping->private_data = NULL;
 | |
| 		ctx->aio_ring_file = NULL;
 | |
| 		spin_unlock(&i_mapping->private_lock);
 | |
| 
 | |
| 		fput(aio_ring_file);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void aio_free_ring(struct kioctx *ctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Disconnect the kiotx from the ring file.  This prevents future
 | |
| 	 * accesses to the kioctx from page migration.
 | |
| 	 */
 | |
| 	put_aio_ring_file(ctx);
 | |
| 
 | |
| 	for (i = 0; i < ctx->nr_pages; i++) {
 | |
| 		struct page *page;
 | |
| 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 | |
| 				page_count(ctx->ring_pages[i]));
 | |
| 		page = ctx->ring_pages[i];
 | |
| 		if (!page)
 | |
| 			continue;
 | |
| 		ctx->ring_pages[i] = NULL;
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 | |
| 		kfree(ctx->ring_pages);
 | |
| 		ctx->ring_pages = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int aio_ring_mremap(struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct file *file = vma->vm_file;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct kioctx_table *table;
 | |
| 	int i, res = -EINVAL;
 | |
| 
 | |
| 	spin_lock(&mm->ioctx_lock);
 | |
| 	rcu_read_lock();
 | |
| 	table = rcu_dereference(mm->ioctx_table);
 | |
| 	for (i = 0; i < table->nr; i++) {
 | |
| 		struct kioctx *ctx;
 | |
| 
 | |
| 		ctx = rcu_dereference(table->table[i]);
 | |
| 		if (ctx && ctx->aio_ring_file == file) {
 | |
| 			if (!atomic_read(&ctx->dead)) {
 | |
| 				ctx->user_id = ctx->mmap_base = vma->vm_start;
 | |
| 				res = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 	spin_unlock(&mm->ioctx_lock);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static const struct vm_operations_struct aio_ring_vm_ops = {
 | |
| 	.mremap		= aio_ring_mremap,
 | |
| #if IS_ENABLED(CONFIG_MMU)
 | |
| 	.fault		= filemap_fault,
 | |
| 	.map_pages	= filemap_map_pages,
 | |
| 	.page_mkwrite	= filemap_page_mkwrite,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 | |
| {
 | |
| 	vma->vm_flags |= VM_DONTEXPAND;
 | |
| 	vma->vm_ops = &aio_ring_vm_ops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct file_operations aio_ring_fops = {
 | |
| 	.mmap = aio_ring_mmap,
 | |
| };
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_MIGRATION)
 | |
| static int aio_migratepage(struct address_space *mapping, struct page *new,
 | |
| 			struct page *old, enum migrate_mode mode)
 | |
| {
 | |
| 	struct kioctx *ctx;
 | |
| 	unsigned long flags;
 | |
| 	pgoff_t idx;
 | |
| 	int rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * We cannot support the _NO_COPY case here, because copy needs to
 | |
| 	 * happen under the ctx->completion_lock. That does not work with the
 | |
| 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
 | |
| 	 */
 | |
| 	if (mode == MIGRATE_SYNC_NO_COPY)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rc = 0;
 | |
| 
 | |
| 	/* mapping->private_lock here protects against the kioctx teardown.  */
 | |
| 	spin_lock(&mapping->private_lock);
 | |
| 	ctx = mapping->private_data;
 | |
| 	if (!ctx) {
 | |
| 		rc = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
 | |
| 	 * to the ring's head, and prevents page migration from mucking in
 | |
| 	 * a partially initialized kiotx.
 | |
| 	 */
 | |
| 	if (!mutex_trylock(&ctx->ring_lock)) {
 | |
| 		rc = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	idx = old->index;
 | |
| 	if (idx < (pgoff_t)ctx->nr_pages) {
 | |
| 		/* Make sure the old page hasn't already been changed */
 | |
| 		if (ctx->ring_pages[idx] != old)
 | |
| 			rc = -EAGAIN;
 | |
| 	} else
 | |
| 		rc = -EINVAL;
 | |
| 
 | |
| 	if (rc != 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* Writeback must be complete */
 | |
| 	BUG_ON(PageWriteback(old));
 | |
| 	get_page(new);
 | |
| 
 | |
| 	rc = migrate_page_move_mapping(mapping, new, old, 1);
 | |
| 	if (rc != MIGRATEPAGE_SUCCESS) {
 | |
| 		put_page(new);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Take completion_lock to prevent other writes to the ring buffer
 | |
| 	 * while the old page is copied to the new.  This prevents new
 | |
| 	 * events from being lost.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&ctx->completion_lock, flags);
 | |
| 	migrate_page_copy(new, old);
 | |
| 	BUG_ON(ctx->ring_pages[idx] != old);
 | |
| 	ctx->ring_pages[idx] = new;
 | |
| 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
 | |
| 
 | |
| 	/* The old page is no longer accessible. */
 | |
| 	put_page(old);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&ctx->ring_lock);
 | |
| out:
 | |
| 	spin_unlock(&mapping->private_lock);
 | |
| 	return rc;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct address_space_operations aio_ctx_aops = {
 | |
| 	.set_page_dirty = __set_page_dirty_no_writeback,
 | |
| #if IS_ENABLED(CONFIG_MIGRATION)
 | |
| 	.migratepage	= aio_migratepage,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
 | |
| {
 | |
| 	struct aio_ring *ring;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	unsigned long size, unused;
 | |
| 	int nr_pages;
 | |
| 	int i;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	/* Compensate for the ring buffer's head/tail overlap entry */
 | |
| 	nr_events += 2;	/* 1 is required, 2 for good luck */
 | |
| 
 | |
| 	size = sizeof(struct aio_ring);
 | |
| 	size += sizeof(struct io_event) * nr_events;
 | |
| 
 | |
| 	nr_pages = PFN_UP(size);
 | |
| 	if (nr_pages < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	file = aio_private_file(ctx, nr_pages);
 | |
| 	if (IS_ERR(file)) {
 | |
| 		ctx->aio_ring_file = NULL;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ctx->aio_ring_file = file;
 | |
| 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 | |
| 			/ sizeof(struct io_event);
 | |
| 
 | |
| 	ctx->ring_pages = ctx->internal_pages;
 | |
| 	if (nr_pages > AIO_RING_PAGES) {
 | |
| 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 | |
| 					  GFP_KERNEL);
 | |
| 		if (!ctx->ring_pages) {
 | |
| 			put_aio_ring_file(ctx);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_pages; i++) {
 | |
| 		struct page *page;
 | |
| 		page = find_or_create_page(file->f_mapping,
 | |
| 					   i, GFP_HIGHUSER | __GFP_ZERO);
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 		pr_debug("pid(%d) page[%d]->count=%d\n",
 | |
| 			 current->pid, i, page_count(page));
 | |
| 		SetPageUptodate(page);
 | |
| 		unlock_page(page);
 | |
| 
 | |
| 		ctx->ring_pages[i] = page;
 | |
| 	}
 | |
| 	ctx->nr_pages = i;
 | |
| 
 | |
| 	if (unlikely(i != nr_pages)) {
 | |
| 		aio_free_ring(ctx);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ctx->mmap_size = nr_pages * PAGE_SIZE;
 | |
| 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 | |
| 
 | |
| 	if (down_write_killable(&mm->mmap_sem)) {
 | |
| 		ctx->mmap_size = 0;
 | |
| 		aio_free_ring(ctx);
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 
 | |
| 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 | |
| 				       PROT_READ | PROT_WRITE,
 | |
| 				       MAP_SHARED, 0, &unused, NULL);
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	if (IS_ERR((void *)ctx->mmap_base)) {
 | |
| 		ctx->mmap_size = 0;
 | |
| 		aio_free_ring(ctx);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 | |
| 
 | |
| 	ctx->user_id = ctx->mmap_base;
 | |
| 	ctx->nr_events = nr_events; /* trusted copy */
 | |
| 
 | |
| 	ring = kmap_atomic(ctx->ring_pages[0]);
 | |
| 	ring->nr = nr_events;	/* user copy */
 | |
| 	ring->id = ~0U;
 | |
| 	ring->head = ring->tail = 0;
 | |
| 	ring->magic = AIO_RING_MAGIC;
 | |
| 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
 | |
| 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 | |
| 	ring->header_length = sizeof(struct aio_ring);
 | |
| 	kunmap_atomic(ring);
 | |
| 	flush_dcache_page(ctx->ring_pages[0]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
 | |
| #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 | |
| #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 | |
| 
 | |
| void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 | |
| {
 | |
| 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
 | |
| 	struct kioctx *ctx = req->ki_ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&ctx->ctx_lock, flags);
 | |
| 	list_add_tail(&req->ki_list, &ctx->active_reqs);
 | |
| 	req->ki_cancel = cancel;
 | |
| 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(kiocb_set_cancel_fn);
 | |
| 
 | |
| /*
 | |
|  * free_ioctx() should be RCU delayed to synchronize against the RCU
 | |
|  * protected lookup_ioctx() and also needs process context to call
 | |
|  * aio_free_ring().  Use rcu_work.
