forked from mirrors/linux
		
	 cbafe18c71
			
		
	
	
		cbafe18c71
		
	
	
	
	
		
			
			Merge more updates from Andrew Morton:
 - almost all of the rest of -mm
 - various other subsystems
Subsystems affected by this patch series:
  memcg, misc, core-kernel, lib, checkpatch, reiserfs, fat, fork,
  cpumask, kexec, uaccess, kconfig, kgdb, bug, ipc, lzo, kasan, madvise,
  cleanups, pagemap
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (77 commits)
  arch/sparc/include/asm/pgtable_64.h: fix build
  mm: treewide: clarify pgtable_page_{ctor,dtor}() naming
  ntfs: remove (un)?likely() from IS_ERR() conditions
  IB/hfi1: remove unlikely() from IS_ERR*() condition
  xfs: remove unlikely() from WARN_ON() condition
  wimax/i2400m: remove unlikely() from WARN*() condition
  fs: remove unlikely() from WARN_ON() condition
  xen/events: remove unlikely() from WARN() condition
  checkpatch: check for nested (un)?likely() calls
  hexagon: drop empty and unused free_initrd_mem
  mm: factor out common parts between MADV_COLD and MADV_PAGEOUT
  mm: introduce MADV_PAGEOUT
  mm: change PAGEREF_RECLAIM_CLEAN with PAGE_REFRECLAIM
  mm: introduce MADV_COLD
  mm: untag user pointers in mmap/munmap/mremap/brk
  vfio/type1: untag user pointers in vaddr_get_pfn
  tee/shm: untag user pointers in tee_shm_register
  media/v4l2-core: untag user pointers in videobuf_dma_contig_user_get
  drm/radeon: untag user pointers in radeon_gem_userptr_ioctl
  drm/amdgpu: untag user pointers
  ...
		
	
			
		
			
				
	
	
		
			4019 lines
		
	
	
	
		
			97 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4019 lines
		
	
	
	
		
