forked from mirrors/linux
		
	The 'end_byte' parameter of filemap_range_has_page is required to be
inclusive, so follow the rule.
Link: http://lkml.kernel.org/r/1548678679-18122-1-git-send-email-zhengbin13@huawei.com
Fixes: 6be96d3ad3 ("fs: return if direct I/O will trigger writeback")
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hou Tao <houtao1@huawei.com>
Cc: zhangyi (F) <yi.zhang@huawei.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
	
			
		
			
				
	
	
		
			3390 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3390 lines
		
	
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *	linux/mm/filemap.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 1994-1999  Linus Torvalds
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * This file handles the generic file mmap semantics used by
 | 
						|
 * most "normal" filesystems (but you don't /have/ to use this:
 | 
						|
 * the NFS filesystem used to do this differently, for example)
 | 
						|
 */
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
#include <linux/dax.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/sched/signal.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/capability.h>
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/uio.h>
 | 
						|
#include <linux/hash.h>
 | 
						|
#include <linux/writeback.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/cpuset.h>
 | 
						|
#include <linux/hugetlb.h>
 | 
						|
#include <linux/memcontrol.h>
 | 
						|
#include <linux/cleancache.h>
 | 
						|
#include <linux/shmem_fs.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include <linux/delayacct.h>
 | 
						|
#include <linux/psi.h>
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
#define CREATE_TRACE_POINTS
 | 
						|
#include <trace/events/filemap.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * FIXME: remove all knowledge of the buffer layer from the core VM
 | 
						|
 */
 | 
						|
#include <linux/buffer_head.h> /* for try_to_free_buffers */
 | 
						|
 | 
						|
#include <asm/mman.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 | 
						|
 * though.
 | 
						|
 *
 | 
						|
 * Shared mappings now work. 15.8.1995  Bruno.
 | 
						|
 *
 | 
						|
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 | 
						|
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 | 
						|
 *
 | 
						|
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Lock ordering:
 | 
						|
 *
 | 
						|
 *  ->i_mmap_rwsem		(truncate_pagecache)
 | 
						|
 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
 | 
						|
 *      ->swap_lock		(exclusive_swap_page, others)
 | 
						|
 *        ->i_pages lock
 | 
						|
 *
 | 
						|
 *  ->i_mutex
 | 
						|
 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
 | 
						|
 *
 | 
						|
 *  ->mmap_sem
 | 
						|
 *    ->i_mmap_rwsem
 | 
						|
 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
 | 
						|
 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
 | 
						|
 *
 | 
						|
 *  ->mmap_sem
 | 
						|
 *    ->lock_page		(access_process_vm)
 | 
						|
 *
 | 
						|
 *  ->i_mutex			(generic_perform_write)
 | 
						|
 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
 | 
						|
 *
 | 
						|
 *  bdi->wb.list_lock
 | 
						|
 *    sb_lock			(fs/fs-writeback.c)
 | 
						|
 *    ->i_pages lock		(__sync_single_inode)
 | 
						|
 *
 | 
						|
 *  ->i_mmap_rwsem
 | 
						|
 *    ->anon_vma.lock		(vma_adjust)
 | 
						|
 *
 | 
						|
 *  ->anon_vma.lock
 | 
						|
 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 | 
						|
 *
 | 
						|
 *  ->page_table_lock or pte_lock
 | 
						|
 *    ->swap_lock		(try_to_unmap_one)
 | 
						|
 *    ->private_lock		(try_to_unmap_one)
 | 
						|
 *    ->i_pages lock		(try_to_unmap_one)
 | 
						|
 *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
 | 
						|
 *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
 | 
						|
 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 | 
						|
 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 | 
						|
 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 | 
						|
 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 | 
						|
 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 | 
						|
 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 | 
						|
 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 | 
						|
 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 | 
						|
 *
 | 
						|
 * ->i_mmap_rwsem
 | 
						|
 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 | 
						|
 */
 | 
						|
 | 
						|
static void page_cache_delete(struct address_space *mapping,
 | 
						|
				   struct page *page, void *shadow)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, page->index);
 | 
						|
	unsigned int nr = 1;
 | 
						|
 | 
						|
	mapping_set_update(&xas, mapping);
 | 
						|
 | 
						|
	/* hugetlb pages are represented by a single entry in the xarray */
 | 
						|
	if (!PageHuge(page)) {
 | 
						|
		xas_set_order(&xas, page->index, compound_order(page));
 | 
						|
		nr = 1U << compound_order(page);
 | 
						|
	}
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	VM_BUG_ON_PAGE(PageTail(page), page);
 | 
						|
	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 | 
						|
 | 
						|
	xas_store(&xas, shadow);
 | 
						|
	xas_init_marks(&xas);
 | 
						|
 | 
						|
	page->mapping = NULL;
 | 
						|
	/* Leave page->index set: truncation lookup relies upon it */
 | 
						|
 | 
						|
	if (shadow) {
 | 
						|
		mapping->nrexceptional += nr;
 | 
						|
		/*
 | 
						|
		 * Make sure the nrexceptional update is committed before
 | 
						|
		 * the nrpages update so that final truncate racing
 | 
						|
		 * with reclaim does not see both counters 0 at the
 | 
						|
		 * same time and miss a shadow entry.
 | 
						|
		 */
 | 
						|
		smp_wmb();
 | 
						|
	}
 | 
						|
	mapping->nrpages -= nr;
 | 
						|
}
 | 
						|
 | 
						|
static void unaccount_page_cache_page(struct address_space *mapping,
 | 
						|
				      struct page *page)
 | 
						|
{
 | 
						|
	int nr;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * if we're uptodate, flush out into the cleancache, otherwise
 | 
						|
	 * invalidate any existing cleancache entries.  We can't leave
 | 
						|
	 * stale data around in the cleancache once our page is gone
 | 
						|
	 */
 | 
						|
	if (PageUptodate(page) && PageMappedToDisk(page))
 | 
						|
		cleancache_put_page(page);
 | 
						|
	else
 | 
						|
		cleancache_invalidate_page(mapping, page);
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(PageTail(page), page);
 | 
						|
	VM_BUG_ON_PAGE(page_mapped(page), page);
 | 
						|
	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 | 
						|
		int mapcount;
 | 
						|
 | 
						|
		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 | 
						|
			 current->comm, page_to_pfn(page));
 | 
						|
		dump_page(page, "still mapped when deleted");
 | 
						|
		dump_stack();
 | 
						|
		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 | 
						|
 | 
						|
		mapcount = page_mapcount(page);
 | 
						|
		if (mapping_exiting(mapping) &&
 | 
						|
		    page_count(page) >= mapcount + 2) {
 | 
						|
			/*
 | 
						|
			 * All vmas have already been torn down, so it's
 | 
						|
			 * a good bet that actually the page is unmapped,
 | 
						|
			 * and we'd prefer not to leak it: if we're wrong,
 | 
						|
			 * some other bad page check should catch it later.
 | 
						|
			 */
 | 
						|
			page_mapcount_reset(page);
 | 
						|
			page_ref_sub(page, mapcount);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* hugetlb pages do not participate in page cache accounting. */
 | 
						|
	if (PageHuge(page))
 | 
						|
		return;
 | 
						|
 | 
						|
	nr = hpage_nr_pages(page);
 | 
						|
 | 
						|
	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 | 
						|
	if (PageSwapBacked(page)) {
 | 
						|
		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 | 
						|
		if (PageTransHuge(page))
 | 
						|
			__dec_node_page_state(page, NR_SHMEM_THPS);
 | 
						|
	} else {
 | 
						|
		VM_BUG_ON_PAGE(PageTransHuge(page), page);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point page must be either written or cleaned by
 | 
						|
	 * truncate.  Dirty page here signals a bug and loss of
 | 
						|
	 * unwritten data.
 | 
						|
	 *
 | 
						|
	 * This fixes dirty accounting after removing the page entirely
 | 
						|
	 * but leaves PageDirty set: it has no effect for truncated
 | 
						|
	 * page and anyway will be cleared before returning page into
 | 
						|
	 * buddy allocator.
 | 
						|
	 */
 | 
						|
	if (WARN_ON_ONCE(PageDirty(page)))
 | 
						|
		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Delete a page from the page cache and free it. Caller has to make
 | 
						|
 * sure the page is locked and that nobody else uses it - or that usage
 | 
						|
 * is safe.  The caller must hold the i_pages lock.
 | 
						|
 */
 | 
						|
void __delete_from_page_cache(struct page *page, void *shadow)
 | 
						|
{
 | 
						|
	struct address_space *mapping = page->mapping;
 | 
						|
 | 
						|
	trace_mm_filemap_delete_from_page_cache(page);
 | 
						|
 | 
						|
	unaccount_page_cache_page(mapping, page);
 | 
						|
	page_cache_delete(mapping, page, shadow);
 | 
						|
}
 | 
						|
 | 
						|
static void page_cache_free_page(struct address_space *mapping,
 | 
						|
				struct page *page)
 | 
						|
{
 | 
						|
	void (*freepage)(struct page *);
 | 
						|
 | 
						|
	freepage = mapping->a_ops->freepage;
 | 
						|
	if (freepage)
 | 
						|
		freepage(page);
 | 
						|
 | 
						|
	if (PageTransHuge(page) && !PageHuge(page)) {
 | 
						|
		page_ref_sub(page, HPAGE_PMD_NR);
 | 
						|
		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 | 
						|
	} else {
 | 
						|
		put_page(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * delete_from_page_cache - delete page from page cache
 | 
						|
 * @page: the page which the kernel is trying to remove from page cache
 | 
						|
 *
 | 
						|
 * This must be called only on pages that have been verified to be in the page
 | 
						|
 * cache and locked.  It will never put the page into the free list, the caller
 | 
						|
 * has a reference on the page.
 | 
						|
 */
 | 
						|
void delete_from_page_cache(struct page *page)
 | 
						|
{
 | 
						|
	struct address_space *mapping = page_mapping(page);
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
	xa_lock_irqsave(&mapping->i_pages, flags);
 | 
						|
	__delete_from_page_cache(page, NULL);
 | 
						|
	xa_unlock_irqrestore(&mapping->i_pages, flags);
 | 
						|
 | 
						|
	page_cache_free_page(mapping, page);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(delete_from_page_cache);
 | 
						|
 | 
						|
/*
 | 
						|
 * page_cache_delete_batch - delete several pages from page cache
 | 
						|
 * @mapping: the mapping to which pages belong
 | 
						|
 * @pvec: pagevec with pages to delete
 | 
						|
 *
 | 
						|
 * The function walks over mapping->i_pages and removes pages passed in @pvec
 | 
						|
 * from the mapping. The function expects @pvec to be sorted by page index.
 | 
						|
 * It tolerates holes in @pvec (mapping entries at those indices are not
 | 
						|
 * modified). The function expects only THP head pages to be present in the
 | 
						|
 * @pvec and takes care to delete all corresponding tail pages from the
 | 
						|
 * mapping as well.
 | 
						|
 *
 | 
						|
 * The function expects the i_pages lock to be held.
 | 
						|
 */
 | 
						|
static void page_cache_delete_batch(struct address_space *mapping,
 | 
						|
			     struct pagevec *pvec)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 | 
						|
	int total_pages = 0;
 | 
						|
	int i = 0, tail_pages = 0;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	mapping_set_update(&xas, mapping);
 | 
						|
	xas_for_each(&xas, page, ULONG_MAX) {
 | 
						|
		if (i >= pagevec_count(pvec) && !tail_pages)
 | 
						|
			break;
 | 
						|
		if (xa_is_value(page))
 | 
						|
			continue;
 | 
						|
		if (!tail_pages) {
 | 
						|
			/*
 | 
						|
			 * Some page got inserted in our range? Skip it. We
 | 
						|
			 * have our pages locked so they are protected from
 | 
						|
			 * being removed.
