forked from mirrors/linux
		
	 9d22167f34
			
		
	
	
		9d22167f34
		
	
	
	
	
		
			
			Pull capabilities update from James Morris:
 "Minor fixes for capabilities:
   - Update the commoncap.c code to utilize XATTR_SECURITY_PREFIX_LEN,
     from Carmeli tamir.
   - Make the capability hooks static, from Yue Haibing"
* 'next-lsm' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
  security/commoncap: Use xattr security prefix len
  security: Make capability_hooks static
		
	
			
		
			
				
	
	
		
			1376 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1376 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /* Common capabilities, needed by capability.o.
 | |
|  */
 | |
| 
 | |
| #include <linux/capability.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/lsm_hooks.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/netlink.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/xattr.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/securebits.h>
 | |
| #include <linux/user_namespace.h>
 | |
| #include <linux/binfmts.h>
 | |
| #include <linux/personality.h>
 | |
| 
 | |
| /*
 | |
|  * If a non-root user executes a setuid-root binary in
 | |
|  * !secure(SECURE_NOROOT) mode, then we raise capabilities.
 | |
|  * However if fE is also set, then the intent is for only
 | |
|  * the file capabilities to be applied, and the setuid-root
 | |
|  * bit is left on either to change the uid (plausible) or
 | |
|  * to get full privilege on a kernel without file capabilities
 | |
|  * support.  So in that case we do not raise capabilities.
 | |
|  *
 | |
|  * Warn if that happens, once per boot.
 | |
|  */
 | |
| static void warn_setuid_and_fcaps_mixed(const char *fname)
 | |
| {
 | |
| 	static int warned;
 | |
| 	if (!warned) {
 | |
| 		printk(KERN_INFO "warning: `%s' has both setuid-root and"
 | |
| 			" effective capabilities. Therefore not raising all"
 | |
| 			" capabilities.\n", fname);
 | |
| 		warned = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_capable - Determine whether a task has a particular effective capability
 | |
|  * @cred: The credentials to use
 | |
|  * @ns:  The user namespace in which we need the capability
 | |
|  * @cap: The capability to check for
 | |
|  * @opts: Bitmask of options defined in include/linux/security.h
 | |
|  *
 | |
|  * Determine whether the nominated task has the specified capability amongst
 | |
|  * its effective set, returning 0 if it does, -ve if it does not.
 | |
|  *
 | |
|  * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
 | |
|  * and has_capability() functions.  That is, it has the reverse semantics:
 | |
|  * cap_has_capability() returns 0 when a task has a capability, but the
 | |
|  * kernel's capable() and has_capability() returns 1 for this case.
 | |
|  */
 | |
| int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
 | |
| 		int cap, unsigned int opts)
 | |
| {
 | |
| 	struct user_namespace *ns = targ_ns;
 | |
| 
 | |
| 	/* See if cred has the capability in the target user namespace
 | |
| 	 * by examining the target user namespace and all of the target
 | |
| 	 * user namespace's parents.
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		/* Do we have the necessary capabilities? */
 | |
| 		if (ns == cred->user_ns)
 | |
| 			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
 | |
| 
 | |
| 		/*
 | |
| 		 * If we're already at a lower level than we're looking for,
 | |
| 		 * we're done searching.
 | |
| 		 */
 | |
| 		if (ns->level <= cred->user_ns->level)
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		/* 
 | |
| 		 * The owner of the user namespace in the parent of the
 | |
| 		 * user namespace has all caps.
 | |
| 		 */
 | |
| 		if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
 | |
| 			return 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * If you have a capability in a parent user ns, then you have
 | |
| 		 * it over all children user namespaces as well.
 | |
| 		 */
 | |
| 		ns = ns->parent;
 | |
| 	}
 | |
| 
 | |
| 	/* We never get here */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_settime - Determine whether the current process may set the system clock
 | |
|  * @ts: The time to set
 | |
|  * @tz: The timezone to set
 | |
|  *
 | |
|  * Determine whether the current process may set the system clock and timezone
 | |
|  * information, returning 0 if permission granted, -ve if denied.
 | |
|  */
 | |
| int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
 | |
| {
 | |
| 	if (!capable(CAP_SYS_TIME))
 | |
| 		return -EPERM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_ptrace_access_check - Determine whether the current process may access
 | |
|  *			   another
 | |
|  * @child: The process to be accessed
 | |
|  * @mode: The mode of attachment.
 | |
|  *
 | |
|  * If we are in the same or an ancestor user_ns and have all the target
 | |
|  * task's capabilities, then ptrace access is allowed.
 | |
|  * If we have the ptrace capability to the target user_ns, then ptrace
 | |
|  * access is allowed.
 | |
|  * Else denied.
 | |
|  *
 | |
|  * Determine whether a process may access another, returning 0 if permission
 | |
|  * granted, -ve if denied.
 | |
|  */
 | |
| int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	const struct cred *cred, *child_cred;
 | |
| 	const kernel_cap_t *caller_caps;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cred = current_cred();
 | |
| 	child_cred = __task_cred(child);
 | |
| 	if (mode & PTRACE_MODE_FSCREDS)
 | |
| 		caller_caps = &cred->cap_effective;
 | |
| 	else
 | |
| 		caller_caps = &cred->cap_permitted;
 | |
| 	if (cred->user_ns == child_cred->user_ns &&
 | |
| 	    cap_issubset(child_cred->cap_permitted, *caller_caps))
 | |
| 		goto out;
 | |
| 	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
 | |
| 		goto out;
 | |
| 	ret = -EPERM;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_ptrace_traceme - Determine whether another process may trace the current
 | |
|  * @parent: The task proposed to be the tracer
 | |
|  *
 | |
|  * If parent is in the same or an ancestor user_ns and has all current's
 | |
|  * capabilities, then ptrace access is allowed.
 | |
|  * If parent has the ptrace capability to current's user_ns, then ptrace
 | |
|  * access is allowed.
 | |
|  * Else denied.
 | |
|  *
 | |
|  * Determine whether the nominated task is permitted to trace the current
 | |
|  * process, returning 0 if permission is granted, -ve if denied.