			97 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/fs/namespace.c
 | |
|  *
 | |
|  * (C) Copyright Al Viro 2000, 2001
 | |
|  *
 | |
|  * Based on code from fs/super.c, copyright Linus Torvalds and others.
 | |
|  * Heavily rewritten.
 | |
|  */
 | |
| 
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/mnt_namespace.h>
 | |
| #include <linux/user_namespace.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/init.h>		/* init_rootfs */
 | |
| #include <linux/fs_struct.h>	/* get_fs_root et.al. */
 | |
| #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
 | |
| #include <linux/file.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/proc_ns.h>
 | |
| #include <linux/magic.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/task_work.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <uapi/linux/mount.h>
 | |
| #include <linux/fs_context.h>
 | |
| #include <linux/shmem_fs.h>
 | |
| 
 | |
| #include "pnode.h"
 | |
| #include "internal.h"
 | |
| 
 | |
| /* Maximum number of mounts in a mount namespace */
 | |
| unsigned int sysctl_mount_max __read_mostly = 100000;
 | |
| 
 | |
| static unsigned int m_hash_mask __read_mostly;
 | |
| static unsigned int m_hash_shift __read_mostly;
 | |
| static unsigned int mp_hash_mask __read_mostly;
 | |
| static unsigned int mp_hash_shift __read_mostly;
 | |
| 
 | |
| static __initdata unsigned long mhash_entries;
 | |
| static int __init set_mhash_entries(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	mhash_entries = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("mhash_entries=", set_mhash_entries);
 | |
| 
 | |
| static __initdata unsigned long mphash_entries;
 | |
| static int __init set_mphash_entries(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 	mphash_entries = simple_strtoul(str, &str, 0);
 | |
| 	return 1;
 | |
| }
 | |
| __setup("mphash_entries=", set_mphash_entries);
 | |
| 
 | |
| static u64 event;
 | |
| static DEFINE_IDA(mnt_id_ida);
 | |
| static DEFINE_IDA(mnt_group_ida);
 | |
| 
 | |
| static struct hlist_head *mount_hashtable __read_mostly;
 | |
| static struct hlist_head *mountpoint_hashtable __read_mostly;
 | |
| static struct kmem_cache *mnt_cache __read_mostly;
 | |
| static DECLARE_RWSEM(namespace_sem);
 | |
| static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
 | |
| static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
 | |
| 
 | |
| /* /sys/fs */
 | |
| struct kobject *fs_kobj;
 | |
| EXPORT_SYMBOL_GPL(fs_kobj);
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock may be taken for read to prevent changes to the
 | |
|  * vfsmount hash, ie. during mountpoint lookups or walking back
 | |
|  * up the tree.
 | |
|  *
 | |
|  * It should be taken for write in all cases where the vfsmount
 | |
|  * tree or hash is modified or when a vfsmount structure is modified.
 | |
|  */
 | |
| __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
 | |
| 
 | |
| static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
 | |
| {
 | |
| 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
 | |
| 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
 | |
| 	tmp = tmp + (tmp >> m_hash_shift);
 | |
| 	return &mount_hashtable[tmp & m_hash_mask];
 | |
| }
 | |
| 
 | |
| static inline struct hlist_head *mp_hash(struct dentry *dentry)
 | |
| {
 | |
| 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
 | |
| 	tmp = tmp + (tmp >> mp_hash_shift);
 | |
| 	return &mountpoint_hashtable[tmp & mp_hash_mask];
 | |
| }
 | |
| 
 | |
| static int mnt_alloc_id(struct mount *mnt)
 | |
| {
 | |
| 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
 | |
| 
 | |
| 	if (res < 0)
 | |
| 		return res;
 | |
| 	mnt->mnt_id = res;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mnt_free_id(struct mount *mnt)
 | |
| {
 | |
| 	ida_free(&mnt_id_ida, mnt->mnt_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new peer group ID
 | |
|  */
 | |
| static int mnt_alloc_group_id(struct mount *mnt)
 | |
| {
 | |
| 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
 | |
| 
 | |
| 	if (res < 0)
 | |
| 		return res;
 | |
| 	mnt->mnt_group_id = res;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release a peer group ID
 | |
|  */
 | |
| void mnt_release_group_id(struct mount *mnt)
 | |
| {
 | |
| 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
 | |
| 	mnt->mnt_group_id = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for read
 | |
|  */
 | |
| static inline void mnt_add_count(struct mount *mnt, int n)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 | |
| #else
 | |
| 	preempt_disable();
 | |
| 	mnt->mnt_count += n;
 | |
| 	preempt_enable();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for write
 | |
|  */
 | |
| unsigned int mnt_get_count(struct mount *mnt)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned int count = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| #else
 | |
| 	return mnt->mnt_count;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static struct mount *alloc_vfsmnt(const char *name)
 | |
| {
 | |
| 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 | |
| 	if (mnt) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = mnt_alloc_id(mnt);
 | |
| 		if (err)
 | |
| 			goto out_free_cache;
 | |
| 
 | |
| 		if (name) {
 | |
| 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
 | |
| 			if (!mnt->mnt_devname)
 | |
| 				goto out_free_id;
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 | |
| 		if (!mnt->mnt_pcp)
 | |
| 			goto out_free_devname;
 | |
| 
 | |
| 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 | |
| #else
 | |
| 		mnt->mnt_count = 1;
 | |
| 		mnt->mnt_writers = 0;
 | |
| #endif
 | |
| 
 | |
| 		INIT_HLIST_NODE(&mnt->mnt_hash);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_child);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_mounts);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_list);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_expire);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_share);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_slave);
 | |
| 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
 | |
| 		INIT_LIST_HEAD(&mnt->mnt_umounting);
 | |
| 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
 | |
| 	}
 | |
| 	return mnt;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| out_free_devname:
 | |
| 	kfree_const(mnt->mnt_devname);
 | |
| #endif
 | |
| out_free_id:
 | |
| 	mnt_free_id(mnt);
 | |
| out_free_cache:
 | |
| 	kmem_cache_free(mnt_cache, mnt);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Most r/o checks on a fs are for operations that take
 | |
|  * discrete amounts of time, like a write() or unlink().
 | |
|  * We must keep track of when those operations start
 | |
|  * (for permission checks) and when they end, so that
 | |
|  * we can determine when writes are able to occur to
 | |
|  * a filesystem.
 | |
|  */
 | |
| /*
 | |
|  * __mnt_is_readonly: check whether a mount is read-only
 | |
|  * @mnt: the mount to check for its write status
 | |
|  *
 | |
|  * This shouldn't be used directly ouside of the VFS.
 | |
|  * It does not guarantee that the filesystem will stay
 | |
|  * r/w, just that it is right *now*.  This can not and
 | |
|  * should not be used in place of IS_RDONLY(inode).
 | |
|  * mnt_want/drop_write() will _keep_ the filesystem
 | |
|  * r/w.
 | |
|  */
 | |
| bool __mnt_is_readonly(struct vfsmount *mnt)
 | |
| {
 | |
| 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 | |
| 
 | |
| static inline void mnt_inc_writers(struct mount *mnt)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 | |
| #else
 | |
| 	mnt->mnt_writers++;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void mnt_dec_writers(struct mount *mnt)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 | |
| #else
 | |
| 	mnt->mnt_writers--;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static unsigned int mnt_get_writers(struct mount *mnt)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned int count = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| #else
 | |
| 	return mnt->mnt_writers;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int mnt_is_readonly(struct vfsmount *mnt)
 | |
| {
 | |
| 	if (mnt->mnt_sb->s_readonly_remount)
 | |
| 		return 1;
 | |
| 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
 | |
| 	smp_rmb();
 | |
| 	return __mnt_is_readonly(mnt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Most r/o & frozen checks on a fs are for operations that take discrete
 | |
|  * amounts of time, like a write() or unlink().  We must keep track of when
 | |
|  * those operations start (for permission checks) and when they end, so that we
 | |
|  * can determine when writes are able to occur to a filesystem.
 | |
|  */
 | |
| /**
 | |
|  * __mnt_want_write - get write access to a mount without freeze protection
 | |
|  * @m: the mount on which to take a write
 | |
|  *
 | |
|  * This tells the low-level filesystem that a write is about to be performed to
 | |
|  * it, and makes sure that writes are allowed (mnt it read-write) before
 | |
|  * returning success. This operation does not protect against filesystem being
 | |
|  * frozen. When the write operation is finished, __mnt_drop_write() must be
 | |
|  * called. This is effectively a refcount.
 | |
|  */
 | |
| int __mnt_want_write(struct vfsmount *m)
 | |
| {
 | |
| 	struct mount *mnt = real_mount(m);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	mnt_inc_writers(mnt);
 | |
| 	/*
 | |
| 	 * The store to mnt_inc_writers must be visible before we pass
 | |
| 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 | |
| 	 * incremented count after it has set MNT_WRITE_HOLD.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
 | |
| 		cpu_relax();
 | |
| 	/*
 | |
| 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 | |
| 	 * be set to match its requirements. So we must not load that until
 | |
| 	 * MNT_WRITE_HOLD is cleared.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	if (mnt_is_readonly(m)) {
 | |
| 		mnt_dec_writers(mnt);
 | |
| 		ret = -EROFS;
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mnt_want_write - get write access to a mount
 | |
|  * @m: the mount on which to take a write
 | |
|  *
 | |
|  * This tells the low-level filesystem that a write is about to be performed to
 | |
|  * it, and makes sure that writes are allowed (mount is read-write, filesystem
 | |
|  * is not frozen) before returning success.  When the write operation is
 | |
|  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
 | |
|  */
 | |
| int mnt_want_write(struct vfsmount *m)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	sb_start_write(m->mnt_sb);
 | |
| 	ret = __mnt_want_write(m);
 | |
| 	if (ret)
 | |
| 		sb_end_write(m->mnt_sb);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mnt_want_write);
 | |
| 
 | |
| /**
 | |
|  * mnt_clone_write - get write access to a mount
 | |
|  * @mnt: the mount on which to take a write
 | |
|  *
 | |
|  * This is effectively like mnt_want_write, except
 | |
|  * it must only be used to take an extra write reference
 | |
|  * on a mountpoint that we already know has a write reference
 | |
|  * on it. This allows some optimisation.
 | |
|  *
 | |
|  * After finished, mnt_drop_write must be called as usual to
 | |
|  * drop the reference.
 | |
|  */
 | |
| int mnt_clone_write(struct vfsmount *mnt)
 | |
| {
 | |
| 	/* superblock may be r/o */
 | |
| 	if (__mnt_is_readonly(mnt))
 | |
| 		return -EROFS;
 | |
| 	preempt_disable();
 | |
| 	mnt_inc_writers(real_mount(mnt));
 | |
| 	preempt_enable();
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mnt_clone_write);
 | |
| 
 | |
| /**
 | |
|  * __mnt_want_write_file - get write access to a file's mount
 | |
|  * @file: the file who's mount on which to take a write
 | |
|  *
 | |
|  * This is like __mnt_want_write, but it takes a file and can
 | |
|  * do some optimisations if the file is open for write already
 | |
|  */
 | |
| int __mnt_want_write_file(struct file *file)
 | |
| {
 | |
| 	if (!(file->f_mode & FMODE_WRITER))
 | |
| 		return __mnt_want_write(file->f_path.mnt);
 | |
| 	else
 | |
| 		return mnt_clone_write(file->f_path.mnt);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mnt_want_write_file - get write access to a file's mount
 | |
|  * @file: the file who's mount on which to take a write
 | |
|  *
 | |
|  * This is like mnt_want_write, but it takes a file and can
 | |
|  * do some optimisations if the file is open for write already
 | |
|  */
 | |
| int mnt_want_write_file(struct file *file)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	sb_start_write(file_inode(file)->i_sb);
 | |
| 	ret = __mnt_want_write_file(file);
 | |
| 	if (ret)
 | |
| 		sb_end_write(file_inode(file)->i_sb);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mnt_want_write_file);
 | |
| 
 | |
| /**
 | |
|  * __mnt_drop_write - give up write access to a mount
 | |
|  * @mnt: the mount on which to give up write access
 | |
|  *
 | |
|  * Tells the low-level filesystem that we are done
 | |
|  * performing writes to it.  Must be matched with
 | |
|  * __mnt_want_write() call above.
 | |
|  */
 | |
| void __mnt_drop_write(struct vfsmount *mnt)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	mnt_dec_writers(real_mount(mnt));
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mnt_drop_write - give up write access to a mount
 | |
|  * @mnt: the mount on which to give up write access
 | |
|  *
 | |
|  * Tells the low-level filesystem that we are done performing writes to it and
 | |
|  * also allows filesystem to be frozen again.  Must be matched with
 | |
|  * mnt_want_write() call above.
 | |
|  */
 | |
| void mnt_drop_write(struct vfsmount *mnt)
 | |
| {
 | |
| 	__mnt_drop_write(mnt);
 | |
| 	sb_end_write(mnt->mnt_sb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mnt_drop_write);
 | |
| 
 | |
| void __mnt_drop_write_file(struct file *file)
 | |
| {
 | |
| 	__mnt_drop_write(file->f_path.mnt);
 | |
| }
 | |
| 
 | |
| void mnt_drop_write_file(struct file *file)
 | |
| {
 | |
| 	__mnt_drop_write_file(file);
 | |
| 	sb_end_write(file_inode(file)->i_sb);
 | |
| }
 | |
| EXPORT_SYMBOL(mnt_drop_write_file);
 | |
| 
 | |
| static int mnt_make_readonly(struct mount *mnt)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lock_mount_hash();
 | |
| 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 | |
| 	/*
 | |
| 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 | |
| 	 * should be visible before we do.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * With writers on hold, if this value is zero, then there are
 | |
| 	 * definitely no active writers (although held writers may subsequently
 | |
| 	 * increment the count, they'll have to wait, and decrement it after
 | |
| 	 * seeing MNT_READONLY).
 | |
| 	 *
 | |
| 	 * It is OK to have counter incremented on one CPU and decremented on
 | |
| 	 * another: the sum will add up correctly. The danger would be when we
 | |
| 	 * sum up each counter, if we read a counter before it is incremented,
 | |
| 	 * but then read another CPU's count which it has been subsequently
 | |
| 	 * decremented from -- we would see more decrements than we should.
 | |
| 	 * MNT_WRITE_HOLD protects against this scenario, because
 | |
| 	 * mnt_want_write first increments count, then smp_mb, then spins on
 | |
| 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 | |
| 	 * we're counting up here.
 | |
| 	 */
 | |
| 	if (mnt_get_writers(mnt) > 0)
 | |
| 		ret = -EBUSY;
 | |
| 	else
 | |
| 		mnt->mnt.mnt_flags |= MNT_READONLY;
 | |
| 	/*
 | |
| 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 | |
| 	 * that become unheld will see MNT_READONLY.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 | |
| 	unlock_mount_hash();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __mnt_unmake_readonly(struct mount *mnt)
 | |
| {
 | |
| 	lock_mount_hash();
 | |
| 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
 | |
| 	unlock_mount_hash();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sb_prepare_remount_readonly(struct super_block *sb)
 | |
| {
 | |
| 	struct mount *mnt;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
 | |
| 	if (atomic_long_read(&sb->s_remove_count))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	lock_mount_hash();
 | |
| 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 | |
| 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
 | |
| 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
 | |
| 			smp_mb();
 | |
| 			if (mnt_get_writers(mnt) > 0) {
 | |
| 				err = -EBUSY;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (!err && atomic_long_read(&sb->s_remove_count))
 | |
| 		err = -EBUSY;
 | |
| 
 | |
| 	if (!err) {
 | |
| 		sb->s_readonly_remount = 1;
 | |
| 		smp_wmb();
 | |
| 	}
 | |
| 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
 | |
| 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
 | |
| 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
 | |
| 	}
 | |
| 	unlock_mount_hash();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void free_vfsmnt(struct mount *mnt)
 | |
| {
 | |
| 	kfree_const(mnt->mnt_devname);
 | |
| #ifdef CONFIG_SMP
 | |
| 	free_percpu(mnt->mnt_pcp);
 | |
| #endif
 | |
| 	kmem_cache_free(mnt_cache, mnt);
 | |
| }
 | |
| 
 | |
| static void delayed_free_vfsmnt(struct rcu_head *head)
 | |
| {
 | |
| 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
 | |
| }
 | |
| 
 | |
| /* call under rcu_read_lock */
 | |
| int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 | |
| {
 | |
| 	struct mount *mnt;
 | |
| 	if (read_seqretry(&mount_lock, seq))
 | |
| 		return 1;
 | |