 | 
						|
			 */
 | 
						|
			if (page != pvec->pages[i]) {
 | 
						|
				VM_BUG_ON_PAGE(page->index >
 | 
						|
						pvec->pages[i]->index, page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			WARN_ON_ONCE(!PageLocked(page));
 | 
						|
			if (PageTransHuge(page) && !PageHuge(page))
 | 
						|
				tail_pages = HPAGE_PMD_NR - 1;
 | 
						|
			page->mapping = NULL;
 | 
						|
			/*
 | 
						|
			 * Leave page->index set: truncation lookup relies
 | 
						|
			 * upon it
 | 
						|
			 */
 | 
						|
			i++;
 | 
						|
		} else {
 | 
						|
			VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
 | 
						|
					!= pvec->pages[i]->index, page);
 | 
						|
			tail_pages--;
 | 
						|
		}
 | 
						|
		xas_store(&xas, NULL);
 | 
						|
		total_pages++;
 | 
						|
	}
 | 
						|
	mapping->nrpages -= total_pages;
 | 
						|
}
 | 
						|
 | 
						|
void delete_from_page_cache_batch(struct address_space *mapping,
 | 
						|
				  struct pagevec *pvec)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (!pagevec_count(pvec))
 | 
						|
		return;
 | 
						|
 | 
						|
	xa_lock_irqsave(&mapping->i_pages, flags);
 | 
						|
	for (i = 0; i < pagevec_count(pvec); i++) {
 | 
						|
		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 | 
						|
 | 
						|
		unaccount_page_cache_page(mapping, pvec->pages[i]);
 | 
						|
	}
 | 
						|
	page_cache_delete_batch(mapping, pvec);
 | 
						|
	xa_unlock_irqrestore(&mapping->i_pages, flags);
 | 
						|
 | 
						|
	for (i = 0; i < pagevec_count(pvec); i++)
 | 
						|
		page_cache_free_page(mapping, pvec->pages[i]);
 | 
						|
}
 | 
						|
 | 
						|
int filemap_check_errors(struct address_space *mapping)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	/* Check for outstanding write errors */
 | 
						|
	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 | 
						|
	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 | 
						|
		ret = -ENOSPC;
 | 
						|
	if (test_bit(AS_EIO, &mapping->flags) &&
 | 
						|
	    test_and_clear_bit(AS_EIO, &mapping->flags))
 | 
						|
		ret = -EIO;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_check_errors);
 | 
						|
 | 
						|
static int filemap_check_and_keep_errors(struct address_space *mapping)
 | 
						|
{
 | 
						|
	/* Check for outstanding write errors */
 | 
						|
	if (test_bit(AS_EIO, &mapping->flags))
 | 
						|
		return -EIO;
 | 
						|
	if (test_bit(AS_ENOSPC, &mapping->flags))
 | 
						|
		return -ENOSPC;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 | 
						|
 * @mapping:	address space structure to write
 | 
						|
 * @start:	offset in bytes where the range starts
 | 
						|
 * @end:	offset in bytes where the range ends (inclusive)
 | 
						|
 * @sync_mode:	enable synchronous operation
 | 
						|
 *
 | 
						|
 * Start writeback against all of a mapping's dirty pages that lie
 | 
						|
 * within the byte offsets <start, end> inclusive.
 | 
						|
 *
 | 
						|
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 | 
						|
 * opposed to a regular memory cleansing writeback.  The difference between
 | 
						|
 * these two operations is that if a dirty page/buffer is encountered, it must
 | 
						|
 * be waited upon, and not just skipped over.
 | 
						|
 */
 | 
						|
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 | 
						|
				loff_t end, int sync_mode)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct writeback_control wbc = {
 | 
						|
		.sync_mode = sync_mode,
 | 
						|
		.nr_to_write = LONG_MAX,
 | 
						|
		.range_start = start,
 | 
						|
		.range_end = end,
 | 
						|
	};
 | 
						|
 | 
						|
	if (!mapping_cap_writeback_dirty(mapping))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 | 
						|
	ret = do_writepages(mapping, &wbc);
 | 
						|
	wbc_detach_inode(&wbc);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline int __filemap_fdatawrite(struct address_space *mapping,
 | 
						|
	int sync_mode)
 | 
						|
{
 | 
						|
	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 | 
						|
}
 | 
						|
 | 
						|
int filemap_fdatawrite(struct address_space *mapping)
 | 
						|
{
 | 
						|
	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_fdatawrite);
 | 
						|
 | 
						|
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 | 
						|
				loff_t end)
 | 
						|
{
 | 
						|
	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_fdatawrite_range);
 | 
						|
 | 
						|
/**
 | 
						|
 * filemap_flush - mostly a non-blocking flush
 | 
						|
 * @mapping:	target address_space
 | 
						|
 *
 | 
						|
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 | 
						|
 * purposes - I/O may not be started against all dirty pages.
 | 
						|
 */
 | 
						|
int filemap_flush(struct address_space *mapping)
 | 
						|
{
 | 
						|
	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_flush);
 | 
						|
 | 
						|
/**
 | 
						|
 * filemap_range_has_page - check if a page exists in range.
 | 
						|
 * @mapping:           address space within which to check
 | 
						|
 * @start_byte:        offset in bytes where the range starts
 | 
						|
 * @end_byte:          offset in bytes where the range ends (inclusive)
 | 
						|
 *
 | 
						|
 * Find at least one page in the range supplied, usually used to check if
 | 
						|
 * direct writing in this range will trigger a writeback.
 | 
						|
 */
 | 
						|
bool filemap_range_has_page(struct address_space *mapping,
 | 
						|
			   loff_t start_byte, loff_t end_byte)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 | 
						|
	pgoff_t max = end_byte >> PAGE_SHIFT;
 | 
						|
 | 
						|
	if (end_byte < start_byte)
 | 
						|
		return false;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	for (;;) {
 | 
						|
		page = xas_find(&xas, max);
 | 
						|
		if (xas_retry(&xas, page))
 | 
						|
			continue;
 | 
						|
		/* Shadow entries don't count */
 | 
						|
		if (xa_is_value(page))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * We don't need to try to pin this page; we're about to
 | 
						|
		 * release the RCU lock anyway.  It is enough to know that
 | 
						|
		 * there was a page here recently.
 | 
						|
		 */
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return page != NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_range_has_page);
 | 
						|
 | 
						|
static void __filemap_fdatawait_range(struct address_space *mapping,
 | 
						|
				     loff_t start_byte, loff_t end_byte)
 | 
						|
{
 | 
						|
	pgoff_t index = start_byte >> PAGE_SHIFT;
 | 
						|
	pgoff_t end = end_byte >> PAGE_SHIFT;
 | 
						|
	struct pagevec pvec;
 | 
						|
	int nr_pages;
 | 
						|
 | 
						|
	if (end_byte < start_byte)
 | 
						|
		return;
 | 
						|
 | 
						|
	pagevec_init(&pvec);
 | 
						|
	while (index <= end) {
 | 
						|
		unsigned i;
 | 
						|
 | 
						|
		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 | 
						|
				end, PAGECACHE_TAG_WRITEBACK);
 | 
						|
		if (!nr_pages)
 | 
						|
			break;
 | 
						|
 | 
						|
		for (i = 0; i < nr_pages; i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			ClearPageError(page);
 | 
						|
		}
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		cond_resched();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * filemap_fdatawait_range - wait for writeback to complete
 | 
						|
 * @mapping:		address space structure to wait for
 | 
						|
 * @start_byte:		offset in bytes where the range starts
 | 
						|
 * @end_byte:		offset in bytes where the range ends (inclusive)
 | 
						|
 *
 | 
						|
 * Walk the list of under-writeback pages of the given address space
 | 
						|
 * in the given range and wait for all of them.  Check error status of
 | 
						|
 * the address space and return it.
 | 
						|
 *
 | 
						|
 * Since the error status of the address space is cleared by this function,
 | 
						|
 * callers are responsible for checking the return value and handling and/or
 | 
						|
 * reporting the error.
 | 
						|
 */
 | 
						|
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 | 
						|
			    loff_t end_byte)
 | 
						|
{
 | 
						|
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 | 
						|
	return filemap_check_errors(mapping);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_fdatawait_range);
 | 
						|
 | 
						|
/**
 | 
						|
 * file_fdatawait_range - wait for writeback to complete
 | 
						|
 * @file:		file pointing to address space structure to wait for
 | 
						|
 * @start_byte:		offset in bytes where the range starts
 | 
						|
 * @end_byte:		offset in bytes where the range ends (inclusive)
 | 
						|
 *
 | 
						|
 * Walk the list of under-writeback pages of the address space that file
 | 
						|
 * refers to, in the given range and wait for all of them.  Check error
 | 
						|
 * status of the address space vs. the file->f_wb_err cursor and return it.
 | 
						|
 *
 | 
						|
 * Since the error status of the file is advanced by this function,
 | 
						|
 * callers are responsible for checking the return value and handling and/or
 | 
						|
 * reporting the error.
 | 
						|
 */
 | 
						|
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 | 
						|
{
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
 | 
						|
	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 | 
						|
	return file_check_and_advance_wb_err(file);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(file_fdatawait_range);
 | 
						|
 | 
						|
/**
 | 
						|
 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 | 
						|
 * @mapping: address space structure to wait for
 | 
						|
 *
 | 
						|
 * Walk the list of under-writeback pages of the given address space
 | 
						|
 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 | 
						|
 * does not clear error status of the address space.
 | 
						|
 *
 | 
						|
 * Use this function if callers don't handle errors themselves.  Expected
 | 
						|
 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 | 
						|
 * fsfreeze(8)
 | 
						|
 */
 | 
						|
int filemap_fdatawait_keep_errors(struct address_space *mapping)
 | 
						|
{
 | 
						|
	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 | 
						|
	return filemap_check_and_keep_errors(mapping);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 | 
						|
 | 
						|
static bool mapping_needs_writeback(struct address_space *mapping)
 | 
						|
{
 | 
						|
	return (!dax_mapping(mapping) && mapping->nrpages) ||
 | 
						|
	    (dax_mapping(mapping) && mapping->nrexceptional);
 | 
						|
}
 | 
						|
 | 
						|
int filemap_write_and_wait(struct address_space *mapping)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	if (mapping_needs_writeback(mapping)) {
 | 
						|
		err = filemap_fdatawrite(mapping);
 | 
						|
		/*
 | 
						|
		 * Even if the above returned error, the pages may be
 | 
						|
		 * written partially (e.g. -ENOSPC), so we wait for it.
 | 
						|
		 * But the -EIO is special case, it may indicate the worst
 | 
						|
		 * thing (e.g. bug) happened, so we avoid waiting for it.
 | 
						|
		 */
 | 
						|
		if (err != -EIO) {
 | 
						|
			int err2 = filemap_fdatawait(mapping);
 | 
						|
			if (!err)
 | 
						|
				err = err2;
 | 
						|
		} else {
 | 
						|
			/* Clear any previously stored errors */
 | 
						|
			filemap_check_errors(mapping);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		err = filemap_check_errors(mapping);
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_write_and_wait);
 | 
						|
 | 
						|
/**
 | 
						|
 * filemap_write_and_wait_range - write out & wait on a file range
 | 
						|
 * @mapping:	the address_space for the pages
 | 
						|
 * @lstart:	offset in bytes where the range starts
 | 
						|
 * @lend:	offset in bytes where the range ends (inclusive)
 | 
						|
 *
 | 
						|
 * Write out and wait upon file offsets lstart->lend, inclusive.
 | 
						|
 *
 | 
						|
 * Note that @lend is inclusive (describes the last byte to be written) so
 | 
						|
 * that this function can be used to write to the very end-of-file (end = -1).
 | 
						|
 */
 | 
						|
int filemap_write_and_wait_range(struct address_space *mapping,
 | 
						|
				 loff_t lstart, loff_t lend)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	if (mapping_needs_writeback(mapping)) {
 | 
						|
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 | 
						|
						 WB_SYNC_ALL);
 | 
						|
		/* See comment of filemap_write_and_wait() */
 | 
						|
		if (err != -EIO) {
 | 
						|
			int err2 = filemap_fdatawait_range(mapping,
 | 
						|
						lstart, lend);
 | 
						|
			if (!err)
 | 
						|
				err = err2;
 | 
						|
		} else {
 | 
						|
			/* Clear any previously stored errors */
 | 
						|
			filemap_check_errors(mapping);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		err = filemap_check_errors(mapping);
 | 
						|
	}
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_write_and_wait_range);
 | 
						|
 | 
						|
void __filemap_set_wb_err(struct address_space *mapping, int err)
 | 
						|
{
 | 
						|
	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 | 
						|
 | 
						|
	trace_filemap_set_wb_err(mapping, eseq);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__filemap_set_wb_err);
 | 
						|
 | 
						|
/**
 | 
						|
 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 | 
						|
 * 				   and advance wb_err to current one
 | 
						|
 * @file: struct file on which the error is being reported
 | 
						|
 *
 | 
						|
 * When userland calls fsync (or something like nfsd does the equivalent), we
 | 
						|
 * want to report any writeback errors that occurred since the last fsync (or
 | 
						|
 * since the file was opened if there haven't been any).
 | 
						|
 *
 | 
						|
 * Grab the wb_err from the mapping. If it matches what we have in the file,
 | 
						|
 * then just quickly return 0. The file is all caught up.
 | 
						|
 *
 | 
						|
 * If it doesn't match, then take the mapping value, set the "seen" flag in
 | 
						|
 * it and try to swap it into place. If it works, or another task beat us
 | 
						|
 * to it with the new value, then update the f_wb_err and return the error
 | 
						|
 * portion. The error at this point must be reported via proper channels
 | 
						|
 * (a'la fsync, or NFS COMMIT operation, etc.).
 | 
						|
 *
 | 
						|
 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 | 
						|
 * value is protected by the f_lock since we must ensure that it reflects
 | 
						|
 * the latest value swapped in for this file descriptor.