 | |
|  */
 | |
| static void free_ioctx(struct work_struct *work)
 | |
| {
 | |
| 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
 | |
| 					  free_rwork);
 | |
| 	pr_debug("freeing %p\n", ctx);
 | |
| 
 | |
| 	aio_free_ring(ctx);
 | |
| 	free_percpu(ctx->cpu);
 | |
| 	percpu_ref_exit(&ctx->reqs);
 | |
| 	percpu_ref_exit(&ctx->users);
 | |
| 	kmem_cache_free(kioctx_cachep, ctx);
 | |
| }
 | |
| 
 | |
| static void free_ioctx_reqs(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 | |
| 
 | |
| 	/* At this point we know that there are no any in-flight requests */
 | |
| 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 | |
| 		complete(&ctx->rq_wait->comp);
 | |
| 
 | |
| 	/* Synchronize against RCU protected table->table[] dereferences */
 | |
| 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
 | |
| 	queue_rcu_work(system_wq, &ctx->free_rwork);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When this function runs, the kioctx has been removed from the "hash table"
 | |
|  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 | |
|  * now it's safe to cancel any that need to be.
 | |
|  */
 | |
| static void free_ioctx_users(struct percpu_ref *ref)
 | |
| {
 | |
| 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
 | |
| 	struct aio_kiocb *req;
 | |
| 
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	while (!list_empty(&ctx->active_reqs)) {
 | |
| 		req = list_first_entry(&ctx->active_reqs,
 | |
| 				       struct aio_kiocb, ki_list);
 | |
| 		req->ki_cancel(&req->rw);
 | |
| 		list_del_init(&req->ki_list);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	percpu_ref_kill(&ctx->reqs);
 | |
| 	percpu_ref_put(&ctx->reqs);
 | |
| }
 | |
| 
 | |
| static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned i, new_nr;
 | |
| 	struct kioctx_table *table, *old;
 | |
| 	struct aio_ring *ring;
 | |
| 
 | |
| 	spin_lock(&mm->ioctx_lock);
 | |
| 	table = rcu_dereference_raw(mm->ioctx_table);
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (table)
 | |
| 			for (i = 0; i < table->nr; i++)
 | |
| 				if (!rcu_access_pointer(table->table[i])) {
 | |
| 					ctx->id = i;
 | |
| 					rcu_assign_pointer(table->table[i], ctx);
 | |
| 					spin_unlock(&mm->ioctx_lock);
 | |
| 
 | |
| 					/* While kioctx setup is in progress,
 | |
| 					 * we are protected from page migration
 | |
| 					 * changes ring_pages by ->ring_lock.
 | |
| 					 */
 | |
| 					ring = kmap_atomic(ctx->ring_pages[0]);
 | |
| 					ring->id = ctx->id;
 | |
| 					kunmap_atomic(ring);
 | |
| 					return 0;
 | |
| 				}
 | |
| 
 | |
| 		new_nr = (table ? table->nr : 1) * 4;
 | |
| 		spin_unlock(&mm->ioctx_lock);
 | |
| 
 | |
| 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 | |
| 				new_nr, GFP_KERNEL);
 | |
| 		if (!table)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		table->nr = new_nr;
 | |
| 
 | |
| 		spin_lock(&mm->ioctx_lock);
 | |
| 		old = rcu_dereference_raw(mm->ioctx_table);
 | |
| 
 | |
| 		if (!old) {
 | |
| 			rcu_assign_pointer(mm->ioctx_table, table);
 | |
| 		} else if (table->nr > old->nr) {
 | |
| 			memcpy(table->table, old->table,
 | |
| 			       old->nr * sizeof(struct kioctx *));
 | |
| 
 | |
| 			rcu_assign_pointer(mm->ioctx_table, table);
 | |
| 			kfree_rcu(old, rcu);
 | |
| 		} else {
 | |
| 			kfree(table);
 | |
| 			table = old;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void aio_nr_sub(unsigned nr)
 | |
| {
 | |
| 	spin_lock(&aio_nr_lock);
 | |
| 	if (WARN_ON(aio_nr - nr > aio_nr))
 | |
| 		aio_nr = 0;
 | |
| 	else
 | |
| 		aio_nr -= nr;
 | |
| 	spin_unlock(&aio_nr_lock);
 | |
| }
 | |
| 
 | |
| /* ioctx_alloc
 | |
|  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 | |
|  */
 | |
| static struct kioctx *ioctx_alloc(unsigned nr_events)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct kioctx *ctx;
 | |
| 	int err = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Store the original nr_events -- what userspace passed to io_setup(),
 | |
| 	 * for counting against the global limit -- before it changes.
 | |
| 	 */
 | |
| 	unsigned int max_reqs = nr_events;
 | |
| 
 | |
| 	/*
 | |
| 	 * We keep track of the number of available ringbuffer slots, to prevent
 | |
| 	 * overflow (reqs_available), and we also use percpu counters for this.
 | |
| 	 *
 | |
| 	 * So since up to half the slots might be on other cpu's percpu counters
 | |
| 	 * and unavailable, double nr_events so userspace sees what they
 | |
| 	 * expected: additionally, we move req_batch slots to/from percpu
 | |
| 	 * counters at a time, so make sure that isn't 0:
 | |
| 	 */
 | |
| 	nr_events = max(nr_events, num_possible_cpus() * 4);
 | |
| 	nr_events *= 2;
 | |
| 
 | |
| 	/* Prevent overflows */
 | |
| 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 | |
| 		pr_debug("ENOMEM: nr_events too high\n");
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
 | |
| 		return ERR_PTR(-EAGAIN);
 | |
| 
 | |
| 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ctx->max_reqs = max_reqs;
 | |
| 
 | |
| 	spin_lock_init(&ctx->ctx_lock);
 | |
| 	spin_lock_init(&ctx->completion_lock);
 | |
| 	mutex_init(&ctx->ring_lock);
 | |
| 	/* Protect against page migration throughout kiotx setup by keeping
 | |
| 	 * the ring_lock mutex held until setup is complete. */
 | |
| 	mutex_lock(&ctx->ring_lock);
 | |
| 	init_waitqueue_head(&ctx->wait);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&ctx->active_reqs);
 | |
| 
 | |
| 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 | |
| 		goto err;
 | |
| 
 | |
| 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 | |
| 		goto err;
 | |
| 
 | |
| 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
 | |
| 	if (!ctx->cpu)
 | |
| 		goto err;
 | |
| 
 | |
| 	err = aio_setup_ring(ctx, nr_events);
 | |
| 	if (err < 0)
 | |
| 		goto err;
 | |
| 
 | |
| 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 | |
| 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 | |
| 	if (ctx->req_batch < 1)
 | |
| 		ctx->req_batch = 1;
 | |
| 
 | |
| 	/* limit the number of system wide aios */
 | |
| 	spin_lock(&aio_nr_lock);
 | |
| 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
 | |
| 	    aio_nr + ctx->max_reqs < aio_nr) {
 | |
| 		spin_unlock(&aio_nr_lock);
 | |
| 		err = -EAGAIN;
 | |
| 		goto err_ctx;
 | |
| 	}
 | |
| 	aio_nr += ctx->max_reqs;
 | |
| 	spin_unlock(&aio_nr_lock);
 | |
| 
 | |
| 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
 | |
| 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
 | |
| 
 | |
| 	err = ioctx_add_table(ctx, mm);
 | |
| 	if (err)
 | |
| 		goto err_cleanup;
 | |
| 
 | |
| 	/* Release the ring_lock mutex now that all setup is complete. */
 | |
| 	mutex_unlock(&ctx->ring_lock);
 | |
| 
 | |
| 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 | |
| 		 ctx, ctx->user_id, mm, ctx->nr_events);
 | |
| 	return ctx;
 | |
| 
 | |
| err_cleanup:
 | |
| 	aio_nr_sub(ctx->max_reqs);
 | |
| err_ctx:
 | |
| 	atomic_set(&ctx->dead, 1);
 | |
| 	if (ctx->mmap_size)
 | |
| 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
 | |
| 	aio_free_ring(ctx);
 | |
| err:
 | |
| 	mutex_unlock(&ctx->ring_lock);
 | |
| 	free_percpu(ctx->cpu);
 | |
| 	percpu_ref_exit(&ctx->reqs);
 | |
| 	percpu_ref_exit(&ctx->users);
 | |
| 	kmem_cache_free(kioctx_cachep, ctx);
 | |
| 	pr_debug("error allocating ioctx %d\n", err);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| /* kill_ioctx
 | |
|  *	Cancels all outstanding aio requests on an aio context.  Used
 | |
|  *	when the processes owning a context have all exited to encourage
 | |
|  *	the rapid destruction of the kioctx.
