forked from mirrors/linux
		
	For better maintenance and expansion move the mathematic helpers to the separate folder. No functional change intended. Note, the int_sqrt() is not used as a part of lib, so, moved to regular obj. Link: http://lkml.kernel.org/r/20190323172531.80025-1-andriy.shevchenko@linux.intel.com Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Lee Jones <lee.jones@linaro.org> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: Ray Jui <rjui@broadcom.com> [mchehab+samsung@kernel.org: fix broken doc references for div64.c and gcd.c] Link: http://lkml.kernel.org/r/734f49bae5d4052b3c25691dfefad59bea2e5843.1555580999.git.mchehab+samsung@kernel.org Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			65 lines
		
	
	
	
		
			1.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
	
		
			1.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * rational fractions
 | 
						|
 *
 | 
						|
 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
 | 
						|
 *
 | 
						|
 * helper functions when coping with rational numbers
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/rational.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/export.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * calculate best rational approximation for a given fraction
 | 
						|
 * taking into account restricted register size, e.g. to find
 | 
						|
 * appropriate values for a pll with 5 bit denominator and
 | 
						|
 * 8 bit numerator register fields, trying to set up with a
 | 
						|
 * frequency ratio of 3.1415, one would say:
 | 
						|
 *
 | 
						|
 * rational_best_approximation(31415, 10000,
 | 
						|
 *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
 | 
						|
 *
 | 
						|
 * you may look at given_numerator as a fixed point number,
 | 
						|
 * with the fractional part size described in given_denominator.
 | 
						|
 *
 | 
						|
 * for theoretical background, see:
 | 
						|
 * http://en.wikipedia.org/wiki/Continued_fraction
 | 
						|
 */
 | 
						|
 | 
						|
void rational_best_approximation(
 | 
						|
	unsigned long given_numerator, unsigned long given_denominator,
 | 
						|
	unsigned long max_numerator, unsigned long max_denominator,
 | 
						|
	unsigned long *best_numerator, unsigned long *best_denominator)
 | 
						|
{
 | 
						|
	unsigned long n, d, n0, d0, n1, d1;
 | 
						|
	n = given_numerator;
 | 
						|
	d = given_denominator;
 | 
						|
	n0 = d1 = 0;
 | 
						|
	n1 = d0 = 1;
 | 
						|
	for (;;) {
 | 
						|
		unsigned long t, a;
 | 
						|
		if ((n1 > max_numerator) || (d1 > max_denominator)) {
 | 
						|
			n1 = n0;
 | 
						|
			d1 = d0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (d == 0)
 | 
						|
			break;
 | 
						|
		t = d;
 | 
						|
		a = n / d;
 | 
						|
		d = n % d;
 | 
						|
		n = t;
 | 
						|
		t = n0 + a * n1;
 | 
						|
		n0 = n1;
 | 
						|
		n1 = t;
 | 
						|
		t = d0 + a * d1;
 | 
						|
		d0 = d1;
 | 
						|
		d1 = t;
 | 
						|
	}
 | 
						|
	*best_numerator = n1;
 | 
						|
	*best_denominator = d1;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(rational_best_approximation);
 |