 | 
						|
 */
 | 
						|
int file_check_and_advance_wb_err(struct file *file)
 | 
						|
{
 | 
						|
	int err = 0;
 | 
						|
	errseq_t old = READ_ONCE(file->f_wb_err);
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
 | 
						|
	/* Locklessly handle the common case where nothing has changed */
 | 
						|
	if (errseq_check(&mapping->wb_err, old)) {
 | 
						|
		/* Something changed, must use slow path */
 | 
						|
		spin_lock(&file->f_lock);
 | 
						|
		old = file->f_wb_err;
 | 
						|
		err = errseq_check_and_advance(&mapping->wb_err,
 | 
						|
						&file->f_wb_err);
 | 
						|
		trace_file_check_and_advance_wb_err(file, old);
 | 
						|
		spin_unlock(&file->f_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We're mostly using this function as a drop in replacement for
 | 
						|
	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 | 
						|
	 * that the legacy code would have had on these flags.
 | 
						|
	 */
 | 
						|
	clear_bit(AS_EIO, &mapping->flags);
 | 
						|
	clear_bit(AS_ENOSPC, &mapping->flags);
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(file_check_and_advance_wb_err);
 | 
						|
 | 
						|
/**
 | 
						|
 * file_write_and_wait_range - write out & wait on a file range
 | 
						|
 * @file:	file pointing to address_space with pages
 | 
						|
 * @lstart:	offset in bytes where the range starts
 | 
						|
 * @lend:	offset in bytes where the range ends (inclusive)
 | 
						|
 *
 | 
						|
 * Write out and wait upon file offsets lstart->lend, inclusive.
 | 
						|
 *
 | 
						|
 * Note that @lend is inclusive (describes the last byte to be written) so
 | 
						|
 * that this function can be used to write to the very end-of-file (end = -1).
 | 
						|
 *
 | 
						|
 * After writing out and waiting on the data, we check and advance the
 | 
						|
 * f_wb_err cursor to the latest value, and return any errors detected there.
 | 
						|
 */
 | 
						|
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 | 
						|
{
 | 
						|
	int err = 0, err2;
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
 | 
						|
	if (mapping_needs_writeback(mapping)) {
 | 
						|
		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 | 
						|
						 WB_SYNC_ALL);
 | 
						|
		/* See comment of filemap_write_and_wait() */
 | 
						|
		if (err != -EIO)
 | 
						|
			__filemap_fdatawait_range(mapping, lstart, lend);
 | 
						|
	}
 | 
						|
	err2 = file_check_and_advance_wb_err(file);
 | 
						|
	if (!err)
 | 
						|
		err = err2;
 | 
						|
	return err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(file_write_and_wait_range);
 | 
						|
 | 
						|
/**
 | 
						|
 * replace_page_cache_page - replace a pagecache page with a new one
 | 
						|
 * @old:	page to be replaced
 | 
						|
 * @new:	page to replace with
 | 
						|
 * @gfp_mask:	allocation mode
 | 
						|
 *
 | 
						|
 * This function replaces a page in the pagecache with a new one.  On
 | 
						|
 * success it acquires the pagecache reference for the new page and
 | 
						|
 * drops it for the old page.  Both the old and new pages must be
 | 
						|
 * locked.  This function does not add the new page to the LRU, the
 | 
						|
 * caller must do that.
 | 
						|
 *
 | 
						|
 * The remove + add is atomic.  This function cannot fail.
 | 
						|
 */
 | 
						|
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct address_space *mapping = old->mapping;
 | 
						|
	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 | 
						|
	pgoff_t offset = old->index;
 | 
						|
	XA_STATE(xas, &mapping->i_pages, offset);
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(old), old);
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(new), new);
 | 
						|
	VM_BUG_ON_PAGE(new->mapping, new);
 | 
						|
 | 
						|
	get_page(new);
 | 
						|
	new->mapping = mapping;
 | 
						|
	new->index = offset;
 | 
						|
 | 
						|
	xas_lock_irqsave(&xas, flags);
 | 
						|
	xas_store(&xas, new);
 | 
						|
 | 
						|
	old->mapping = NULL;
 | 
						|
	/* hugetlb pages do not participate in page cache accounting. */
 | 
						|
	if (!PageHuge(old))
 | 
						|
		__dec_node_page_state(new, NR_FILE_PAGES);
 | 
						|
	if (!PageHuge(new))
 | 
						|
		__inc_node_page_state(new, NR_FILE_PAGES);
 | 
						|
	if (PageSwapBacked(old))
 | 
						|
		__dec_node_page_state(new, NR_SHMEM);
 | 
						|
	if (PageSwapBacked(new))
 | 
						|
		__inc_node_page_state(new, NR_SHMEM);
 | 
						|
	xas_unlock_irqrestore(&xas, flags);
 | 
						|
	mem_cgroup_migrate(old, new);
 | 
						|
	if (freepage)
 | 
						|
		freepage(old);
 | 
						|
	put_page(old);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(replace_page_cache_page);
 | 
						|
 | 
						|
static int __add_to_page_cache_locked(struct page *page,
 | 
						|
				      struct address_space *mapping,
 | 
						|
				      pgoff_t offset, gfp_t gfp_mask,
 | 
						|
				      void **shadowp)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, offset);
 | 
						|
	int huge = PageHuge(page);
 | 
						|
	struct mem_cgroup *memcg;
 | 
						|
	int error;
 | 
						|
	void *old;
 | 
						|
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 | 
						|
	mapping_set_update(&xas, mapping);
 | 
						|
 | 
						|
	if (!huge) {
 | 
						|
		error = mem_cgroup_try_charge(page, current->mm,
 | 
						|
					      gfp_mask, &memcg, false);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	get_page(page);
 | 
						|
	page->mapping = mapping;
 | 
						|
	page->index = offset;
 | 
						|
 | 
						|
	do {
 | 
						|
		xas_lock_irq(&xas);
 | 
						|
		old = xas_load(&xas);
 | 
						|
		if (old && !xa_is_value(old))
 | 
						|
			xas_set_err(&xas, -EEXIST);
 | 
						|
		xas_store(&xas, page);
 | 
						|
		if (xas_error(&xas))
 | 
						|
			goto unlock;
 | 
						|
 | 
						|
		if (xa_is_value(old)) {
 | 
						|
			mapping->nrexceptional--;
 | 
						|
			if (shadowp)
 | 
						|
				*shadowp = old;
 | 
						|
		}
 | 
						|
		mapping->nrpages++;
 | 
						|
 | 
						|
		/* hugetlb pages do not participate in page cache accounting */
 | 
						|
		if (!huge)
 | 
						|
			__inc_node_page_state(page, NR_FILE_PAGES);
 | 
						|
unlock:
 | 
						|
		xas_unlock_irq(&xas);
 | 
						|
	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
 | 
						|
 | 
						|
	if (xas_error(&xas))
 | 
						|
		goto error;
 | 
						|
 | 
						|
	if (!huge)
 | 
						|
		mem_cgroup_commit_charge(page, memcg, false, false);
 | 
						|
	trace_mm_filemap_add_to_page_cache(page);
 | 
						|
	return 0;
 | 
						|
error:
 | 
						|
	page->mapping = NULL;
 | 
						|
	/* Leave page->index set: truncation relies upon it */
 | 
						|
	if (!huge)
 | 
						|
		mem_cgroup_cancel_charge(page, memcg, false);
 | 
						|
	put_page(page);
 | 
						|
	return xas_error(&xas);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * add_to_page_cache_locked - add a locked page to the pagecache
 | 
						|
 * @page:	page to add
 | 
						|
 * @mapping:	the page's address_space
 | 
						|
 * @offset:	page index
 | 
						|
 * @gfp_mask:	page allocation mode
 | 
						|
 *
 | 
						|
 * This function is used to add a page to the pagecache. It must be locked.
 | 
						|
 * This function does not add the page to the LRU.  The caller must do that.
 | 
						|
 */
 | 
						|
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 | 
						|
		pgoff_t offset, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	return __add_to_page_cache_locked(page, mapping, offset,
 | 
						|
					  gfp_mask, NULL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(add_to_page_cache_locked);
 | 
						|
 | 
						|
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 | 
						|
				pgoff_t offset, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	void *shadow = NULL;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	__SetPageLocked(page);
 | 
						|
	ret = __add_to_page_cache_locked(page, mapping, offset,
 | 
						|
					 gfp_mask, &shadow);
 | 
						|
	if (unlikely(ret))
 | 
						|
		__ClearPageLocked(page);
 | 
						|
	else {
 | 
						|
		/*
 | 
						|
		 * The page might have been evicted from cache only
 | 
						|
		 * recently, in which case it should be activated like
 | 
						|
		 * any other repeatedly accessed page.
 | 
						|
		 * The exception is pages getting rewritten; evicting other
 | 
						|
		 * data from the working set, only to cache data that will
 | 
						|
		 * get overwritten with something else, is a waste of memory.
 | 
						|
		 */
 | 
						|
		WARN_ON_ONCE(PageActive(page));
 | 
						|
		if (!(gfp_mask & __GFP_WRITE) && shadow)
 | 
						|
			workingset_refault(page, shadow);
 | 
						|
		lru_cache_add(page);
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
struct page *__page_cache_alloc(gfp_t gfp)
 | 
						|
{
 | 
						|
	int n;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	if (cpuset_do_page_mem_spread()) {
 | 
						|
		unsigned int cpuset_mems_cookie;
 | 
						|
		do {
 | 
						|
			cpuset_mems_cookie = read_mems_allowed_begin();
 | 
						|
			n = cpuset_mem_spread_node();
 | 
						|
			page = __alloc_pages_node(n, gfp, 0);
 | 
						|
		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 | 
						|
 | 
						|
		return page;
 | 
						|
	}
 | 
						|
	return alloc_pages(gfp, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__page_cache_alloc);
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * In order to wait for pages to become available there must be
 | 
						|
 * waitqueues associated with pages. By using a hash table of
 | 
						|
 * waitqueues where the bucket discipline is to maintain all
 | 
						|
 * waiters on the same queue and wake all when any of the pages
 | 
						|
 * become available, and for the woken contexts to check to be
 | 
						|
 * sure the appropriate page became available, this saves space
 | 
						|
 * at a cost of "thundering herd" phenomena during rare hash
 | 
						|
 * collisions.
 | 
						|
 */
 | 
						|
#define PAGE_WAIT_TABLE_BITS 8
 | 
						|
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 | 
						|
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 | 
						|
 | 
						|
static wait_queue_head_t *page_waitqueue(struct page *page)
 | 
						|
{
 | 
						|
	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 | 
						|
}
 | 
						|
 | 
						|
void __init pagecache_init(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 | 
						|
		init_waitqueue_head(&page_wait_table[i]);
 | 
						|
 | 
						|
	page_writeback_init();
 | 
						|
}
 | 
						|
 | 
						|
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
 | 
						|
struct wait_page_key {
 | 
						|
	struct page *page;
 | 
						|
	int bit_nr;
 | 
						|
	int page_match;
 | 
						|
};
 | 
						|
 | 
						|
struct wait_page_queue {
 | 
						|
	struct page *page;
 | 
						|
	int bit_nr;
 | 
						|
	wait_queue_entry_t wait;
 | 
						|
};
 | 
						|
 | 
						|
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 | 
						|
{
 | 
						|
	struct wait_page_key *key = arg;
 | 
						|
	struct wait_page_queue *wait_page
 | 
						|
		= container_of(wait, struct wait_page_queue, wait);
 | 
						|
 | 
						|
	if (wait_page->page != key->page)
 | 
						|
	       return 0;
 | 
						|
	key->page_match = 1;
 | 
						|
 | 
						|
	if (wait_page->bit_nr != key->bit_nr)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Stop walking if it's locked.
 | 
						|
	 * Is this safe if put_and_wait_on_page_locked() is in use?