 | |
|  */
 | |
| int cap_ptrace_traceme(struct task_struct *parent)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	const struct cred *cred, *child_cred;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	cred = __task_cred(parent);
 | |
| 	child_cred = current_cred();
 | |
| 	if (cred->user_ns == child_cred->user_ns &&
 | |
| 	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
 | |
| 		goto out;
 | |
| 	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
 | |
| 		goto out;
 | |
| 	ret = -EPERM;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_capget - Retrieve a task's capability sets
 | |
|  * @target: The task from which to retrieve the capability sets
 | |
|  * @effective: The place to record the effective set
 | |
|  * @inheritable: The place to record the inheritable set
 | |
|  * @permitted: The place to record the permitted set
 | |
|  *
 | |
|  * This function retrieves the capabilities of the nominated task and returns
 | |
|  * them to the caller.
 | |
|  */
 | |
| int cap_capget(struct task_struct *target, kernel_cap_t *effective,
 | |
| 	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
 | |
| {
 | |
| 	const struct cred *cred;
 | |
| 
 | |
| 	/* Derived from kernel/capability.c:sys_capget. */
 | |
| 	rcu_read_lock();
 | |
| 	cred = __task_cred(target);
 | |
| 	*effective   = cred->cap_effective;
 | |
| 	*inheritable = cred->cap_inheritable;
 | |
| 	*permitted   = cred->cap_permitted;
 | |
| 	rcu_read_unlock();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine whether the inheritable capabilities are limited to the old
 | |
|  * permitted set.  Returns 1 if they are limited, 0 if they are not.
 | |
|  */
 | |
| static inline int cap_inh_is_capped(void)
 | |
| {
 | |
| 	/* they are so limited unless the current task has the CAP_SETPCAP
 | |
| 	 * capability
 | |
| 	 */
 | |
| 	if (cap_capable(current_cred(), current_cred()->user_ns,
 | |
| 			CAP_SETPCAP, CAP_OPT_NONE) == 0)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_capset - Validate and apply proposed changes to current's capabilities
 | |
|  * @new: The proposed new credentials; alterations should be made here
 | |
|  * @old: The current task's current credentials
 | |
|  * @effective: A pointer to the proposed new effective capabilities set
 | |
|  * @inheritable: A pointer to the proposed new inheritable capabilities set
 | |
|  * @permitted: A pointer to the proposed new permitted capabilities set
 | |
|  *
 | |
|  * This function validates and applies a proposed mass change to the current
 | |
|  * process's capability sets.  The changes are made to the proposed new
 | |
|  * credentials, and assuming no error, will be committed by the caller of LSM.
 | |
|  */
 | |
| int cap_capset(struct cred *new,
 | |
| 	       const struct cred *old,
 | |
| 	       const kernel_cap_t *effective,
 | |
| 	       const kernel_cap_t *inheritable,
 | |
| 	       const kernel_cap_t *permitted)
 | |
| {
 | |
| 	if (cap_inh_is_capped() &&
 | |
| 	    !cap_issubset(*inheritable,
 | |
| 			  cap_combine(old->cap_inheritable,
 | |
| 				      old->cap_permitted)))
 | |
| 		/* incapable of using this inheritable set */
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (!cap_issubset(*inheritable,
 | |
| 			  cap_combine(old->cap_inheritable,
 | |
| 				      old->cap_bset)))
 | |
| 		/* no new pI capabilities outside bounding set */
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* verify restrictions on target's new Permitted set */
 | |
| 	if (!cap_issubset(*permitted, old->cap_permitted))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
 | |
| 	if (!cap_issubset(*effective, *permitted))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	new->cap_effective   = *effective;
 | |
| 	new->cap_inheritable = *inheritable;
 | |
| 	new->cap_permitted   = *permitted;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask off ambient bits that are no longer both permitted and
 | |
| 	 * inheritable.
 | |
| 	 */
 | |
| 	new->cap_ambient = cap_intersect(new->cap_ambient,
 | |
| 					 cap_intersect(*permitted,
 | |
| 						       *inheritable));
 | |
| 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_inode_need_killpriv - Determine if inode change affects privileges
 | |
|  * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
 | |
|  *
 | |
|  * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
 | |
|  * affects the security markings on that inode, and if it is, should
 | |
|  * inode_killpriv() be invoked or the change rejected.
 | |
|  *
 | |
|  * Returns 1 if security.capability has a value, meaning inode_killpriv()
 | |
|  * is required, 0 otherwise, meaning inode_killpriv() is not required.
 | |
|  */
 | |
| int cap_inode_need_killpriv(struct dentry *dentry)
 | |
| {
 | |
| 	struct inode *inode = d_backing_inode(dentry);
 | |
| 	int error;
 | |
| 
 | |
| 	error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
 | |
| 	return error > 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_inode_killpriv - Erase the security markings on an inode
 | |
|  * @dentry: The inode/dentry to alter
 | |
|  *
 | |
|  * Erase the privilege-enhancing security markings on an inode.
 | |
|  *
 | |
|  * Returns 0 if successful, -ve on error.
 | |
|  */
 | |
| int cap_inode_killpriv(struct dentry *dentry)
 | |
| {
 | |
| 	int error;
 | |
| 
 | |
| 	error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
 | |
| 	if (error == -EOPNOTSUPP)
 | |
| 		error = 0;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static bool rootid_owns_currentns(kuid_t kroot)
 | |
| {
 | |
| 	struct user_namespace *ns;
 | |
| 
 | |
| 	if (!uid_valid(kroot))
 | |
| 		return false;
 | |
| 
 | |
| 	for (ns = current_user_ns(); ; ns = ns->parent) {
 | |
| 		if (from_kuid(ns, kroot) == 0)
 | |
| 			return true;
 | |
| 		if (ns == &init_user_ns)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static __u32 sansflags(__u32 m)
 | |
| {
 | |
| 	return m & ~VFS_CAP_FLAGS_EFFECTIVE;
 | |
| }
 | |
| 
 | |
| static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
 | |
| {
 | |
| 	if (size != XATTR_CAPS_SZ_2)
 | |
| 		return false;
 | |
| 	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
 | |
| }
 | |
| 
 | |
| static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
 | |
| {
 | |
| 	if (size != XATTR_CAPS_SZ_3)
 | |
| 		return false;
 | |
| 	return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * getsecurity: We are called for security.* before any attempt to read the
 | |
|  * xattr from the inode itself.