| 	if (bastard == NULL)
 | |
| 		return 0;
 | |
| 	mnt = real_mount(bastard);
 | |
| 	mnt_add_count(mnt, 1);
 | |
| 	smp_mb();			// see mntput_no_expire()
 | |
| 	if (likely(!read_seqretry(&mount_lock, seq)))
 | |
| 		return 0;
 | |
| 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
 | |
| 		mnt_add_count(mnt, -1);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	lock_mount_hash();
 | |
| 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
 | |
| 		mnt_add_count(mnt, -1);
 | |
| 		unlock_mount_hash();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	unlock_mount_hash();
 | |
| 	/* caller will mntput() */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* call under rcu_read_lock */
 | |
| bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
 | |
| {
 | |
| 	int res = __legitimize_mnt(bastard, seq);
 | |
| 	if (likely(!res))
 | |
| 		return true;
 | |
| 	if (unlikely(res < 0)) {
 | |
| 		rcu_read_unlock();
 | |
| 		mntput(bastard);
 | |
| 		rcu_read_lock();
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * find the first mount at @dentry on vfsmount @mnt.
 | |
|  * call under rcu_read_lock()
 | |
|  */
 | |
| struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
 | |
| {
 | |
| 	struct hlist_head *head = m_hash(mnt, dentry);
 | |
| 	struct mount *p;
 | |
| 
 | |
| 	hlist_for_each_entry_rcu(p, head, mnt_hash)
 | |
| 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
 | |
| 			return p;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * lookup_mnt - Return the first child mount mounted at path
 | |
|  *
 | |
|  * "First" means first mounted chronologically.  If you create the
 | |
|  * following mounts:
 | |
|  *
 | |
|  * mount /dev/sda1 /mnt
 | |
|  * mount /dev/sda2 /mnt
 | |
|  * mount /dev/sda3 /mnt
 | |
|  *
 | |
|  * Then lookup_mnt() on the base /mnt dentry in the root mount will
 | |
|  * return successively the root dentry and vfsmount of /dev/sda1, then
 | |
|  * /dev/sda2, then /dev/sda3, then NULL.
 | |
|  *
 | |
|  * lookup_mnt takes a reference to the found vfsmount.
 | |
|  */
 | |
| struct vfsmount *lookup_mnt(const struct path *path)
 | |
| {
 | |
| 	struct mount *child_mnt;
 | |
| 	struct vfsmount *m;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&mount_lock);
 | |
| 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
 | |
| 		m = child_mnt ? &child_mnt->mnt : NULL;
 | |
| 	} while (!legitimize_mnt(m, seq));
 | |
| 	rcu_read_unlock();
 | |
| 	return m;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
 | |
|  *                         current mount namespace.
 | |
|  *
 | |
|  * The common case is dentries are not mountpoints at all and that
 | |
|  * test is handled inline.  For the slow case when we are actually
 | |
|  * dealing with a mountpoint of some kind, walk through all of the
 | |
|  * mounts in the current mount namespace and test to see if the dentry
 | |
|  * is a mountpoint.
 | |
|  *
 | |
|  * The mount_hashtable is not usable in the context because we
 | |
|  * need to identify all mounts that may be in the current mount
 | |
|  * namespace not just a mount that happens to have some specified
 | |
|  * parent mount.
 | |
|  */
 | |
| bool __is_local_mountpoint(struct dentry *dentry)
 | |
| {
 | |
| 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 | |
| 	struct mount *mnt;
 | |
| 	bool is_covered = false;
 | |
| 
 | |
| 	if (!d_mountpoint(dentry))
 | |
| 		goto out;
 | |
| 
 | |
| 	down_read(&namespace_sem);
 | |
| 	list_for_each_entry(mnt, &ns->list, mnt_list) {
 | |
| 		is_covered = (mnt->mnt_mountpoint == dentry);
 | |
| 		if (is_covered)
 | |
| 			break;
 | |
| 	}
 | |
| 	up_read(&namespace_sem);
 | |
| out:
 | |
| 	return is_covered;
 | |
| }
 | |
| 
 | |
| static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
 | |
| {
 | |
| 	struct hlist_head *chain = mp_hash(dentry);
 | |
| 	struct mountpoint *mp;
 | |
| 
 | |
| 	hlist_for_each_entry(mp, chain, m_hash) {
 | |
| 		if (mp->m_dentry == dentry) {
 | |
| 			mp->m_count++;
 | |
| 			return mp;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct mountpoint *get_mountpoint(struct dentry *dentry)
 | |
| {
 | |
| 	struct mountpoint *mp, *new = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (d_mountpoint(dentry)) {
 | |
| 		/* might be worth a WARN_ON() */
 | |
| 		if (d_unlinked(dentry))
 | |
| 			return ERR_PTR(-ENOENT);
 | |
| mountpoint:
 | |
| 		read_seqlock_excl(&mount_lock);
 | |
| 		mp = lookup_mountpoint(dentry);
 | |
| 		read_sequnlock_excl(&mount_lock);
 | |
| 		if (mp)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (!new)
 | |
| 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
 | |
| 	if (!new)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 
 | |
| 	/* Exactly one processes may set d_mounted */
 | |
| 	ret = d_set_mounted(dentry);
 | |
| 
 | |
| 	/* Someone else set d_mounted? */
 | |
| 	if (ret == -EBUSY)
 | |
| 		goto mountpoint;
 | |
| 
 | |
| 	/* The dentry is not available as a mountpoint? */
 | |
| 	mp = ERR_PTR(ret);
 | |
| 	if (ret)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Add the new mountpoint to the hash table */
 | |
| 	read_seqlock_excl(&mount_lock);
 | |
| 	new->m_dentry = dget(dentry);
 | |
| 	new->m_count = 1;
 | |
| 	hlist_add_head(&new->m_hash, mp_hash(dentry));
 | |
| 	INIT_HLIST_HEAD(&new->m_list);
 | |
| 	read_sequnlock_excl(&mount_lock);
 | |
| 
 | |
| 	mp = new;
 | |
| 	new = NULL;
 | |
| done:
 | |
| 	kfree(new);
 | |
| 	return mp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held.  Additionally, the caller is responsible
 | |
|  * for serializing calls for given disposal list.
 | |
|  */
 | |
| static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
 | |
| {
 | |
| 	if (!--mp->m_count) {
 | |
| 		struct dentry *dentry = mp->m_dentry;
 | |
| 		BUG_ON(!hlist_empty(&mp->m_list));
 | |
| 		spin_lock(&dentry->d_lock);
 | |
| 		dentry->d_flags &= ~DCACHE_MOUNTED;
 | |
| 		spin_unlock(&dentry->d_lock);
 | |
| 		dput_to_list(dentry, list);
 | |
| 		hlist_del(&mp->m_hash);
 | |
| 		kfree(mp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* called with namespace_lock and vfsmount lock */
 | |
| static void put_mountpoint(struct mountpoint *mp)
 | |
| {
 | |
| 	__put_mountpoint(mp, &ex_mountpoints);
 | |
| }
 | |
| 
 | |
| static inline int check_mnt(struct mount *mnt)
 | |
| {
 | |
| 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for write
 | |
|  */
 | |
| static void touch_mnt_namespace(struct mnt_namespace *ns)
 | |
| {
 | |
| 	if (ns) {
 | |
| 		ns->event = ++event;
 | |
| 		wake_up_interruptible(&ns->poll);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for write
 | |
|  */
 | |
| static void __touch_mnt_namespace(struct mnt_namespace *ns)
 | |
| {
 | |
| 	if (ns && ns->event != event) {
 | |
| 		ns->event = event;
 | |
| 		wake_up_interruptible(&ns->poll);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for write
 | |
|  */
 | |
| static struct mountpoint *unhash_mnt(struct mount *mnt)
 | |
| {
 | |
| 	struct mountpoint *mp;
 | |
| 	mnt->mnt_parent = mnt;
 | |
| 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 | |
| 	list_del_init(&mnt->mnt_child);
 | |
| 	hlist_del_init_rcu(&mnt->mnt_hash);
 | |
| 	hlist_del_init(&mnt->mnt_mp_list);
 | |
| 	mp = mnt->mnt_mp;
 | |
| 	mnt->mnt_mp = NULL;
 | |
| 	return mp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for write
 | |
|  */
 | |
| static void umount_mnt(struct mount *mnt)
 | |
| {
 | |
| 	put_mountpoint(unhash_mnt(mnt));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for write
 | |
|  */
 | |
| void mnt_set_mountpoint(struct mount *mnt,
 | |
| 			struct mountpoint *mp,
 | |
| 			struct mount *child_mnt)
 | |
| {
 | |
| 	mp->m_count++;
 | |
| 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
 | |
| 	child_mnt->mnt_mountpoint = mp->m_dentry;
 | |
| 	child_mnt->mnt_parent = mnt;
 | |
| 	child_mnt->mnt_mp = mp;
 | |
| 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
 | |
| }
 | |
| 
 | |
| static void __attach_mnt(struct mount *mnt, struct mount *parent)
 | |
| {
 | |
| 	hlist_add_head_rcu(&mnt->mnt_hash,
 | |
| 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
 | |
| 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for write
 | |
|  */
 | |
| static void attach_mnt(struct mount *mnt,
 | |
| 			struct mount *parent,
 | |
| 			struct mountpoint *mp)
 | |
| {
 | |
| 	mnt_set_mountpoint(parent, mp, mnt);
 | |
| 	__attach_mnt(mnt, parent);
 | |
| }
 | |
| 
 | |
| void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
 | |
| {
 | |
| 	struct mountpoint *old_mp = mnt->mnt_mp;
 | |
| 	struct mount *old_parent = mnt->mnt_parent;
 | |
| 
 | |
| 	list_del_init(&mnt->mnt_child);
 | |
| 	hlist_del_init(&mnt->mnt_mp_list);
 | |
| 	hlist_del_init_rcu(&mnt->mnt_hash);
 | |
| 
 | |
| 	attach_mnt(mnt, parent, mp);
 | |
| 
 | |
| 	put_mountpoint(old_mp);
 | |
| 	mnt_add_count(old_parent, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vfsmount lock must be held for write
 | |
|  */
 | |
| static void commit_tree(struct mount *mnt)
 | |
| {
 | |
| 	struct mount *parent = mnt->mnt_parent;
 | |
| 	struct mount *m;
 | |
| 	LIST_HEAD(head);
 | |
| 	struct mnt_namespace *n = parent->mnt_ns;
 | |
| 
 | |
| 	BUG_ON(parent == mnt);
 | |
| 
 | |
| 	list_add_tail(&head, &mnt->mnt_list);
 | |
| 	list_for_each_entry(m, &head, mnt_list)
 | |
| 		m->mnt_ns = n;
 | |
| 
 | |
| 	list_splice(&head, n->list.prev);
 | |
| 
 | |
| 	n->mounts += n->pending_mounts;
 | |
| 	n->pending_mounts = 0;
 | |
| 
 | |
| 	__attach_mnt(mnt, parent);
 | |
| 	touch_mnt_namespace(n);
 | |
| }
 | |
| 
 | |
| static struct mount *next_mnt(struct mount *p, struct mount *root)
 | |
| {
 | |
| 	struct list_head *next = p->mnt_mounts.next;
 | |
| 	if (next == &p->mnt_mounts) {
 | |
| 		while (1) {
 | |
| 			if (p == root)
 | |
| 				return NULL;
 | |
| 			next = p->mnt_child.next;
 | |
| 			if (next != &p->mnt_parent->mnt_mounts)
 | |
| 				break;
 | |
| 			p = p->mnt_parent;
 | |
| 		}
 | |
| 	}
 | |
| 	return list_entry(next, struct mount, mnt_child);
 | |
| }
 | |
| 
 | |
| static struct mount *skip_mnt_tree(struct mount *p)
 | |
| {
 | |
| 	struct list_head *prev = p->mnt_mounts.prev;
 | |
| 	while (prev != &p->mnt_mounts) {
 | |
| 		p = list_entry(prev, struct mount, mnt_child);
 | |
| 		prev = p->mnt_mounts.prev;
 | |
| 	}
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * vfs_create_mount - Create a mount for a configured superblock
 | |
|  * @fc: The configuration context with the superblock attached
 | |
|  *
 | |
|  * Create a mount to an already configured superblock.  If necessary, the
 | |
|  * caller should invoke vfs_get_tree() before calling this.
 | |
|  *
 | |
|  * Note that this does not attach the mount to anything.
 | |
|  */
 | |
| struct vfsmount *vfs_create_mount(struct fs_context *fc)
 | |
| {
 | |
| 	struct mount *mnt;
 | |
| 
 | |
| 	if (!fc->root)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	mnt = alloc_vfsmnt(fc->source ?: "none");
 | |
| 	if (!mnt)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (fc->sb_flags & SB_KERNMOUNT)
 | |
| 		mnt->mnt.mnt_flags = MNT_INTERNAL;
 | |
| 
 | |
| 	atomic_inc(&fc->root->d_sb->s_active);
 | |
| 	mnt->mnt.mnt_sb		= fc->root->d_sb;
 | |
| 	mnt->mnt.mnt_root	= dget(fc->root);
 | |
| 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
 | |
| 	mnt->mnt_parent		= mnt;
 | |
| 
 | |
| 	lock_mount_hash();
 | |
| 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
 | |
| 	unlock_mount_hash();
 | |
| 	return &mnt->mnt;
 | |
| }
 | |
| EXPORT_SYMBOL(vfs_create_mount);
 | |
| 
 | |
| struct vfsmount *fc_mount(struct fs_context *fc)
 | |
| {
 | |
| 	int err = vfs_get_tree(fc);
 | |
| 	if (!err) {
 | |
| 		up_write(&fc->root->d_sb->s_umount);
 | |
| 		return vfs_create_mount(fc);
 | |
| 	}
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| EXPORT_SYMBOL(fc_mount);
 | |
| 
 | |
| struct vfsmount *vfs_kern_mount(struct file_system_type *type,
 | |
| 				int flags, const char *name,
 | |
| 				void *data)
 | |
| {
 | |
| 	struct fs_context *fc;
 | |
| 	struct vfsmount *mnt;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!type)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	fc = fs_context_for_mount(type, flags);
 | |
| 	if (IS_ERR(fc))
 | |
| 		return ERR_CAST(fc);
 | |
| 
 | |
| 	if (name)
 | |
| 		ret = vfs_parse_fs_string(fc, "source",
 | |
| 					  name, strlen(name));
 | |
| 	if (!ret)
 | |
| 		ret = parse_monolithic_mount_data(fc, data);
 | |
| 	if (!ret)
 | |
| 		mnt = fc_mount(fc);
 | |
| 	else
 | |
| 		mnt = ERR_PTR(ret);
 | |
| 
 | |
| 	put_fs_context(fc);
 | |
| 	return mnt;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vfs_kern_mount);
 | |
| 
 | |
| struct vfsmount *
 | |
| vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
 | |
| 	     const char *name, void *data)
 | |
| {
 | |
| 	/* Until it is worked out how to pass the user namespace
 | |
| 	 * through from the parent mount to the submount don't support
 | |
| 	 * unprivileged mounts with submounts.
 | |
| 	 */
 | |
| 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
 | |
| 		return ERR_PTR(-EPERM);
 | |
| 
 | |
| 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vfs_submount);
 | |
| 
 | |
| static struct mount *clone_mnt(struct mount *old, struct dentry *root,
 | |
| 					int flag)
 | |
| {
 | |
| 	struct super_block *sb = old->mnt.mnt_sb;
 | |
| 	struct mount *mnt;
 | |
| 	int err;
 | |
| 
 | |
| 	mnt = alloc_vfsmnt(old->mnt_devname);
 | |
| 	if (!mnt)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
 | |
| 		mnt->mnt_group_id = 0; /* not a peer of original */
 | |
| 	else
 | |
| 		mnt->mnt_group_id = old->mnt_group_id;
 | |
| 
 | |
| 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
 | |
| 		err = mnt_alloc_group_id(mnt);
 | |
| 		if (err)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
 | |
| 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
 | |
| 
 | |
| 	atomic_inc(&sb->s_active);
 | |
| 	mnt->mnt.mnt_sb = sb;
 | |
| 	mnt->mnt.mnt_root = dget(root);
 | |
| 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
 | |
| 	mnt->mnt_parent = mnt;
 | |
| 	lock_mount_hash();
 | |
| 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
 | |
| 	unlock_mount_hash();
 | |
| 
 | |
| 	if ((flag & CL_SLAVE) ||
 | |
| 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
 | |
| 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
 | |
| 		mnt->mnt_master = old;
 | |
| 		CLEAR_MNT_SHARED(mnt);
 | |
| 	} else if (!(flag & CL_PRIVATE)) {
 | |
| 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
 | |
| 			list_add(&mnt->mnt_share, &old->mnt_share);
 | |
| 		if (IS_MNT_SLAVE(old))
 | |
| 			list_add(&mnt->mnt_slave, &old->mnt_slave);
 | |
| 		mnt->mnt_master = old->mnt_master;
 | |
| 	} else {
 | |
| 		CLEAR_MNT_SHARED(mnt);
 | |
| 	}
 | |
| 	if (flag & CL_MAKE_SHARED)
 | |
| 		set_mnt_shared(mnt);
 | |
| 
 | |
| 	/* stick the duplicate mount on the same expiry list
 | |
| 	 * as the original if that was on one */
 | |
| 	if (flag & CL_EXPIRE) {
 | |
| 		if (!list_empty(&old->mnt_expire))
 | |
| 			list_add(&mnt->mnt_expire, &old->mnt_expire);
 | |
| 	}
 | |
| 
 | |
| 	return mnt;
 | |
| 
 | |
|  out_free:
 | |
| 	mnt_free_id(mnt);
 | |
| 	free_vfsmnt(mnt);
 | |
| 	return ERR_PTR(err);
 | |
| }
 | |
| 
 | |
| static void cleanup_mnt(struct mount *mnt)
 | |
| {
 | |
| 	struct hlist_node *p;
 | |
| 	struct mount *m;
 | |
| 	/*
 | |
| 	 * The warning here probably indicates that somebody messed
 | |
| 	 * up a mnt_want/drop_write() pair.  If this happens, the
 | |
| 	 * filesystem was probably unable to make r/w->r/o transitions.
 | |
| 	 * The locking used to deal with mnt_count decrement provides barriers,
 | |
| 	 * so mnt_get_writers() below is safe.
 | |
| 	 */
 | |
| 	WARN_ON(mnt_get_writers(mnt));
 | |
| 	if (unlikely(mnt->mnt_pins.first))
 | |
| 		mnt_pin_kill(mnt);
 | |
| 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
 | |
| 		hlist_del(&m->mnt_umount);
 | |
| 		mntput(&m->mnt);
 | |
| 	}
 | |
| 	fsnotify_vfsmount_delete(&mnt->mnt);
 | |
| 	dput(mnt->mnt.mnt_root);
 | |
| 	deactivate_super(mnt->mnt.mnt_sb);
 | |
| 	mnt_free_id(mnt);
 | |
| 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
 | |
| }
 | |
| 
 | |
| static void __cleanup_mnt(struct rcu_head *head)
 | |
| {
 | |
| 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
 | |
| }
 | |
| 
 | |
| static LLIST_HEAD(delayed_mntput_list);
 | |
| static void delayed_mntput(struct work_struct *unused)
 | |
| {
 | |
| 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
 | |
| 	struct mount *m, *t;
 | |
| 
 | |
| 	llist_for_each_entry_safe(m, t, node, mnt_llist)
 | |
| 		cleanup_mnt(m);
 | |
| }
 | |
| static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
 | |
| 
 | |
| static void mntput_no_expire(struct mount *mnt)
 | |
| {
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	if (likely(READ_ONCE(mnt->mnt_ns))) {
 | |
| 		/*
 | |
| 		 * Since we don't do lock_mount_hash() here,
 | |
| 		 * ->mnt_ns can change under us.  However, if it's
 | |
| 		 * non-NULL, then there's a reference that won't
 | |
| 		 * be dropped until after an RCU delay done after
 | |
| 		 * turning ->mnt_ns NULL.  So if we observe it
 | |
| 		 * non-NULL under rcu_read_lock(), the reference
 | |
| 		 * we are dropping is not the final one.
 | |
| 		 */
 | |
| 		mnt_add_count(mnt, -1);
 | |
| 		rcu_read_unlock();
 | |
| 		return;
 | |
| 	}
 | |
| 	lock_mount_hash();
 | |
| 	/*
 | |
| 	 * make sure that if __legitimize_mnt() has not seen us grab
 | |
| 	 * mount_lock, we'll see their refcount increment here.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 	mnt_add_count(mnt, -1);
 | |
| 	if (mnt_get_count(mnt)) {
 | |