 | 
						|
	 * Yes: the waker must hold a reference to this page, and if PG_locked
 | 
						|
	 * has now already been set by another task, that task must also hold
 | 
						|
	 * a reference to the *same usage* of this page; so there is no need
 | 
						|
	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
 | 
						|
	 */
 | 
						|
	if (test_bit(key->bit_nr, &key->page->flags))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	return autoremove_wake_function(wait, mode, sync, key);
 | 
						|
}
 | 
						|
 | 
						|
static void wake_up_page_bit(struct page *page, int bit_nr)
 | 
						|
{
 | 
						|
	wait_queue_head_t *q = page_waitqueue(page);
 | 
						|
	struct wait_page_key key;
 | 
						|
	unsigned long flags;
 | 
						|
	wait_queue_entry_t bookmark;
 | 
						|
 | 
						|
	key.page = page;
 | 
						|
	key.bit_nr = bit_nr;
 | 
						|
	key.page_match = 0;
 | 
						|
 | 
						|
	bookmark.flags = 0;
 | 
						|
	bookmark.private = NULL;
 | 
						|
	bookmark.func = NULL;
 | 
						|
	INIT_LIST_HEAD(&bookmark.entry);
 | 
						|
 | 
						|
	spin_lock_irqsave(&q->lock, flags);
 | 
						|
	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
 | 
						|
 | 
						|
	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
 | 
						|
		/*
 | 
						|
		 * Take a breather from holding the lock,
 | 
						|
		 * allow pages that finish wake up asynchronously
 | 
						|
		 * to acquire the lock and remove themselves
 | 
						|
		 * from wait queue
 | 
						|
		 */
 | 
						|
		spin_unlock_irqrestore(&q->lock, flags);
 | 
						|
		cpu_relax();
 | 
						|
		spin_lock_irqsave(&q->lock, flags);
 | 
						|
		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It is possible for other pages to have collided on the waitqueue
 | 
						|
	 * hash, so in that case check for a page match. That prevents a long-
 | 
						|
	 * term waiter
 | 
						|
	 *
 | 
						|
	 * It is still possible to miss a case here, when we woke page waiters
 | 
						|
	 * and removed them from the waitqueue, but there are still other
 | 
						|
	 * page waiters.
 | 
						|
	 */
 | 
						|
	if (!waitqueue_active(q) || !key.page_match) {
 | 
						|
		ClearPageWaiters(page);
 | 
						|
		/*
 | 
						|
		 * It's possible to miss clearing Waiters here, when we woke
 | 
						|
		 * our page waiters, but the hashed waitqueue has waiters for
 | 
						|
		 * other pages on it.
 | 
						|
		 *
 | 
						|
		 * That's okay, it's a rare case. The next waker will clear it.
 | 
						|
		 */
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&q->lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
static void wake_up_page(struct page *page, int bit)
 | 
						|
{
 | 
						|
	if (!PageWaiters(page))
 | 
						|
		return;
 | 
						|
	wake_up_page_bit(page, bit);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A choice of three behaviors for wait_on_page_bit_common():
 | 
						|
 */
 | 
						|
enum behavior {
 | 
						|
	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
 | 
						|
			 * __lock_page() waiting on then setting PG_locked.
 | 
						|
			 */
 | 
						|
	SHARED,		/* Hold ref to page and check the bit when woken, like
 | 
						|
			 * wait_on_page_writeback() waiting on PG_writeback.
 | 
						|
			 */
 | 
						|
	DROP,		/* Drop ref to page before wait, no check when woken,
 | 
						|
			 * like put_and_wait_on_page_locked() on PG_locked.
 | 
						|
			 */
 | 
						|
};
 | 
						|
 | 
						|
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
 | 
						|
	struct page *page, int bit_nr, int state, enum behavior behavior)
 | 
						|
{
 | 
						|
	struct wait_page_queue wait_page;
 | 
						|
	wait_queue_entry_t *wait = &wait_page.wait;
 | 
						|
	bool bit_is_set;
 | 
						|
	bool thrashing = false;
 | 
						|
	bool delayacct = false;
 | 
						|
	unsigned long pflags;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (bit_nr == PG_locked &&
 | 
						|
	    !PageUptodate(page) && PageWorkingset(page)) {
 | 
						|
		if (!PageSwapBacked(page)) {
 | 
						|
			delayacct_thrashing_start();
 | 
						|
			delayacct = true;
 | 
						|
		}
 | 
						|
		psi_memstall_enter(&pflags);
 | 
						|
		thrashing = true;
 | 
						|
	}
 | 
						|
 | 
						|
	init_wait(wait);
 | 
						|
	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
 | 
						|
	wait->func = wake_page_function;
 | 
						|
	wait_page.page = page;
 | 
						|
	wait_page.bit_nr = bit_nr;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		spin_lock_irq(&q->lock);
 | 
						|
 | 
						|
		if (likely(list_empty(&wait->entry))) {
 | 
						|
			__add_wait_queue_entry_tail(q, wait);
 | 
						|
			SetPageWaiters(page);
 | 
						|
		}
 | 
						|
 | 
						|
		set_current_state(state);
 | 
						|
 | 
						|
		spin_unlock_irq(&q->lock);
 | 
						|
 | 
						|
		bit_is_set = test_bit(bit_nr, &page->flags);
 | 
						|
		if (behavior == DROP)
 | 
						|
			put_page(page);
 | 
						|
 | 
						|
		if (likely(bit_is_set))
 | 
						|
			io_schedule();
 | 
						|
 | 
						|
		if (behavior == EXCLUSIVE) {
 | 
						|
			if (!test_and_set_bit_lock(bit_nr, &page->flags))
 | 
						|
				break;
 | 
						|
		} else if (behavior == SHARED) {
 | 
						|
			if (!test_bit(bit_nr, &page->flags))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (signal_pending_state(state, current)) {
 | 
						|
			ret = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (behavior == DROP) {
 | 
						|
			/*
 | 
						|
			 * We can no longer safely access page->flags:
 | 
						|
			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
 | 
						|
			 * there is a risk of waiting forever on a page reused
 | 
						|
			 * for something that keeps it locked indefinitely.
 | 
						|
			 * But best check for -EINTR above before breaking.
 | 
						|
			 */
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	finish_wait(q, wait);
 | 
						|
 | 
						|
	if (thrashing) {
 | 
						|
		if (delayacct)
 | 
						|
			delayacct_thrashing_end();
 | 
						|
		psi_memstall_leave(&pflags);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A signal could leave PageWaiters set. Clearing it here if
 | 
						|
	 * !waitqueue_active would be possible (by open-coding finish_wait),
 | 
						|
	 * but still fail to catch it in the case of wait hash collision. We
 | 
						|
	 * already can fail to clear wait hash collision cases, so don't
 | 
						|
	 * bother with signals either.
 | 
						|
	 */
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void wait_on_page_bit(struct page *page, int bit_nr)
 | 
						|
{
 | 
						|
	wait_queue_head_t *q = page_waitqueue(page);
 | 
						|
	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(wait_on_page_bit);
 | 
						|
 | 
						|
int wait_on_page_bit_killable(struct page *page, int bit_nr)
 | 
						|
{
 | 
						|
	wait_queue_head_t *q = page_waitqueue(page);
 | 
						|
	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(wait_on_page_bit_killable);
 | 
						|
 | 
						|
/**
 | 
						|
 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
 | 
						|
 * @page: The page to wait for.
 | 
						|
 *
 | 
						|
 * The caller should hold a reference on @page.  They expect the page to
 | 
						|
 * become unlocked relatively soon, but do not wish to hold up migration
 | 
						|
 * (for example) by holding the reference while waiting for the page to
 | 
						|
 * come unlocked.  After this function returns, the caller should not
 | 
						|
 * dereference @page.
 | 
						|
 */
 | 
						|
void put_and_wait_on_page_locked(struct page *page)
 | 
						|
{
 | 
						|
	wait_queue_head_t *q;
 | 
						|
 | 
						|
	page = compound_head(page);
 | 
						|
	q = page_waitqueue(page);
 | 
						|
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 | 
						|
 * @page: Page defining the wait queue of interest
 | 
						|
 * @waiter: Waiter to add to the queue
 | 
						|
 *
 | 
						|
 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 | 
						|
 */
 | 
						|
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
 | 
						|
{
 | 
						|
	wait_queue_head_t *q = page_waitqueue(page);
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	spin_lock_irqsave(&q->lock, flags);
 | 
						|
	__add_wait_queue_entry_tail(q, waiter);
 | 
						|
	SetPageWaiters(page);
 | 
						|
	spin_unlock_irqrestore(&q->lock, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(add_page_wait_queue);
 | 
						|
 | 
						|
#ifndef clear_bit_unlock_is_negative_byte
 | 
						|
 | 
						|
/*
 | 
						|
 * PG_waiters is the high bit in the same byte as PG_lock.
 | 
						|
 *
 | 
						|
 * On x86 (and on many other architectures), we can clear PG_lock and
 | 
						|
 * test the sign bit at the same time. But if the architecture does
 | 
						|
 * not support that special operation, we just do this all by hand
 | 
						|
 * instead.
 | 
						|
 *
 | 
						|
 * The read of PG_waiters has to be after (or concurrently with) PG_locked
 | 
						|
 * being cleared, but a memory barrier should be unneccssary since it is
 | 
						|
 * in the same byte as PG_locked.
 | 
						|
 */
 | 
						|
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
 | 
						|
{
 | 
						|
	clear_bit_unlock(nr, mem);
 | 
						|
	/* smp_mb__after_atomic(); */
 | 
						|
	return test_bit(PG_waiters, mem);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * unlock_page - unlock a locked page
 | 
						|
 * @page: the page
 | 
						|
 *
 | 
						|
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 | 
						|
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 | 
						|
 * mechanism between PageLocked pages and PageWriteback pages is shared.
 | 
						|
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 | 
						|
 *
 | 
						|
 * Note that this depends on PG_waiters being the sign bit in the byte
 | 
						|
 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
 | 
						|
 * clear the PG_locked bit and test PG_waiters at the same time fairly
 | 
						|
 * portably (architectures that do LL/SC can test any bit, while x86 can
 | 
						|
 * test the sign bit).
 | 
						|
 */
 | 
						|
void unlock_page(struct page *page)
 | 
						|
{
 | 
						|
	BUILD_BUG_ON(PG_waiters != 7);
 | 
						|
	page = compound_head(page);
 | 
						|
	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | 
						|
	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
 | 
						|
		wake_up_page_bit(page, PG_locked);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(unlock_page);
 | 
						|
 | 
						|
/**
 | 
						|
 * end_page_writeback - end writeback against a page
 | 
						|
 * @page: the page
 | 
						|
 */
 | 
						|
void end_page_writeback(struct page *page)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * TestClearPageReclaim could be used here but it is an atomic
 | 
						|
	 * operation and overkill in this particular case. Failing to
 | 
						|
	 * shuffle a page marked for immediate reclaim is too mild to
 | 
						|
	 * justify taking an atomic operation penalty at the end of
 | 
						|
	 * ever page writeback.
 | 
						|
	 */
 | 
						|
	if (PageReclaim(page)) {
 | 
						|
		ClearPageReclaim(page);
 | 
						|
		rotate_reclaimable_page(page);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!test_clear_page_writeback(page))
 | 
						|
		BUG();
 | 
						|
 | 
						|
	smp_mb__after_atomic();
 | 
						|
	wake_up_page(page, PG_writeback);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(end_page_writeback);
 | 
						|
 | 
						|
/*
 | 
						|
 * After completing I/O on a page, call this routine to update the page
 | 
						|
 * flags appropriately
 | 
						|
 */
 | 
						|
void page_endio(struct page *page, bool is_write, int err)
 | 
						|
{
 | 
						|
	if (!is_write) {
 | 
						|
		if (!err) {
 | 
						|
			SetPageUptodate(page);
 | 
						|
		} else {
 | 
						|
			ClearPageUptodate(page);
 | 
						|
			SetPageError(page);
 | 
						|
		}
 | 
						|
		unlock_page(page);
 | 
						|
	} else {
 | 
						|
		if (err) {
 | 
						|
			struct address_space *mapping;
 | 
						|
 | 
						|
			SetPageError(page);
 | 
						|
			mapping = page_mapping(page);
 | 
						|
			if (mapping)
 | 
						|
				mapping_set_error(mapping, err);
 | 
						|
		}
 | 
						|
		end_page_writeback(page);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(page_endio);
 | 
						|
 | 
						|
/**
 | 
						|
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 | 
						|
 * @__page: the page to lock
 | 
						|
 */
 | 
						|
void __lock_page(struct page *__page)
 | 
						|
{
 | 
						|
	struct page *page = compound_head(__page);
 | 
						|
	wait_queue_head_t *q = page_waitqueue(page);
 | 
						|
	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
 | 
						|
				EXCLUSIVE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__lock_page);
 | 
						|
 | 
						|
int __lock_page_killable(struct page *__page)
 | 
						|
{
 | 
						|
	struct page *page = compound_head(__page);
 | 
						|
	wait_queue_head_t *q = page_waitqueue(page);
 | 
						|
	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
 | 
						|
					EXCLUSIVE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(__lock_page_killable);
 | 
						|
 | 
						|
/*
 | 
						|
 * Return values:
 | 
						|
 * 1 - page is locked; mmap_sem is still held.
 | 
						|
 * 0 - page is not locked.
 | 
						|
 *     mmap_sem has been released (up_read()), unless flags had both
 | 
						|
 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
 | 
						|
 *     which case mmap_sem is still held.
 | 
						|
 *
 | 
						|
 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
 | 
						|
 * with the page locked and the mmap_sem unperturbed.
 | 
						|
 */
 | 
						|
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 | 
						|
			 unsigned int flags)
 | 
						|
{
 | 
						|
	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 | 
						|
		/*
 | 
						|
		 * CAUTION! In this case, mmap_sem is not released
 | 
						|
		 * even though return 0.