 | |
|  */
 | |
| static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 | |
| 		      struct ctx_rq_wait *wait)
 | |
| {
 | |
| 	struct kioctx_table *table;
 | |
| 
 | |
| 	spin_lock(&mm->ioctx_lock);
 | |
| 	if (atomic_xchg(&ctx->dead, 1)) {
 | |
| 		spin_unlock(&mm->ioctx_lock);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	table = rcu_dereference_raw(mm->ioctx_table);
 | |
| 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
 | |
| 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
 | |
| 	spin_unlock(&mm->ioctx_lock);
 | |
| 
 | |
| 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
 | |
| 	wake_up_all(&ctx->wait);
 | |
| 
 | |
| 	/*
 | |
| 	 * It'd be more correct to do this in free_ioctx(), after all
 | |
| 	 * the outstanding kiocbs have finished - but by then io_destroy
 | |
| 	 * has already returned, so io_setup() could potentially return
 | |
| 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
 | |
| 	 *  could tell).
 | |
| 	 */
 | |
| 	aio_nr_sub(ctx->max_reqs);
 | |
| 
 | |
| 	if (ctx->mmap_size)
 | |
| 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
 | |
| 
 | |
| 	ctx->rq_wait = wait;
 | |
| 	percpu_ref_kill(&ctx->users);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * exit_aio: called when the last user of mm goes away.  At this point, there is
 | |
|  * no way for any new requests to be submited or any of the io_* syscalls to be
 | |
|  * called on the context.
 | |
|  *
 | |
|  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 | |
|  * them.
 | |
|  */
 | |
| void exit_aio(struct mm_struct *mm)
 | |
| {
 | |
| 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 | |
| 	struct ctx_rq_wait wait;
 | |
| 	int i, skipped;
 | |
| 
 | |
| 	if (!table)
 | |
| 		return;
 | |
| 
 | |
| 	atomic_set(&wait.count, table->nr);
 | |
| 	init_completion(&wait.comp);
 | |
| 
 | |
| 	skipped = 0;
 | |
| 	for (i = 0; i < table->nr; ++i) {
 | |
| 		struct kioctx *ctx =
 | |
| 			rcu_dereference_protected(table->table[i], true);
 | |
| 
 | |
| 		if (!ctx) {
 | |
| 			skipped++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't need to bother with munmap() here - exit_mmap(mm)
 | |
| 		 * is coming and it'll unmap everything. And we simply can't,
 | |
| 		 * this is not necessarily our ->mm.
 | |
| 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 | |
| 		 * that it needs to unmap the area, just set it to 0.
 | |
| 		 */
 | |
| 		ctx->mmap_size = 0;
 | |
| 		kill_ioctx(mm, ctx, &wait);
 | |
| 	}
 | |
| 
 | |
| 	if (!atomic_sub_and_test(skipped, &wait.count)) {
 | |
| 		/* Wait until all IO for the context are done. */
 | |
| 		wait_for_completion(&wait.comp);
 | |
| 	}
 | |
| 
 | |
| 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
 | |
| 	kfree(table);
 | |
| }
 | |
| 
 | |
| static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 | |
| {
 | |
| 	struct kioctx_cpu *kcpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	kcpu = this_cpu_ptr(ctx->cpu);
 | |
| 	kcpu->reqs_available += nr;
 | |
| 
 | |
| 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
 | |
| 		kcpu->reqs_available -= ctx->req_batch;
 | |
| 		atomic_add(ctx->req_batch, &ctx->reqs_available);
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| static bool __get_reqs_available(struct kioctx *ctx)
 | |
| {
 | |
| 	struct kioctx_cpu *kcpu;
 | |
| 	bool ret = false;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	kcpu = this_cpu_ptr(ctx->cpu);
 | |
| 	if (!kcpu->reqs_available) {
 | |
| 		int old, avail = atomic_read(&ctx->reqs_available);
 | |
| 
 | |
| 		do {
 | |
| 			if (avail < ctx->req_batch)
 | |
| 				goto out;
 | |
| 
 | |
| 			old = avail;
 | |
| 			avail = atomic_cmpxchg(&ctx->reqs_available,
 | |
| 					       avail, avail - ctx->req_batch);
 | |
| 		} while (avail != old);
 | |
| 
 | |
| 		kcpu->reqs_available += ctx->req_batch;
 | |
| 	}
 | |
| 
 | |
| 	ret = true;
 | |
| 	kcpu->reqs_available--;
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* refill_reqs_available
 | |
|  *	Updates the reqs_available reference counts used for tracking the
 | |
|  *	number of free slots in the completion ring.  This can be called
 | |
|  *	from aio_complete() (to optimistically update reqs_available) or
 | |
|  *	from aio_get_req() (the we're out of events case).  It must be
 | |
|  *	called holding ctx->completion_lock.
 | |
|  */
 | |
| static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 | |
|                                   unsigned tail)
 | |
| {
 | |
| 	unsigned events_in_ring, completed;
 | |
| 
 | |
| 	/* Clamp head since userland can write to it. */
 | |
| 	head %= ctx->nr_events;
 | |
| 	if (head <= tail)
 | |
| 		events_in_ring = tail - head;
 | |
| 	else
 | |
| 		events_in_ring = ctx->nr_events - (head - tail);
 | |
| 
 | |
| 	completed = ctx->completed_events;
 | |
| 	if (events_in_ring < completed)
 | |
| 		completed -= events_in_ring;
 | |
| 	else
 | |
| 		completed = 0;
 | |
| 
 | |
| 	if (!completed)
 | |
| 		return;
 | |
| 
 | |
| 	ctx->completed_events -= completed;
 | |
| 	put_reqs_available(ctx, completed);
 | |
| }
 | |
| 
 | |
| /* user_refill_reqs_available
 | |
|  *	Called to refill reqs_available when aio_get_req() encounters an
 | |
|  *	out of space in the completion ring.
 | |
|  */
 | |
| static void user_refill_reqs_available(struct kioctx *ctx)
 | |
| {
 | |
| 	spin_lock_irq(&ctx->completion_lock);
 | |
| 	if (ctx->completed_events) {
 | |
| 		struct aio_ring *ring;
 | |
| 		unsigned head;
 | |
| 
 | |
| 		/* Access of ring->head may race with aio_read_events_ring()
 | |
| 		 * here, but that's okay since whether we read the old version
 | |
| 		 * or the new version, and either will be valid.  The important
 | |
| 		 * part is that head cannot pass tail since we prevent
 | |
| 		 * aio_complete() from updating tail by holding
 | |
| 		 * ctx->completion_lock.  Even if head is invalid, the check
 | |
| 		 * against ctx->completed_events below will make sure we do the
 | |
| 		 * safe/right thing.