 | |
|  *
 | |
|  * This gives us a chance to read the on-disk value and convert it.  If we
 | |
|  * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
 | |
|  *
 | |
|  * Note we are not called by vfs_getxattr_alloc(), but that is only called
 | |
|  * by the integrity subsystem, which really wants the unconverted values -
 | |
|  * so that's good.
 | |
|  */
 | |
| int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
 | |
| 			  bool alloc)
 | |
| {
 | |
| 	int size, ret;
 | |
| 	kuid_t kroot;
 | |
| 	uid_t root, mappedroot;
 | |
| 	char *tmpbuf = NULL;
 | |
| 	struct vfs_cap_data *cap;
 | |
| 	struct vfs_ns_cap_data *nscap;
 | |
| 	struct dentry *dentry;
 | |
| 	struct user_namespace *fs_ns;
 | |
| 
 | |
| 	if (strcmp(name, "capability") != 0)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	dentry = d_find_any_alias(inode);
 | |
| 	if (!dentry)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	size = sizeof(struct vfs_ns_cap_data);
 | |
| 	ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
 | |
| 				 &tmpbuf, size, GFP_NOFS);
 | |
| 	dput(dentry);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	fs_ns = inode->i_sb->s_user_ns;
 | |
| 	cap = (struct vfs_cap_data *) tmpbuf;
 | |
| 	if (is_v2header((size_t) ret, cap)) {
 | |
| 		/* If this is sizeof(vfs_cap_data) then we're ok with the
 | |
| 		 * on-disk value, so return that.  */
 | |
| 		if (alloc)
 | |
| 			*buffer = tmpbuf;
 | |
| 		else
 | |
| 			kfree(tmpbuf);
 | |
| 		return ret;
 | |
| 	} else if (!is_v3header((size_t) ret, cap)) {
 | |
| 		kfree(tmpbuf);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	nscap = (struct vfs_ns_cap_data *) tmpbuf;
 | |
| 	root = le32_to_cpu(nscap->rootid);
 | |
| 	kroot = make_kuid(fs_ns, root);
 | |
| 
 | |
| 	/* If the root kuid maps to a valid uid in current ns, then return
 | |
| 	 * this as a nscap. */
 | |
| 	mappedroot = from_kuid(current_user_ns(), kroot);
 | |
| 	if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
 | |
| 		if (alloc) {
 | |
| 			*buffer = tmpbuf;
 | |
| 			nscap->rootid = cpu_to_le32(mappedroot);
 | |
| 		} else
 | |
| 			kfree(tmpbuf);
 | |
| 		return size;
 | |
| 	}
 | |
| 
 | |
| 	if (!rootid_owns_currentns(kroot)) {
 | |
| 		kfree(tmpbuf);
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	/* This comes from a parent namespace.  Return as a v2 capability */
 | |
| 	size = sizeof(struct vfs_cap_data);
 | |
| 	if (alloc) {
 | |
| 		*buffer = kmalloc(size, GFP_ATOMIC);
 | |
| 		if (*buffer) {
 | |
| 			struct vfs_cap_data *cap = *buffer;
 | |
| 			__le32 nsmagic, magic;
 | |
| 			magic = VFS_CAP_REVISION_2;
 | |
| 			nsmagic = le32_to_cpu(nscap->magic_etc);
 | |
| 			if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
 | |
| 				magic |= VFS_CAP_FLAGS_EFFECTIVE;
 | |
| 			memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
 | |
| 			cap->magic_etc = cpu_to_le32(magic);
 | |
| 		} else {
 | |
| 			size = -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 	kfree(tmpbuf);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static kuid_t rootid_from_xattr(const void *value, size_t size,
 | |
| 				struct user_namespace *task_ns)
 | |
| {
 | |
| 	const struct vfs_ns_cap_data *nscap = value;
 | |
| 	uid_t rootid = 0;
 | |
| 
 | |
| 	if (size == XATTR_CAPS_SZ_3)
 | |
| 		rootid = le32_to_cpu(nscap->rootid);
 | |
| 
 | |
| 	return make_kuid(task_ns, rootid);
 | |
| }
 | |
| 
 | |
| static bool validheader(size_t size, const struct vfs_cap_data *cap)
 | |
| {
 | |
| 	return is_v2header(size, cap) || is_v3header(size, cap);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * User requested a write of security.capability.  If needed, update the
 | |
|  * xattr to change from v2 to v3, or to fixup the v3 rootid.
 | |
|  *
 | |
|  * If all is ok, we return the new size, on error return < 0.
 | |
|  */
 | |
| int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
 | |
| {
 | |
| 	struct vfs_ns_cap_data *nscap;
 | |
| 	uid_t nsrootid;
 | |
| 	const struct vfs_cap_data *cap = *ivalue;
 | |
| 	__u32 magic, nsmagic;
 | |
| 	struct inode *inode = d_backing_inode(dentry);
 | |
| 	struct user_namespace *task_ns = current_user_ns(),
 | |
| 		*fs_ns = inode->i_sb->s_user_ns;
 | |
| 	kuid_t rootid;
 | |
| 	size_t newsize;
 | |
| 
 | |
| 	if (!*ivalue)
 | |
| 		return -EINVAL;
 | |
| 	if (!validheader(size, cap))
 | |
| 		return -EINVAL;
 | |
| 	if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
 | |
| 		return -EPERM;
 | |
| 	if (size == XATTR_CAPS_SZ_2)
 | |
| 		if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
 | |
| 			/* user is privileged, just write the v2 */
 | |
| 			return size;
 | |
| 
 | |
| 	rootid = rootid_from_xattr(*ivalue, size, task_ns);
 | |
| 	if (!uid_valid(rootid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	nsrootid = from_kuid(fs_ns, rootid);
 | |
| 	if (nsrootid == -1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	newsize = sizeof(struct vfs_ns_cap_data);
 | |
| 	nscap = kmalloc(newsize, GFP_ATOMIC);
 | |
| 	if (!nscap)
 | |
| 		return -ENOMEM;
 | |
| 	nscap->rootid = cpu_to_le32(nsrootid);
 | |
| 	nsmagic = VFS_CAP_REVISION_3;
 | |
| 	magic = le32_to_cpu(cap->magic_etc);
 | |
| 	if (magic & VFS_CAP_FLAGS_EFFECTIVE)
 | |
| 		nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
 | |
| 	nscap->magic_etc = cpu_to_le32(nsmagic);
 | |
| 	memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
 | |
| 
 | |
| 	kvfree(*ivalue);
 | |
| 	*ivalue = nscap;
 | |
| 	return newsize;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the new process capability sets from the capability sets attached
 | |
|  * to a file.