 | 
						|
		 */
 | 
						|
		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		up_read(&mm->mmap_sem);
 | 
						|
		if (flags & FAULT_FLAG_KILLABLE)
 | 
						|
			wait_on_page_locked_killable(page);
 | 
						|
		else
 | 
						|
			wait_on_page_locked(page);
 | 
						|
		return 0;
 | 
						|
	} else {
 | 
						|
		if (flags & FAULT_FLAG_KILLABLE) {
 | 
						|
			int ret;
 | 
						|
 | 
						|
			ret = __lock_page_killable(page);
 | 
						|
			if (ret) {
 | 
						|
				up_read(&mm->mmap_sem);
 | 
						|
				return 0;
 | 
						|
			}
 | 
						|
		} else
 | 
						|
			__lock_page(page);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * page_cache_next_miss() - Find the next gap in the page cache.
 | 
						|
 * @mapping: Mapping.
 | 
						|
 * @index: Index.
 | 
						|
 * @max_scan: Maximum range to search.
 | 
						|
 *
 | 
						|
 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
 | 
						|
 * gap with the lowest index.
 | 
						|
 *
 | 
						|
 * This function may be called under the rcu_read_lock.  However, this will
 | 
						|
 * not atomically search a snapshot of the cache at a single point in time.
 | 
						|
 * For example, if a gap is created at index 5, then subsequently a gap is
 | 
						|
 * created at index 10, page_cache_next_miss covering both indices may
 | 
						|
 * return 10 if called under the rcu_read_lock.
 | 
						|
 *
 | 
						|
 * Return: The index of the gap if found, otherwise an index outside the
 | 
						|
 * range specified (in which case 'return - index >= max_scan' will be true).
 | 
						|
 * In the rare case of index wrap-around, 0 will be returned.
 | 
						|
 */
 | 
						|
pgoff_t page_cache_next_miss(struct address_space *mapping,
 | 
						|
			     pgoff_t index, unsigned long max_scan)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, index);
 | 
						|
 | 
						|
	while (max_scan--) {
 | 
						|
		void *entry = xas_next(&xas);
 | 
						|
		if (!entry || xa_is_value(entry))
 | 
						|
			break;
 | 
						|
		if (xas.xa_index == 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return xas.xa_index;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(page_cache_next_miss);
 | 
						|
 | 
						|
/**
 | 
						|
 * page_cache_prev_miss() - Find the next gap in the page cache.
 | 
						|
 * @mapping: Mapping.
 | 
						|
 * @index: Index.
 | 
						|
 * @max_scan: Maximum range to search.
 | 
						|
 *
 | 
						|
 * Search the range [max(index - max_scan + 1, 0), index] for the
 | 
						|
 * gap with the highest index.
 | 
						|
 *
 | 
						|
 * This function may be called under the rcu_read_lock.  However, this will
 | 
						|
 * not atomically search a snapshot of the cache at a single point in time.
 | 
						|
 * For example, if a gap is created at index 10, then subsequently a gap is
 | 
						|
 * created at index 5, page_cache_prev_miss() covering both indices may
 | 
						|
 * return 5 if called under the rcu_read_lock.
 | 
						|
 *
 | 
						|
 * Return: The index of the gap if found, otherwise an index outside the
 | 
						|
 * range specified (in which case 'index - return >= max_scan' will be true).
 | 
						|
 * In the rare case of wrap-around, ULONG_MAX will be returned.
 | 
						|
 */
 | 
						|
pgoff_t page_cache_prev_miss(struct address_space *mapping,
 | 
						|
			     pgoff_t index, unsigned long max_scan)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, index);
 | 
						|
 | 
						|
	while (max_scan--) {
 | 
						|
		void *entry = xas_prev(&xas);
 | 
						|
		if (!entry || xa_is_value(entry))
 | 
						|
			break;
 | 
						|
		if (xas.xa_index == ULONG_MAX)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return xas.xa_index;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(page_cache_prev_miss);
 | 
						|
 | 
						|
/**
 | 
						|
 * find_get_entry - find and get a page cache entry
 | 
						|
 * @mapping: the address_space to search
 | 
						|
 * @offset: the page cache index
 | 
						|
 *
 | 
						|
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 | 
						|
 * page cache page, it is returned with an increased refcount.
 | 
						|
 *
 | 
						|
 * If the slot holds a shadow entry of a previously evicted page, or a
 | 
						|
 * swap entry from shmem/tmpfs, it is returned.
 | 
						|
 *
 | 
						|
 * Otherwise, %NULL is returned.
 | 
						|
 */
 | 
						|
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, offset);
 | 
						|
	struct page *head, *page;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
repeat:
 | 
						|
	xas_reset(&xas);
 | 
						|
	page = xas_load(&xas);
 | 
						|
	if (xas_retry(&xas, page))
 | 
						|
		goto repeat;
 | 
						|
	/*
 | 
						|
	 * A shadow entry of a recently evicted page, or a swap entry from
 | 
						|
	 * shmem/tmpfs.  Return it without attempting to raise page count.
 | 
						|
	 */
 | 
						|
	if (!page || xa_is_value(page))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	head = compound_head(page);
 | 
						|
	if (!page_cache_get_speculative(head))
 | 
						|
		goto repeat;
 | 
						|
 | 
						|
	/* The page was split under us? */
 | 
						|
	if (compound_head(page) != head) {
 | 
						|
		put_page(head);
 | 
						|
		goto repeat;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Has the page moved?
 | 
						|
	 * This is part of the lockless pagecache protocol. See
 | 
						|
	 * include/linux/pagemap.h for details.
 | 
						|
	 */
 | 
						|
	if (unlikely(page != xas_reload(&xas))) {
 | 
						|
		put_page(head);
 | 
						|
		goto repeat;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(find_get_entry);
 | 
						|
 | 
						|
/**
 | 
						|
 * find_lock_entry - locate, pin and lock a page cache entry
 | 
						|
 * @mapping: the address_space to search
 | 
						|
 * @offset: the page cache index
 | 
						|
 *
 | 
						|
 * Looks up the page cache slot at @mapping & @offset.  If there is a
 | 
						|
 * page cache page, it is returned locked and with an increased
 | 
						|
 * refcount.
 | 
						|
 *
 | 
						|
 * If the slot holds a shadow entry of a previously evicted page, or a
 | 
						|
 * swap entry from shmem/tmpfs, it is returned.
 | 
						|
 *
 | 
						|
 * Otherwise, %NULL is returned.
 | 
						|
 *
 | 
						|
 * find_lock_entry() may sleep.
 | 
						|
 */
 | 
						|
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
repeat:
 | 
						|
	page = find_get_entry(mapping, offset);
 | 
						|
	if (page && !xa_is_value(page)) {
 | 
						|
		lock_page(page);
 | 
						|
		/* Has the page been truncated? */
 | 
						|
		if (unlikely(page_mapping(page) != mapping)) {
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
			goto repeat;
 | 
						|
		}
 | 
						|
		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
 | 
						|
	}
 | 
						|
	return page;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(find_lock_entry);
 | 
						|
 | 
						|
/**
 | 
						|
 * pagecache_get_page - find and get a page reference
 | 
						|
 * @mapping: the address_space to search
 | 
						|
 * @offset: the page index
 | 
						|
 * @fgp_flags: PCG flags
 | 
						|
 * @gfp_mask: gfp mask to use for the page cache data page allocation
 | 
						|
 *
 | 
						|
 * Looks up the page cache slot at @mapping & @offset.
 | 
						|
 *
 | 
						|
 * PCG flags modify how the page is returned.
 | 
						|
 *
 | 
						|
 * @fgp_flags can be:
 | 
						|
 *
 | 
						|
 * - FGP_ACCESSED: the page will be marked accessed
 | 
						|
 * - FGP_LOCK: Page is return locked
 | 
						|
 * - FGP_CREAT: If page is not present then a new page is allocated using
 | 
						|
 *   @gfp_mask and added to the page cache and the VM's LRU
 | 
						|
 *   list. The page is returned locked and with an increased
 | 
						|
 *   refcount. Otherwise, NULL is returned.
 | 
						|
 *
 | 
						|
 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
 | 
						|
 * if the GFP flags specified for FGP_CREAT are atomic.
 | 
						|
 *
 | 
						|
 * If there is a page cache page, it is returned with an increased refcount.
 | 
						|
 */
 | 
						|
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
 | 
						|
	int fgp_flags, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
repeat:
 | 
						|
	page = find_get_entry(mapping, offset);
 | 
						|
	if (xa_is_value(page))
 | 
						|
		page = NULL;
 | 
						|
	if (!page)
 | 
						|
		goto no_page;
 | 
						|
 | 
						|
	if (fgp_flags & FGP_LOCK) {
 | 
						|
		if (fgp_flags & FGP_NOWAIT) {
 | 
						|
			if (!trylock_page(page)) {
 | 
						|
				put_page(page);
 | 
						|
				return NULL;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			lock_page(page);
 | 
						|
		}
 | 
						|
 | 
						|
		/* Has the page been truncated? */
 | 
						|
		if (unlikely(page->mapping != mapping)) {
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
			goto repeat;
 | 
						|
		}
 | 
						|
		VM_BUG_ON_PAGE(page->index != offset, page);
 | 
						|
	}
 | 
						|
 | 
						|
	if (fgp_flags & FGP_ACCESSED)
 | 
						|
		mark_page_accessed(page);
 | 
						|
 | 
						|
no_page:
 | 
						|
	if (!page && (fgp_flags & FGP_CREAT)) {
 | 
						|
		int err;
 | 
						|
		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
 | 
						|
			gfp_mask |= __GFP_WRITE;
 | 
						|
		if (fgp_flags & FGP_NOFS)
 | 
						|
			gfp_mask &= ~__GFP_FS;
 | 
						|
 | 
						|
		page = __page_cache_alloc(gfp_mask);
 | 
						|
		if (!page)
 | 
						|
			return NULL;
 | 
						|
 | 
						|
		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
 | 
						|
			fgp_flags |= FGP_LOCK;
 | 
						|
 | 
						|
		/* Init accessed so avoid atomic mark_page_accessed later */
 | 
						|
		if (fgp_flags & FGP_ACCESSED)
 | 
						|
			__SetPageReferenced(page);
 | 
						|
 | 
						|
		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
 | 
						|
		if (unlikely(err)) {
 | 
						|
			put_page(page);
 | 
						|
			page = NULL;
 | 
						|
			if (err == -EEXIST)
 | 
						|
				goto repeat;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pagecache_get_page);
 | 
						|
 | 
						|
/**
 | 
						|
 * find_get_entries - gang pagecache lookup
 | 
						|
 * @mapping:	The address_space to search
 | 
						|
 * @start:	The starting page cache index
 | 
						|
 * @nr_entries:	The maximum number of entries
 | 
						|
 * @entries:	Where the resulting entries are placed
 | 
						|
 * @indices:	The cache indices corresponding to the entries in @entries
 | 
						|
 *
 | 
						|
 * find_get_entries() will search for and return a group of up to
 | 
						|
 * @nr_entries entries in the mapping.  The entries are placed at
 | 
						|
 * @entries.  find_get_entries() takes a reference against any actual
 | 
						|
 * pages it returns.
 | 
						|
 *
 | 
						|
 * The search returns a group of mapping-contiguous page cache entries
 | 
						|
 * with ascending indexes.  There may be holes in the indices due to
 | 
						|
 * not-present pages.
 | 
						|
 *
 | 
						|
 * Any shadow entries of evicted pages, or swap entries from
 | 
						|
 * shmem/tmpfs, are included in the returned array.
 | 
						|
 *
 | 
						|
 * find_get_entries() returns the number of pages and shadow entries
 | 
						|
 * which were found.
 | 
						|
 */
 | 
						|
unsigned find_get_entries(struct address_space *mapping,
 | 
						|
			  pgoff_t start, unsigned int nr_entries,
 | 
						|
			  struct page **entries, pgoff_t *indices)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, start);
 | 
						|
	struct page *page;
 | 
						|
	unsigned int ret = 0;
 | 
						|
 | 
						|
	if (!nr_entries)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	xas_for_each(&xas, page, ULONG_MAX) {
 | 
						|
		struct page *head;
 | 
						|
		if (xas_retry(&xas, page))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * A shadow entry of a recently evicted page, a swap
 | 
						|
		 * entry from shmem/tmpfs or a DAX entry.  Return it
 | 
						|
		 * without attempting to raise page count.