 | |
| 		 */
 | |
| 		ring = kmap_atomic(ctx->ring_pages[0]);
 | |
| 		head = ring->head;
 | |
| 		kunmap_atomic(ring);
 | |
| 
 | |
| 		refill_reqs_available(ctx, head, ctx->tail);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&ctx->completion_lock);
 | |
| }
 | |
| 
 | |
| static bool get_reqs_available(struct kioctx *ctx)
 | |
| {
 | |
| 	if (__get_reqs_available(ctx))
 | |
| 		return true;
 | |
| 	user_refill_reqs_available(ctx);
 | |
| 	return __get_reqs_available(ctx);
 | |
| }
 | |
| 
 | |
| /* aio_get_req
 | |
|  *	Allocate a slot for an aio request.
 | |
|  * Returns NULL if no requests are free.
 | |
|  *
 | |
|  * The refcount is initialized to 2 - one for the async op completion,
 | |
|  * one for the synchronous code that does this.
 | |
|  */
 | |
| static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
 | |
| {
 | |
| 	struct aio_kiocb *req;
 | |
| 
 | |
| 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
 | |
| 	if (unlikely(!req))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (unlikely(!get_reqs_available(ctx))) {
 | |
| 		kmem_cache_free(kiocb_cachep, req);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	percpu_ref_get(&ctx->reqs);
 | |
| 	req->ki_ctx = ctx;
 | |
| 	INIT_LIST_HEAD(&req->ki_list);
 | |
| 	refcount_set(&req->ki_refcnt, 2);
 | |
| 	req->ki_eventfd = NULL;
 | |
| 	return req;
 | |
| }
 | |
| 
 | |
| static struct kioctx *lookup_ioctx(unsigned long ctx_id)
 | |
| {
 | |
| 	struct aio_ring __user *ring  = (void __user *)ctx_id;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct kioctx *ctx, *ret = NULL;
 | |
| 	struct kioctx_table *table;
 | |
| 	unsigned id;
 | |
| 
 | |
| 	if (get_user(id, &ring->id))
 | |
| 		return NULL;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	table = rcu_dereference(mm->ioctx_table);
 | |
| 
 | |
| 	if (!table || id >= table->nr)
 | |
| 		goto out;
 | |
| 
 | |
| 	id = array_index_nospec(id, table->nr);
 | |
| 	ctx = rcu_dereference(table->table[id]);
 | |
| 	if (ctx && ctx->user_id == ctx_id) {
 | |
| 		if (percpu_ref_tryget_live(&ctx->users))
 | |
| 			ret = ctx;
 | |
| 	}
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline void iocb_destroy(struct aio_kiocb *iocb)
 | |
| {
 | |
| 	if (iocb->ki_eventfd)
 | |
| 		eventfd_ctx_put(iocb->ki_eventfd);
 | |
| 	if (iocb->ki_filp)
 | |
| 		fput(iocb->ki_filp);
 | |
| 	percpu_ref_put(&iocb->ki_ctx->reqs);
 | |
| 	kmem_cache_free(kiocb_cachep, iocb);
 | |
| }
 | |
| 
 | |
| /* aio_complete
 | |
|  *	Called when the io request on the given iocb is complete.
 | |
|  */
 | |
| static void aio_complete(struct aio_kiocb *iocb)
 | |
| {
 | |
| 	struct kioctx	*ctx = iocb->ki_ctx;
 | |
| 	struct aio_ring	*ring;
 | |
| 	struct io_event	*ev_page, *event;
 | |
| 	unsigned tail, pos, head;
 | |
| 	unsigned long	flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Add a completion event to the ring buffer. Must be done holding
 | |
| 	 * ctx->completion_lock to prevent other code from messing with the tail
 | |
| 	 * pointer since we might be called from irq context.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&ctx->completion_lock, flags);
 | |
| 
 | |
| 	tail = ctx->tail;
 | |
| 	pos = tail + AIO_EVENTS_OFFSET;
 | |
| 
 | |
| 	if (++tail >= ctx->nr_events)
 | |
| 		tail = 0;
 | |
| 
 | |
| 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
 | |
| 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
 | |
| 
 | |
| 	*event = iocb->ki_res;
 | |
| 
 | |
| 	kunmap_atomic(ev_page);
 | |
| 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
 | |
| 
 | |
| 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
 | |
| 		 (void __user *)(unsigned long)iocb->ki_res.obj,
 | |
| 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
 | |
| 
 | |
| 	/* after flagging the request as done, we
 | |
| 	 * must never even look at it again
 | |
| 	 */
 | |
| 	smp_wmb();	/* make event visible before updating tail */
 | |
| 
 | |
| 	ctx->tail = tail;
 | |
| 
 | |
| 	ring = kmap_atomic(ctx->ring_pages[0]);
 | |
| 	head = ring->head;
 | |
| 	ring->tail = tail;
 | |
| 	kunmap_atomic(ring);
 | |
| 	flush_dcache_page(ctx->ring_pages[0]);
 | |
| 
 | |
| 	ctx->completed_events++;
 | |
| 	if (ctx->completed_events > 1)
 | |
| 		refill_reqs_available(ctx, head, tail);
 | |
| 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
 | |
| 
 | |
| 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the user asked us to deliver the result through an
 | |
| 	 * eventfd. The eventfd_signal() function is safe to be called
 | |
| 	 * from IRQ context.
 | |
| 	 */
 | |
| 	if (iocb->ki_eventfd)
 | |
| 		eventfd_signal(iocb->ki_eventfd, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to order our ring_info tail store above and test
 | |
| 	 * of the wait list below outside the wait lock.  This is
 | |
| 	 * like in wake_up_bit() where clearing a bit has to be
 | |
| 	 * ordered with the unlocked test.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (waitqueue_active(&ctx->wait))
 | |
| 		wake_up(&ctx->wait);
 | |
| }
 | |
| 
 | |
| static inline void iocb_put(struct aio_kiocb *iocb)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
 | |
| 		aio_complete(iocb);
 | |
| 		iocb_destroy(iocb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* aio_read_events_ring
 | |
|  *	Pull an event off of the ioctx's event ring.  Returns the number of
 | |
|  *	events fetched
 | |
|  */
 | |
| static long aio_read_events_ring(struct kioctx *ctx,
 | |
| 				 struct io_event __user *event, long nr)
 | |
| {
 | |
| 	struct aio_ring *ring;
 | |
| 	unsigned head, tail, pos;
 | |
| 	long ret = 0;
 | |
| 	int copy_ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * The mutex can block and wake us up and that will cause
 | |
| 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
 | |
| 	 * and repeat. This should be rare enough that it doesn't cause
 | |
| 	 * peformance issues. See the comment in read_events() for more detail.
