forked from mirrors/linux
		
	Pull crypto updates from Herbert Xu: "Here is the crypto update for 5.3: API: - Test shash interface directly in testmgr - cra_driver_name is now mandatory Algorithms: - Replace arc4 crypto_cipher with library helper - Implement 5 way interleave for ECB, CBC and CTR on arm64 - Add xxhash - Add continuous self-test on noise source to drbg - Update jitter RNG Drivers: - Add support for SHA204A random number generator - Add support for 7211 in iproc-rng200 - Fix fuzz test failures in inside-secure - Fix fuzz test failures in talitos - Fix fuzz test failures in qat" * 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (143 commits) crypto: stm32/hash - remove interruptible condition for dma crypto: stm32/hash - Fix hmac issue more than 256 bytes crypto: stm32/crc32 - rename driver file crypto: amcc - remove memset after dma_alloc_coherent crypto: ccp - Switch to SPDX license identifiers crypto: ccp - Validate the the error value used to index error messages crypto: doc - Fix formatting of new crypto engine content crypto: doc - Add parameter documentation crypto: arm64/aes-ce - implement 5 way interleave for ECB, CBC and CTR crypto: arm64/aes-ce - add 5 way interleave routines crypto: talitos - drop icv_ool crypto: talitos - fix hash on SEC1. crypto: talitos - move struct talitos_edesc into talitos.h lib/scatterlist: Fix mapping iterator when sg->offset is greater than PAGE_SIZE crypto/NX: Set receive window credits to max number of CRBs in RxFIFO crypto: asymmetric_keys - select CRYPTO_HASH where needed crypto: serpent - mark __serpent_setkey_sbox noinline crypto: testmgr - dynamically allocate crypto_shash crypto: testmgr - dynamically allocate testvec_config crypto: talitos - eliminate unneeded 'done' functions at build time ...
		
			
				
	
	