 | 
						|
		 */
 | 
						|
		if (xa_is_value(page))
 | 
						|
			goto export;
 | 
						|
 | 
						|
		head = compound_head(page);
 | 
						|
		if (!page_cache_get_speculative(head))
 | 
						|
			goto retry;
 | 
						|
 | 
						|
		/* The page was split under us? */
 | 
						|
		if (compound_head(page) != head)
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
		/* Has the page moved? */
 | 
						|
		if (unlikely(page != xas_reload(&xas)))
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
export:
 | 
						|
		indices[ret] = xas.xa_index;
 | 
						|
		entries[ret] = page;
 | 
						|
		if (++ret == nr_entries)
 | 
						|
			break;
 | 
						|
		continue;
 | 
						|
put_page:
 | 
						|
		put_page(head);
 | 
						|
retry:
 | 
						|
		xas_reset(&xas);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * find_get_pages_range - gang pagecache lookup
 | 
						|
 * @mapping:	The address_space to search
 | 
						|
 * @start:	The starting page index
 | 
						|
 * @end:	The final page index (inclusive)
 | 
						|
 * @nr_pages:	The maximum number of pages
 | 
						|
 * @pages:	Where the resulting pages are placed
 | 
						|
 *
 | 
						|
 * find_get_pages_range() will search for and return a group of up to @nr_pages
 | 
						|
 * pages in the mapping starting at index @start and up to index @end
 | 
						|
 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
 | 
						|
 * a reference against the returned pages.
 | 
						|
 *
 | 
						|
 * The search returns a group of mapping-contiguous pages with ascending
 | 
						|
 * indexes.  There may be holes in the indices due to not-present pages.
 | 
						|
 * We also update @start to index the next page for the traversal.
 | 
						|
 *
 | 
						|
 * find_get_pages_range() returns the number of pages which were found. If this
 | 
						|
 * number is smaller than @nr_pages, the end of specified range has been
 | 
						|
 * reached.
 | 
						|
 */
 | 
						|
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
 | 
						|
			      pgoff_t end, unsigned int nr_pages,
 | 
						|
			      struct page **pages)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, *start);
 | 
						|
	struct page *page;
 | 
						|
	unsigned ret = 0;
 | 
						|
 | 
						|
	if (unlikely(!nr_pages))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	xas_for_each(&xas, page, end) {
 | 
						|
		struct page *head;
 | 
						|
		if (xas_retry(&xas, page))
 | 
						|
			continue;
 | 
						|
		/* Skip over shadow, swap and DAX entries */
 | 
						|
		if (xa_is_value(page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		head = compound_head(page);
 | 
						|
		if (!page_cache_get_speculative(head))
 | 
						|
			goto retry;
 | 
						|
 | 
						|
		/* The page was split under us? */
 | 
						|
		if (compound_head(page) != head)
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
		/* Has the page moved? */
 | 
						|
		if (unlikely(page != xas_reload(&xas)))
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
		pages[ret] = page;
 | 
						|
		if (++ret == nr_pages) {
 | 
						|
			*start = page->index + 1;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		continue;
 | 
						|
put_page:
 | 
						|
		put_page(head);
 | 
						|
retry:
 | 
						|
		xas_reset(&xas);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We come here when there is no page beyond @end. We take care to not
 | 
						|
	 * overflow the index @start as it confuses some of the callers. This
 | 
						|
	 * breaks the iteration when there is a page at index -1 but that is
 | 
						|
	 * already broken anyway.
 | 
						|
	 */
 | 
						|
	if (end == (pgoff_t)-1)
 | 
						|
		*start = (pgoff_t)-1;
 | 
						|
	else
 | 
						|
		*start = end + 1;
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * find_get_pages_contig - gang contiguous pagecache lookup
 | 
						|
 * @mapping:	The address_space to search
 | 
						|
 * @index:	The starting page index
 | 
						|
 * @nr_pages:	The maximum number of pages
 | 
						|
 * @pages:	Where the resulting pages are placed
 | 
						|
 *
 | 
						|
 * find_get_pages_contig() works exactly like find_get_pages(), except
 | 
						|
 * that the returned number of pages are guaranteed to be contiguous.
 | 
						|
 *
 | 
						|
 * find_get_pages_contig() returns the number of pages which were found.
 | 
						|
 */
 | 
						|
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 | 
						|
			       unsigned int nr_pages, struct page **pages)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, index);
 | 
						|
	struct page *page;
 | 
						|
	unsigned int ret = 0;
 | 
						|
 | 
						|
	if (unlikely(!nr_pages))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
 | 
						|
		struct page *head;
 | 
						|
		if (xas_retry(&xas, page))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * If the entry has been swapped out, we can stop looking.
 | 
						|
		 * No current caller is looking for DAX entries.
 | 
						|
		 */
 | 
						|
		if (xa_is_value(page))
 | 
						|
			break;
 | 
						|
 | 
						|
		head = compound_head(page);
 | 
						|
		if (!page_cache_get_speculative(head))
 | 
						|
			goto retry;
 | 
						|
 | 
						|
		/* The page was split under us? */
 | 
						|
		if (compound_head(page) != head)
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
		/* Has the page moved? */
 | 
						|
		if (unlikely(page != xas_reload(&xas)))
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
		pages[ret] = page;
 | 
						|
		if (++ret == nr_pages)
 | 
						|
			break;
 | 
						|
		continue;
 | 
						|
put_page:
 | 
						|
		put_page(head);
 | 
						|
retry:
 | 
						|
		xas_reset(&xas);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(find_get_pages_contig);
 | 
						|
 | 
						|
/**
 | 
						|
 * find_get_pages_range_tag - find and return pages in given range matching @tag
 | 
						|
 * @mapping:	the address_space to search
 | 
						|
 * @index:	the starting page index
 | 
						|
 * @end:	The final page index (inclusive)
 | 
						|
 * @tag:	the tag index
 | 
						|
 * @nr_pages:	the maximum number of pages
 | 
						|
 * @pages:	where the resulting pages are placed
 | 
						|
 *
 | 
						|
 * Like find_get_pages, except we only return pages which are tagged with
 | 
						|
 * @tag.   We update @index to index the next page for the traversal.
 | 
						|
 */
 | 
						|
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
 | 
						|
			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
 | 
						|
			struct page **pages)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, *index);
 | 
						|
	struct page *page;
 | 
						|
	unsigned ret = 0;
 | 
						|
 | 
						|
	if (unlikely(!nr_pages))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	xas_for_each_marked(&xas, page, end, tag) {
 | 
						|
		struct page *head;
 | 
						|
		if (xas_retry(&xas, page))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * Shadow entries should never be tagged, but this iteration
 | 
						|
		 * is lockless so there is a window for page reclaim to evict
 | 
						|
		 * a page we saw tagged.  Skip over it.
 | 
						|
		 */
 | 
						|
		if (xa_is_value(page))
 | 
						|
			continue;
 | 
						|
 | 
						|
		head = compound_head(page);
 | 
						|
		if (!page_cache_get_speculative(head))
 | 
						|
			goto retry;
 | 
						|
 | 
						|
		/* The page was split under us? */
 | 
						|
		if (compound_head(page) != head)
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
		/* Has the page moved? */
 | 
						|
		if (unlikely(page != xas_reload(&xas)))
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
		pages[ret] = page;
 | 
						|
		if (++ret == nr_pages) {
 | 
						|
			*index = page->index + 1;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		continue;
 | 
						|
put_page:
 | 
						|
		put_page(head);
 | 
						|
retry:
 | 
						|
		xas_reset(&xas);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We come here when we got to @end. We take care to not overflow the
 | 
						|
	 * index @index as it confuses some of the callers. This breaks the
 | 
						|
	 * iteration when there is a page at index -1 but that is already
 | 
						|
	 * broken anyway.
 | 
						|
	 */
 | 
						|
	if (end == (pgoff_t)-1)
 | 
						|
		*index = (pgoff_t)-1;
 | 
						|
	else
 | 
						|
		*index = end + 1;
 | 
						|
out:
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(find_get_pages_range_tag);
 | 
						|
 | 
						|
/**
 | 
						|
 * find_get_entries_tag - find and return entries that match @tag
 | 
						|
 * @mapping:	the address_space to search
 | 
						|
 * @start:	the starting page cache index
 | 
						|
 * @tag:	the tag index
 | 
						|
 * @nr_entries:	the maximum number of entries
 | 
						|
 * @entries:	where the resulting entries are placed
 | 
						|
 * @indices:	the cache indices corresponding to the entries in @entries
 | 
						|
 *
 | 
						|
 * Like find_get_entries, except we only return entries which are tagged with
 | 
						|
 * @tag.
 | 
						|
 */
 | 
						|
unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
 | 
						|
			xa_mark_t tag, unsigned int nr_entries,
 | 
						|
			struct page **entries, pgoff_t *indices)
 | 
						|
{
 | 
						|
	XA_STATE(xas, &mapping->i_pages, start);
 | 
						|
	struct page *page;
 | 
						|
	unsigned int ret = 0;
 | 
						|
 | 
						|
	if (!nr_entries)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
 | 
						|
		struct page *head;
 | 
						|
		if (xas_retry(&xas, page))
 | 
						|
			continue;
 | 
						|
		/*
 | 
						|
		 * A shadow entry of a recently evicted page, a swap
 | 
						|
		 * entry from shmem/tmpfs or a DAX entry.  Return it
 | 
						|
		 * without attempting to raise page count.
 | 
						|
		 */
 | 
						|
		if (xa_is_value(page))
 | 
						|
			goto export;
 | 
						|
 | 
						|
		head = compound_head(page);
 | 
						|
		if (!page_cache_get_speculative(head))
 | 
						|
			goto retry;
 | 
						|
 | 
						|
		/* The page was split under us? */
 | 
						|
		if (compound_head(page) != head)
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
		/* Has the page moved? */
 | 
						|
		if (unlikely(page != xas_reload(&xas)))
 | 
						|
			goto put_page;
 | 
						|
 | 
						|
export:
 | 
						|
		indices[ret] = xas.xa_index;
 | 
						|
		entries[ret] = page;
 | 
						|
		if (++ret == nr_entries)
 | 
						|
			break;
 | 
						|
		continue;
 | 
						|
put_page:
 | 
						|
		put_page(head);
 | 
						|
retry:
 | 
						|
		xas_reset(&xas);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(find_get_entries_tag);
 | 
						|
 | 
						|
/*
 | 
						|
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 | 
						|
 * a _large_ part of the i/o request. Imagine the worst scenario:
 | 
						|
 *
 | 
						|
 *      ---R__________________________________________B__________
 | 
						|
 *         ^ reading here                             ^ bad block(assume 4k)
 | 
						|
 *
 | 
						|
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 | 
						|
 * => failing the whole request => read(R) => read(R+1) =>
 | 
						|
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 | 
						|
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 | 
						|
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 | 
						|
 *
 | 
						|
 * It is going insane. Fix it by quickly scaling down the readahead size.
 | 
						|
 */
 | 
						|
static void shrink_readahead_size_eio(struct file *filp,
 | 
						|
					struct file_ra_state *ra)
 | 
						|
{
 | 
						|
	ra->ra_pages /= 4;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * generic_file_buffered_read - generic file read routine
 | 
						|
 * @iocb:	the iocb to read
 | 
						|
 * @iter:	data destination
 | 
						|
 * @written:	already copied
 | 
						|
 *
 | 
						|
 * This is a generic file read routine, and uses the
 | 
						|
 * mapping->a_ops->readpage() function for the actual low-level stuff.
 | 
						|
 *
 | 
						|
 * This is really ugly. But the goto's actually try to clarify some
 | 
						|
 * of the logic when it comes to error handling etc.
 | 
						|
 */
 | 
						|
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
 | 
						|
		struct iov_iter *iter, ssize_t written)
 | 
						|
{
 | 
						|
	struct file *filp = iocb->ki_filp;
 | 
						|
	struct address_space *mapping = filp->f_mapping;
 | 
						|
	struct inode *inode = mapping->host;
 | 
						|
	struct file_ra_state *ra = &filp->f_ra;
 | 
						|
	loff_t *ppos = &iocb->ki_pos;
 | 
						|
	pgoff_t index;
 | 
						|
	pgoff_t last_index;
 | 
						|
	pgoff_t prev_index;
 | 
						|
	unsigned long offset;      /* offset into pagecache page */
 | 
						|
	unsigned int prev_offset;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
 | 
						|
		return 0;
 | 
						|
	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
 | 
						|
 | 
						|
	index = *ppos >> PAGE_SHIFT;
 | 
						|
	prev_index = ra->prev_pos >> PAGE_SHIFT;
 | 
						|
	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
 | 
						|
	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
 | 
						|
	offset = *ppos & ~PAGE_MASK;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		struct page *page;
 | 
						|
		pgoff_t end_index;
 | 
						|
		loff_t isize;
 | 
						|
		unsigned long nr, ret;
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
find_page:
 | 
						|
		if (fatal_signal_pending(current)) {
 | 
						|
			error = -EINTR;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		page = find_get_page(mapping, index);
 | 
						|
		if (!page) {
 | 
						|
			if (iocb->ki_flags & IOCB_NOWAIT)
 | 
						|
				goto would_block;
 | 
						|
			page_cache_sync_readahead(mapping,
 | 
						|
					ra, filp,
 | 
						|
					index, last_index - index);
 | 
						|
			page = find_get_page(mapping, index);
 | 
						|
			if (unlikely(page == NULL))
 | 
						|
				goto no_cached_page;
 | 
						|
		}
 | 
						|
		if (PageReadahead(page)) {
 | 
						|
			page_cache_async_readahead(mapping,
 | 
						|
					ra, filp, page,
 | 
						|
					index, last_index - index);
 | 
						|
		}
 | 
						|
		if (!PageUptodate(page)) {
 | 
						|
			if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
				put_page(page);
 | 
						|
				goto would_block;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * See comment in do_read_cache_page on why
 | 
						|
			 * wait_on_page_locked is used to avoid unnecessarily
 | 
						|
			 * serialisations and why it's safe.