 | |
| 	 */
 | |
| 	sched_annotate_sleep();
 | |
| 	mutex_lock(&ctx->ring_lock);
 | |
| 
 | |
| 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
 | |
| 	ring = kmap_atomic(ctx->ring_pages[0]);
 | |
| 	head = ring->head;
 | |
| 	tail = ring->tail;
 | |
| 	kunmap_atomic(ring);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that once we've read the current tail pointer, that
 | |
| 	 * we also see the events that were stored up to the tail.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
 | |
| 
 | |
| 	if (head == tail)
 | |
| 		goto out;
 | |
| 
 | |
| 	head %= ctx->nr_events;
 | |
| 	tail %= ctx->nr_events;
 | |
| 
 | |
| 	while (ret < nr) {
 | |
| 		long avail;
 | |
| 		struct io_event *ev;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
 | |
| 		if (head == tail)
 | |
| 			break;
 | |
| 
 | |
| 		pos = head + AIO_EVENTS_OFFSET;
 | |
| 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
 | |
| 		pos %= AIO_EVENTS_PER_PAGE;
 | |
| 
 | |
| 		avail = min(avail, nr - ret);
 | |
| 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
 | |
| 
 | |
| 		ev = kmap(page);
 | |
| 		copy_ret = copy_to_user(event + ret, ev + pos,
 | |
| 					sizeof(*ev) * avail);
 | |
| 		kunmap(page);
 | |
| 
 | |
| 		if (unlikely(copy_ret)) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		ret += avail;
 | |
| 		head += avail;
 | |
| 		head %= ctx->nr_events;
 | |
| 	}
 | |
| 
 | |
| 	ring = kmap_atomic(ctx->ring_pages[0]);
 | |
| 	ring->head = head;
 | |
| 	kunmap_atomic(ring);
 | |
| 	flush_dcache_page(ctx->ring_pages[0]);
 | |
| 
 | |
| 	pr_debug("%li  h%u t%u\n", ret, head, tail);
 | |
| out:
 | |
| 	mutex_unlock(&ctx->ring_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
 | |
| 			    struct io_event __user *event, long *i)
 | |
| {
 | |
| 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
 | |
| 
 | |
| 	if (ret > 0)
 | |
| 		*i += ret;
 | |
| 
 | |
| 	if (unlikely(atomic_read(&ctx->dead)))
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 	if (!*i)
 | |
| 		*i = ret;
 | |
| 
 | |
| 	return ret < 0 || *i >= min_nr;
 | |
| }
 | |
| 
 | |
| static long read_events(struct kioctx *ctx, long min_nr, long nr,
 | |
| 			struct io_event __user *event,
 | |
| 			ktime_t until)
 | |
| {
 | |
| 	long ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that aio_read_events() is being called as the conditional - i.e.
 | |
| 	 * we're calling it after prepare_to_wait() has set task state to
 | |
| 	 * TASK_INTERRUPTIBLE.
 | |
| 	 *
 | |
| 	 * But aio_read_events() can block, and if it blocks it's going to flip
 | |
| 	 * the task state back to TASK_RUNNING.
 | |
| 	 *
 | |
| 	 * This should be ok, provided it doesn't flip the state back to
 | |
| 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
 | |
| 	 * will only happen if the mutex_lock() call blocks, and we then find
 | |
| 	 * the ringbuffer empty. So in practice we should be ok, but it's
 | |
| 	 * something to be aware of when touching this code.
 | |
| 	 */
 | |
| 	if (until == 0)
 | |
| 		aio_read_events(ctx, min_nr, nr, event, &ret);
 | |
| 	else
 | |
| 		wait_event_interruptible_hrtimeout(ctx->wait,
 | |
| 				aio_read_events(ctx, min_nr, nr, event, &ret),
 | |
| 				until);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* sys_io_setup:
 | |
|  *	Create an aio_context capable of receiving at least nr_events.
 | |
|  *	ctxp must not point to an aio_context that already exists, and
 | |
|  *	must be initialized to 0 prior to the call.  On successful
 | |
|  *	creation of the aio_context, *ctxp is filled in with the resulting 
 | |
|  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
 | |
|  *	if the specified nr_events exceeds internal limits.  May fail 
 | |
|  *	with -EAGAIN if the specified nr_events exceeds the user's limit 
 | |
|  *	of available events.  May fail with -ENOMEM if insufficient kernel
 | |
|  *	resources are available.  May fail with -EFAULT if an invalid
 | |
|  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
 | |
|  *	implemented.
 | |
|  */
 | |
| SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
 | |
| {
 | |
| 	struct kioctx *ioctx = NULL;
 | |
| 	unsigned long ctx;
 | |
| 	long ret;
 | |
| 
 | |
| 	ret = get_user(ctx, ctxp);
 | |
| 	if (unlikely(ret))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (unlikely(ctx || nr_events == 0)) {
 | |
| 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
 | |
| 		         ctx, nr_events);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ioctx = ioctx_alloc(nr_events);
 | |
| 	ret = PTR_ERR(ioctx);
 | |
| 	if (!IS_ERR(ioctx)) {
 | |
| 		ret = put_user(ioctx->user_id, ctxp);
 | |
| 		if (ret)
 | |
| 			kill_ioctx(current->mm, ioctx, NULL);
 | |
| 		percpu_ref_put(&ioctx->users);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
 | |
| {
 | |
| 	struct kioctx *ioctx = NULL;
 | |
| 	unsigned long ctx;
 | |
| 	long ret;
 | |
| 
 | |
| 	ret = get_user(ctx, ctx32p);
 | |
| 	if (unlikely(ret))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (unlikely(ctx || nr_events == 0)) {
 | |
| 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
 | |
| 		         ctx, nr_events);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ioctx = ioctx_alloc(nr_events);
 | |
| 	ret = PTR_ERR(ioctx);
 | |
| 	if (!IS_ERR(ioctx)) {
 | |
| 		/* truncating is ok because it's a user address */
 | |
| 		ret = put_user((u32)ioctx->user_id, ctx32p);
 | |
| 		if (ret)
 | |
| 			kill_ioctx(current->mm, ioctx, NULL);
 | |
| 		percpu_ref_put(&ioctx->users);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* sys_io_destroy:
 | |
|  *	Destroy the aio_context specified.  May cancel any outstanding 
 | |
|  *	AIOs and block on completion.  Will fail with -ENOSYS if not
 | |
|  *	implemented.  May fail with -EINVAL if the context pointed to
 | |
|  *	is invalid.
 | |
|  */
 | |
| SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
 | |
| {
 | |
| 	struct kioctx *ioctx = lookup_ioctx(ctx);
 | |
| 	if (likely(NULL != ioctx)) {
 | |
| 		struct ctx_rq_wait wait;
 | |
| 		int ret;
 | |
| 
 | |
| 		init_completion(&wait.comp);
 | |
| 		atomic_set(&wait.count, 1);
 | |
| 
 | |
| 		/* Pass requests_done to kill_ioctx() where it can be set
 | |
| 		 * in a thread-safe way. If we try to set it here then we have
 | |
| 		 * a race condition if two io_destroy() called simultaneously.
 | |
| 		 */
 | |
| 		ret = kill_ioctx(current->mm, ioctx, &wait);
 | |
| 		percpu_ref_put(&ioctx->users);
 | |
| 
 | |
| 		/* Wait until all IO for the context are done. Otherwise kernel
 | |
| 		 * keep using user-space buffers even if user thinks the context
 | |
| 		 * is destroyed.
 | |
| 		 */
 | |
| 		if (!ret)
 | |
| 			wait_for_completion(&wait.comp);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 	pr_debug("EINVAL: invalid context id\n");
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void aio_remove_iocb(struct aio_kiocb *iocb)
 | |
| {
 | |
| 	struct kioctx *ctx = iocb->ki_ctx;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&ctx->ctx_lock, flags);
 | |
| 	list_del(&iocb->ki_list);
 | |
| 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 | |
| }
 | |
| 
 | |
| static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
 | |
| {
 | |
| 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
 | |
| 
 | |
| 	if (!list_empty_careful(&iocb->ki_list))
 | |
| 		aio_remove_iocb(iocb);
 | |
| 
 | |
| 	if (kiocb->ki_flags & IOCB_WRITE) {
 | |
| 		struct inode *inode = file_inode(kiocb->ki_filp);
 | |
| 
 | |
| 		/*
 | |
| 		 * Tell lockdep we inherited freeze protection from submission
 | |
| 		 * thread.
 | |
| 		 */
 | |
| 		if (S_ISREG(inode->i_mode))
 | |
| 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
 | |
| 		file_end_write(kiocb->ki_filp);
 | |
| 	}
 | |
| 
 | |
| 	iocb->ki_res.res = res;
 | |
| 	iocb->ki_res.res2 = res2;
 | |
| 	iocb_put(iocb);
 | |
| }
 | |
| 
 | |
| static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	req->ki_complete = aio_complete_rw;
 | |
| 	req->private = NULL;
 | |
| 	req->ki_pos = iocb->aio_offset;
 | |
| 	req->ki_flags = iocb_flags(req->ki_filp);
 | |
| 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
 | |
| 		req->ki_flags |= IOCB_EVENTFD;
 | |
| 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
 | |
| 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
 | |
| 		/*
 | |
| 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
 | |
| 		 * aio_reqprio is interpreted as an I/O scheduling
 | |
| 		 * class and priority.