		
			308 lines
		
	
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * Software WEP encryption implementation
 | 
						|
 * Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi>
 | 
						|
 * Copyright 2003, Instant802 Networks, Inc.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/netdevice.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/crc32.h>
 | 
						|
#include <linux/crypto.h>
 | 
						|
#include <linux/err.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/scatterlist.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <asm/unaligned.h>
 | 
						|
 | 
						|
#include <net/mac80211.h>
 | 
						|
#include "ieee80211_i.h"
 | 
						|
#include "wep.h"
 | 
						|
 | 
						|
 | 
						|
int ieee80211_wep_init(struct ieee80211_local *local)
 | 
						|
{
 | 
						|
	/* start WEP IV from a random value */
 | 
						|
	get_random_bytes(&local->wep_iv, IEEE80211_WEP_IV_LEN);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ieee80211_wep_weak_iv(u32 iv, int keylen)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Fluhrer, Mantin, and Shamir have reported weaknesses in the
 | 
						|
	 * key scheduling algorithm of RC4. At least IVs (KeyByte + 3,
 | 
						|
	 * 0xff, N) can be used to speedup attacks, so avoid using them.
 | 
						|
	 */
 | 
						|
	if ((iv & 0xff00) == 0xff00) {
 | 
						|
		u8 B = (iv >> 16) & 0xff;
 | 
						|
		if (B >= 3 && B < 3 + keylen)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void ieee80211_wep_get_iv(struct ieee80211_local *local,
 | 
						|
				 int keylen, int keyidx, u8 *iv)
 | 
						|
{
 | 
						|
	local->wep_iv++;
 | 
						|
	if (ieee80211_wep_weak_iv(local->wep_iv, keylen))
 | 
						|
		local->wep_iv += 0x0100;
 | 
						|
 | 
						|
	if (!iv)
 | 
						|
		return;
 | 
						|
 | 
						|
	*iv++ = (local->wep_iv >> 16) & 0xff;
 | 
						|
	*iv++ = (local->wep_iv >> 8) & 0xff;
 | 
						|
	*iv++ = local->wep_iv & 0xff;
 | 
						|
	*iv++ = keyidx << 6;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local,
 | 
						|
				struct sk_buff *skb,
 | 
						|
				int keylen, int keyidx)
 | 
						|
{
 | 
						|
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 | 
						|
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 | 
						|
	unsigned int hdrlen;
 | 
						|
	u8 *newhdr;
 | 
						|
 | 
						|
	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
 | 
						|
 | 
						|
	if (WARN_ON(skb_headroom(skb) < IEEE80211_WEP_IV_LEN))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 | 
						|
	newhdr = skb_push(skb, IEEE80211_WEP_IV_LEN);
 | 
						|
	memmove(newhdr, newhdr + IEEE80211_WEP_IV_LEN, hdrlen);
 | 
						|
 | 
						|
	/* the HW only needs room for the IV, but not the actual IV */
 | 
						|
	if (info->control.hw_key &&
 | 
						|
	    (info->control.hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))
 | 
						|
		return newhdr + hdrlen;
 | 
						|
 | 
						|
	ieee80211_wep_get_iv(local, keylen, keyidx, newhdr + hdrlen);
 | 
						|
	return newhdr + hdrlen;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void ieee80211_wep_remove_iv(struct ieee80211_local *local,
 | 
						|
				    struct sk_buff *skb,
 | 
						|
				    struct ieee80211_key *key)
 | 
						|
{
 | 
						|
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 | 
						|
	unsigned int hdrlen;
 | 
						|
 | 
						|
	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 | 
						|
	memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen);
 | 
						|
	skb_pull(skb, IEEE80211_WEP_IV_LEN);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Perform WEP encryption using given key. data buffer must have tailroom
 | 
						|
 * for 4-byte ICV. data_len must not include this ICV. Note: this function
 | 
						|
 * does _not_ add IV. data = RC4(data | CRC32(data)) */
 | 
						|
int ieee80211_wep_encrypt_data(struct arc4_ctx *ctx, u8 *rc4key,
 | 
						|
			       size_t klen, u8 *data, size_t data_len)
 | 
						|
{
 | 
						|
	__le32 icv;
 | 
						|
 | 
						|
	icv = cpu_to_le32(~crc32_le(~0, data, data_len));
 | 
						|
	put_unaligned(icv, (__le32 *)(data + data_len));
 | 
						|
 | 
						|
	arc4_setkey(ctx, rc4key, klen);
 | 
						|
	arc4_crypt(ctx, data, data, data_len + IEEE80211_WEP_ICV_LEN);
 | 
						|
	memzero_explicit(ctx, sizeof(*ctx));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the
 | 
						|
 * beginning of the buffer 4 bytes of extra space (ICV) in the end of the
 | 
						|
 * buffer will be added. Both IV and ICV will be transmitted, so the
 | 
						|
 * payload length increases with 8 bytes.
 | 
						|
 *
 | 
						|
 * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
 | 
						|
 */
 | 
						|
int ieee80211_wep_encrypt(struct ieee80211_local *local,
 | 
						|
			  struct sk_buff *skb,
 | 
						|
			  const u8 *key, int keylen, int keyidx)
 | 
						|
{
 | 
						|
	u8 *iv;
 | 
						|
	size_t len;
 | 
						|
	u8 rc4key[3 + WLAN_KEY_LEN_WEP104];
 | 
						|
 | 
						|
	if (WARN_ON(skb_tailroom(skb) < IEEE80211_WEP_ICV_LEN))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	iv = ieee80211_wep_add_iv(local, skb, keylen, keyidx);
 | 
						|
	if (!iv)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	len = skb->len - (iv + IEEE80211_WEP_IV_LEN - skb->data);
 | 
						|
 | 
						|
	/* Prepend 24-bit IV to RC4 key */
 | 
						|
	memcpy(rc4key, iv, 3);
 | 
						|
 | 
						|
	/* Copy rest of the WEP key (the secret part) */
 | 
						|
	memcpy(rc4key + 3, key, keylen);
 | 
						|
 | 
						|
	/* Add room for ICV */
 | 
						|
	skb_put(skb, IEEE80211_WEP_ICV_LEN);
 | 
						|
 | 
						|
	return ieee80211_wep_encrypt_data(&local->wep_tx_ctx, rc4key, keylen + 3,
 | 
						|