| 		rcu_read_unlock();
 | |
| 		unlock_mount_hash();
 | |
| 		return;
 | |
| 	}
 | |
| 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
 | |
| 		rcu_read_unlock();
 | |
| 		unlock_mount_hash();
 | |
| 		return;
 | |
| 	}
 | |
| 	mnt->mnt.mnt_flags |= MNT_DOOMED;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	list_del(&mnt->mnt_instance);
 | |
| 
 | |
| 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
 | |
| 		struct mount *p, *tmp;
 | |
| 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
 | |
| 			__put_mountpoint(unhash_mnt(p), &list);
 | |
| 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
 | |
| 		}
 | |
| 	}
 | |
| 	unlock_mount_hash();
 | |
| 	shrink_dentry_list(&list);
 | |
| 
 | |
| 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
 | |
| 		struct task_struct *task = current;
 | |
| 		if (likely(!(task->flags & PF_KTHREAD))) {
 | |
| 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
 | |
| 			if (!task_work_add(task, &mnt->mnt_rcu, true))
 | |
| 				return;
 | |
| 		}
 | |
| 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
 | |
| 			schedule_delayed_work(&delayed_mntput_work, 1);
 | |
| 		return;
 | |
| 	}
 | |
| 	cleanup_mnt(mnt);
 | |
| }
 | |
| 
 | |
| void mntput(struct vfsmount *mnt)
 | |
| {
 | |
| 	if (mnt) {
 | |
| 		struct mount *m = real_mount(mnt);
 | |
| 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
 | |
| 		if (unlikely(m->mnt_expiry_mark))
 | |
| 			m->mnt_expiry_mark = 0;
 | |
| 		mntput_no_expire(m);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(mntput);
 | |
| 
 | |
| struct vfsmount *mntget(struct vfsmount *mnt)
 | |
| {
 | |
| 	if (mnt)
 | |
| 		mnt_add_count(real_mount(mnt), 1);
 | |
| 	return mnt;
 | |
| }
 | |
| EXPORT_SYMBOL(mntget);
 | |
| 
 | |
| /* path_is_mountpoint() - Check if path is a mount in the current
 | |
|  *                          namespace.
 | |
|  *
 | |
|  *  d_mountpoint() can only be used reliably to establish if a dentry is
 | |
|  *  not mounted in any namespace and that common case is handled inline.
 | |
|  *  d_mountpoint() isn't aware of the possibility there may be multiple
 | |
|  *  mounts using a given dentry in a different namespace. This function
 | |
|  *  checks if the passed in path is a mountpoint rather than the dentry
 | |
|  *  alone.
 | |
|  */
 | |
| bool path_is_mountpoint(const struct path *path)
 | |
| {
 | |
| 	unsigned seq;
 | |
| 	bool res;
 | |
| 
 | |
| 	if (!d_mountpoint(path->dentry))
 | |
| 		return false;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&mount_lock);
 | |
| 		res = __path_is_mountpoint(path);
 | |
| 	} while (read_seqretry(&mount_lock, seq));
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(path_is_mountpoint);
 | |
| 
 | |
| struct vfsmount *mnt_clone_internal(const struct path *path)
 | |
| {
 | |
| 	struct mount *p;
 | |
| 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
 | |
| 	if (IS_ERR(p))
 | |
| 		return ERR_CAST(p);
 | |
| 	p->mnt.mnt_flags |= MNT_INTERNAL;
 | |
| 	return &p->mnt;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| /* iterator; we want it to have access to namespace_sem, thus here... */
 | |
| static void *m_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	struct proc_mounts *p = m->private;
 | |
| 
 | |
| 	down_read(&namespace_sem);
 | |
| 	if (p->cached_event == p->ns->event) {
 | |
| 		void *v = p->cached_mount;
 | |
| 		if (*pos == p->cached_index)
 | |
| 			return v;
 | |
| 		if (*pos == p->cached_index + 1) {
 | |
| 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
 | |
| 			return p->cached_mount = v;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	p->cached_event = p->ns->event;
 | |
| 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
 | |
| 	p->cached_index = *pos;
 | |
| 	return p->cached_mount;
 | |
| }
 | |
| 
 | |
| static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 | |
| {
 | |
| 	struct proc_mounts *p = m->private;
 | |
| 
 | |
| 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
 | |
| 	p->cached_index = *pos;
 | |
| 	return p->cached_mount;
 | |
| }
 | |
| 
 | |
| static void m_stop(struct seq_file *m, void *v)
 | |
| {
 | |
| 	up_read(&namespace_sem);
 | |
| }
 | |
| 
 | |
| static int m_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct proc_mounts *p = m->private;
 | |
| 	struct mount *r = list_entry(v, struct mount, mnt_list);
 | |
| 	return p->show(m, &r->mnt);
 | |
| }
 | |
| 
 | |
| const struct seq_operations mounts_op = {
 | |
| 	.start	= m_start,
 | |
| 	.next	= m_next,
 | |
| 	.stop	= m_stop,
 | |
| 	.show	= m_show,
 | |
| };
 | |
| #endif  /* CONFIG_PROC_FS */
 | |
| 
 | |
| /**
 | |
|  * may_umount_tree - check if a mount tree is busy
 | |
|  * @mnt: root of mount tree
 | |
|  *
 | |
|  * This is called to check if a tree of mounts has any
 | |
|  * open files, pwds, chroots or sub mounts that are
 | |
|  * busy.
 | |
|  */
 | |
| int may_umount_tree(struct vfsmount *m)
 | |
| {
 | |
| 	struct mount *mnt = real_mount(m);
 | |
| 	int actual_refs = 0;
 | |
| 	int minimum_refs = 0;
 | |
| 	struct mount *p;
 | |
| 	BUG_ON(!m);
 | |
| 
 | |
| 	/* write lock needed for mnt_get_count */
 | |
| 	lock_mount_hash();
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt)) {
 | |
| 		actual_refs += mnt_get_count(p);
 | |
| 		minimum_refs += 2;
 | |
| 	}
 | |
| 	unlock_mount_hash();
 | |
| 
 | |
| 	if (actual_refs > minimum_refs)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(may_umount_tree);
 | |
| 
 | |
| /**
 | |
|  * may_umount - check if a mount point is busy
 | |
|  * @mnt: root of mount
 | |
|  *
 | |
|  * This is called to check if a mount point has any
 | |
|  * open files, pwds, chroots or sub mounts. If the
 | |
|  * mount has sub mounts this will return busy
 | |
|  * regardless of whether the sub mounts are busy.
 | |
|  *
 | |
|  * Doesn't take quota and stuff into account. IOW, in some cases it will
 | |
|  * give false negatives. The main reason why it's here is that we need
 | |
|  * a non-destructive way to look for easily umountable filesystems.
 | |
|  */
 | |
| int may_umount(struct vfsmount *mnt)
 | |
| {
 | |
| 	int ret = 1;
 | |
| 	down_read(&namespace_sem);
 | |
| 	lock_mount_hash();
 | |
| 	if (propagate_mount_busy(real_mount(mnt), 2))
 | |
| 		ret = 0;
 | |
| 	unlock_mount_hash();
 | |
| 	up_read(&namespace_sem);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(may_umount);
 | |
| 
 | |
| static void namespace_unlock(void)
 | |
| {
 | |
| 	struct hlist_head head;
 | |
| 	struct hlist_node *p;
 | |
| 	struct mount *m;
 | |
| 	LIST_HEAD(list);
 | |
| 
 | |
| 	hlist_move_list(&unmounted, &head);
 | |
| 	list_splice_init(&ex_mountpoints, &list);
 | |
| 
 | |
| 	up_write(&namespace_sem);
 | |
| 
 | |
| 	shrink_dentry_list(&list);
 | |
| 
 | |
| 	if (likely(hlist_empty(&head)))
 | |
| 		return;
 | |
| 
 | |
| 	synchronize_rcu_expedited();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
 | |
| 		hlist_del(&m->mnt_umount);
 | |
| 		mntput(&m->mnt);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void namespace_lock(void)
 | |
| {
 | |
| 	down_write(&namespace_sem);
 | |
| }
 | |
| 
 | |
| enum umount_tree_flags {
 | |
| 	UMOUNT_SYNC = 1,
 | |
| 	UMOUNT_PROPAGATE = 2,
 | |
| 	UMOUNT_CONNECTED = 4,
 | |
| };
 | |
| 
 | |
| static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
 | |
| {
 | |
| 	/* Leaving mounts connected is only valid for lazy umounts */
 | |
| 	if (how & UMOUNT_SYNC)
 | |
| 		return true;
 | |
| 
 | |
| 	/* A mount without a parent has nothing to be connected to */
 | |
| 	if (!mnt_has_parent(mnt))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Because the reference counting rules change when mounts are
 | |
| 	 * unmounted and connected, umounted mounts may not be
 | |
| 	 * connected to mounted mounts.
 | |
| 	 */
 | |
| 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Has it been requested that the mount remain connected? */
 | |
| 	if (how & UMOUNT_CONNECTED)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Is the mount locked such that it needs to remain connected? */
 | |
| 	if (IS_MNT_LOCKED(mnt))
 | |
| 		return false;
 | |
| 
 | |
| 	/* By default disconnect the mount */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mount_lock must be held
 | |
|  * namespace_sem must be held for write
 | |
|  */
 | |
| static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
 | |
| {
 | |
| 	LIST_HEAD(tmp_list);
 | |
| 	struct mount *p;
 | |
| 
 | |
| 	if (how & UMOUNT_PROPAGATE)
 | |
| 		propagate_mount_unlock(mnt);
 | |
| 
 | |
| 	/* Gather the mounts to umount */
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt)) {
 | |
| 		p->mnt.mnt_flags |= MNT_UMOUNT;
 | |
| 		list_move(&p->mnt_list, &tmp_list);
 | |
| 	}
 | |
| 
 | |
| 	/* Hide the mounts from mnt_mounts */
 | |
| 	list_for_each_entry(p, &tmp_list, mnt_list) {
 | |
| 		list_del_init(&p->mnt_child);
 | |
| 	}
 | |
| 
 | |
| 	/* Add propogated mounts to the tmp_list */
 | |
| 	if (how & UMOUNT_PROPAGATE)
 | |
| 		propagate_umount(&tmp_list);
 | |
| 
 | |
| 	while (!list_empty(&tmp_list)) {
 | |
| 		struct mnt_namespace *ns;
 | |
| 		bool disconnect;
 | |
| 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
 | |
| 		list_del_init(&p->mnt_expire);
 | |
| 		list_del_init(&p->mnt_list);
 | |
| 		ns = p->mnt_ns;
 | |
| 		if (ns) {
 | |
| 			ns->mounts--;
 | |
| 			__touch_mnt_namespace(ns);
 | |
| 		}
 | |
| 		p->mnt_ns = NULL;
 | |
| 		if (how & UMOUNT_SYNC)
 | |
| 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
 | |
| 
 | |
| 		disconnect = disconnect_mount(p, how);
 | |
| 		if (mnt_has_parent(p)) {
 | |
| 			mnt_add_count(p->mnt_parent, -1);
 | |
| 			if (!disconnect) {
 | |
| 				/* Don't forget about p */
 | |
| 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
 | |
| 			} else {
 | |
| 				umount_mnt(p);
 | |
| 			}
 | |
| 		}
 | |
| 		change_mnt_propagation(p, MS_PRIVATE);
 | |
| 		if (disconnect)
 | |
| 			hlist_add_head(&p->mnt_umount, &unmounted);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void shrink_submounts(struct mount *mnt);
 | |
| 
 | |
| static int do_umount_root(struct super_block *sb)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	down_write(&sb->s_umount);
 | |
| 	if (!sb_rdonly(sb)) {
 | |
| 		struct fs_context *fc;
 | |
| 
 | |
| 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
 | |
| 						SB_RDONLY);
 | |
| 		if (IS_ERR(fc)) {
 | |
| 			ret = PTR_ERR(fc);
 | |
| 		} else {
 | |
| 			ret = parse_monolithic_mount_data(fc, NULL);
 | |
| 			if (!ret)
 | |
| 				ret = reconfigure_super(fc);
 | |
| 			put_fs_context(fc);
 | |
| 		}
 | |
| 	}
 | |
| 	up_write(&sb->s_umount);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int do_umount(struct mount *mnt, int flags)
 | |
| {
 | |
| 	struct super_block *sb = mnt->mnt.mnt_sb;
 | |
| 	int retval;
 | |
| 
 | |
| 	retval = security_sb_umount(&mnt->mnt, flags);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allow userspace to request a mountpoint be expired rather than
 | |
| 	 * unmounting unconditionally. Unmount only happens if:
 | |
| 	 *  (1) the mark is already set (the mark is cleared by mntput())
 | |
| 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
 | |
| 	 */
 | |
| 	if (flags & MNT_EXPIRE) {
 | |
| 		if (&mnt->mnt == current->fs->root.mnt ||
 | |
| 		    flags & (MNT_FORCE | MNT_DETACH))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * probably don't strictly need the lock here if we examined
 | |
| 		 * all race cases, but it's a slowpath.
 | |
| 		 */
 | |
| 		lock_mount_hash();
 | |
| 		if (mnt_get_count(mnt) != 2) {
 | |
| 			unlock_mount_hash();
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 		unlock_mount_hash();
 | |
| 
 | |
| 		if (!xchg(&mnt->mnt_expiry_mark, 1))
 | |
| 			return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we may have to abort operations to get out of this
 | |
| 	 * mount, and they will themselves hold resources we must
 | |
| 	 * allow the fs to do things. In the Unix tradition of
 | |
| 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
 | |
| 	 * might fail to complete on the first run through as other tasks
 | |
| 	 * must return, and the like. Thats for the mount program to worry
 | |
| 	 * about for the moment.
 | |
| 	 */
 | |
| 
 | |
| 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
 | |
| 		sb->s_op->umount_begin(sb);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No sense to grab the lock for this test, but test itself looks
 | |
| 	 * somewhat bogus. Suggestions for better replacement?
 | |
| 	 * Ho-hum... In principle, we might treat that as umount + switch
 | |
| 	 * to rootfs. GC would eventually take care of the old vfsmount.
 | |
| 	 * Actually it makes sense, especially if rootfs would contain a
 | |
| 	 * /reboot - static binary that would close all descriptors and
 | |
| 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
 | |
| 	 */
 | |
| 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
 | |
| 		/*
 | |
| 		 * Special case for "unmounting" root ...
 | |
| 		 * we just try to remount it readonly.
 | |
| 		 */
 | |
| 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
 | |
| 			return -EPERM;
 | |
| 		return do_umount_root(sb);
 | |
| 	}
 | |
| 
 | |
| 	namespace_lock();
 | |
| 	lock_mount_hash();
 | |
| 
 | |
| 	/* Recheck MNT_LOCKED with the locks held */
 | |
| 	retval = -EINVAL;
 | |
| 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
 | |
| 		goto out;
 | |
| 
 | |
| 	event++;
 | |
| 	if (flags & MNT_DETACH) {
 | |
| 		if (!list_empty(&mnt->mnt_list))
 | |
| 			umount_tree(mnt, UMOUNT_PROPAGATE);
 | |
| 		retval = 0;
 | |
| 	} else {
 | |
| 		shrink_submounts(mnt);
 | |
| 		retval = -EBUSY;
 | |
| 		if (!propagate_mount_busy(mnt, 2)) {
 | |
| 			if (!list_empty(&mnt->mnt_list))
 | |
| 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
 | |
| 			retval = 0;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	unlock_mount_hash();
 | |
| 	namespace_unlock();
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __detach_mounts - lazily unmount all mounts on the specified dentry
 | |
|  *
 | |
|  * During unlink, rmdir, and d_drop it is possible to loose the path
 | |
|  * to an existing mountpoint, and wind up leaking the mount.
 | |
|  * detach_mounts allows lazily unmounting those mounts instead of
 | |
|  * leaking them.
 | |
|  *
 | |
|  * The caller may hold dentry->d_inode->i_mutex.
 | |
|  */
 | |
| void __detach_mounts(struct dentry *dentry)
 | |
| {
 | |
| 	struct mountpoint *mp;
 | |
| 	struct mount *mnt;
 | |
| 
 | |
| 	namespace_lock();
 | |
| 	lock_mount_hash();
 | |
| 	mp = lookup_mountpoint(dentry);
 | |
| 	if (!mp)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	event++;
 | |
| 	while (!hlist_empty(&mp->m_list)) {
 | |
| 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
 | |
| 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
 | |
| 			umount_mnt(mnt);
 | |
| 			hlist_add_head(&mnt->mnt_umount, &unmounted);
 | |
| 		}
 | |
| 		else umount_tree(mnt, UMOUNT_CONNECTED);
 | |
| 	}
 | |
| 	put_mountpoint(mp);
 | |
| out_unlock:
 | |
| 	unlock_mount_hash();
 | |
| 	namespace_unlock();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the caller allowed to modify his namespace?
 | |
|  */
 | |
| static inline bool may_mount(void)
 | |
| {
 | |
| 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
 | |
| }
 | |
| 
 | |
| #ifdef	CONFIG_MANDATORY_FILE_LOCKING
 | |
| static inline bool may_mandlock(void)
 | |
| {
 | |
| 	return capable(CAP_SYS_ADMIN);
 | |
| }
 | |
| #else
 | |
| static inline bool may_mandlock(void)
 | |
| {
 | |
| 	pr_warn("VFS: \"mand\" mount option not supported");
 | |
| 	return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Now umount can handle mount points as well as block devices.
 | |
|  * This is important for filesystems which use unnamed block devices.
 | |
|  *
 | |
|  * We now support a flag for forced unmount like the other 'big iron'
 | |
|  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
 | |
|  */
 | |
| 
 | |
| int ksys_umount(char __user *name, int flags)
 | |
| {
 | |
| 	struct path path;
 | |
| 	struct mount *mnt;
 | |
| 	int retval;
 | |
| 	int lookup_flags = 0;
 | |
| 
 | |
| 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!may_mount())
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (!(flags & UMOUNT_NOFOLLOW))
 | |
| 		lookup_flags |= LOOKUP_FOLLOW;
 | |
| 
 | |
| 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
 | |
| 	if (retval)
 | |
| 		goto out;
 | |
| 	mnt = real_mount(path.mnt);
 | |
| 	retval = -EINVAL;
 | |
| 	if (path.dentry != path.mnt->mnt_root)
 | |
| 		goto dput_and_out;
 | |
| 	if (!check_mnt(mnt))
 | |
| 		goto dput_and_out;
 | |
| 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
 | |
| 		goto dput_and_out;
 | |
| 	retval = -EPERM;
 | |
| 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
 | |
| 		goto dput_and_out;
 | |
| 
 | |
| 	retval = do_umount(mnt, flags);
 | |
| dput_and_out:
 | |
| 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
 | |
| 	dput(path.dentry);
 | |
| 	mntput_no_expire(mnt);
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
 | |
| {
 | |
| 	return ksys_umount(name, flags);
 | |
| }
 | |
| 
 | |
| #ifdef __ARCH_WANT_SYS_OLDUMOUNT
 | |
| 
 | |
| /*
 | |
|  *	The 2.0 compatible umount. No flags.
 | |
|  */
 | |
| SYSCALL_DEFINE1(oldumount, char __user *, name)
 | |
| {
 | |
| 	return ksys_umount(name, 0);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static bool is_mnt_ns_file(struct dentry *dentry)
 | |
| {
 | |
| 	/* Is this a proxy for a mount namespace? */
 | |
| 	return dentry->d_op == &ns_dentry_operations &&
 | |
| 	       dentry->d_fsdata == &mntns_operations;