 | |
|  */
 | |
| static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
 | |
| 					  struct linux_binprm *bprm,
 | |
| 					  bool *effective,
 | |
| 					  bool *has_fcap)
 | |
| {
 | |
| 	struct cred *new = bprm->cred;
 | |
| 	unsigned i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
 | |
| 		*effective = true;
 | |
| 
 | |
| 	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
 | |
| 		*has_fcap = true;
 | |
| 
 | |
| 	CAP_FOR_EACH_U32(i) {
 | |
| 		__u32 permitted = caps->permitted.cap[i];
 | |
| 		__u32 inheritable = caps->inheritable.cap[i];
 | |
| 
 | |
| 		/*
 | |
| 		 * pP' = (X & fP) | (pI & fI)
 | |
| 		 * The addition of pA' is handled later.
 | |
| 		 */
 | |
| 		new->cap_permitted.cap[i] =
 | |
| 			(new->cap_bset.cap[i] & permitted) |
 | |
| 			(new->cap_inheritable.cap[i] & inheritable);
 | |
| 
 | |
| 		if (permitted & ~new->cap_permitted.cap[i])
 | |
| 			/* insufficient to execute correctly */
 | |
| 			ret = -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For legacy apps, with no internal support for recognizing they
 | |
| 	 * do not have enough capabilities, we return an error if they are
 | |
| 	 * missing some "forced" (aka file-permitted) capabilities.
 | |
| 	 */
 | |
| 	return *effective ? ret : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract the on-exec-apply capability sets for an executable file.
 | |
|  */
 | |
| int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
 | |
| {
 | |
| 	struct inode *inode = d_backing_inode(dentry);
 | |
| 	__u32 magic_etc;
 | |
| 	unsigned tocopy, i;
 | |
| 	int size;
 | |
| 	struct vfs_ns_cap_data data, *nscaps = &data;
 | |
| 	struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
 | |
| 	kuid_t rootkuid;
 | |
| 	struct user_namespace *fs_ns;
 | |
| 
 | |
| 	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
 | |
| 
 | |
| 	if (!inode)
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	fs_ns = inode->i_sb->s_user_ns;
 | |
| 	size = __vfs_getxattr((struct dentry *)dentry, inode,
 | |
| 			      XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
 | |
| 	if (size == -ENODATA || size == -EOPNOTSUPP)
 | |
| 		/* no data, that's ok */
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	if (size < 0)
 | |
| 		return size;
 | |
| 
 | |
| 	if (size < sizeof(magic_etc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
 | |
| 
 | |
| 	rootkuid = make_kuid(fs_ns, 0);
 | |
| 	switch (magic_etc & VFS_CAP_REVISION_MASK) {
 | |
| 	case VFS_CAP_REVISION_1:
 | |
| 		if (size != XATTR_CAPS_SZ_1)
 | |
| 			return -EINVAL;
 | |
| 		tocopy = VFS_CAP_U32_1;
 | |
| 		break;
 | |
| 	case VFS_CAP_REVISION_2:
 | |
| 		if (size != XATTR_CAPS_SZ_2)
 | |
| 			return -EINVAL;
 | |
| 		tocopy = VFS_CAP_U32_2;
 | |
| 		break;
 | |
| 	case VFS_CAP_REVISION_3:
 | |
| 		if (size != XATTR_CAPS_SZ_3)
 | |
| 			return -EINVAL;
 | |
| 		tocopy = VFS_CAP_U32_3;
 | |
| 		rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	/* Limit the caps to the mounter of the filesystem
 | |
| 	 * or the more limited uid specified in the xattr.
 | |
| 	 */
 | |
| 	if (!rootid_owns_currentns(rootkuid))
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	CAP_FOR_EACH_U32(i) {
 | |
| 		if (i >= tocopy)
 | |
| 			break;
 | |
| 		cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
 | |
| 		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
 | |
| 	}
 | |
| 
 | |
| 	cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
 | |
| 	cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
 | |
| 
 | |
| 	cpu_caps->rootid = rootkuid;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to get the on-exec apply capability sets for an executable file from
 | |
|  * its xattrs and, if present, apply them to the proposed credentials being
 | |
|  * constructed by execve().
 | |
|  */
 | |
| static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
 | |
| {
 | |
| 	int rc = 0;
 | |
| 	struct cpu_vfs_cap_data vcaps;
 | |
| 
 | |
| 	cap_clear(bprm->cred->cap_permitted);
 | |
| 
 | |
| 	if (!file_caps_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!mnt_may_suid(bprm->file->f_path.mnt))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This check is redundant with mnt_may_suid() but is kept to make
 | |
| 	 * explicit that capability bits are limited to s_user_ns and its
 | |
| 	 * descendants.
 | |
| 	 */
 | |
| 	if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
 | |
| 		return 0;
 | |
| 
 | |
| 	rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 | |
| 	if (rc < 0) {
 | |
| 		if (rc == -EINVAL)
 | |
| 			printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
 | |
| 					bprm->filename);
 | |
| 		else if (rc == -ENODATA)
 | |
| 			rc = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
 | |
| 
 | |
| out:
 | |
| 	if (rc)
 | |
| 		cap_clear(bprm->cred->cap_permitted);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
 | |
| 
 | |
| static inline bool __is_real(kuid_t uid, struct cred *cred)
 | |
| { return uid_eq(cred->uid, uid); }
 | |
| 
 | |
| static inline bool __is_eff(kuid_t uid, struct cred *cred)
 | |
| { return uid_eq(cred->euid, uid); }
 | |
| 
 | |
| static inline bool __is_suid(kuid_t uid, struct cred *cred)
 | |
| { return !__is_real(uid, cred) && __is_eff(uid, cred); }
 | |
| 
 | |
| /*
 | |
|  * handle_privileged_root - Handle case of privileged root
 | |
|  * @bprm: The execution parameters, including the proposed creds
 | |
|  * @has_fcap: Are any file capabilities set?
 | |
|  * @effective: Do we have effective root privilege?