 | |
| 		 */
 | |
| 		ret = ioprio_check_cap(iocb->aio_reqprio);
 | |
| 		if (ret) {
 | |
| 			pr_debug("aio ioprio check cap error: %d\n", ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		req->ki_ioprio = iocb->aio_reqprio;
 | |
| 	} else
 | |
| 		req->ki_ioprio = get_current_ioprio();
 | |
| 
 | |
| 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
 | |
| 	if (unlikely(ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
 | |
| 		struct iovec **iovec, bool vectored, bool compat,
 | |
| 		struct iov_iter *iter)
 | |
| {
 | |
| 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
 | |
| 	size_t len = iocb->aio_nbytes;
 | |
| 
 | |
| 	if (!vectored) {
 | |
| 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
 | |
| 		*iovec = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	if (compat)
 | |
| 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
 | |
| 				iter);
 | |
| #endif
 | |
| 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
 | |
| }
 | |
| 
 | |
| static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
 | |
| {
 | |
| 	switch (ret) {
 | |
| 	case -EIOCBQUEUED:
 | |
| 		break;
 | |
| 	case -ERESTARTSYS:
 | |
| 	case -ERESTARTNOINTR:
 | |
| 	case -ERESTARTNOHAND:
 | |
| 	case -ERESTART_RESTARTBLOCK:
 | |
| 		/*
 | |
| 		 * There's no easy way to restart the syscall since other AIO's
 | |
| 		 * may be already running. Just fail this IO with EINTR.
 | |
| 		 */
 | |
| 		ret = -EINTR;
 | |
| 		/*FALLTHRU*/
 | |
| 	default:
 | |
| 		req->ki_complete(req, ret, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int aio_read(struct kiocb *req, const struct iocb *iocb,
 | |
| 			bool vectored, bool compat)
 | |
| {
 | |
| 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
 | |
| 	struct iov_iter iter;
 | |
| 	struct file *file;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = aio_prep_rw(req, iocb);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	file = req->ki_filp;
 | |
| 	if (unlikely(!(file->f_mode & FMODE_READ)))
 | |
| 		return -EBADF;
 | |
| 	ret = -EINVAL;
 | |
| 	if (unlikely(!file->f_op->read_iter))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
 | |
| 	if (!ret)
 | |
| 		aio_rw_done(req, call_read_iter(file, req, &iter));
 | |
| 	kfree(iovec);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int aio_write(struct kiocb *req, const struct iocb *iocb,
 | |
| 			 bool vectored, bool compat)
 | |
| {
 | |
| 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
 | |
| 	struct iov_iter iter;
 | |
| 	struct file *file;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = aio_prep_rw(req, iocb);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	file = req->ki_filp;
 | |
| 
 | |
| 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
 | |
| 		return -EBADF;
 | |
| 	if (unlikely(!file->f_op->write_iter))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
 | |
| 	if (!ret) {
 | |
| 		/*
 | |
| 		 * Open-code file_start_write here to grab freeze protection,
 | |
| 		 * which will be released by another thread in
 | |
| 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
 | |
| 		 * released so that it doesn't complain about the held lock when
 | |
| 		 * we return to userspace.
 | |
| 		 */
 | |
| 		if (S_ISREG(file_inode(file)->i_mode)) {
 | |
| 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
 | |
| 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
 | |
| 		}
 | |
| 		req->ki_flags |= IOCB_WRITE;
 | |
| 		aio_rw_done(req, call_write_iter(file, req, &iter));
 | |
| 	}
 | |
| 	kfree(iovec);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void aio_fsync_work(struct work_struct *work)
 | |
| {
 | |
| 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
 | |
| 
 | |
| 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
 | |
| 	iocb_put(iocb);
 | |
| }
 | |
| 
 | |
| static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
 | |
| 		     bool datasync)
 | |
| {
 | |
| 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
 | |
| 			iocb->aio_rw_flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(!req->file->f_op->fsync))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	req->datasync = datasync;
 | |
| 	INIT_WORK(&req->work, aio_fsync_work);
 | |
| 	schedule_work(&req->work);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void aio_poll_complete_work(struct work_struct *work)
 | |
| {
 | |
| 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
 | |
| 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
 | |
| 	struct poll_table_struct pt = { ._key = req->events };
 | |
| 	struct kioctx *ctx = iocb->ki_ctx;
 | |
| 	__poll_t mask = 0;
 | |
| 
 | |
| 	if (!READ_ONCE(req->cancelled))
 | |
| 		mask = vfs_poll(req->file, &pt) & req->events;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
 | |
| 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
 | |
| 	 * synchronize with them.  In the cancellation case the list_del_init
 | |
| 	 * itself is not actually needed, but harmless so we keep it in to
 | |
| 	 * avoid further branches in the fast path.
 | |
| 	 */
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	if (!mask && !READ_ONCE(req->cancelled)) {
 | |
| 		add_wait_queue(req->head, &req->wait);
 | |
| 		spin_unlock_irq(&ctx->ctx_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	list_del_init(&iocb->ki_list);
 | |
| 	iocb->ki_res.res = mangle_poll(mask);
 | |
| 	req->done = true;
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	iocb_put(iocb);
 | |
| }
 | |
| 
 | |
| /* assumes we are called with irqs disabled */
 | |
| static int aio_poll_cancel(struct kiocb *iocb)
 | |
| {
 | |
| 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
 | |
| 	struct poll_iocb *req = &aiocb->poll;
 | |
| 
 | |
| 	spin_lock(&req->head->lock);
 | |
| 	WRITE_ONCE(req->cancelled, true);
 | |
| 	if (!list_empty(&req->wait.entry)) {
 | |
| 		list_del_init(&req->wait.entry);
 | |
| 		schedule_work(&aiocb->poll.work);
 | |
| 	}
 | |
| 	spin_unlock(&req->head->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
 | |
| 		void *key)
 | |
| {
 | |
| 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
 | |
| 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
 | |
| 	__poll_t mask = key_to_poll(key);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* for instances that support it check for an event match first: */
 | |
| 	if (mask && !(mask & req->events))
 | |
| 		return 0;
 | |
| 
 | |
| 	list_del_init(&req->wait.entry);
 | |
| 
 | |
| 	if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
 | |
| 		/*
 | |
| 		 * Try to complete the iocb inline if we can. Use
 | |
| 		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
 | |
| 		 * call this function with IRQs disabled and because IRQs
 | |
| 		 * have to be disabled before ctx_lock is obtained.