 | |
| }
 | |
| 
 | |
| struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
 | |
| {
 | |
| 	return container_of(ns, struct mnt_namespace, ns);
 | |
| }
 | |
| 
 | |
| static bool mnt_ns_loop(struct dentry *dentry)
 | |
| {
 | |
| 	/* Could bind mounting the mount namespace inode cause a
 | |
| 	 * mount namespace loop?
 | |
| 	 */
 | |
| 	struct mnt_namespace *mnt_ns;
 | |
| 	if (!is_mnt_ns_file(dentry))
 | |
| 		return false;
 | |
| 
 | |
| 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
 | |
| 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
 | |
| }
 | |
| 
 | |
| struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
 | |
| 					int flag)
 | |
| {
 | |
| 	struct mount *res, *p, *q, *r, *parent;
 | |
| 
 | |
| 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	res = q = clone_mnt(mnt, dentry, flag);
 | |
| 	if (IS_ERR(q))
 | |
| 		return q;
 | |
| 
 | |
| 	q->mnt_mountpoint = mnt->mnt_mountpoint;
 | |
| 
 | |
| 	p = mnt;
 | |
| 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
 | |
| 		struct mount *s;
 | |
| 		if (!is_subdir(r->mnt_mountpoint, dentry))
 | |
| 			continue;
 | |
| 
 | |
| 		for (s = r; s; s = next_mnt(s, r)) {
 | |
| 			if (!(flag & CL_COPY_UNBINDABLE) &&
 | |
| 			    IS_MNT_UNBINDABLE(s)) {
 | |
| 				if (s->mnt.mnt_flags & MNT_LOCKED) {
 | |
| 					/* Both unbindable and locked. */
 | |
| 					q = ERR_PTR(-EPERM);
 | |
| 					goto out;
 | |
| 				} else {
 | |
| 					s = skip_mnt_tree(s);
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
 | |
| 			    is_mnt_ns_file(s->mnt.mnt_root)) {
 | |
| 				s = skip_mnt_tree(s);
 | |
| 				continue;
 | |
| 			}
 | |
| 			while (p != s->mnt_parent) {
 | |
| 				p = p->mnt_parent;
 | |
| 				q = q->mnt_parent;
 | |
| 			}
 | |
| 			p = s;
 | |
| 			parent = q;
 | |
| 			q = clone_mnt(p, p->mnt.mnt_root, flag);
 | |
| 			if (IS_ERR(q))
 | |
| 				goto out;
 | |
| 			lock_mount_hash();
 | |
| 			list_add_tail(&q->mnt_list, &res->mnt_list);
 | |
| 			attach_mnt(q, parent, p->mnt_mp);
 | |
| 			unlock_mount_hash();
 | |
| 		}
 | |
| 	}
 | |
| 	return res;
 | |
| out:
 | |
| 	if (res) {
 | |
| 		lock_mount_hash();
 | |
| 		umount_tree(res, UMOUNT_SYNC);
 | |
| 		unlock_mount_hash();
 | |
| 	}
 | |
| 	return q;
 | |
| }
 | |
| 
 | |
| /* Caller should check returned pointer for errors */
 | |
| 
 | |
| struct vfsmount *collect_mounts(const struct path *path)
 | |
| {
 | |
| 	struct mount *tree;
 | |
| 	namespace_lock();
 | |
| 	if (!check_mnt(real_mount(path->mnt)))
 | |
| 		tree = ERR_PTR(-EINVAL);
 | |
| 	else
 | |
| 		tree = copy_tree(real_mount(path->mnt), path->dentry,
 | |
| 				 CL_COPY_ALL | CL_PRIVATE);
 | |
| 	namespace_unlock();
 | |
| 	if (IS_ERR(tree))
 | |
| 		return ERR_CAST(tree);
 | |
| 	return &tree->mnt;
 | |
| }
 | |
| 
 | |
| static void free_mnt_ns(struct mnt_namespace *);
 | |
| static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
 | |
| 
 | |
| void dissolve_on_fput(struct vfsmount *mnt)
 | |
| {
 | |
| 	struct mnt_namespace *ns;
 | |
| 	namespace_lock();
 | |
| 	lock_mount_hash();
 | |
| 	ns = real_mount(mnt)->mnt_ns;
 | |
| 	if (ns) {
 | |
| 		if (is_anon_ns(ns))
 | |
| 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
 | |
| 		else
 | |
| 			ns = NULL;
 | |
| 	}
 | |
| 	unlock_mount_hash();
 | |
| 	namespace_unlock();
 | |
| 	if (ns)
 | |
| 		free_mnt_ns(ns);
 | |
| }
 | |
| 
 | |
| void drop_collected_mounts(struct vfsmount *mnt)
 | |
| {
 | |
| 	namespace_lock();
 | |
| 	lock_mount_hash();
 | |
| 	umount_tree(real_mount(mnt), 0);
 | |
| 	unlock_mount_hash();
 | |
| 	namespace_unlock();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * clone_private_mount - create a private clone of a path
 | |
|  *
 | |
|  * This creates a new vfsmount, which will be the clone of @path.  The new will
 | |
|  * not be attached anywhere in the namespace and will be private (i.e. changes
 | |
|  * to the originating mount won't be propagated into this).
 | |
|  *
 | |
|  * Release with mntput().
 | |
|  */
 | |
| struct vfsmount *clone_private_mount(const struct path *path)
 | |
| {
 | |
| 	struct mount *old_mnt = real_mount(path->mnt);
 | |
| 	struct mount *new_mnt;
 | |
| 
 | |
| 	if (IS_MNT_UNBINDABLE(old_mnt))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
 | |
| 	if (IS_ERR(new_mnt))
 | |
| 		return ERR_CAST(new_mnt);
 | |
| 
 | |
| 	return &new_mnt->mnt;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(clone_private_mount);
 | |
| 
 | |
| int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
 | |
| 		   struct vfsmount *root)
 | |
| {
 | |
| 	struct mount *mnt;
 | |
| 	int res = f(root, arg);
 | |
| 	if (res)
 | |
| 		return res;
 | |
| 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
 | |
| 		res = f(&mnt->mnt, arg);
 | |
| 		if (res)
 | |
| 			return res;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void lock_mnt_tree(struct mount *mnt)
 | |
| {
 | |
| 	struct mount *p;
 | |
| 
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt)) {
 | |
| 		int flags = p->mnt.mnt_flags;
 | |
| 		/* Don't allow unprivileged users to change mount flags */
 | |
| 		flags |= MNT_LOCK_ATIME;
 | |
| 
 | |
| 		if (flags & MNT_READONLY)
 | |
| 			flags |= MNT_LOCK_READONLY;
 | |
| 
 | |
| 		if (flags & MNT_NODEV)
 | |
| 			flags |= MNT_LOCK_NODEV;
 | |
| 
 | |
| 		if (flags & MNT_NOSUID)
 | |
| 			flags |= MNT_LOCK_NOSUID;
 | |
| 
 | |
| 		if (flags & MNT_NOEXEC)
 | |
| 			flags |= MNT_LOCK_NOEXEC;
 | |
| 		/* Don't allow unprivileged users to reveal what is under a mount */
 | |
| 		if (list_empty(&p->mnt_expire))
 | |
| 			flags |= MNT_LOCKED;
 | |
| 		p->mnt.mnt_flags = flags;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cleanup_group_ids(struct mount *mnt, struct mount *end)
 | |
| {
 | |
| 	struct mount *p;
 | |
| 
 | |
| 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
 | |
| 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
 | |
| 			mnt_release_group_id(p);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int invent_group_ids(struct mount *mnt, bool recurse)
 | |
| {
 | |
| 	struct mount *p;
 | |
| 
 | |
| 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
 | |
| 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
 | |
| 			int err = mnt_alloc_group_id(p);
 | |
| 			if (err) {
 | |
| 				cleanup_group_ids(mnt, p);
 | |
| 				return err;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
 | |
| {
 | |
| 	unsigned int max = READ_ONCE(sysctl_mount_max);
 | |
| 	unsigned int mounts = 0, old, pending, sum;
 | |
| 	struct mount *p;
 | |
| 
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt))
 | |
| 		mounts++;
 | |
| 
 | |
| 	old = ns->mounts;
 | |
| 	pending = ns->pending_mounts;
 | |
| 	sum = old + pending;
 | |
| 	if ((old > sum) ||
 | |
| 	    (pending > sum) ||
 | |
| 	    (max < sum) ||
 | |
| 	    (mounts > (max - sum)))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	ns->pending_mounts = pending + mounts;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  @source_mnt : mount tree to be attached
 | |
|  *  @nd         : place the mount tree @source_mnt is attached
 | |
|  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
 | |
|  *  		   store the parent mount and mountpoint dentry.
 | |
|  *  		   (done when source_mnt is moved)
 | |
|  *
 | |
|  *  NOTE: in the table below explains the semantics when a source mount
 | |
|  *  of a given type is attached to a destination mount of a given type.
 | |
|  * ---------------------------------------------------------------------------
 | |
|  * |         BIND MOUNT OPERATION                                            |
 | |
|  * |**************************************************************************
 | |
|  * | source-->| shared        |       private  |       slave    | unbindable |
 | |
|  * | dest     |               |                |                |            |
 | |
|  * |   |      |               |                |                |            |
 | |
|  * |   v      |               |                |                |            |
 | |
|  * |**************************************************************************
 | |
|  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
 | |
|  * |          |               |                |                |            |
 | |
|  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
 | |
|  * ***************************************************************************
 | |
|  * A bind operation clones the source mount and mounts the clone on the
 | |
|  * destination mount.
 | |
|  *
 | |
|  * (++)  the cloned mount is propagated to all the mounts in the propagation
 | |
|  * 	 tree of the destination mount and the cloned mount is added to
 | |
|  * 	 the peer group of the source mount.
 | |
|  * (+)   the cloned mount is created under the destination mount and is marked
 | |
|  *       as shared. The cloned mount is added to the peer group of the source
 | |
|  *       mount.
 | |
|  * (+++) the mount is propagated to all the mounts in the propagation tree
 | |
|  *       of the destination mount and the cloned mount is made slave
 | |
|  *       of the same master as that of the source mount. The cloned mount
 | |
|  *       is marked as 'shared and slave'.
 | |
|  * (*)   the cloned mount is made a slave of the same master as that of the
 | |
|  * 	 source mount.
 | |
|  *
 | |
|  * ---------------------------------------------------------------------------
 | |
|  * |         		MOVE MOUNT OPERATION                                 |
 | |
|  * |**************************************************************************
 | |
|  * | source-->| shared        |       private  |       slave    | unbindable |
 | |
|  * | dest     |               |                |                |            |
 | |
|  * |   |      |               |                |                |            |
 | |
|  * |   v      |               |                |                |            |
 | |
|  * |**************************************************************************
 | |
|  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
 | |
|  * |          |               |                |                |            |
 | |
|  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
 | |
|  * ***************************************************************************
 | |
|  *
 | |
|  * (+)  the mount is moved to the destination. And is then propagated to
 | |
|  * 	all the mounts in the propagation tree of the destination mount.
 | |
|  * (+*)  the mount is moved to the destination.
 | |
|  * (+++)  the mount is moved to the destination and is then propagated to
 | |
|  * 	all the mounts belonging to the destination mount's propagation tree.
 | |
|  * 	the mount is marked as 'shared and slave'.
 | |
|  * (*)	the mount continues to be a slave at the new location.
 | |
|  *
 | |
|  * if the source mount is a tree, the operations explained above is
 | |
|  * applied to each mount in the tree.
 | |
|  * Must be called without spinlocks held, since this function can sleep
 | |
|  * in allocations.
 | |
|  */
 | |
| static int attach_recursive_mnt(struct mount *source_mnt,
 | |
| 			struct mount *dest_mnt,
 | |
| 			struct mountpoint *dest_mp,
 | |
| 			bool moving)
 | |
| {
 | |
| 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
 | |
| 	HLIST_HEAD(tree_list);
 | |
| 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
 | |
| 	struct mountpoint *smp;
 | |
| 	struct mount *child, *p;
 | |
| 	struct hlist_node *n;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Preallocate a mountpoint in case the new mounts need
 | |
| 	 * to be tucked under other mounts.
 | |
| 	 */
 | |
| 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
 | |
| 	if (IS_ERR(smp))
 | |
| 		return PTR_ERR(smp);
 | |
| 
 | |
| 	/* Is there space to add these mounts to the mount namespace? */
 | |
| 	if (!moving) {
 | |
| 		err = count_mounts(ns, source_mnt);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_MNT_SHARED(dest_mnt)) {
 | |
| 		err = invent_group_ids(source_mnt, true);
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
 | |
| 		lock_mount_hash();
 | |
| 		if (err)
 | |
| 			goto out_cleanup_ids;
 | |
| 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
 | |
| 			set_mnt_shared(p);
 | |
| 	} else {
 | |
| 		lock_mount_hash();
 | |
| 	}
 | |
| 	if (moving) {
 | |
| 		unhash_mnt(source_mnt);
 | |
| 		attach_mnt(source_mnt, dest_mnt, dest_mp);
 | |
| 		touch_mnt_namespace(source_mnt->mnt_ns);
 | |
| 	} else {
 | |
| 		if (source_mnt->mnt_ns) {
 | |
| 			/* move from anon - the caller will destroy */
 | |
| 			list_del_init(&source_mnt->mnt_ns->list);
 | |
| 		}
 | |
| 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
 | |
| 		commit_tree(source_mnt);
 | |
| 	}
 | |
| 
 | |
| 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
 | |
| 		struct mount *q;
 | |
| 		hlist_del_init(&child->mnt_hash);
 | |
| 		q = __lookup_mnt(&child->mnt_parent->mnt,
 | |
| 				 child->mnt_mountpoint);
 | |
| 		if (q)
 | |
| 			mnt_change_mountpoint(child, smp, q);
 | |
| 		/* Notice when we are propagating across user namespaces */
 | |
| 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
 | |
| 			lock_mnt_tree(child);
 | |
| 		child->mnt.mnt_flags &= ~MNT_LOCKED;
 | |
| 		commit_tree(child);
 | |
| 	}
 | |
| 	put_mountpoint(smp);
 | |
| 	unlock_mount_hash();
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_cleanup_ids:
 | |
| 	while (!hlist_empty(&tree_list)) {
 | |
| 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
 | |
| 		child->mnt_parent->mnt_ns->pending_mounts = 0;
 | |
| 		umount_tree(child, UMOUNT_SYNC);
 | |
| 	}
 | |
| 	unlock_mount_hash();
 | |
| 	cleanup_group_ids(source_mnt, NULL);
 | |
|  out:
 | |
| 	ns->pending_mounts = 0;
 | |
| 
 | |
| 	read_seqlock_excl(&mount_lock);
 | |
| 	put_mountpoint(smp);
 | |
| 	read_sequnlock_excl(&mount_lock);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct mountpoint *lock_mount(struct path *path)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 	struct dentry *dentry = path->dentry;
 | |
| retry:
 | |
| 	inode_lock(dentry->d_inode);
 | |
| 	if (unlikely(cant_mount(dentry))) {
 | |
| 		inode_unlock(dentry->d_inode);
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	}
 | |
| 	namespace_lock();
 | |
| 	mnt = lookup_mnt(path);
 | |
| 	if (likely(!mnt)) {
 | |
| 		struct mountpoint *mp = get_mountpoint(dentry);
 | |
| 		if (IS_ERR(mp)) {
 | |
| 			namespace_unlock();
 | |
| 			inode_unlock(dentry->d_inode);
 | |
| 			return mp;
 | |
| 		}
 | |
| 		return mp;
 | |
| 	}
 | |
| 	namespace_unlock();
 | |
| 	inode_unlock(path->dentry->d_inode);
 | |
| 	path_put(path);
 | |
| 	path->mnt = mnt;
 | |
| 	dentry = path->dentry = dget(mnt->mnt_root);
 | |
| 	goto retry;
 | |
| }
 | |
| 
 | |
| static void unlock_mount(struct mountpoint *where)
 | |
| {
 | |
| 	struct dentry *dentry = where->m_dentry;
 | |
| 
 | |
| 	read_seqlock_excl(&mount_lock);
 | |
| 	put_mountpoint(where);
 | |
| 	read_sequnlock_excl(&mount_lock);
 | |
| 
 | |
| 	namespace_unlock();
 | |
| 	inode_unlock(dentry->d_inode);
 | |
| }
 | |
| 
 | |
| static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
 | |
| {
 | |
| 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (d_is_dir(mp->m_dentry) !=
 | |
| 	      d_is_dir(mnt->mnt.mnt_root))
 | |
| 		return -ENOTDIR;
 | |
| 
 | |
| 	return attach_recursive_mnt(mnt, p, mp, false);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sanity check the flags to change_mnt_propagation.
 | |
|  */
 | |
| 
 | |
| static int flags_to_propagation_type(int ms_flags)
 | |
| {
 | |
| 	int type = ms_flags & ~(MS_REC | MS_SILENT);
 | |
| 
 | |
| 	/* Fail if any non-propagation flags are set */
 | |
| 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
 | |
| 		return 0;
 | |
| 	/* Only one propagation flag should be set */
 | |
| 	if (!is_power_of_2(type))
 | |
| 		return 0;
 | |
| 	return type;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * recursively change the type of the mountpoint.
 | |
|  */
 | |
| static int do_change_type(struct path *path, int ms_flags)
 | |
| {
 | |
| 	struct mount *m;
 | |
| 	struct mount *mnt = real_mount(path->mnt);
 | |
| 	int recurse = ms_flags & MS_REC;
 | |
| 	int type;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (path->dentry != path->mnt->mnt_root)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	type = flags_to_propagation_type(ms_flags);
 | |
| 	if (!type)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	namespace_lock();
 | |
| 	if (type == MS_SHARED) {
 | |
| 		err = invent_group_ids(mnt, recurse);
 | |
| 		if (err)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	lock_mount_hash();
 | |
| 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
 | |
| 		change_mnt_propagation(m, type);
 | |
| 	unlock_mount_hash();
 | |
| 
 | |
|  out_unlock:
 | |
| 	namespace_unlock();
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
 | |
| {
 | |
| 	struct mount *child;
 | |
| 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
 | |
| 		if (!is_subdir(child->mnt_mountpoint, dentry))
 | |
| 			continue;
 | |
| 
 | |
| 		if (child->mnt.mnt_flags & MNT_LOCKED)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct mount *__do_loopback(struct path *old_path, int recurse)
 | |
| {
 | |
| 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
 | |
| 
 | |
| 	if (IS_MNT_UNBINDABLE(old))
 | |
| 		return mnt;
 | |
| 
 | |
| 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
 | |
| 		return mnt;
 | |
| 
 | |
| 	if (!recurse && has_locked_children(old, old_path->dentry))
 | |
| 		return mnt;
 | |
| 
 | |
| 	if (recurse)
 | |
| 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