 | |
|  * @root_uid: This namespace' root UID WRT initial USER namespace
 | |
|  *
 | |
|  * Handle the case where root is privileged and hasn't been neutered by
 | |
|  * SECURE_NOROOT.  If file capabilities are set, they won't be combined with
 | |
|  * set UID root and nothing is changed.  If we are root, cap_permitted is
 | |
|  * updated.  If we have become set UID root, the effective bit is set.
 | |
|  */
 | |
| static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
 | |
| 				   bool *effective, kuid_t root_uid)
 | |
| {
 | |
| 	const struct cred *old = current_cred();
 | |
| 	struct cred *new = bprm->cred;
 | |
| 
 | |
| 	if (!root_privileged())
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * If the legacy file capability is set, then don't set privs
 | |
| 	 * for a setuid root binary run by a non-root user.  Do set it
 | |
| 	 * for a root user just to cause least surprise to an admin.
 | |
| 	 */
 | |
| 	if (has_fcap && __is_suid(root_uid, new)) {
 | |
| 		warn_setuid_and_fcaps_mixed(bprm->filename);
 | |
| 		return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * To support inheritance of root-permissions and suid-root
 | |
| 	 * executables under compatibility mode, we override the
 | |
| 	 * capability sets for the file.
 | |
| 	 */
 | |
| 	if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
 | |
| 		/* pP' = (cap_bset & ~0) | (pI & ~0) */
 | |
| 		new->cap_permitted = cap_combine(old->cap_bset,
 | |
| 						 old->cap_inheritable);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If only the real uid is 0, we do not set the effective bit.
 | |
| 	 */
 | |
| 	if (__is_eff(root_uid, new))
 | |
| 		*effective = true;
 | |
| }
 | |
| 
 | |
| #define __cap_gained(field, target, source) \
 | |
| 	!cap_issubset(target->cap_##field, source->cap_##field)
 | |
| #define __cap_grew(target, source, cred) \
 | |
| 	!cap_issubset(cred->cap_##target, cred->cap_##source)
 | |
| #define __cap_full(field, cred) \
 | |
| 	cap_issubset(CAP_FULL_SET, cred->cap_##field)
 | |
| 
 | |
| static inline bool __is_setuid(struct cred *new, const struct cred *old)
 | |
| { return !uid_eq(new->euid, old->uid); }
 | |
| 
 | |
| static inline bool __is_setgid(struct cred *new, const struct cred *old)
 | |
| { return !gid_eq(new->egid, old->gid); }
 | |
| 
 | |
| /*
 | |
|  * 1) Audit candidate if current->cap_effective is set
 | |
|  *
 | |
|  * We do not bother to audit if 3 things are true:
 | |
|  *   1) cap_effective has all caps
 | |
|  *   2) we became root *OR* are were already root
 | |
|  *   3) root is supposed to have all caps (SECURE_NOROOT)
 | |
|  * Since this is just a normal root execing a process.
 | |
|  *
 | |
|  * Number 1 above might fail if you don't have a full bset, but I think
 | |
|  * that is interesting information to audit.
 | |
|  *
 | |
|  * A number of other conditions require logging:
 | |
|  * 2) something prevented setuid root getting all caps
 | |
|  * 3) non-setuid root gets fcaps
 | |
|  * 4) non-setuid root gets ambient
 | |
|  */
 | |
| static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
 | |
| 				     kuid_t root, bool has_fcap)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if ((__cap_grew(effective, ambient, new) &&
 | |
| 	     !(__cap_full(effective, new) &&
 | |
| 	       (__is_eff(root, new) || __is_real(root, new)) &&
 | |
| 	       root_privileged())) ||
 | |
| 	    (root_privileged() &&
 | |
| 	     __is_suid(root, new) &&
 | |
| 	     !__cap_full(effective, new)) ||
 | |
| 	    (!__is_setuid(new, old) &&
 | |
| 	     ((has_fcap &&
 | |
| 	       __cap_gained(permitted, new, old)) ||
 | |
| 	      __cap_gained(ambient, new, old))))
 | |
| 
 | |
| 		ret = true;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_bprm_set_creds - Set up the proposed credentials for execve().
 | |
|  * @bprm: The execution parameters, including the proposed creds
 | |
|  *
 | |
|  * Set up the proposed credentials for a new execution context being
 | |
|  * constructed by execve().  The proposed creds in @bprm->cred is altered,
 | |
|  * which won't take effect immediately.  Returns 0 if successful, -ve on error.
 | |
|  */
 | |
| int cap_bprm_set_creds(struct linux_binprm *bprm)
 | |
| {
 | |
| 	const struct cred *old = current_cred();
 | |
| 	struct cred *new = bprm->cred;
 | |
| 	bool effective = false, has_fcap = false, is_setid;
 | |
| 	int ret;
 | |
| 	kuid_t root_uid;
 | |
| 
 | |
| 	if (WARN_ON(!cap_ambient_invariant_ok(old)))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	ret = get_file_caps(bprm, &effective, &has_fcap);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	root_uid = make_kuid(new->user_ns, 0);
 | |
| 
 | |
| 	handle_privileged_root(bprm, has_fcap, &effective, root_uid);
 | |
| 
 | |
| 	/* if we have fs caps, clear dangerous personality flags */
 | |
| 	if (__cap_gained(permitted, new, old))
 | |
| 		bprm->per_clear |= PER_CLEAR_ON_SETID;
 | |
| 
 | |
| 	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
 | |
| 	 * credentials unless they have the appropriate permit.
 | |
| 	 *
 | |
| 	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
 | |
| 	 */
 | |
| 	is_setid = __is_setuid(new, old) || __is_setgid(new, old);
 | |
| 
 | |
| 	if ((is_setid || __cap_gained(permitted, new, old)) &&
 | |
| 	    ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
 | |
| 	     !ptracer_capable(current, new->user_ns))) {
 | |
| 		/* downgrade; they get no more than they had, and maybe less */
 | |
| 		if (!ns_capable(new->user_ns, CAP_SETUID) ||
 | |
| 		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
 | |
| 			new->euid = new->uid;
 | |
| 			new->egid = new->gid;
 | |
| 		}
 | |
| 		new->cap_permitted = cap_intersect(new->cap_permitted,
 | |
| 						   old->cap_permitted);
 | |
| 	}
 | |
| 
 | |
| 	new->suid = new->fsuid = new->euid;
 | |
| 	new->sgid = new->fsgid = new->egid;
 | |
| 
 | |
| 	/* File caps or setid cancels ambient. */
 | |
| 	if (has_fcap || is_setid)
 | |
| 		cap_clear(new->cap_ambient);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we've computed pA', update pP' to give:
 | |
| 	 *   pP' = (X & fP) | (pI & fI) | pA'
 | |
| 	 */
 | |
| 	new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
 | |
| 	 * this is the same as pE' = (fE ? pP' : 0) | pA'.