 | |
| 		 */
 | |
| 		list_del(&iocb->ki_list);
 | |
| 		iocb->ki_res.res = mangle_poll(mask);
 | |
| 		req->done = true;
 | |
| 		spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
 | |
| 		iocb_put(iocb);
 | |
| 	} else {
 | |
| 		schedule_work(&req->work);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| struct aio_poll_table {
 | |
| 	struct poll_table_struct	pt;
 | |
| 	struct aio_kiocb		*iocb;
 | |
| 	int				error;
 | |
| };
 | |
| 
 | |
| static void
 | |
| aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
 | |
| 		struct poll_table_struct *p)
 | |
| {
 | |
| 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
 | |
| 
 | |
| 	/* multiple wait queues per file are not supported */
 | |
| 	if (unlikely(pt->iocb->poll.head)) {
 | |
| 		pt->error = -EINVAL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pt->error = 0;
 | |
| 	pt->iocb->poll.head = head;
 | |
| 	add_wait_queue(head, &pt->iocb->poll.wait);
 | |
| }
 | |
| 
 | |
| static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
 | |
| {
 | |
| 	struct kioctx *ctx = aiocb->ki_ctx;
 | |
| 	struct poll_iocb *req = &aiocb->poll;
 | |
| 	struct aio_poll_table apt;
 | |
| 	bool cancel = false;
 | |
| 	__poll_t mask;
 | |
| 
 | |
| 	/* reject any unknown events outside the normal event mask. */
 | |
| 	if ((u16)iocb->aio_buf != iocb->aio_buf)
 | |
| 		return -EINVAL;
 | |
| 	/* reject fields that are not defined for poll */
 | |
| 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	INIT_WORK(&req->work, aio_poll_complete_work);
 | |
| 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
 | |
| 
 | |
| 	req->head = NULL;
 | |
| 	req->done = false;
 | |
| 	req->cancelled = false;
 | |
| 
 | |
| 	apt.pt._qproc = aio_poll_queue_proc;
 | |
| 	apt.pt._key = req->events;
 | |
| 	apt.iocb = aiocb;
 | |
| 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
 | |
| 
 | |
| 	/* initialized the list so that we can do list_empty checks */
 | |
| 	INIT_LIST_HEAD(&req->wait.entry);
 | |
| 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
 | |
| 
 | |
| 	mask = vfs_poll(req->file, &apt.pt) & req->events;
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	if (likely(req->head)) {
 | |
| 		spin_lock(&req->head->lock);
 | |
| 		if (unlikely(list_empty(&req->wait.entry))) {
 | |
| 			if (apt.error)
 | |
| 				cancel = true;
 | |
| 			apt.error = 0;
 | |
| 			mask = 0;
 | |
| 		}
 | |
| 		if (mask || apt.error) {
 | |
| 			list_del_init(&req->wait.entry);
 | |
| 		} else if (cancel) {
 | |
| 			WRITE_ONCE(req->cancelled, true);
 | |
| 		} else if (!req->done) { /* actually waiting for an event */
 | |
| 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
 | |
| 			aiocb->ki_cancel = aio_poll_cancel;
 | |
| 		}
 | |
| 		spin_unlock(&req->head->lock);
 | |
| 	}
 | |
| 	if (mask) { /* no async, we'd stolen it */
 | |
| 		aiocb->ki_res.res = mangle_poll(mask);
 | |
| 		apt.error = 0;
 | |
| 	}
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 	if (mask)
 | |
| 		iocb_put(aiocb);
 | |
| 	return apt.error;
 | |
| }
 | |
| 
 | |
| static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
 | |
| 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
 | |
| 			   bool compat)
 | |
| {
 | |
| 	req->ki_filp = fget(iocb->aio_fildes);
 | |
| 	if (unlikely(!req->ki_filp))
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
 | |
| 		struct eventfd_ctx *eventfd;
 | |
| 		/*
 | |
| 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
 | |
| 		 * instance of the file* now. The file descriptor must be
 | |
| 		 * an eventfd() fd, and will be signaled for each completed
 | |
| 		 * event using the eventfd_signal() function.
 | |
| 		 */
 | |
| 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
 | |
| 		if (IS_ERR(eventfd))
 | |
| 			return PTR_ERR(eventfd);
 | |
| 
 | |
| 		req->ki_eventfd = eventfd;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
 | |
| 		pr_debug("EFAULT: aio_key\n");
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
 | |
| 	req->ki_res.data = iocb->aio_data;
 | |
| 	req->ki_res.res = 0;
 | |
| 	req->ki_res.res2 = 0;
 | |
| 
 | |
| 	switch (iocb->aio_lio_opcode) {
 | |
| 	case IOCB_CMD_PREAD:
 | |
| 		return aio_read(&req->rw, iocb, false, compat);
 | |
| 	case IOCB_CMD_PWRITE:
 | |
| 		return aio_write(&req->rw, iocb, false, compat);
 | |
| 	case IOCB_CMD_PREADV:
 | |
| 		return aio_read(&req->rw, iocb, true, compat);
 | |
| 	case IOCB_CMD_PWRITEV:
 | |
| 		return aio_write(&req->rw, iocb, true, compat);
 | |
| 	case IOCB_CMD_FSYNC:
 | |
| 		return aio_fsync(&req->fsync, iocb, false);
 | |
| 	case IOCB_CMD_FDSYNC:
 | |
| 		return aio_fsync(&req->fsync, iocb, true);
 | |
| 	case IOCB_CMD_POLL:
 | |
| 		return aio_poll(req, iocb);
 | |
| 	default:
 | |
| 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
 | |
| 			 bool compat)
 | |
| {
 | |
| 	struct aio_kiocb *req;
 | |
| 	struct iocb iocb;
 | |
| 	int err;
 | |
| 
 | |
| 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* enforce forwards compatibility on users */
 | |
| 	if (unlikely(iocb.aio_reserved2)) {
 | |
| 		pr_debug("EINVAL: reserve field set\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* prevent overflows */
 | |
| 	if (unlikely(
 | |
| 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
 | |
| 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
 | |
| 	    ((ssize_t)iocb.aio_nbytes < 0)
 | |
| 	   )) {
 | |
| 		pr_debug("EINVAL: overflow check\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	req = aio_get_req(ctx);
 | |
| 	if (unlikely(!req))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
 | |
| 
 | |
| 	/* Done with the synchronous reference */
 | |
| 	iocb_put(req);
 | |
| 
 | |
| 	/*
 | |
| 	 * If err is 0, we'd either done aio_complete() ourselves or have
 | |
| 	 * arranged for that to be done asynchronously.  Anything non-zero
 | |
| 	 * means that we need to destroy req ourselves.
 | |
| 	 */
 | |
| 	if (unlikely(err)) {
 | |
| 		iocb_destroy(req);
 | |
| 		put_reqs_available(ctx, 1);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* sys_io_submit:
 | |
|  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
 | |
|  *	the number of iocbs queued.  May return -EINVAL if the aio_context
 | |
|  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
 | |
|  *	*iocbpp[0] is not properly initialized, if the operation specified
 | |
|  *	is invalid for the file descriptor in the iocb.  May fail with
 | |
|  *	-EFAULT if any of the data structures point to invalid data.  May
 | |
|  *	fail with -EBADF if the file descriptor specified in the first
 | |
|  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
 | |
|  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
 | |
|  *	fail with -ENOSYS if not implemented.
 | |
|  */
 | |
| SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
 | |
| 		struct iocb __user * __user *, iocbpp)
 | |
| {
 | |
| 	struct kioctx *ctx;
 | |
| 	long ret = 0;
 | |
| 	int i = 0;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	if (unlikely(nr < 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ctx = lookup_ioctx(ctx_id);
 | |
| 	if (unlikely(!ctx)) {
 | |
| 		pr_debug("EINVAL: invalid context id\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (nr > ctx->nr_events)
 | |
| 		nr = ctx->nr_events;
 | |
| 
 | |
| 	if (nr > AIO_PLUG_THRESHOLD)
 | |
| 		blk_start_plug(&plug);
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		struct iocb __user *user_iocb;
 | |
| 
 | |
| 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = io_submit_one(ctx, user_iocb, false);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (nr > AIO_PLUG_THRESHOLD)
 | |
| 		blk_finish_plug(&plug);
 | |
| 
 | |
| 	percpu_ref_put(&ctx->users);
 | |
| 	return i ? i : ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
 | |
| 		       int, nr, compat_uptr_t __user *, iocbpp)
 | |
| {
 | |
| 	struct kioctx *ctx;
 | |
| 	long ret = 0;
 | |
| 	int i = 0;
 | |
| 	struct blk_plug plug;
 | |
| 
 | |
| 	if (unlikely(nr < 0))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ctx = lookup_ioctx(ctx_id);
 | |
| 	if (unlikely(!ctx)) {
 | |
| 		pr_debug("EINVAL: invalid context id\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (nr > ctx->nr_events)
 | |
| 		nr = ctx->nr_events;
 | |
| 
 | |
| 	if (nr > AIO_PLUG_THRESHOLD)
 | |
| 		blk_start_plug(&plug);
 | |
| 	for (i = 0; i < nr; i++) {
 | |
| 		compat_uptr_t user_iocb;
 | |
| 
 | |
| 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (nr > AIO_PLUG_THRESHOLD)
 | |
| 		blk_finish_plug(&plug);
 | |
| 
 | |
| 	percpu_ref_put(&ctx->users);
 | |
| 	return i ? i : ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* sys_io_cancel:
 | |
|  *	Attempts to cancel an iocb previously passed to io_submit.  If
 | |
|  *	the operation is successfully cancelled, the resulting event is
 | |
|  *	copied into the memory pointed to by result without being placed
 | |
|  *	into the completion queue and 0 is returned.  May fail with
 | |
|  *	-EFAULT if any of the data structures pointed to are invalid.