 | |
| 	else
 | |
| 		mnt = clone_mnt(old, old_path->dentry, 0);
 | |
| 
 | |
| 	if (!IS_ERR(mnt))
 | |
| 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
 | |
| 
 | |
| 	return mnt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * do loopback mount.
 | |
|  */
 | |
| static int do_loopback(struct path *path, const char *old_name,
 | |
| 				int recurse)
 | |
| {
 | |
| 	struct path old_path;
 | |
| 	struct mount *mnt = NULL, *parent;
 | |
| 	struct mountpoint *mp;
 | |
| 	int err;
 | |
| 	if (!old_name || !*old_name)
 | |
| 		return -EINVAL;
 | |
| 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (mnt_ns_loop(old_path.dentry))
 | |
| 		goto out;
 | |
| 
 | |
| 	mp = lock_mount(path);
 | |
| 	if (IS_ERR(mp)) {
 | |
| 		err = PTR_ERR(mp);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	parent = real_mount(path->mnt);
 | |
| 	if (!check_mnt(parent))
 | |
| 		goto out2;
 | |
| 
 | |
| 	mnt = __do_loopback(&old_path, recurse);
 | |
| 	if (IS_ERR(mnt)) {
 | |
| 		err = PTR_ERR(mnt);
 | |
| 		goto out2;
 | |
| 	}
 | |
| 
 | |
| 	err = graft_tree(mnt, parent, mp);
 | |
| 	if (err) {
 | |
| 		lock_mount_hash();
 | |
| 		umount_tree(mnt, UMOUNT_SYNC);
 | |
| 		unlock_mount_hash();
 | |
| 	}
 | |
| out2:
 | |
| 	unlock_mount(mp);
 | |
| out:
 | |
| 	path_put(&old_path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct file *open_detached_copy(struct path *path, bool recursive)
 | |
| {
 | |
| 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
 | |
| 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
 | |
| 	struct mount *mnt, *p;
 | |
| 	struct file *file;
 | |
| 
 | |
| 	if (IS_ERR(ns))
 | |
| 		return ERR_CAST(ns);
 | |
| 
 | |
| 	namespace_lock();
 | |
| 	mnt = __do_loopback(path, recursive);
 | |
| 	if (IS_ERR(mnt)) {
 | |
| 		namespace_unlock();
 | |
| 		free_mnt_ns(ns);
 | |
| 		return ERR_CAST(mnt);
 | |
| 	}
 | |
| 
 | |
| 	lock_mount_hash();
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt)) {
 | |
| 		p->mnt_ns = ns;
 | |
| 		ns->mounts++;
 | |
| 	}
 | |
| 	ns->root = mnt;
 | |
| 	list_add_tail(&ns->list, &mnt->mnt_list);
 | |
| 	mntget(&mnt->mnt);
 | |
| 	unlock_mount_hash();
 | |
| 	namespace_unlock();
 | |
| 
 | |
| 	mntput(path->mnt);
 | |
| 	path->mnt = &mnt->mnt;
 | |
| 	file = dentry_open(path, O_PATH, current_cred());
 | |
| 	if (IS_ERR(file))
 | |
| 		dissolve_on_fput(path->mnt);
 | |
| 	else
 | |
| 		file->f_mode |= FMODE_NEED_UNMOUNT;
 | |
| 	return file;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
 | |
| {
 | |
| 	struct file *file;
 | |
| 	struct path path;
 | |
| 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
 | |
| 	bool detached = flags & OPEN_TREE_CLONE;
 | |
| 	int error;
 | |
| 	int fd;
 | |
| 
 | |
| 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
 | |
| 
 | |
| 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
 | |
| 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
 | |
| 		      OPEN_TREE_CLOEXEC))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (flags & AT_NO_AUTOMOUNT)
 | |
| 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
 | |
| 	if (flags & AT_SYMLINK_NOFOLLOW)
 | |
| 		lookup_flags &= ~LOOKUP_FOLLOW;
 | |
| 	if (flags & AT_EMPTY_PATH)
 | |
| 		lookup_flags |= LOOKUP_EMPTY;
 | |
| 
 | |
| 	if (detached && !may_mount())
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
 | |
| 	if (fd < 0)
 | |
| 		return fd;
 | |
| 
 | |
| 	error = user_path_at(dfd, filename, lookup_flags, &path);
 | |
| 	if (unlikely(error)) {
 | |
| 		file = ERR_PTR(error);
 | |
| 	} else {
 | |
| 		if (detached)
 | |
| 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
 | |
| 		else
 | |
| 			file = dentry_open(&path, O_PATH, current_cred());
 | |
| 		path_put(&path);
 | |
| 	}
 | |
| 	if (IS_ERR(file)) {
 | |
| 		put_unused_fd(fd);
 | |
| 		return PTR_ERR(file);
 | |
| 	}
 | |
| 	fd_install(fd, file);
 | |
| 	return fd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Don't allow locked mount flags to be cleared.
 | |
|  *
 | |
|  * No locks need to be held here while testing the various MNT_LOCK
 | |
|  * flags because those flags can never be cleared once they are set.
 | |
|  */
 | |
| static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
 | |
| {
 | |
| 	unsigned int fl = mnt->mnt.mnt_flags;
 | |
| 
 | |
| 	if ((fl & MNT_LOCK_READONLY) &&
 | |
| 	    !(mnt_flags & MNT_READONLY))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((fl & MNT_LOCK_NODEV) &&
 | |
| 	    !(mnt_flags & MNT_NODEV))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((fl & MNT_LOCK_NOSUID) &&
 | |
| 	    !(mnt_flags & MNT_NOSUID))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((fl & MNT_LOCK_NOEXEC) &&
 | |
| 	    !(mnt_flags & MNT_NOEXEC))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((fl & MNT_LOCK_ATIME) &&
 | |
| 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
 | |
| {
 | |
| 	bool readonly_request = (mnt_flags & MNT_READONLY);
 | |
| 
 | |
| 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (readonly_request)
 | |
| 		return mnt_make_readonly(mnt);
 | |
| 
 | |
| 	return __mnt_unmake_readonly(mnt);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the user-settable attributes on a mount.  The caller must hold
 | |
|  * sb->s_umount for writing.
 | |
|  */
 | |
| static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
 | |
| {
 | |
| 	lock_mount_hash();
 | |
| 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
 | |
| 	mnt->mnt.mnt_flags = mnt_flags;
 | |
| 	touch_mnt_namespace(mnt->mnt_ns);
 | |
| 	unlock_mount_hash();
 | |
| }
 | |
| 
 | |
| static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
 | |
| {
 | |
| 	struct super_block *sb = mnt->mnt_sb;
 | |
| 
 | |
| 	if (!__mnt_is_readonly(mnt) &&
 | |
| 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
 | |
| 		char *buf = (char *)__get_free_page(GFP_KERNEL);
 | |
| 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
 | |
| 		struct tm tm;
 | |
| 
 | |
| 		time64_to_tm(sb->s_time_max, 0, &tm);
 | |
| 
 | |
| 		pr_warn("Mounted %s file system at %s supports timestamps until %04ld (0x%llx)\n",
 | |
| 			sb->s_type->name, mntpath,
 | |
| 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
 | |
| 
 | |
| 		free_page((unsigned long)buf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle reconfiguration of the mountpoint only without alteration of the
 | |
|  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
 | |
|  * to mount(2).
 | |
|  */
 | |
| static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
 | |
| {
 | |
| 	struct super_block *sb = path->mnt->mnt_sb;
 | |
| 	struct mount *mnt = real_mount(path->mnt);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!check_mnt(mnt))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (path->dentry != mnt->mnt.mnt_root)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!can_change_locked_flags(mnt, mnt_flags))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	down_write(&sb->s_umount);
 | |
| 	ret = change_mount_ro_state(mnt, mnt_flags);
 | |
| 	if (ret == 0)
 | |
| 		set_mount_attributes(mnt, mnt_flags);
 | |
| 	up_write(&sb->s_umount);
 | |
| 
 | |
| 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * change filesystem flags. dir should be a physical root of filesystem.
 | |
|  * If you've mounted a non-root directory somewhere and want to do remount
 | |
|  * on it - tough luck.
 | |
|  */
 | |
| static int do_remount(struct path *path, int ms_flags, int sb_flags,
 | |
| 		      int mnt_flags, void *data)
 | |
| {
 | |
| 	int err;
 | |
| 	struct super_block *sb = path->mnt->mnt_sb;
 | |
| 	struct mount *mnt = real_mount(path->mnt);
 | |
| 	struct fs_context *fc;
 | |
| 
 | |
| 	if (!check_mnt(mnt))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (path->dentry != path->mnt->mnt_root)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!can_change_locked_flags(mnt, mnt_flags))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
 | |
| 	if (IS_ERR(fc))
 | |
| 		return PTR_ERR(fc);
 | |
| 
 | |
| 	err = parse_monolithic_mount_data(fc, data);
 | |
| 	if (!err) {
 | |
| 		down_write(&sb->s_umount);
 | |
| 		err = -EPERM;
 | |
| 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
 | |
| 			err = reconfigure_super(fc);
 | |
| 			if (!err)
 | |
| 				set_mount_attributes(mnt, mnt_flags);
 | |
| 		}
 | |
| 		up_write(&sb->s_umount);
 | |
| 	}
 | |
| 
 | |
| 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
 | |
| 
 | |
| 	put_fs_context(fc);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline int tree_contains_unbindable(struct mount *mnt)
 | |
| {
 | |
| 	struct mount *p;
 | |
| 	for (p = mnt; p; p = next_mnt(p, mnt)) {
 | |
| 		if (IS_MNT_UNBINDABLE(p))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that there aren't references to earlier/same mount namespaces in the
 | |
|  * specified subtree.  Such references can act as pins for mount namespaces
 | |
|  * that aren't checked by the mount-cycle checking code, thereby allowing
 | |
|  * cycles to be made.
 | |
|  */
 | |
| static bool check_for_nsfs_mounts(struct mount *subtree)
 | |
| {
 | |
| 	struct mount *p;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	lock_mount_hash();
 | |
| 	for (p = subtree; p; p = next_mnt(p, subtree))
 | |
| 		if (mnt_ns_loop(p->mnt.mnt_root))
 | |
| 			goto out;
 | |
| 
 | |
| 	ret = true;
 | |
| out:
 | |
| 	unlock_mount_hash();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int do_move_mount(struct path *old_path, struct path *new_path)
 | |
| {
 | |
| 	struct mnt_namespace *ns;
 | |
| 	struct mount *p;
 | |
| 	struct mount *old;
 | |
| 	struct mount *parent;
 | |
| 	struct mountpoint *mp, *old_mp;
 | |
| 	int err;
 | |
| 	bool attached;
 | |
| 
 | |
| 	mp = lock_mount(new_path);
 | |
| 	if (IS_ERR(mp))
 | |
| 		return PTR_ERR(mp);
 | |
| 
 | |
| 	old = real_mount(old_path->mnt);
 | |
| 	p = real_mount(new_path->mnt);
 | |
| 	parent = old->mnt_parent;
 | |
| 	attached = mnt_has_parent(old);
 | |
| 	old_mp = old->mnt_mp;
 | |
| 	ns = old->mnt_ns;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	/* The mountpoint must be in our namespace. */
 | |
| 	if (!check_mnt(p))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* The thing moved must be mounted... */
 | |
| 	if (!is_mounted(&old->mnt))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* ... and either ours or the root of anon namespace */
 | |
| 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (old->mnt.mnt_flags & MNT_LOCKED)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (old_path->dentry != old_path->mnt->mnt_root)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (d_is_dir(new_path->dentry) !=
 | |
| 	    d_is_dir(old_path->dentry))
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * Don't move a mount residing in a shared parent.
 | |
| 	 */
 | |
| 	if (attached && IS_MNT_SHARED(parent))
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * Don't move a mount tree containing unbindable mounts to a destination
 | |
| 	 * mount which is shared.
 | |
| 	 */
 | |
| 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
 | |
| 		goto out;
 | |
| 	err = -ELOOP;
 | |
| 	if (!check_for_nsfs_mounts(old))
 | |
| 		goto out;
 | |
| 	for (; mnt_has_parent(p); p = p->mnt_parent)
 | |
| 		if (p == old)
 | |
| 			goto out;
 | |
| 
 | |
| 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
 | |
| 				   attached);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* if the mount is moved, it should no longer be expire
 | |
| 	 * automatically */
 | |
| 	list_del_init(&old->mnt_expire);
 | |
| 	if (attached)
 | |
| 		put_mountpoint(old_mp);
 | |
| out:
 | |
| 	unlock_mount(mp);
 | |
| 	if (!err) {
 | |
| 		if (attached)
 | |
| 			mntput_no_expire(parent);
 | |
| 		else
 | |
| 			free_mnt_ns(ns);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int do_move_mount_old(struct path *path, const char *old_name)
 | |
| {
 | |
| 	struct path old_path;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!old_name || !*old_name)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = do_move_mount(&old_path, path);
 | |
| 	path_put(&old_path);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * add a mount into a namespace's mount tree
 | |
|  */
 | |
| static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
 | |
| {
 | |
| 	struct mountpoint *mp;
 | |
| 	struct mount *parent;
 | |
| 	int err;
 | |
| 
 | |
| 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
 | |
| 
 | |
| 	mp = lock_mount(path);
 | |
| 	if (IS_ERR(mp))
 | |
| 		return PTR_ERR(mp);
 | |
| 
 | |
| 	parent = real_mount(path->mnt);
 | |
| 	err = -EINVAL;
 | |
| 	if (unlikely(!check_mnt(parent))) {
 | |
| 		/* that's acceptable only for automounts done in private ns */
 | |
| 		if (!(mnt_flags & MNT_SHRINKABLE))
 | |
| 			goto unlock;
 | |
| 		/* ... and for those we'd better have mountpoint still alive */
 | |
| 		if (!parent->mnt_ns)
 | |
| 			goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Refuse the same filesystem on the same mount point */
 | |
| 	err = -EBUSY;
 | |
| 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
 | |
| 	    path->mnt->mnt_root == path->dentry)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (d_is_symlink(newmnt->mnt.mnt_root))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	newmnt->mnt.mnt_flags = mnt_flags;
 | |
| 	err = graft_tree(newmnt, parent, mp);
 | |
| 
 | |
| unlock:
 | |
| 	unlock_mount(mp);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
 | |
| 
 | |
| /*
 | |
|  * Create a new mount using a superblock configuration and request it
 | |
|  * be added to the namespace tree.
 | |
|  */
 | |
| static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
 | |
| 			   unsigned int mnt_flags)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 	struct super_block *sb = fc->root->d_sb;
 | |
| 	int error;
 | |
| 
 | |
| 	error = security_sb_kern_mount(sb);
 | |
| 	if (!error && mount_too_revealing(sb, &mnt_flags))
 | |
| 		error = -EPERM;
 | |
| 
 | |
| 	if (unlikely(error)) {
 | |
| 		fc_drop_locked(fc);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	up_write(&sb->s_umount);
 | |
| 
 | |
| 	mnt = vfs_create_mount(fc);
 | |
| 	if (IS_ERR(mnt))
 | |
| 		return PTR_ERR(mnt);
 | |
| 
 | |
| 	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
 | |
| 	if (error < 0) {
 | |
| 		mntput(mnt);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	mnt_warn_timestamp_expiry(mountpoint, mnt);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * create a new mount for userspace and request it to be added into the
 | |
|  * namespace's tree
 | |
|  */
 | |
| static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
 | |
| 			int mnt_flags, const char *name, void *data)
 | |
| {
 | |
| 	struct file_system_type *type;
 | |
| 	struct fs_context *fc;
 | |
| 	const char *subtype = NULL;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!fstype)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	type = get_fs_type(fstype);
 | |
| 	if (!type)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (type->fs_flags & FS_HAS_SUBTYPE) {
 | |
| 		subtype = strchr(fstype, '.');
 | |
| 		if (subtype) {
 | |
| 			subtype++;
 | |
| 			if (!*subtype) {
 | |
| 				put_filesystem(type);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fc = fs_context_for_mount(type, sb_flags);
 | |
| 	put_filesystem(type);
 | |
| 	if (IS_ERR(fc))
 | |
| 		return PTR_ERR(fc);
 | |
| 
 | |
| 	if (subtype)
 | |
| 		err = vfs_parse_fs_string(fc, "subtype",
 | |
| 					  subtype, strlen(subtype));
 | |
| 	if (!err && name)
 | |
| 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
 | |
| 	if (!err)
 | |
| 		err = parse_monolithic_mount_data(fc, data);
 | |
| 	if (!err && !mount_capable(fc))
 | |
| 		err = -EPERM;
 | |
| 	if (!err)
 | |
| 		err = vfs_get_tree(fc);
 | |
| 	if (!err)
 | |
| 		err = do_new_mount_fc(fc, path, mnt_flags);
 | |
| 
 | |
| 	put_fs_context(fc);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int finish_automount(struct vfsmount *m, struct path *path)
 | |
| {
 | |
| 	struct mount *mnt = real_mount(m);
 | |
| 	int err;
 | |
| 	/* The new mount record should have at least 2 refs to prevent it being
 | |
| 	 * expired before we get a chance to add it
 | |
| 	 */
 | |
| 	BUG_ON(mnt_get_count(mnt) < 2);
 | |
| 
 | |
| 	if (m->mnt_sb == path->mnt->mnt_sb &&
 | |
| 	    m->mnt_root == path->dentry) {
 | |
| 		err = -ELOOP;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
 | |
| 	if (!err)
 | |
| 		return 0;
 | |
| fail:
 | |
| 	/* remove m from any expiration list it may be on */
 | |
| 	if (!list_empty(&mnt->mnt_expire)) {
 | |
| 		namespace_lock();
 | |
| 		list_del_init(&mnt->mnt_expire);
 | |
| 		namespace_unlock();
 | |
| 	}
 | |
| 	mntput(m);
 | |
| 	mntput(m);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mnt_set_expiry - Put a mount on an expiration list
 | |
|  * @mnt: The mount to list.
 | |
|  * @expiry_list: The list to add the mount to.
 | |
|  */
 | |
| void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
 | |
| {
 | |
| 	namespace_lock();
 | |
| 
 | |
| 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
 | |
| 
 | |
| 	namespace_unlock();
 | |
| }
 | |
| EXPORT_SYMBOL(mnt_set_expiry);
 | |
| 
 | |
| /*
 | |
|  * process a list of expirable mountpoints with the intent of discarding any
 | |
|  * mountpoints that aren't in use and haven't been touched since last we came
 | |
|  * here
 | |
|  */
 | |
| void mark_mounts_for_expiry(struct list_head *mounts)
 | |
| {
 | |
| 	struct mount *mnt, *next;
 | |
| 	LIST_HEAD(graveyard);
 | |
| 
 | |
| 	if (list_empty(mounts))
 | |
| 		return;
 | |
| 
 | |
| 	namespace_lock();
 | |
| 	lock_mount_hash();
 | |
| 