 | |
| 	 */
 | |
| 	if (effective)
 | |
| 		new->cap_effective = new->cap_permitted;
 | |
| 	else
 | |
| 		new->cap_effective = new->cap_ambient;
 | |
| 
 | |
| 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
 | |
| 		ret = audit_log_bprm_fcaps(bprm, new, old);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 | |
| 
 | |
| 	if (WARN_ON(!cap_ambient_invariant_ok(new)))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/* Check for privilege-elevated exec. */
 | |
| 	bprm->cap_elevated = 0;
 | |
| 	if (is_setid ||
 | |
| 	    (!__is_real(root_uid, new) &&
 | |
| 	     (effective ||
 | |
| 	      __cap_grew(permitted, ambient, new))))
 | |
| 		bprm->cap_elevated = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_inode_setxattr - Determine whether an xattr may be altered
 | |
|  * @dentry: The inode/dentry being altered
 | |
|  * @name: The name of the xattr to be changed
 | |
|  * @value: The value that the xattr will be changed to
 | |
|  * @size: The size of value
 | |
|  * @flags: The replacement flag
 | |
|  *
 | |
|  * Determine whether an xattr may be altered or set on an inode, returning 0 if
 | |
|  * permission is granted, -ve if denied.
 | |
|  *
 | |
|  * This is used to make sure security xattrs don't get updated or set by those
 | |
|  * who aren't privileged to do so.
 | |
|  */
 | |
| int cap_inode_setxattr(struct dentry *dentry, const char *name,
 | |
| 		       const void *value, size_t size, int flags)
 | |
| {
 | |
| 	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
 | |
| 
 | |
| 	/* Ignore non-security xattrs */
 | |
| 	if (strncmp(name, XATTR_SECURITY_PREFIX,
 | |
| 			XATTR_SECURITY_PREFIX_LEN) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For XATTR_NAME_CAPS the check will be done in
 | |
| 	 * cap_convert_nscap(), called by setxattr()
 | |
| 	 */
 | |
| 	if (strcmp(name, XATTR_NAME_CAPS) == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_inode_removexattr - Determine whether an xattr may be removed
 | |
|  * @dentry: The inode/dentry being altered
 | |
|  * @name: The name of the xattr to be changed
 | |
|  *
 | |
|  * Determine whether an xattr may be removed from an inode, returning 0 if
 | |
|  * permission is granted, -ve if denied.
 | |
|  *
 | |
|  * This is used to make sure security xattrs don't get removed by those who
 | |
|  * aren't privileged to remove them.
 | |
|  */
 | |
| int cap_inode_removexattr(struct dentry *dentry, const char *name)
 | |
| {
 | |
| 	struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
 | |
| 
 | |
| 	/* Ignore non-security xattrs */
 | |
| 	if (strncmp(name, XATTR_SECURITY_PREFIX,
 | |
| 			XATTR_SECURITY_PREFIX_LEN) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (strcmp(name, XATTR_NAME_CAPS) == 0) {
 | |
| 		/* security.capability gets namespaced */
 | |
| 		struct inode *inode = d_backing_inode(dentry);
 | |
| 		if (!inode)
 | |
| 			return -EINVAL;
 | |
| 		if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
 | |
| 			return -EPERM;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
 | |
| 		return -EPERM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cap_emulate_setxuid() fixes the effective / permitted capabilities of
 | |
|  * a process after a call to setuid, setreuid, or setresuid.
 | |
|  *
 | |
|  *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
 | |
|  *  {r,e,s}uid != 0, the permitted and effective capabilities are
 | |
|  *  cleared.
 | |
|  *
 | |
|  *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
 | |
|  *  capabilities of the process are cleared.
 | |
|  *
 | |
|  *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
 | |
|  *  capabilities are set to the permitted capabilities.
 | |
|  *
 | |
|  *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
 | |
|  *  never happen.
 | |
|  *
 | |
|  *  -astor
 | |
|  *
 | |
|  * cevans - New behaviour, Oct '99
 | |
|  * A process may, via prctl(), elect to keep its capabilities when it
 | |
|  * calls setuid() and switches away from uid==0. Both permitted and
 | |
|  * effective sets will be retained.
 | |
|  * Without this change, it was impossible for a daemon to drop only some
 | |
|  * of its privilege. The call to setuid(!=0) would drop all privileges!
 | |
|  * Keeping uid 0 is not an option because uid 0 owns too many vital
 | |
|  * files..
 | |
|  * Thanks to Olaf Kirch and Peter Benie for spotting this.
 | |
|  */
 | |
| static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
 | |
| {
 | |
| 	kuid_t root_uid = make_kuid(old->user_ns, 0);
 | |
| 
 | |
| 	if ((uid_eq(old->uid, root_uid) ||
 | |
| 	     uid_eq(old->euid, root_uid) ||
 | |
| 	     uid_eq(old->suid, root_uid)) &&
 | |
| 	    (!uid_eq(new->uid, root_uid) &&
 | |
| 	     !uid_eq(new->euid, root_uid) &&
 | |
| 	     !uid_eq(new->suid, root_uid))) {
 | |
| 		if (!issecure(SECURE_KEEP_CAPS)) {
 | |
| 			cap_clear(new->cap_permitted);
 | |
| 			cap_clear(new->cap_effective);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Pre-ambient programs expect setresuid to nonroot followed
 | |
| 		 * by exec to drop capabilities.  We should make sure that
 | |
| 		 * this remains the case.