 | 
						|
			 */
 | 
						|
			error = wait_on_page_locked_killable(page);
 | 
						|
			if (unlikely(error))
 | 
						|
				goto readpage_error;
 | 
						|
			if (PageUptodate(page))
 | 
						|
				goto page_ok;
 | 
						|
 | 
						|
			if (inode->i_blkbits == PAGE_SHIFT ||
 | 
						|
					!mapping->a_ops->is_partially_uptodate)
 | 
						|
				goto page_not_up_to_date;
 | 
						|
			/* pipes can't handle partially uptodate pages */
 | 
						|
			if (unlikely(iov_iter_is_pipe(iter)))
 | 
						|
				goto page_not_up_to_date;
 | 
						|
			if (!trylock_page(page))
 | 
						|
				goto page_not_up_to_date;
 | 
						|
			/* Did it get truncated before we got the lock? */
 | 
						|
			if (!page->mapping)
 | 
						|
				goto page_not_up_to_date_locked;
 | 
						|
			if (!mapping->a_ops->is_partially_uptodate(page,
 | 
						|
							offset, iter->count))
 | 
						|
				goto page_not_up_to_date_locked;
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
page_ok:
 | 
						|
		/*
 | 
						|
		 * i_size must be checked after we know the page is Uptodate.
 | 
						|
		 *
 | 
						|
		 * Checking i_size after the check allows us to calculate
 | 
						|
		 * the correct value for "nr", which means the zero-filled
 | 
						|
		 * part of the page is not copied back to userspace (unless
 | 
						|
		 * another truncate extends the file - this is desired though).
 | 
						|
		 */
 | 
						|
 | 
						|
		isize = i_size_read(inode);
 | 
						|
		end_index = (isize - 1) >> PAGE_SHIFT;
 | 
						|
		if (unlikely(!isize || index > end_index)) {
 | 
						|
			put_page(page);
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		/* nr is the maximum number of bytes to copy from this page */
 | 
						|
		nr = PAGE_SIZE;
 | 
						|
		if (index == end_index) {
 | 
						|
			nr = ((isize - 1) & ~PAGE_MASK) + 1;
 | 
						|
			if (nr <= offset) {
 | 
						|
				put_page(page);
 | 
						|
				goto out;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		nr = nr - offset;
 | 
						|
 | 
						|
		/* If users can be writing to this page using arbitrary
 | 
						|
		 * virtual addresses, take care about potential aliasing
 | 
						|
		 * before reading the page on the kernel side.
 | 
						|
		 */
 | 
						|
		if (mapping_writably_mapped(mapping))
 | 
						|
			flush_dcache_page(page);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * When a sequential read accesses a page several times,
 | 
						|
		 * only mark it as accessed the first time.
 | 
						|
		 */
 | 
						|
		if (prev_index != index || offset != prev_offset)
 | 
						|
			mark_page_accessed(page);
 | 
						|
		prev_index = index;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Ok, we have the page, and it's up-to-date, so
 | 
						|
		 * now we can copy it to user space...
 | 
						|
		 */
 | 
						|
 | 
						|
		ret = copy_page_to_iter(page, offset, nr, iter);
 | 
						|
		offset += ret;
 | 
						|
		index += offset >> PAGE_SHIFT;
 | 
						|
		offset &= ~PAGE_MASK;
 | 
						|
		prev_offset = offset;
 | 
						|
 | 
						|
		put_page(page);
 | 
						|
		written += ret;
 | 
						|
		if (!iov_iter_count(iter))
 | 
						|
			goto out;
 | 
						|
		if (ret < nr) {
 | 
						|
			error = -EFAULT;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		continue;
 | 
						|
 | 
						|
page_not_up_to_date:
 | 
						|
		/* Get exclusive access to the page ... */
 | 
						|
		error = lock_page_killable(page);
 | 
						|
		if (unlikely(error))
 | 
						|
			goto readpage_error;
 | 
						|
 | 
						|
page_not_up_to_date_locked:
 | 
						|
		/* Did it get truncated before we got the lock? */
 | 
						|
		if (!page->mapping) {
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Did somebody else fill it already? */
 | 
						|
		if (PageUptodate(page)) {
 | 
						|
			unlock_page(page);
 | 
						|
			goto page_ok;
 | 
						|
		}
 | 
						|
 | 
						|
readpage:
 | 
						|
		/*
 | 
						|
		 * A previous I/O error may have been due to temporary
 | 
						|
		 * failures, eg. multipath errors.
 | 
						|
		 * PG_error will be set again if readpage fails.
 | 
						|
		 */
 | 
						|
		ClearPageError(page);
 | 
						|
		/* Start the actual read. The read will unlock the page. */
 | 
						|
		error = mapping->a_ops->readpage(filp, page);
 | 
						|
 | 
						|
		if (unlikely(error)) {
 | 
						|
			if (error == AOP_TRUNCATED_PAGE) {
 | 
						|
				put_page(page);
 | 
						|
				error = 0;
 | 
						|
				goto find_page;
 | 
						|
			}
 | 
						|
			goto readpage_error;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!PageUptodate(page)) {
 | 
						|
			error = lock_page_killable(page);
 | 
						|
			if (unlikely(error))
 | 
						|
				goto readpage_error;
 | 
						|
			if (!PageUptodate(page)) {
 | 
						|
				if (page->mapping == NULL) {
 | 
						|
					/*
 | 
						|
					 * invalidate_mapping_pages got it
 | 
						|
					 */
 | 
						|
					unlock_page(page);
 | 
						|
					put_page(page);
 | 
						|
					goto find_page;
 | 
						|
				}
 | 
						|
				unlock_page(page);
 | 
						|
				shrink_readahead_size_eio(filp, ra);
 | 
						|
				error = -EIO;
 | 
						|
				goto readpage_error;
 | 
						|
			}
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
 | 
						|
		goto page_ok;
 | 
						|
 | 
						|
readpage_error:
 | 
						|
		/* UHHUH! A synchronous read error occurred. Report it */
 | 
						|
		put_page(page);
 | 
						|
		goto out;
 | 
						|
 | 
						|
no_cached_page:
 | 
						|
		/*
 | 
						|
		 * Ok, it wasn't cached, so we need to create a new
 | 
						|
		 * page..
 | 
						|
		 */
 | 
						|
		page = page_cache_alloc(mapping);
 | 
						|
		if (!page) {
 | 
						|
			error = -ENOMEM;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		error = add_to_page_cache_lru(page, mapping, index,
 | 
						|
				mapping_gfp_constraint(mapping, GFP_KERNEL));
 | 
						|
		if (error) {
 | 
						|
			put_page(page);
 | 
						|
			if (error == -EEXIST) {
 | 
						|
				error = 0;
 | 
						|
				goto find_page;
 | 
						|
			}
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		goto readpage;
 | 
						|
	}
 | 
						|
 | 
						|
would_block:
 | 
						|
	error = -EAGAIN;
 | 
						|
out:
 | 
						|
	ra->prev_pos = prev_index;
 | 
						|
	ra->prev_pos <<= PAGE_SHIFT;
 | 
						|
	ra->prev_pos |= prev_offset;
 | 
						|
 | 
						|
	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
 | 
						|
	file_accessed(filp);
 | 
						|
	return written ? written : error;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * generic_file_read_iter - generic filesystem read routine
 | 
						|
 * @iocb:	kernel I/O control block
 | 
						|
 * @iter:	destination for the data read
 | 
						|
 *
 | 
						|
 * This is the "read_iter()" routine for all filesystems
 | 
						|
 * that can use the page cache directly.
 | 
						|
 */
 | 
						|
ssize_t
 | 
						|
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 | 
						|
{
 | 
						|
	size_t count = iov_iter_count(iter);
 | 
						|
	ssize_t retval = 0;
 | 
						|
 | 
						|
	if (!count)
 | 
						|
		goto out; /* skip atime */
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_DIRECT) {
 | 
						|
		struct file *file = iocb->ki_filp;
 | 
						|
		struct address_space *mapping = file->f_mapping;
 | 
						|
		struct inode *inode = mapping->host;
 | 
						|
		loff_t size;
 | 
						|
 | 
						|
		size = i_size_read(inode);
 | 
						|
		if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
			if (filemap_range_has_page(mapping, iocb->ki_pos,
 | 
						|
						   iocb->ki_pos + count - 1))
 | 
						|
				return -EAGAIN;
 | 
						|
		} else {
 | 
						|
			retval = filemap_write_and_wait_range(mapping,
 | 
						|
						iocb->ki_pos,
 | 
						|
					        iocb->ki_pos + count - 1);
 | 
						|
			if (retval < 0)
 | 
						|
				goto out;
 | 
						|
		}
 | 
						|
 | 
						|
		file_accessed(file);
 | 
						|
 | 
						|
		retval = mapping->a_ops->direct_IO(iocb, iter);
 | 
						|
		if (retval >= 0) {
 | 
						|
			iocb->ki_pos += retval;
 | 
						|
			count -= retval;
 | 
						|
		}
 | 
						|
		iov_iter_revert(iter, count - iov_iter_count(iter));
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Btrfs can have a short DIO read if we encounter
 | 
						|
		 * compressed extents, so if there was an error, or if
 | 
						|
		 * we've already read everything we wanted to, or if
 | 
						|
		 * there was a short read because we hit EOF, go ahead
 | 
						|
		 * and return.  Otherwise fallthrough to buffered io for
 | 
						|
		 * the rest of the read.  Buffered reads will not work for
 | 
						|
		 * DAX files, so don't bother trying.
 | 
						|
		 */
 | 
						|
		if (retval < 0 || !count || iocb->ki_pos >= size ||
 | 
						|
		    IS_DAX(inode))
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	retval = generic_file_buffered_read(iocb, iter, retval);
 | 
						|
out:
 | 
						|
	return retval;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(generic_file_read_iter);
 | 
						|
 | 
						|
#ifdef CONFIG_MMU
 | 
						|
/**
 | 
						|
 * page_cache_read - adds requested page to the page cache if not already there
 | 
						|
 * @file:	file to read
 | 
						|
 * @offset:	page index
 | 
						|
 * @gfp_mask:	memory allocation flags
 | 
						|
 *
 | 
						|
 * This adds the requested page to the page cache if it isn't already there,
 | 
						|
 * and schedules an I/O to read in its contents from disk.
 | 
						|
 */
 | 
						|
static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
	struct page *page;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	do {
 | 
						|
		page = __page_cache_alloc(gfp_mask);
 | 
						|
		if (!page)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
 | 
						|
		if (ret == 0)
 | 
						|
			ret = mapping->a_ops->readpage(file, page);
 | 
						|
		else if (ret == -EEXIST)
 | 
						|
			ret = 0; /* losing race to add is OK */
 | 
						|
 | 
						|
		put_page(page);
 | 
						|
 | 
						|
	} while (ret == AOP_TRUNCATED_PAGE);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#define MMAP_LOTSAMISS  (100)
 | 
						|
 | 
						|
/*
 | 
						|
 * Synchronous readahead happens when we don't even find
 | 
						|
 * a page in the page cache at all.
 | 
						|
 */
 | 
						|
static void do_sync_mmap_readahead(struct vm_area_struct *vma,
 | 
						|
				   struct file_ra_state *ra,
 | 
						|
				   struct file *file,
 | 
						|
				   pgoff_t offset)
 | 
						|
{
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
 | 
						|
	/* If we don't want any read-ahead, don't bother */
 | 
						|
	if (vma->vm_flags & VM_RAND_READ)
 | 
						|
		return;
 | 
						|
	if (!ra->ra_pages)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (vma->vm_flags & VM_SEQ_READ) {
 | 
						|
		page_cache_sync_readahead(mapping, ra, file, offset,
 | 
						|
					  ra->ra_pages);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Avoid banging the cache line if not needed */
 | 
						|
	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
 | 
						|
		ra->mmap_miss++;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do we miss much more than hit in this file? If so,
 | 
						|
	 * stop bothering with read-ahead. It will only hurt.