 | |
| 	/* extract from the expiration list every vfsmount that matches the
 | |
| 	 * following criteria:
 | |
| 	 * - only referenced by its parent vfsmount
 | |
| 	 * - still marked for expiry (marked on the last call here; marks are
 | |
| 	 *   cleared by mntput())
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
 | |
| 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
 | |
| 			propagate_mount_busy(mnt, 1))
 | |
| 			continue;
 | |
| 		list_move(&mnt->mnt_expire, &graveyard);
 | |
| 	}
 | |
| 	while (!list_empty(&graveyard)) {
 | |
| 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
 | |
| 		touch_mnt_namespace(mnt->mnt_ns);
 | |
| 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
 | |
| 	}
 | |
| 	unlock_mount_hash();
 | |
| 	namespace_unlock();
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
 | |
| 
 | |
| /*
 | |
|  * Ripoff of 'select_parent()'
 | |
|  *
 | |
|  * search the list of submounts for a given mountpoint, and move any
 | |
|  * shrinkable submounts to the 'graveyard' list.
 | |
|  */
 | |
| static int select_submounts(struct mount *parent, struct list_head *graveyard)
 | |
| {
 | |
| 	struct mount *this_parent = parent;
 | |
| 	struct list_head *next;
 | |
| 	int found = 0;
 | |
| 
 | |
| repeat:
 | |
| 	next = this_parent->mnt_mounts.next;
 | |
| resume:
 | |
| 	while (next != &this_parent->mnt_mounts) {
 | |
| 		struct list_head *tmp = next;
 | |
| 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
 | |
| 
 | |
| 		next = tmp->next;
 | |
| 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
 | |
| 			continue;
 | |
| 		/*
 | |
| 		 * Descend a level if the d_mounts list is non-empty.
 | |
| 		 */
 | |
| 		if (!list_empty(&mnt->mnt_mounts)) {
 | |
| 			this_parent = mnt;
 | |
| 			goto repeat;
 | |
| 		}
 | |
| 
 | |
| 		if (!propagate_mount_busy(mnt, 1)) {
 | |
| 			list_move_tail(&mnt->mnt_expire, graveyard);
 | |
| 			found++;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * All done at this level ... ascend and resume the search
 | |
| 	 */
 | |
| 	if (this_parent != parent) {
 | |
| 		next = this_parent->mnt_child.next;
 | |
| 		this_parent = this_parent->mnt_parent;
 | |
| 		goto resume;
 | |
| 	}
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * process a list of expirable mountpoints with the intent of discarding any
 | |
|  * submounts of a specific parent mountpoint
 | |
|  *
 | |
|  * mount_lock must be held for write
 | |
|  */
 | |
| static void shrink_submounts(struct mount *mnt)
 | |
| {
 | |
| 	LIST_HEAD(graveyard);
 | |
| 	struct mount *m;
 | |
| 
 | |
| 	/* extract submounts of 'mountpoint' from the expiration list */
 | |
| 	while (select_submounts(mnt, &graveyard)) {
 | |
| 		while (!list_empty(&graveyard)) {
 | |
| 			m = list_first_entry(&graveyard, struct mount,
 | |
| 						mnt_expire);
 | |
| 			touch_mnt_namespace(m->mnt_ns);
 | |
| 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some copy_from_user() implementations do not return the exact number of
 | |
|  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
 | |
|  * Note that this function differs from copy_from_user() in that it will oops
 | |
|  * on bad values of `to', rather than returning a short copy.
 | |
|  */
 | |
| static long exact_copy_from_user(void *to, const void __user * from,
 | |
| 				 unsigned long n)
 | |
| {
 | |
| 	char *t = to;
 | |
| 	const char __user *f = from;
 | |
| 	char c;
 | |
| 
 | |
| 	if (!access_ok(from, n))
 | |
| 		return n;
 | |
| 
 | |
| 	while (n) {
 | |
| 		if (__get_user(c, f)) {
 | |
| 			memset(t, 0, n);
 | |
| 			break;
 | |
| 		}
 | |
| 		*t++ = c;
 | |
| 		f++;
 | |
| 		n--;
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| void *copy_mount_options(const void __user * data)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long size;
 | |
| 	char *copy;
 | |
| 
 | |
| 	if (!data)
 | |
| 		return NULL;
 | |
| 
 | |
| 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
 | |
| 	if (!copy)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* We only care that *some* data at the address the user
 | |
| 	 * gave us is valid.  Just in case, we'll zero
 | |
| 	 * the remainder of the page.
 | |
| 	 */
 | |
| 	/* copy_from_user cannot cross TASK_SIZE ! */
 | |
| 	size = TASK_SIZE - (unsigned long)untagged_addr(data);
 | |
| 	if (size > PAGE_SIZE)
 | |
| 		size = PAGE_SIZE;
 | |
| 
 | |
| 	i = size - exact_copy_from_user(copy, data, size);
 | |
| 	if (!i) {
 | |
| 		kfree(copy);
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	}
 | |
| 	if (i != PAGE_SIZE)
 | |
| 		memset(copy + i, 0, PAGE_SIZE - i);
 | |
| 	return copy;
 | |
| }
 | |
| 
 | |
| char *copy_mount_string(const void __user *data)
 | |
| {
 | |
| 	return data ? strndup_user(data, PATH_MAX) : NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
 | |
|  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
 | |
|  *
 | |
|  * data is a (void *) that can point to any structure up to
 | |
|  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
 | |
|  * information (or be NULL).
 | |
|  *
 | |
|  * Pre-0.97 versions of mount() didn't have a flags word.
 | |
|  * When the flags word was introduced its top half was required
 | |
|  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
 | |
|  * Therefore, if this magic number is present, it carries no information
 | |
|  * and must be discarded.
 | |
|  */
 | |
| long do_mount(const char *dev_name, const char __user *dir_name,
 | |
| 		const char *type_page, unsigned long flags, void *data_page)
 | |
| {
 | |
| 	struct path path;
 | |
| 	unsigned int mnt_flags = 0, sb_flags;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	/* Discard magic */
 | |
| 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
 | |
| 		flags &= ~MS_MGC_MSK;
 | |
| 
 | |
| 	/* Basic sanity checks */
 | |
| 	if (data_page)
 | |
| 		((char *)data_page)[PAGE_SIZE - 1] = 0;
 | |
| 
 | |
| 	if (flags & MS_NOUSER)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* ... and get the mountpoint */
 | |
| 	retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	retval = security_sb_mount(dev_name, &path,
 | |
| 				   type_page, flags, data_page);
 | |
| 	if (!retval && !may_mount())
 | |
| 		retval = -EPERM;
 | |
| 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
 | |
| 		retval = -EPERM;
 | |
| 	if (retval)
 | |
| 		goto dput_out;
 | |
| 
 | |
| 	/* Default to relatime unless overriden */
 | |
| 	if (!(flags & MS_NOATIME))
 | |
| 		mnt_flags |= MNT_RELATIME;
 | |
| 
 | |
| 	/* Separate the per-mountpoint flags */
 | |
| 	if (flags & MS_NOSUID)
 | |
| 		mnt_flags |= MNT_NOSUID;
 | |
| 	if (flags & MS_NODEV)
 | |
| 		mnt_flags |= MNT_NODEV;
 | |
| 	if (flags & MS_NOEXEC)
 | |
| 		mnt_flags |= MNT_NOEXEC;
 | |
| 	if (flags & MS_NOATIME)
 | |
| 		mnt_flags |= MNT_NOATIME;
 | |
| 	if (flags & MS_NODIRATIME)
 | |
| 		mnt_flags |= MNT_NODIRATIME;
 | |
| 	if (flags & MS_STRICTATIME)
 | |
| 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
 | |
| 	if (flags & MS_RDONLY)
 | |
| 		mnt_flags |= MNT_READONLY;
 | |
| 
 | |
| 	/* The default atime for remount is preservation */
 | |
| 	if ((flags & MS_REMOUNT) &&
 | |
| 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
 | |
| 		       MS_STRICTATIME)) == 0)) {
 | |
| 		mnt_flags &= ~MNT_ATIME_MASK;
 | |
| 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
 | |
| 	}
 | |
| 
 | |
| 	sb_flags = flags & (SB_RDONLY |
 | |
| 			    SB_SYNCHRONOUS |
 | |
| 			    SB_MANDLOCK |
 | |
| 			    SB_DIRSYNC |
 | |
| 			    SB_SILENT |
 | |
| 			    SB_POSIXACL |
 | |
| 			    SB_LAZYTIME |
 | |
| 			    SB_I_VERSION);
 | |
| 
 | |
| 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
 | |
| 		retval = do_reconfigure_mnt(&path, mnt_flags);
 | |
| 	else if (flags & MS_REMOUNT)
 | |
| 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
 | |
| 				    data_page);
 | |
| 	else if (flags & MS_BIND)
 | |
| 		retval = do_loopback(&path, dev_name, flags & MS_REC);
 | |
| 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
 | |
| 		retval = do_change_type(&path, flags);
 | |
| 	else if (flags & MS_MOVE)
 | |
| 		retval = do_move_mount_old(&path, dev_name);
 | |
| 	else
 | |
| 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
 | |
| 				      dev_name, data_page);
 | |
| dput_out:
 | |
| 	path_put(&path);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
 | |
| {
 | |
| 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
 | |
| }
 | |
| 
 | |
| static void dec_mnt_namespaces(struct ucounts *ucounts)
 | |
| {
 | |
| 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
 | |
| }
 | |
| 
 | |
| static void free_mnt_ns(struct mnt_namespace *ns)
 | |
| {
 | |
| 	if (!is_anon_ns(ns))
 | |
| 		ns_free_inum(&ns->ns);
 | |
| 	dec_mnt_namespaces(ns->ucounts);
 | |
| 	put_user_ns(ns->user_ns);
 | |
| 	kfree(ns);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Assign a sequence number so we can detect when we attempt to bind
 | |
|  * mount a reference to an older mount namespace into the current
 | |
|  * mount namespace, preventing reference counting loops.  A 64bit
 | |
|  * number incrementing at 10Ghz will take 12,427 years to wrap which
 | |
|  * is effectively never, so we can ignore the possibility.
 | |
|  */
 | |
| static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
 | |
| 
 | |
| static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
 | |
| {
 | |
| 	struct mnt_namespace *new_ns;
 | |
| 	struct ucounts *ucounts;
 | |
| 	int ret;
 | |
| 
 | |
| 	ucounts = inc_mnt_namespaces(user_ns);
 | |
| 	if (!ucounts)
 | |
| 		return ERR_PTR(-ENOSPC);
 | |
| 
 | |
| 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
 | |
| 	if (!new_ns) {
 | |
| 		dec_mnt_namespaces(ucounts);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 	if (!anon) {
 | |
| 		ret = ns_alloc_inum(&new_ns->ns);
 | |
| 		if (ret) {
 | |
| 			kfree(new_ns);
 | |
| 			dec_mnt_namespaces(ucounts);
 | |
| 			return ERR_PTR(ret);
 | |
| 		}
 | |
| 	}
 | |
| 	new_ns->ns.ops = &mntns_operations;
 | |
| 	if (!anon)
 | |
| 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
 | |
| 	atomic_set(&new_ns->count, 1);
 | |
| 	INIT_LIST_HEAD(&new_ns->list);
 | |
| 	init_waitqueue_head(&new_ns->poll);
 | |
| 	new_ns->user_ns = get_user_ns(user_ns);
 | |
| 	new_ns->ucounts = ucounts;
 | |
| 	return new_ns;
 | |
| }
 | |
| 
 | |
| __latent_entropy
 | |
| struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
 | |
| 		struct user_namespace *user_ns, struct fs_struct *new_fs)
 | |
| {
 | |
| 	struct mnt_namespace *new_ns;
 | |
| 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
 | |
| 	struct mount *p, *q;
 | |
| 	struct mount *old;
 | |
| 	struct mount *new;
 | |
| 	int copy_flags;
 | |
| 
 | |
| 	BUG_ON(!ns);
 | |
| 
 | |
| 	if (likely(!(flags & CLONE_NEWNS))) {
 | |
| 		get_mnt_ns(ns);
 | |
| 		return ns;
 | |
| 	}
 | |
| 
 | |
| 	old = ns->root;
 | |
| 
 | |
| 	new_ns = alloc_mnt_ns(user_ns, false);
 | |
| 	if (IS_ERR(new_ns))
 | |
| 		return new_ns;
 | |
| 
 | |
| 	namespace_lock();
 | |
| 	/* First pass: copy the tree topology */
 | |
| 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
 | |
| 	if (user_ns != ns->user_ns)
 | |
| 		copy_flags |= CL_SHARED_TO_SLAVE;
 | |
| 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
 | |
| 	if (IS_ERR(new)) {
 | |
| 		namespace_unlock();
 | |
| 		free_mnt_ns(new_ns);
 | |
| 		return ERR_CAST(new);
 | |
| 	}
 | |
| 	if (user_ns != ns->user_ns) {
 | |
| 		lock_mount_hash();
 | |
| 		lock_mnt_tree(new);
 | |
| 		unlock_mount_hash();
 | |
| 	}
 | |
| 	new_ns->root = new;
 | |
| 	list_add_tail(&new_ns->list, &new->mnt_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
 | |
| 	 * as belonging to new namespace.  We have already acquired a private
 | |
| 	 * fs_struct, so tsk->fs->lock is not needed.
 | |
| 	 */
 | |
| 	p = old;
 | |
| 	q = new;
 | |
| 	while (p) {
 | |
| 		q->mnt_ns = new_ns;
 | |
| 		new_ns->mounts++;
 | |
| 		if (new_fs) {
 | |
| 			if (&p->mnt == new_fs->root.mnt) {
 | |
| 				new_fs->root.mnt = mntget(&q->mnt);
 | |
| 				rootmnt = &p->mnt;
 | |
| 			}
 | |
| 			if (&p->mnt == new_fs->pwd.mnt) {
 | |
| 				new_fs->pwd.mnt = mntget(&q->mnt);
 | |
| 				pwdmnt = &p->mnt;
 | |
| 			}
 | |
| 		}
 | |
| 		p = next_mnt(p, old);
 | |
| 		q = next_mnt(q, new);
 | |
| 		if (!q)
 | |
| 			break;
 | |
| 		while (p->mnt.mnt_root != q->mnt.mnt_root)
 | |
| 			p = next_mnt(p, old);
 | |
| 	}
 | |
| 	namespace_unlock();
 | |
| 
 | |
| 	if (rootmnt)
 | |
| 		mntput(rootmnt);
 | |
| 	if (pwdmnt)
 | |
| 		mntput(pwdmnt);
 | |
| 
 | |
| 	return new_ns;
 | |
| }
 | |
| 
 | |
| struct dentry *mount_subtree(struct vfsmount *m, const char *name)
 | |
| {
 | |
| 	struct mount *mnt = real_mount(m);
 | |
| 	struct mnt_namespace *ns;
 | |
| 	struct super_block *s;
 | |
| 	struct path path;
 | |
| 	int err;
 | |
| 
 | |
| 	ns = alloc_mnt_ns(&init_user_ns, true);
 | |
| 	if (IS_ERR(ns)) {
 | |
| 		mntput(m);
 | |
| 		return ERR_CAST(ns);
 | |
| 	}
 | |
| 	mnt->mnt_ns = ns;
 | |
| 	ns->root = mnt;
 | |
| 	ns->mounts++;
 | |
| 	list_add(&mnt->mnt_list, &ns->list);
 | |
| 
 | |
| 	err = vfs_path_lookup(m->mnt_root, m,
 | |
| 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
 | |
| 
 | |
| 	put_mnt_ns(ns);
 | |
| 
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	/* trade a vfsmount reference for active sb one */
 | |
| 	s = path.mnt->mnt_sb;
 | |
| 	atomic_inc(&s->s_active);
 | |
| 	mntput(path.mnt);
 | |
| 	/* lock the sucker */
 | |
| 	down_write(&s->s_umount);
 | |
| 	/* ... and return the root of (sub)tree on it */
 | |
| 	return path.dentry;
 | |
| }
 | |
| EXPORT_SYMBOL(mount_subtree);
 | |
| 
 | |
| int ksys_mount(const char __user *dev_name, const char __user *dir_name,
 | |
| 	       const char __user *type, unsigned long flags, void __user *data)
 | |
| {
 | |
| 	int ret;
 | |
| 	char *kernel_type;
 | |
| 	char *kernel_dev;
 | |
| 	void *options;
 | |
| 
 | |
| 	kernel_type = copy_mount_string(type);
 | |
| 	ret = PTR_ERR(kernel_type);
 | |
| 	if (IS_ERR(kernel_type))
 | |
| 		goto out_type;
 | |
| 
 | |
| 	kernel_dev = copy_mount_string(dev_name);
 | |
| 	ret = PTR_ERR(kernel_dev);
 | |
| 	if (IS_ERR(kernel_dev))
 | |
| 		goto out_dev;
 | |
| 
 | |
| 	options = copy_mount_options(data);
 | |
| 	ret = PTR_ERR(options);
 | |
| 	if (IS_ERR(options))
 | |
| 		goto out_data;
 | |
| 
 | |
| 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
 | |
| 
 | |
| 	kfree(options);
 | |
| out_data:
 | |
| 	kfree(kernel_dev);
 | |
| out_dev:
 | |
| 	kfree(kernel_type);
 | |
| out_type:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
 | |
| 		char __user *, type, unsigned long, flags, void __user *, data)
 | |
| {
 | |
| 	return ksys_mount(dev_name, dir_name, type, flags, data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a kernel mount representation for a new, prepared superblock
 | |
|  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
 | |
|  */
 | |
| SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
 | |
| 		unsigned int, attr_flags)
 | |
| {
 | |
| 	struct mnt_namespace *ns;
 | |
| 	struct fs_context *fc;
 | |
| 	struct file *file;
 | |
| 	struct path newmount;
 | |
| 	struct mount *mnt;
 | |
| 	struct fd f;
 | |
| 	unsigned int mnt_flags = 0;
 | |
| 	long ret;
 | |
| 
 | |
| 	if (!may_mount())
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
 | |
| 			   MOUNT_ATTR_NOSUID |
 | |
| 			   MOUNT_ATTR_NODEV |
 | |
| 			   MOUNT_ATTR_NOEXEC |
 | |
| 			   MOUNT_ATTR__ATIME |
 | |
| 			   MOUNT_ATTR_NODIRATIME))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (attr_flags & MOUNT_ATTR_RDONLY)
 | |
| 		mnt_flags |= MNT_READONLY;
 | |
| 	if (attr_flags & MOUNT_ATTR_NOSUID)
 | |
| 		mnt_flags |= MNT_NOSUID;
 | |
| 	if (attr_flags & MOUNT_ATTR_NODEV)
 | |
| 		mnt_flags |= MNT_NODEV;
 | |
| 	if (attr_flags & MOUNT_ATTR_NOEXEC)
 | |
| 		mnt_flags |= MNT_NOEXEC;
 | |
| 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
 | |
| 		mnt_flags |= MNT_NODIRATIME;
 | |
| 
 | |
| 	switch (attr_flags & MOUNT_ATTR__ATIME) {
 | |
| 	case MOUNT_ATTR_STRICTATIME:
 | |
| 		break;
 | |
| 	case MOUNT_ATTR_NOATIME:
 | |
| 		mnt_flags |= MNT_NOATIME;
 | |
| 		break;
 | |
| 	case MOUNT_ATTR_RELATIME:
 | |
| 		mnt_flags |= MNT_RELATIME;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	f = fdget(fs_fd);
 | |
| 	if (!f.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (f.file->f_op != &fscontext_fops)
 | |
| 		goto err_fsfd;
 | |
| 
 | |
| 	fc = f.file->private_data;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
 | |
| 	if (ret < 0)
 | |
| 		goto err_fsfd;
 | |
| 
 | |
| 	/* There must be a valid superblock or we can't mount it */
 | |
| 	ret = -EINVAL;
 | |
| 	if (!fc->root)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	ret = -EPERM;
 | |
| 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
 | |
| 		pr_warn("VFS: Mount too revealing\n");
 | |
| 		goto err_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = -EBUSY;
 | |
| 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	ret = -EPERM;
 | |
| 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
 | |
| 		goto err_unlock;
 | |
| 
 | |
| 	newmount.mnt = vfs_create_mount(fc);
 | |
| 	if (IS_ERR(newmount.mnt)) {
 | |
| 		ret = PTR_ERR(newmount.mnt);
 | |
| 		goto err_unlock;
 | |
| 	}
 | |
| 	newmount.dentry = dget(fc->root);
 | |
| 	newmount.mnt->mnt_flags = mnt_flags;
 | |
| 
 | |
| 	/* We've done the mount bit - now move the file context into more or
 | |
| 	 * less the same state as if we'd done an fspick().  We don't want to
 | |
| 	 * do any memory allocation or anything like that at this point as we
 | |
| 	 * don't want to have to handle any errors incurred.
 | |
| 	 */
 | |