 | |
| 		 */
 | |
| 		cap_clear(new->cap_ambient);
 | |
| 	}
 | |
| 	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
 | |
| 		cap_clear(new->cap_effective);
 | |
| 	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
 | |
| 		new->cap_effective = new->cap_permitted;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_task_fix_setuid - Fix up the results of setuid() call
 | |
|  * @new: The proposed credentials
 | |
|  * @old: The current task's current credentials
 | |
|  * @flags: Indications of what has changed
 | |
|  *
 | |
|  * Fix up the results of setuid() call before the credential changes are
 | |
|  * actually applied, returning 0 to grant the changes, -ve to deny them.
 | |
|  */
 | |
| int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
 | |
| {
 | |
| 	switch (flags) {
 | |
| 	case LSM_SETID_RE:
 | |
| 	case LSM_SETID_ID:
 | |
| 	case LSM_SETID_RES:
 | |
| 		/* juggle the capabilities to follow [RES]UID changes unless
 | |
| 		 * otherwise suppressed */
 | |
| 		if (!issecure(SECURE_NO_SETUID_FIXUP))
 | |
| 			cap_emulate_setxuid(new, old);
 | |
| 		break;
 | |
| 
 | |
| 	case LSM_SETID_FS:
 | |
| 		/* juggle the capabilties to follow FSUID changes, unless
 | |
| 		 * otherwise suppressed
 | |
| 		 *
 | |
| 		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
 | |
| 		 *          if not, we might be a bit too harsh here.
 | |
| 		 */
 | |
| 		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
 | |
| 			kuid_t root_uid = make_kuid(old->user_ns, 0);
 | |
| 			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
 | |
| 				new->cap_effective =
 | |
| 					cap_drop_fs_set(new->cap_effective);
 | |
| 
 | |
| 			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
 | |
| 				new->cap_effective =
 | |
| 					cap_raise_fs_set(new->cap_effective,
 | |
| 							 new->cap_permitted);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rationale: code calling task_setscheduler, task_setioprio, and
 | |
|  * task_setnice, assumes that
 | |
|  *   . if capable(cap_sys_nice), then those actions should be allowed
 | |
|  *   . if not capable(cap_sys_nice), but acting on your own processes,
 | |
|  *   	then those actions should be allowed
 | |
|  * This is insufficient now since you can call code without suid, but
 | |
|  * yet with increased caps.
 | |
|  * So we check for increased caps on the target process.
 | |
|  */
 | |
| static int cap_safe_nice(struct task_struct *p)
 | |
| {
 | |
| 	int is_subset, ret = 0;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
 | |
| 				 current_cred()->cap_permitted);
 | |
| 	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
 | |
| 		ret = -EPERM;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_task_setscheduler - Detemine if scheduler policy change is permitted
 | |
|  * @p: The task to affect
 | |
|  *
 | |
|  * Detemine if the requested scheduler policy change is permitted for the
 | |
|  * specified task, returning 0 if permission is granted, -ve if denied.
 | |
|  */
 | |
| int cap_task_setscheduler(struct task_struct *p)
 | |
| {
 | |
| 	return cap_safe_nice(p);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_task_ioprio - Detemine if I/O priority change is permitted
 | |
|  * @p: The task to affect
 | |
|  * @ioprio: The I/O priority to set
 | |
|  *
 | |
|  * Detemine if the requested I/O priority change is permitted for the specified
 | |
|  * task, returning 0 if permission is granted, -ve if denied.
 | |
|  */
 | |
| int cap_task_setioprio(struct task_struct *p, int ioprio)
 | |
| {
 | |
| 	return cap_safe_nice(p);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_task_ioprio - Detemine if task priority change is permitted
 | |
|  * @p: The task to affect
 | |
|  * @nice: The nice value to set
 | |
|  *
 | |
|  * Detemine if the requested task priority change is permitted for the
 | |
|  * specified task, returning 0 if permission is granted, -ve if denied.
 | |
|  */
 | |
| int cap_task_setnice(struct task_struct *p, int nice)
 | |
| {
 | |
| 	return cap_safe_nice(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
 | |
|  * the current task's bounding set.  Returns 0 on success, -ve on error.
 | |
|  */
 | |
| static int cap_prctl_drop(unsigned long cap)
 | |
| {
 | |
| 	struct cred *new;
 | |
| 
 | |
| 	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
 | |
| 		return -EPERM;
 | |
| 	if (!cap_valid(cap))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new = prepare_creds();
 | |
| 	if (!new)
 | |
| 		return -ENOMEM;
 | |
| 	cap_lower(new->cap_bset, cap);
 | |
| 	return commit_creds(new);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_task_prctl - Implement process control functions for this security module
 | |
|  * @option: The process control function requested
 | |
|  * @arg2, @arg3, @arg4, @arg5: The argument data for this function
 | |
|  *
 | |
|  * Allow process control functions (sys_prctl()) to alter capabilities; may
 | |
|  * also deny access to other functions not otherwise implemented here.
 | |
|  *
 | |
|  * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
 | |
|  * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
 | |
|  * modules will consider performing the function.
 | |
|  */
 | |
| int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 | |
| 		   unsigned long arg4, unsigned long arg5)
 | |
| {
 | |
| 	const struct cred *old = current_cred();
 | |
| 	struct cred *new;
 | |
| 
 | |
| 	switch (option) {
 | |
| 	case PR_CAPBSET_READ:
 | |
| 		if (!cap_valid(arg2))
 | |
| 			return -EINVAL;
 | |
| 		return !!cap_raised(old->cap_bset, arg2);
 | |
| 
 | |
| 	case PR_CAPBSET_DROP:
 | |
| 		return cap_prctl_drop(arg2);
 | |
| 
 | |
| 	/*
 | |
| 	 * The next four prctl's remain to assist with transitioning a
 | |
| 	 * system from legacy UID=0 based privilege (when filesystem
 | |
| 	 * capabilities are not in use) to a system using filesystem
 | |
| 	 * capabilities only - as the POSIX.1e draft intended.
 | |
| 	 *
 | |
| 	 * Note:
 | |
| 	 *
 | |
| 	 *  PR_SET_SECUREBITS =
 | |
| 	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
 | |
| 	 *    | issecure_mask(SECURE_NOROOT)
 | |
| 	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
 | |
| 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
 | |
| 	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
 | |
| 	 *
 | |
| 	 * will ensure that the current process and all of its
 | |
| 	 * children will be locked into a pure
 | |
| 	 * capability-based-privilege environment.