 | |
|  *	May fail with -EINVAL if aio_context specified by ctx_id is
 | |
|  *	invalid.  May fail with -EAGAIN if the iocb specified was not
 | |
|  *	cancelled.  Will fail with -ENOSYS if not implemented.
 | |
|  */
 | |
| SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
 | |
| 		struct io_event __user *, result)
 | |
| {
 | |
| 	struct kioctx *ctx;
 | |
| 	struct aio_kiocb *kiocb;
 | |
| 	int ret = -EINVAL;
 | |
| 	u32 key;
 | |
| 	u64 obj = (u64)(unsigned long)iocb;
 | |
| 
 | |
| 	if (unlikely(get_user(key, &iocb->aio_key)))
 | |
| 		return -EFAULT;
 | |
| 	if (unlikely(key != KIOCB_KEY))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ctx = lookup_ioctx(ctx_id);
 | |
| 	if (unlikely(!ctx))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_irq(&ctx->ctx_lock);
 | |
| 	/* TODO: use a hash or array, this sucks. */
 | |
| 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
 | |
| 		if (kiocb->ki_res.obj == obj) {
 | |
| 			ret = kiocb->ki_cancel(&kiocb->rw);
 | |
| 			list_del_init(&kiocb->ki_list);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irq(&ctx->ctx_lock);
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		/*
 | |
| 		 * The result argument is no longer used - the io_event is
 | |
| 		 * always delivered via the ring buffer. -EINPROGRESS indicates
 | |
| 		 * cancellation is progress:
 | |
| 		 */
 | |
| 		ret = -EINPROGRESS;
 | |
| 	}
 | |
| 
 | |
| 	percpu_ref_put(&ctx->users);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long do_io_getevents(aio_context_t ctx_id,
 | |
| 		long min_nr,
 | |
| 		long nr,
 | |
| 		struct io_event __user *events,
 | |
| 		struct timespec64 *ts)
 | |
| {
 | |
| 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
 | |
| 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
 | |
| 	long ret = -EINVAL;
 | |
| 
 | |
| 	if (likely(ioctx)) {
 | |
| 		if (likely(min_nr <= nr && min_nr >= 0))
 | |
| 			ret = read_events(ioctx, min_nr, nr, events, until);
 | |
| 		percpu_ref_put(&ioctx->users);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* io_getevents:
 | |
|  *	Attempts to read at least min_nr events and up to nr events from
 | |
|  *	the completion queue for the aio_context specified by ctx_id. If
 | |
|  *	it succeeds, the number of read events is returned. May fail with
 | |
|  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
 | |
|  *	out of range, if timeout is out of range.  May fail with -EFAULT
 | |
|  *	if any of the memory specified is invalid.  May return 0 or
 | |
|  *	< min_nr if the timeout specified by timeout has elapsed
 | |
|  *	before sufficient events are available, where timeout == NULL
 | |
|  *	specifies an infinite timeout. Note that the timeout pointed to by
 | |
|  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
 | |
|  */
 | |
| #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
 | |
| 
 | |
| SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
 | |
| 		long, min_nr,
 | |
| 		long, nr,
 | |
| 		struct io_event __user *, events,
 | |
| 		struct __kernel_timespec __user *, timeout)
 | |
| {
 | |
| 	struct timespec64	ts;
 | |
| 	int			ret;
 | |
| 
 | |
| 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
 | |
| 	if (!ret && signal_pending(current))
 | |
| 		ret = -EINTR;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| struct __aio_sigset {
 | |
| 	const sigset_t __user	*sigmask;
 | |
| 	size_t		sigsetsize;
 | |
| };
 | |
| 
 | |
| SYSCALL_DEFINE6(io_pgetevents,
 | |
| 		aio_context_t, ctx_id,
 | |
| 		long, min_nr,
 | |
| 		long, nr,
 | |
| 		struct io_event __user *, events,
 | |
| 		struct __kernel_timespec __user *, timeout,
 | |
| 		const struct __aio_sigset __user *, usig)
 | |
| {
 | |
| 	struct __aio_sigset	ksig = { NULL, };
 | |
| 	struct timespec64	ts;
 | |
| 	bool interrupted;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
 | |
| 
 | |
| 	interrupted = signal_pending(current);
 | |
| 	restore_saved_sigmask_unless(interrupted);
 | |
| 	if (interrupted && !ret)
 | |
| 		ret = -ERESTARTNOHAND;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
 | |
| 
 | |
| SYSCALL_DEFINE6(io_pgetevents_time32,
 | |
| 		aio_context_t, ctx_id,
 | |
| 		long, min_nr,
 | |
| 		long, nr,
 | |
| 		struct io_event __user *, events,
 | |
| 		struct old_timespec32 __user *, timeout,
 | |
| 		const struct __aio_sigset __user *, usig)
 | |
| {
 | |
| 	struct __aio_sigset	ksig = { NULL, };
 | |
| 	struct timespec64	ts;
 | |
| 	bool interrupted;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 
 | |
| 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
 | |
| 
 | |
| 	interrupted = signal_pending(current);
 | |
| 	restore_saved_sigmask_unless(interrupted);
 | |
| 	if (interrupted && !ret)
 | |
| 		ret = -ERESTARTNOHAND;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_COMPAT_32BIT_TIME)
 | |
| 
 | |
| SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
 | |
| 		__s32, min_nr,
 | |
| 		__s32, nr,
 | |
| 		struct io_event __user *, events,
 | |
| 		struct old_timespec32 __user *, timeout)
 | |
| {
 | |
| 	struct timespec64 t;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (timeout && get_old_timespec32(&t, timeout))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
 | |
| 	if (!ret && signal_pending(current))
 | |
| 		ret = -EINTR;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| 
 | |
| struct __compat_aio_sigset {
 | |
| 	compat_sigset_t __user	*sigmask;
 | |
| 	compat_size_t		sigsetsize;
 | |
| };
 | |
| 
 | |
| #if defined(CONFIG_COMPAT_32BIT_TIME)
 | |
| 
 | |
| COMPAT_SYSCALL_DEFINE6(io_pgetevents,
 | |
| 		compat_aio_context_t, ctx_id,
 | |
| 		compat_long_t, min_nr,
 | |
| 		compat_long_t, nr,
 | |
| 		struct io_event __user *, events,
 | |
| 		struct old_timespec32 __user *, timeout,
 | |
| 		const struct __compat_aio_sigset __user *, usig)
 | |
| {
 | |
| 	struct __compat_aio_sigset ksig = { NULL, };
 | |
| 	struct timespec64 t;
 | |
| 	bool interrupted;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (timeout && get_old_timespec32(&t, timeout))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = set_compat_user_sigmask(ksig.sigmask, ksig.sigsetsize);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
 | |
| 
 | |
| 	interrupted = signal_pending(current);
 | |
| 	restore_saved_sigmask_unless(interrupted);
 | |
| 	if (interrupted && !ret)
 | |
| 		ret = -ERESTARTNOHAND;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
 | |
| 		compat_aio_context_t, ctx_id,
 | |
| 		compat_long_t, min_nr,
 | |
| 		compat_long_t, nr,
 | |
| 		struct io_event __user *, events,
 | |
| 		struct __kernel_timespec __user *, timeout,
 | |
| 		const struct __compat_aio_sigset __user *, usig)
 | |
| {
 | |
| 	struct __compat_aio_sigset ksig = { NULL, };
 | |
| 	struct timespec64 t;
 | |
| 	bool interrupted;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (timeout && get_timespec64(&t, timeout))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = set_compat_user_sigmask(ksig.sigmask, ksig.sigsetsize);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
 | |
| 
 | |
| 	interrupted = signal_pending(current);
 | |
| 	restore_saved_sigmask_unless(interrupted);
 | |
| 	if (interrupted && !ret)
 | |
| 		ret = -ERESTARTNOHAND;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 |