| 	vfs_clean_context(fc);
 | |
| 
 | |
| 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
 | |
| 	if (IS_ERR(ns)) {
 | |
| 		ret = PTR_ERR(ns);
 | |
| 		goto err_path;
 | |
| 	}
 | |
| 	mnt = real_mount(newmount.mnt);
 | |
| 	mnt->mnt_ns = ns;
 | |
| 	ns->root = mnt;
 | |
| 	ns->mounts = 1;
 | |
| 	list_add(&mnt->mnt_list, &ns->list);
 | |
| 	mntget(newmount.mnt);
 | |
| 
 | |
| 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
 | |
| 	 * it, not just simply put it.
 | |
| 	 */
 | |
| 	file = dentry_open(&newmount, O_PATH, fc->cred);
 | |
| 	if (IS_ERR(file)) {
 | |
| 		dissolve_on_fput(newmount.mnt);
 | |
| 		ret = PTR_ERR(file);
 | |
| 		goto err_path;
 | |
| 	}
 | |
| 	file->f_mode |= FMODE_NEED_UNMOUNT;
 | |
| 
 | |
| 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
 | |
| 	if (ret >= 0)
 | |
| 		fd_install(ret, file);
 | |
| 	else
 | |
| 		fput(file);
 | |
| 
 | |
| err_path:
 | |
| 	path_put(&newmount);
 | |
| err_unlock:
 | |
| 	mutex_unlock(&fc->uapi_mutex);
 | |
| err_fsfd:
 | |
| 	fdput(f);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a mount from one place to another.  In combination with
 | |
|  * fsopen()/fsmount() this is used to install a new mount and in combination
 | |
|  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
 | |
|  * a mount subtree.
 | |
|  *
 | |
|  * Note the flags value is a combination of MOVE_MOUNT_* flags.
 | |
|  */
 | |
| SYSCALL_DEFINE5(move_mount,
 | |
| 		int, from_dfd, const char *, from_pathname,
 | |
| 		int, to_dfd, const char *, to_pathname,
 | |
| 		unsigned int, flags)
 | |
| {
 | |
| 	struct path from_path, to_path;
 | |
| 	unsigned int lflags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!may_mount())
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (flags & ~MOVE_MOUNT__MASK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* If someone gives a pathname, they aren't permitted to move
 | |
| 	 * from an fd that requires unmount as we can't get at the flag
 | |
| 	 * to clear it afterwards.
 | |
| 	 */
 | |
| 	lflags = 0;
 | |
| 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
 | |
| 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
 | |
| 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
 | |
| 
 | |
| 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	lflags = 0;
 | |
| 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
 | |
| 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
 | |
| 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
 | |
| 
 | |
| 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
 | |
| 	if (ret < 0)
 | |
| 		goto out_from;
 | |
| 
 | |
| 	ret = security_move_mount(&from_path, &to_path);
 | |
| 	if (ret < 0)
 | |
| 		goto out_to;
 | |
| 
 | |
| 	ret = do_move_mount(&from_path, &to_path);
 | |
| 
 | |
| out_to:
 | |
| 	path_put(&to_path);
 | |
| out_from:
 | |
| 	path_put(&from_path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if path is reachable from root
 | |
|  *
 | |
|  * namespace_sem or mount_lock is held
 | |
|  */
 | |
| bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
 | |
| 			 const struct path *root)
 | |
| {
 | |
| 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
 | |
| 		dentry = mnt->mnt_mountpoint;
 | |
| 		mnt = mnt->mnt_parent;
 | |
| 	}
 | |
| 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
 | |
| }
 | |
| 
 | |
| bool path_is_under(const struct path *path1, const struct path *path2)
 | |
| {
 | |
| 	bool res;
 | |
| 	read_seqlock_excl(&mount_lock);
 | |
| 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
 | |
| 	read_sequnlock_excl(&mount_lock);
 | |
| 	return res;
 | |
| }
 | |
| EXPORT_SYMBOL(path_is_under);
 | |
| 
 | |
| /*
 | |
|  * pivot_root Semantics:
 | |
|  * Moves the root file system of the current process to the directory put_old,
 | |
|  * makes new_root as the new root file system of the current process, and sets
 | |
|  * root/cwd of all processes which had them on the current root to new_root.
 | |
|  *
 | |
|  * Restrictions:
 | |
|  * The new_root and put_old must be directories, and  must not be on the
 | |
|  * same file  system as the current process root. The put_old  must  be
 | |
|  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
 | |
|  * pointed to by put_old must yield the same directory as new_root. No other
 | |
|  * file system may be mounted on put_old. After all, new_root is a mountpoint.
 | |
|  *
 | |
|  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
 | |
|  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
 | |
|  * in this situation.
 | |
|  *
 | |
|  * Notes:
 | |
|  *  - we don't move root/cwd if they are not at the root (reason: if something
 | |
|  *    cared enough to change them, it's probably wrong to force them elsewhere)
 | |
|  *  - it's okay to pick a root that isn't the root of a file system, e.g.
 | |
|  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
 | |
|  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
 | |
|  *    first.
 | |
|  */
 | |
| SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
 | |
| 		const char __user *, put_old)
 | |
| {
 | |
| 	struct path new, old, root;
 | |
| 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
 | |
| 	struct mountpoint *old_mp, *root_mp;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!may_mount())
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	error = user_path_at(AT_FDCWD, new_root,
 | |
| 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
 | |
| 	if (error)
 | |
| 		goto out0;
 | |
| 
 | |
| 	error = user_path_at(AT_FDCWD, put_old,
 | |
| 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
 | |
| 	if (error)
 | |
| 		goto out1;
 | |
| 
 | |
| 	error = security_sb_pivotroot(&old, &new);
 | |
| 	if (error)
 | |
| 		goto out2;
 | |
| 
 | |
| 	get_fs_root(current->fs, &root);
 | |
| 	old_mp = lock_mount(&old);
 | |
| 	error = PTR_ERR(old_mp);
 | |
| 	if (IS_ERR(old_mp))
 | |
| 		goto out3;
 | |
| 
 | |
| 	error = -EINVAL;
 | |
| 	new_mnt = real_mount(new.mnt);
 | |
| 	root_mnt = real_mount(root.mnt);
 | |
| 	old_mnt = real_mount(old.mnt);
 | |
| 	ex_parent = new_mnt->mnt_parent;
 | |
| 	root_parent = root_mnt->mnt_parent;
 | |
| 	if (IS_MNT_SHARED(old_mnt) ||
 | |
| 		IS_MNT_SHARED(ex_parent) ||
 | |
| 		IS_MNT_SHARED(root_parent))
 | |
| 		goto out4;
 | |
| 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
 | |
| 		goto out4;
 | |
| 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
 | |
| 		goto out4;
 | |
| 	error = -ENOENT;
 | |
| 	if (d_unlinked(new.dentry))
 | |
| 		goto out4;
 | |
| 	error = -EBUSY;
 | |
| 	if (new_mnt == root_mnt || old_mnt == root_mnt)
 | |
| 		goto out4; /* loop, on the same file system  */
 | |
| 	error = -EINVAL;
 | |
| 	if (root.mnt->mnt_root != root.dentry)
 | |
| 		goto out4; /* not a mountpoint */
 | |
| 	if (!mnt_has_parent(root_mnt))
 | |
| 		goto out4; /* not attached */
 | |
| 	if (new.mnt->mnt_root != new.dentry)
 | |
| 		goto out4; /* not a mountpoint */
 | |
| 	if (!mnt_has_parent(new_mnt))
 | |
| 		goto out4; /* not attached */
 | |
| 	/* make sure we can reach put_old from new_root */
 | |
| 	if (!is_path_reachable(old_mnt, old.dentry, &new))
 | |
| 		goto out4;
 | |
| 	/* make certain new is below the root */
 | |
| 	if (!is_path_reachable(new_mnt, new.dentry, &root))
 | |
| 		goto out4;
 | |
| 	lock_mount_hash();
 | |
| 	umount_mnt(new_mnt);
 | |
| 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
 | |
| 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
 | |
| 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
 | |
| 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
 | |
| 	}
 | |
| 	/* mount old root on put_old */
 | |
| 	attach_mnt(root_mnt, old_mnt, old_mp);
 | |
| 	/* mount new_root on / */
 | |
| 	attach_mnt(new_mnt, root_parent, root_mp);
 | |
| 	mnt_add_count(root_parent, -1);
 | |
| 	touch_mnt_namespace(current->nsproxy->mnt_ns);
 | |
| 	/* A moved mount should not expire automatically */
 | |
| 	list_del_init(&new_mnt->mnt_expire);
 | |
| 	put_mountpoint(root_mp);
 | |
| 	unlock_mount_hash();
 | |
| 	chroot_fs_refs(&root, &new);
 | |
| 	error = 0;
 | |
| out4:
 | |
| 	unlock_mount(old_mp);
 | |
| 	if (!error)
 | |
| 		mntput_no_expire(ex_parent);
 | |
| out3:
 | |
| 	path_put(&root);
 | |
| out2:
 | |
| 	path_put(&old);
 | |
| out1:
 | |
| 	path_put(&new);
 | |
| out0:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static void __init init_mount_tree(void)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 	struct mount *m;
 | |
| 	struct mnt_namespace *ns;
 | |
| 	struct path root;
 | |
| 
 | |
| 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
 | |
| 	if (IS_ERR(mnt))
 | |
| 		panic("Can't create rootfs");
 | |
| 
 | |
| 	ns = alloc_mnt_ns(&init_user_ns, false);
 | |
| 	if (IS_ERR(ns))
 | |
| 		panic("Can't allocate initial namespace");
 | |
| 	m = real_mount(mnt);
 | |
| 	m->mnt_ns = ns;
 | |
| 	ns->root = m;
 | |
| 	ns->mounts = 1;
 | |
| 	list_add(&m->mnt_list, &ns->list);
 | |
| 	init_task.nsproxy->mnt_ns = ns;
 | |
| 	get_mnt_ns(ns);
 | |
| 
 | |
| 	root.mnt = mnt;
 | |
| 	root.dentry = mnt->mnt_root;
 | |
| 	mnt->mnt_flags |= MNT_LOCKED;
 | |
| 
 | |
| 	set_fs_pwd(current->fs, &root);
 | |
| 	set_fs_root(current->fs, &root);
 | |
| }
 | |
| 
 | |
| void __init mnt_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
 | |
| 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
 | |
| 
 | |
| 	mount_hashtable = alloc_large_system_hash("Mount-cache",
 | |
| 				sizeof(struct hlist_head),
 | |
| 				mhash_entries, 19,
 | |
| 				HASH_ZERO,
 | |
| 				&m_hash_shift, &m_hash_mask, 0, 0);
 | |
| 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
 | |
| 				sizeof(struct hlist_head),
 | |
| 				mphash_entries, 19,
 | |
| 				HASH_ZERO,
 | |
| 				&mp_hash_shift, &mp_hash_mask, 0, 0);
 | |
| 
 | |
| 	if (!mount_hashtable || !mountpoint_hashtable)
 | |
| 		panic("Failed to allocate mount hash table\n");
 | |
| 
 | |
| 	kernfs_init();
 | |
| 
 | |
| 	err = sysfs_init();
 | |
| 	if (err)
 | |
| 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
 | |
| 			__func__, err);
 | |
| 	fs_kobj = kobject_create_and_add("fs", NULL);
 | |
| 	if (!fs_kobj)
 | |
| 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
 | |
| 	shmem_init();
 | |
| 	init_rootfs();
 | |
| 	init_mount_tree();
 | |
| }
 | |
| 
 | |
| void put_mnt_ns(struct mnt_namespace *ns)
 | |
| {
 | |
| 	if (!atomic_dec_and_test(&ns->count))
 | |
| 		return;
 | |
| 	drop_collected_mounts(&ns->root->mnt);
 | |
| 	free_mnt_ns(ns);
 | |
| }
 | |
| 
 | |
| struct vfsmount *kern_mount(struct file_system_type *type)
 | |
| {
 | |
| 	struct vfsmount *mnt;
 | |
| 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
 | |
| 	if (!IS_ERR(mnt)) {
 | |
| 		/*
 | |
| 		 * it is a longterm mount, don't release mnt until
 | |
| 		 * we unmount before file sys is unregistered
 | |
| 		*/
 | |
| 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
 | |
| 	}
 | |
| 	return mnt;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kern_mount);
 | |
| 
 | |
| void kern_unmount(struct vfsmount *mnt)
 | |
| {
 | |
| 	/* release long term mount so mount point can be released */
 | |
| 	if (!IS_ERR_OR_NULL(mnt)) {
 | |
| 		real_mount(mnt)->mnt_ns = NULL;
 | |
| 		synchronize_rcu();	/* yecchhh... */
 | |
| 		mntput(mnt);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(kern_unmount);
 | |
| 
 | |
| bool our_mnt(struct vfsmount *mnt)
 | |
| {
 | |
| 	return check_mnt(real_mount(mnt));
 | |
| }
 | |
| 
 | |
| bool current_chrooted(void)
 | |
| {
 | |
| 	/* Does the current process have a non-standard root */
 | |
| 	struct path ns_root;
 | |
| 	struct path fs_root;
 | |
| 	bool chrooted;
 | |
| 
 | |
| 	/* Find the namespace root */
 | |
| 	ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
 | |
| 	ns_root.dentry = ns_root.mnt->mnt_root;
 | |
| 	path_get(&ns_root);
 | |
| 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
 | |
| 		;
 | |
| 
 | |
| 	get_fs_root(current->fs, &fs_root);
 | |
| 
 | |
| 	chrooted = !path_equal(&fs_root, &ns_root);
 | |
| 
 | |
| 	path_put(&fs_root);
 | |
| 	path_put(&ns_root);
 | |
| 
 | |
| 	return chrooted;
 | |
| }
 | |
| 
 | |
| static bool mnt_already_visible(struct mnt_namespace *ns,
 | |
| 				const struct super_block *sb,
 | |
| 				int *new_mnt_flags)
 | |
| {
 | |
| 	int new_flags = *new_mnt_flags;
 | |
| 	struct mount *mnt;
 | |
| 	bool visible = false;
 | |
| 
 | |
| 	down_read(&namespace_sem);
 | |
| 	list_for_each_entry(mnt, &ns->list, mnt_list) {
 | |
| 		struct mount *child;
 | |
| 		int mnt_flags;
 | |
| 
 | |
| 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
 | |
| 			continue;
 | |
| 
 | |
| 		/* This mount is not fully visible if it's root directory
 | |
| 		 * is not the root directory of the filesystem.
 | |
| 		 */
 | |
| 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
 | |
| 			continue;
 | |
| 
 | |
| 		/* A local view of the mount flags */
 | |
| 		mnt_flags = mnt->mnt.mnt_flags;
 | |
| 
 | |
| 		/* Don't miss readonly hidden in the superblock flags */
 | |
| 		if (sb_rdonly(mnt->mnt.mnt_sb))
 | |
| 			mnt_flags |= MNT_LOCK_READONLY;
 | |
| 
 | |
| 		/* Verify the mount flags are equal to or more permissive
 | |
| 		 * than the proposed new mount.
 | |
| 		 */
 | |
| 		if ((mnt_flags & MNT_LOCK_READONLY) &&
 | |
| 		    !(new_flags & MNT_READONLY))
 | |
| 			continue;
 | |
| 		if ((mnt_flags & MNT_LOCK_ATIME) &&
 | |
| 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
 | |
| 			continue;
 | |
| 
 | |
| 		/* This mount is not fully visible if there are any
 | |
| 		 * locked child mounts that cover anything except for
 | |
| 		 * empty directories.
 | |
| 		 */
 | |
| 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
 | |
| 			struct inode *inode = child->mnt_mountpoint->d_inode;
 | |
| 			/* Only worry about locked mounts */
 | |
| 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
 | |
| 				continue;
 | |
| 			/* Is the directory permanetly empty? */
 | |
| 			if (!is_empty_dir_inode(inode))
 | |
| 				goto next;
 | |
| 		}
 | |
| 		/* Preserve the locked attributes */
 | |
| 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
 | |
| 					       MNT_LOCK_ATIME);
 | |
| 		visible = true;
 | |
| 		goto found;
 | |
| 	next:	;
 | |
| 	}
 | |
| found:
 | |
| 	up_read(&namespace_sem);
 | |
| 	return visible;
 | |
| }
 | |
| 
 | |
| static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
 | |
| {
 | |
| 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
 | |
| 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
 | |
| 	unsigned long s_iflags;
 | |
| 
 | |
| 	if (ns->user_ns == &init_user_ns)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Can this filesystem be too revealing? */
 | |
| 	s_iflags = sb->s_iflags;
 | |
| 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
 | |
| 		return false;
 | |
| 
 | |
| 	if ((s_iflags & required_iflags) != required_iflags) {
 | |
| 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
 | |
| 			  required_iflags);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return !mnt_already_visible(ns, sb, new_mnt_flags);
 | |
| }
 | |
| 
 | |
| bool mnt_may_suid(struct vfsmount *mnt)
 | |
| {
 | |
| 	/*
 | |
| 	 * Foreign mounts (accessed via fchdir or through /proc
 | |
| 	 * symlinks) are always treated as if they are nosuid.  This
 | |
| 	 * prevents namespaces from trusting potentially unsafe
 | |
| 	 * suid/sgid bits, file caps, or security labels that originate
 | |
| 	 * in other namespaces.
 | |
| 	 */
 | |
| 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
 | |
| 	       current_in_userns(mnt->mnt_sb->s_user_ns);
 | |
| }
 | |
| 
 | |
| static struct ns_common *mntns_get(struct task_struct *task)
 | |
| {
 | |
| 	struct ns_common *ns = NULL;
 | |
| 	struct nsproxy *nsproxy;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	nsproxy = task->nsproxy;
 | |
| 	if (nsproxy) {
 | |
| 		ns = &nsproxy->mnt_ns->ns;
 | |
| 		get_mnt_ns(to_mnt_ns(ns));
 | |
| 	}
 | |
| 	task_unlock(task);
 | |
| 
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| static void mntns_put(struct ns_common *ns)
 | |
| {
 | |
| 	put_mnt_ns(to_mnt_ns(ns));
 | |
| }
 | |
| 
 | |
| static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
 | |
| {
 | |
| 	struct fs_struct *fs = current->fs;
 | |
| 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
 | |
| 	struct path root;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
 | |
| 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
 | |
| 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (is_anon_ns(mnt_ns))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (fs->users != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	get_mnt_ns(mnt_ns);
 | |
| 	old_mnt_ns = nsproxy->mnt_ns;
 | |
| 	nsproxy->mnt_ns = mnt_ns;
 | |
| 
 | |
| 	/* Find the root */
 | |
| 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
 | |
| 				"/", LOOKUP_DOWN, &root);
 | |
| 	if (err) {
 | |
| 		/* revert to old namespace */
 | |
| 		nsproxy->mnt_ns = old_mnt_ns;
 | |
| 		put_mnt_ns(mnt_ns);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	put_mnt_ns(old_mnt_ns);
 | |
| 
 | |
| 	/* Update the pwd and root */
 | |
| 	set_fs_pwd(fs, &root);
 | |
| 	set_fs_root(fs, &root);
 | |
| 
 | |
| 	path_put(&root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct user_namespace *mntns_owner(struct ns_common *ns)
 | |
| {
 | |
| 	return to_mnt_ns(ns)->user_ns;
 | |
| }
 | |
| 
 | |
| const struct proc_ns_operations mntns_operations = {
 | |
| 	.name		= "mnt",
 | |
| 	.type		= CLONE_NEWNS,
 | |
| 	.get		= mntns_get,
 | |
| 	.put		= mntns_put,
 | |
| 	.install	= mntns_install,
 | |
| 	.owner		= mntns_owner,
 | |
| };
 |