 | |
| 	 */
 | |
| 	case PR_SET_SECUREBITS:
 | |
| 		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
 | |
| 		     & (old->securebits ^ arg2))			/*[1]*/
 | |
| 		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
 | |
| 		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
 | |
| 		    || (cap_capable(current_cred(),
 | |
| 				    current_cred()->user_ns,
 | |
| 				    CAP_SETPCAP,
 | |
| 				    CAP_OPT_NONE) != 0)			/*[4]*/
 | |
| 			/*
 | |
| 			 * [1] no changing of bits that are locked
 | |
| 			 * [2] no unlocking of locks
 | |
| 			 * [3] no setting of unsupported bits
 | |
| 			 * [4] doing anything requires privilege (go read about
 | |
| 			 *     the "sendmail capabilities bug")
 | |
| 			 */
 | |
| 		    )
 | |
| 			/* cannot change a locked bit */
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		new = prepare_creds();
 | |
| 		if (!new)
 | |
| 			return -ENOMEM;
 | |
| 		new->securebits = arg2;
 | |
| 		return commit_creds(new);
 | |
| 
 | |
| 	case PR_GET_SECUREBITS:
 | |
| 		return old->securebits;
 | |
| 
 | |
| 	case PR_GET_KEEPCAPS:
 | |
| 		return !!issecure(SECURE_KEEP_CAPS);
 | |
| 
 | |
| 	case PR_SET_KEEPCAPS:
 | |
| 		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
 | |
| 			return -EINVAL;
 | |
| 		if (issecure(SECURE_KEEP_CAPS_LOCKED))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		new = prepare_creds();
 | |
| 		if (!new)
 | |
| 			return -ENOMEM;
 | |
| 		if (arg2)
 | |
| 			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
 | |
| 		else
 | |
| 			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
 | |
| 		return commit_creds(new);
 | |
| 
 | |
| 	case PR_CAP_AMBIENT:
 | |
| 		if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
 | |
| 			if (arg3 | arg4 | arg5)
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			new = prepare_creds();
 | |
| 			if (!new)
 | |
| 				return -ENOMEM;
 | |
| 			cap_clear(new->cap_ambient);
 | |
| 			return commit_creds(new);
 | |
| 		}
 | |
| 
 | |
| 		if (((!cap_valid(arg3)) | arg4 | arg5))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (arg2 == PR_CAP_AMBIENT_IS_SET) {
 | |
| 			return !!cap_raised(current_cred()->cap_ambient, arg3);
 | |
| 		} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
 | |
| 			   arg2 != PR_CAP_AMBIENT_LOWER) {
 | |
| 			return -EINVAL;
 | |
| 		} else {
 | |
| 			if (arg2 == PR_CAP_AMBIENT_RAISE &&
 | |
| 			    (!cap_raised(current_cred()->cap_permitted, arg3) ||
 | |
| 			     !cap_raised(current_cred()->cap_inheritable,
 | |
| 					 arg3) ||
 | |
| 			     issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
 | |
| 				return -EPERM;
 | |
| 
 | |
| 			new = prepare_creds();
 | |
| 			if (!new)
 | |
| 				return -ENOMEM;
 | |
| 			if (arg2 == PR_CAP_AMBIENT_RAISE)
 | |
| 				cap_raise(new->cap_ambient, arg3);
 | |
| 			else
 | |
| 				cap_lower(new->cap_ambient, arg3);
 | |
| 			return commit_creds(new);
 | |
| 		}
 | |
| 
 | |
| 	default:
 | |
| 		/* No functionality available - continue with default */
 | |
| 		return -ENOSYS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
 | |
|  * @mm: The VM space in which the new mapping is to be made
 | |
|  * @pages: The size of the mapping
 | |
|  *
 | |
|  * Determine whether the allocation of a new virtual mapping by the current
 | |
|  * task is permitted, returning 1 if permission is granted, 0 if not.
 | |
|  */
 | |
| int cap_vm_enough_memory(struct mm_struct *mm, long pages)
 | |
| {
 | |
| 	int cap_sys_admin = 0;
 | |
| 
 | |
| 	if (cap_capable(current_cred(), &init_user_ns,
 | |
| 				CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
 | |
| 		cap_sys_admin = 1;
 | |
| 
 | |
| 	return cap_sys_admin;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * cap_mmap_addr - check if able to map given addr
 | |
|  * @addr: address attempting to be mapped
 | |
|  *
 | |
|  * If the process is attempting to map memory below dac_mmap_min_addr they need
 | |
|  * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
 | |
|  * capability security module.  Returns 0 if this mapping should be allowed
 | |
|  * -EPERM if not.
 | |
|  */
 | |
| int cap_mmap_addr(unsigned long addr)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (addr < dac_mmap_min_addr) {
 | |
| 		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
 | |
| 				  CAP_OPT_NONE);
 | |
| 		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
 | |
| 		if (ret == 0)
 | |
| 			current->flags |= PF_SUPERPRIV;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int cap_mmap_file(struct file *file, unsigned long reqprot,
 | |
| 		  unsigned long prot, unsigned long flags)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SECURITY
 | |
| 
 | |
| static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
 | |
| 	LSM_HOOK_INIT(capable, cap_capable),
 | |
| 	LSM_HOOK_INIT(settime, cap_settime),
 | |
| 	LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
 | |
| 	LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
 | |
| 	LSM_HOOK_INIT(capget, cap_capget),
 | |
| 	LSM_HOOK_INIT(capset, cap_capset),
 | |
| 	LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
 | |
| 	LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
 | |
| 	LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
 | |
| 	LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
 | |
| 	LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
 | |
| 	LSM_HOOK_INIT(mmap_file, cap_mmap_file),
 | |
| 	LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
 | |
| 	LSM_HOOK_INIT(task_prctl, cap_task_prctl),
 | |
| 	LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
 | |
| 	LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
 | |
| 	LSM_HOOK_INIT(task_setnice, cap_task_setnice),
 | |
| 	LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
 | |
| };
 | |
| 
 | |
| static int __init capability_init(void)
 | |
| {
 | |
| 	security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
 | |
| 				"capability");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| DEFINE_LSM(capability) = {
 | |
| 	.name = "capability",
 | |
| 	.order = LSM_ORDER_FIRST,
 | |
| 	.init = capability_init,
 | |
| };
 | |
| 
 | |
| #endif /* CONFIG_SECURITY */
 |