					  iv + IEEE80211_WEP_IV_LEN, len);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Perform WEP decryption using given key. data buffer includes encrypted
 | 
						|
 * payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV.
 | 
						|
 * Return 0 on success and -1 on ICV mismatch. */
 | 
						|
int ieee80211_wep_decrypt_data(struct arc4_ctx *ctx, u8 *rc4key,
 | 
						|
			       size_t klen, u8 *data, size_t data_len)
 | 
						|
{
 | 
						|
	__le32 crc;
 | 
						|
 | 
						|
	arc4_setkey(ctx, rc4key, klen);
 | 
						|
	arc4_crypt(ctx, data, data, data_len + IEEE80211_WEP_ICV_LEN);
 | 
						|
	memzero_explicit(ctx, sizeof(*ctx));
 | 
						|
 | 
						|
	crc = cpu_to_le32(~crc32_le(~0, data, data_len));
 | 
						|
	if (memcmp(&crc, data + data_len, IEEE80211_WEP_ICV_LEN) != 0)
 | 
						|
		/* ICV mismatch */
 | 
						|
		return -1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Perform WEP decryption on given skb. Buffer includes whole WEP part of
 | 
						|
 * the frame: IV (4 bytes), encrypted payload (including SNAP header),
 | 
						|
 * ICV (4 bytes). skb->len includes both IV and ICV.
 | 
						|
 *
 | 
						|
 * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
 | 
						|
 * failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload
 | 
						|
 * is moved to the beginning of the skb and skb length will be reduced.
 | 
						|
 */
 | 
						|
static int ieee80211_wep_decrypt(struct ieee80211_local *local,
 | 
						|
				 struct sk_buff *skb,
 | 
						|
				 struct ieee80211_key *key)
 | 
						|
{
 | 
						|
	u32 klen;
 | 
						|
	u8 rc4key[3 + WLAN_KEY_LEN_WEP104];
 | 
						|
	u8 keyidx;
 | 
						|
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 | 
						|
	unsigned int hdrlen;
 | 
						|
	size_t len;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!ieee80211_has_protected(hdr->frame_control))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 | 
						|
	if (skb->len < hdrlen + IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	len = skb->len - hdrlen - IEEE80211_WEP_IV_LEN - IEEE80211_WEP_ICV_LEN;
 | 
						|
 | 
						|
	keyidx = skb->data[hdrlen + 3] >> 6;
 | 
						|
 | 
						|
	if (!key || keyidx != key->conf.keyidx)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	klen = 3 + key->conf.keylen;
 | 
						|
 | 
						|
	/* Prepend 24-bit IV to RC4 key */
 | 
						|
	memcpy(rc4key, skb->data + hdrlen, 3);
 | 
						|
 | 
						|
	/* Copy rest of the WEP key (the secret part) */
 | 
						|
	memcpy(rc4key + 3, key->conf.key, key->conf.keylen);
 | 
						|
 | 
						|
	if (ieee80211_wep_decrypt_data(&local->wep_rx_ctx, rc4key, klen,
 | 
						|
				       skb->data + hdrlen +
 | 
						|
				       IEEE80211_WEP_IV_LEN, len))
 | 
						|
		ret = -1;
 | 
						|
 | 
						|
	/* Trim ICV */
 | 
						|
	skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN);
 | 
						|
 | 
						|
	/* Remove IV */
 | 
						|
	memmove(skb->data + IEEE80211_WEP_IV_LEN, skb->data, hdrlen);
 | 
						|
	skb_pull(skb, IEEE80211_WEP_IV_LEN);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
ieee80211_rx_result
 | 
						|
ieee80211_crypto_wep_decrypt(struct ieee80211_rx_data *rx)
 | 
						|
{
 | 
						|
	struct sk_buff *skb = rx->skb;
 | 
						|
	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
 | 
						|
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
 | 
						|
	__le16 fc = hdr->frame_control;
 | 
						|
 | 
						|
	if (!ieee80211_is_data(fc) && !ieee80211_is_auth(fc))
 | 
						|
		return RX_CONTINUE;
 | 
						|
 | 
						|
	if (!(status->flag & RX_FLAG_DECRYPTED)) {
 | 
						|
		if (skb_linearize(rx->skb))
 | 
						|
			return RX_DROP_UNUSABLE;
 | 
						|
		if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key))
 | 
						|
			return RX_DROP_UNUSABLE;
 | 
						|
	} else if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
 | 
						|
		if (!pskb_may_pull(rx->skb, ieee80211_hdrlen(fc) +
 | 
						|
					    IEEE80211_WEP_IV_LEN))
 | 
						|
			return RX_DROP_UNUSABLE;
 | 
						|
		ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
 | 
						|
		/* remove ICV */
 | 
						|
		if (!(status->flag & RX_FLAG_ICV_STRIPPED) &&
 | 
						|
		    pskb_trim(rx->skb, rx->skb->len - IEEE80211_WEP_ICV_LEN))
 | 
						|
			return RX_DROP_UNUSABLE;
 | 
						|
	}
 | 
						|
 | 
						|
	return RX_CONTINUE;
 | 
						|
}
 | 
						|
 | 
						|
static int wep_encrypt_skb(struct ieee80211_tx_data *tx, struct sk_buff *skb)
 | 
						|
{
 | 
						|
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 | 
						|
	struct ieee80211_key_conf *hw_key = info->control.hw_key;
 | 
						|
 | 
						|
	if (!hw_key) {
 | 
						|
		if (ieee80211_wep_encrypt(tx->local, skb, tx->key->conf.key,
 | 
						|
					  tx->key->conf.keylen,
 | 
						|
					  tx->key->conf.keyidx))
 | 
						|
			return -1;
 | 
						|
	} else if ((hw_key->flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
 | 
						|
		   (hw_key->flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)) {
 | 
						|
		if (!ieee80211_wep_add_iv(tx->local, skb,
 | 
						|
					  tx->key->conf.keylen,
 | 
						|
					  tx->key->conf.keyidx))
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
ieee80211_tx_result
 | 
						|
ieee80211_crypto_wep_encrypt(struct ieee80211_tx_data *tx)
 | 
						|
{
 | 
						|
	struct sk_buff *skb;
 | 
						|
 | 
						|
	ieee80211_tx_set_protected(tx);
 | 
						|
 | 
						|
	skb_queue_walk(&tx->skbs, skb) {
 | 
						|
		if (wep_encrypt_skb(tx, skb) < 0) {
 | 
						|
			I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
 | 
						|
			return TX_DROP;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return TX_CONTINUE;
 | 
						|
}
 |