 | 
						|
	 */
 | 
						|
	if (ra->mmap_miss > MMAP_LOTSAMISS)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * mmap read-around
 | 
						|
	 */
 | 
						|
	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
 | 
						|
	ra->size = ra->ra_pages;
 | 
						|
	ra->async_size = ra->ra_pages / 4;
 | 
						|
	ra_submit(ra, mapping, file);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Asynchronous readahead happens when we find the page and PG_readahead,
 | 
						|
 * so we want to possibly extend the readahead further..
 | 
						|
 */
 | 
						|
static void do_async_mmap_readahead(struct vm_area_struct *vma,
 | 
						|
				    struct file_ra_state *ra,
 | 
						|
				    struct file *file,
 | 
						|
				    struct page *page,
 | 
						|
				    pgoff_t offset)
 | 
						|
{
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
 | 
						|
	/* If we don't want any read-ahead, don't bother */
 | 
						|
	if (vma->vm_flags & VM_RAND_READ)
 | 
						|
		return;
 | 
						|
	if (ra->mmap_miss > 0)
 | 
						|
		ra->mmap_miss--;
 | 
						|
	if (PageReadahead(page))
 | 
						|
		page_cache_async_readahead(mapping, ra, file,
 | 
						|
					   page, offset, ra->ra_pages);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * filemap_fault - read in file data for page fault handling
 | 
						|
 * @vmf:	struct vm_fault containing details of the fault
 | 
						|
 *
 | 
						|
 * filemap_fault() is invoked via the vma operations vector for a
 | 
						|
 * mapped memory region to read in file data during a page fault.
 | 
						|
 *
 | 
						|
 * The goto's are kind of ugly, but this streamlines the normal case of having
 | 
						|
 * it in the page cache, and handles the special cases reasonably without
 | 
						|
 * having a lot of duplicated code.
 | 
						|
 *
 | 
						|
 * vma->vm_mm->mmap_sem must be held on entry.
 | 
						|
 *
 | 
						|
 * If our return value has VM_FAULT_RETRY set, it's because
 | 
						|
 * lock_page_or_retry() returned 0.
 | 
						|
 * The mmap_sem has usually been released in this case.
 | 
						|
 * See __lock_page_or_retry() for the exception.
 | 
						|
 *
 | 
						|
 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
 | 
						|
 * has not been released.
 | 
						|
 *
 | 
						|
 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
 | 
						|
 */
 | 
						|
vm_fault_t filemap_fault(struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	struct file *file = vmf->vma->vm_file;
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
	struct file_ra_state *ra = &file->f_ra;
 | 
						|
	struct inode *inode = mapping->host;
 | 
						|
	pgoff_t offset = vmf->pgoff;
 | 
						|
	pgoff_t max_off;
 | 
						|
	struct page *page;
 | 
						|
	vm_fault_t ret = 0;
 | 
						|
 | 
						|
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | 
						|
	if (unlikely(offset >= max_off))
 | 
						|
		return VM_FAULT_SIGBUS;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do we have something in the page cache already?
 | 
						|
	 */
 | 
						|
	page = find_get_page(mapping, offset);
 | 
						|
	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
 | 
						|
		/*
 | 
						|
		 * We found the page, so try async readahead before
 | 
						|
		 * waiting for the lock.
 | 
						|
		 */
 | 
						|
		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
 | 
						|
	} else if (!page) {
 | 
						|
		/* No page in the page cache at all */
 | 
						|
		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
 | 
						|
		count_vm_event(PGMAJFAULT);
 | 
						|
		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
 | 
						|
		ret = VM_FAULT_MAJOR;
 | 
						|
retry_find:
 | 
						|
		page = find_get_page(mapping, offset);
 | 
						|
		if (!page)
 | 
						|
			goto no_cached_page;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
 | 
						|
		put_page(page);
 | 
						|
		return ret | VM_FAULT_RETRY;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Did it get truncated? */
 | 
						|
	if (unlikely(page->mapping != mapping)) {
 | 
						|
		unlock_page(page);
 | 
						|
		put_page(page);
 | 
						|
		goto retry_find;
 | 
						|
	}
 | 
						|
	VM_BUG_ON_PAGE(page->index != offset, page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We have a locked page in the page cache, now we need to check
 | 
						|
	 * that it's up-to-date. If not, it is going to be due to an error.
 | 
						|
	 */
 | 
						|
	if (unlikely(!PageUptodate(page)))
 | 
						|
		goto page_not_uptodate;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Found the page and have a reference on it.
 | 
						|
	 * We must recheck i_size under page lock.
 | 
						|
	 */
 | 
						|
	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | 
						|
	if (unlikely(offset >= max_off)) {
 | 
						|
		unlock_page(page);
 | 
						|
		put_page(page);
 | 
						|
		return VM_FAULT_SIGBUS;
 | 
						|
	}
 | 
						|
 | 
						|
	vmf->page = page;
 | 
						|
	return ret | VM_FAULT_LOCKED;
 | 
						|
 | 
						|
no_cached_page:
 | 
						|
	/*
 | 
						|
	 * We're only likely to ever get here if MADV_RANDOM is in
 | 
						|
	 * effect.
 | 
						|
	 */
 | 
						|
	error = page_cache_read(file, offset, vmf->gfp_mask);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The page we want has now been added to the page cache.
 | 
						|
	 * In the unlikely event that someone removed it in the
 | 
						|
	 * meantime, we'll just come back here and read it again.
 | 
						|
	 */
 | 
						|
	if (error >= 0)
 | 
						|
		goto retry_find;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * An error return from page_cache_read can result if the
 | 
						|
	 * system is low on memory, or a problem occurs while trying
 | 
						|
	 * to schedule I/O.
 | 
						|
	 */
 | 
						|
	return vmf_error(error);
 | 
						|
 | 
						|
page_not_uptodate:
 | 
						|
	/*
 | 
						|
	 * Umm, take care of errors if the page isn't up-to-date.
 | 
						|
	 * Try to re-read it _once_. We do this synchronously,
 | 
						|
	 * because there really aren't any performance issues here
 | 
						|
	 * and we need to check for errors.
 | 
						|
	 */
 | 
						|
	ClearPageError(page);
 | 
						|
	error = mapping->a_ops->readpage(file, page);
 | 
						|
	if (!error) {
 | 
						|
		wait_on_page_locked(page);
 | 
						|
		if (!PageUptodate(page))
 | 
						|
			error = -EIO;
 | 
						|
	}
 | 
						|
	put_page(page);
 | 
						|
 | 
						|
	if (!error || error == AOP_TRUNCATED_PAGE)
 | 
						|
		goto retry_find;
 | 
						|
 | 
						|
	/* Things didn't work out. Return zero to tell the mm layer so. */
 | 
						|
	shrink_readahead_size_eio(file, ra);
 | 
						|
	return VM_FAULT_SIGBUS;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_fault);
 | 
						|
 | 
						|
void filemap_map_pages(struct vm_fault *vmf,
 | 
						|
		pgoff_t start_pgoff, pgoff_t end_pgoff)
 | 
						|
{
 | 
						|
	struct file *file = vmf->vma->vm_file;
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
	pgoff_t last_pgoff = start_pgoff;
 | 
						|
	unsigned long max_idx;
 | 
						|
	XA_STATE(xas, &mapping->i_pages, start_pgoff);
 | 
						|
	struct page *head, *page;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	xas_for_each(&xas, page, end_pgoff) {
 | 
						|
		if (xas_retry(&xas, page))
 | 
						|
			continue;
 | 
						|
		if (xa_is_value(page))
 | 
						|
			goto next;
 | 
						|
 | 
						|
		head = compound_head(page);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check for a locked page first, as a speculative
 | 
						|
		 * reference may adversely influence page migration.
 | 
						|
		 */
 | 
						|
		if (PageLocked(head))
 | 
						|
			goto next;
 | 
						|
		if (!page_cache_get_speculative(head))
 | 
						|
			goto next;
 | 
						|
 | 
						|
		/* The page was split under us? */
 | 
						|
		if (compound_head(page) != head)
 | 
						|
			goto skip;
 | 
						|
 | 
						|
		/* Has the page moved? */
 | 
						|
		if (unlikely(page != xas_reload(&xas)))
 | 
						|
			goto skip;
 | 
						|
 | 
						|
		if (!PageUptodate(page) ||
 | 
						|
				PageReadahead(page) ||
 | 
						|
				PageHWPoison(page))
 | 
						|
			goto skip;
 | 
						|
		if (!trylock_page(page))
 | 
						|
			goto skip;
 | 
						|
 | 
						|
		if (page->mapping != mapping || !PageUptodate(page))
 | 
						|
			goto unlock;
 | 
						|
 | 
						|
		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
 | 
						|
		if (page->index >= max_idx)
 | 
						|
			goto unlock;
 | 
						|
 | 
						|
		if (file->f_ra.mmap_miss > 0)
 | 
						|
			file->f_ra.mmap_miss--;
 | 
						|
 | 
						|
		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
 | 
						|
		if (vmf->pte)
 | 
						|
			vmf->pte += xas.xa_index - last_pgoff;
 | 
						|
		last_pgoff = xas.xa_index;
 | 
						|
		if (alloc_set_pte(vmf, NULL, page))
 | 
						|
			goto unlock;
 | 
						|
		unlock_page(page);
 | 
						|
		goto next;
 | 
						|
unlock:
 | 
						|
		unlock_page(page);
 | 
						|
skip:
 | 
						|
		put_page(page);
 | 
						|
next:
 | 
						|
		/* Huge page is mapped? No need to proceed. */
 | 
						|
		if (pmd_trans_huge(*vmf->pmd))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(filemap_map_pages);
 | 
						|
 | 
						|
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	struct page *page = vmf->page;
 | 
						|
	struct inode *inode = file_inode(vmf->vma->vm_file);
 | 
						|
	vm_fault_t ret = VM_FAULT_LOCKED;
 | 
						|
 | 
						|
	sb_start_pagefault(inode->i_sb);
 | 
						|
	file_update_time(vmf->vma->vm_file);
 | 
						|
	lock_page(page);
 | 
						|
	if (page->mapping != inode->i_mapping) {
 | 
						|
		unlock_page(page);
 | 
						|
		ret = VM_FAULT_NOPAGE;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * We mark the page dirty already here so that when freeze is in
 | 
						|
	 * progress, we are guaranteed that writeback during freezing will
 | 
						|
	 * see the dirty page and writeprotect it again.
 | 
						|
	 */
 | 
						|
	set_page_dirty(page);
 | 
						|
	wait_for_stable_page(page);
 | 
						|
out:
 | 
						|
	sb_end_pagefault(inode->i_sb);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
const struct vm_operations_struct generic_file_vm_ops = {
 | 
						|
	.fault		= filemap_fault,
 | 
						|
	.map_pages	= filemap_map_pages,
 | 
						|
	.page_mkwrite	= filemap_page_mkwrite,
 | 
						|
};
 | 
						|
 | 
						|
/* This is used for a general mmap of a disk file */
 | 
						|
 | 
						|
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 | 
						|
{
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
 | 
						|
	if (!mapping->a_ops->readpage)
 | 
						|
		return -ENOEXEC;
 | 
						|
	file_accessed(file);
 | 
						|
	vma->vm_ops = &generic_file_vm_ops;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is for filesystems which do not implement ->writepage.
 | 
						|
 */
 | 
						|
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
 | 
						|
		return -EINVAL;
 | 
						|
	return generic_file_mmap(file, vma);
 | 
						|
}
 | 
						|
#else
 | 
						|
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
 | 
						|
{
 | 
						|
	return VM_FAULT_SIGBUS;
 | 
						|
}
 | 
						|
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 | 
						|
{
 | 
						|
	return -ENOSYS;
 | 
						|
}
 | 
						|
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
 | 
						|
{
 | 
						|
	return -ENOSYS;
 | 
						|
}
 | 
						|
#endif /* CONFIG_MMU */
 | 
						|
 | 
						|
EXPORT_SYMBOL(filemap_page_mkwrite);
 | 
						|
EXPORT_SYMBOL(generic_file_mmap);
 | 
						|
EXPORT_SYMBOL(generic_file_readonly_mmap);
 | 
						|
 | 
						|
static struct page *wait_on_page_read(struct page *page)
 | 
						|
{
 | 
						|
	if (!IS_ERR(page)) {
 | 
						|
		wait_on_page_locked(page);
 | 
						|
		if (!PageUptodate(page)) {
 | 
						|
			put_page(page);
 | 
						|
			page = ERR_PTR(-EIO);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *do_read_cache_page(struct address_space *mapping,
 | 
						|
				pgoff_t index,
 | 
						|
				int (*filler)(void *, struct page *),
 | 
						|
				void *data,
 | 
						|
				gfp_t gfp)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	int err;
 | 
						|
repeat:
 | 
						|
	page = find_get_page(mapping, index);
 | 
						|
	if (!page) {
 | 
						|
		page = __page_cache_alloc(gfp);
 | 
						|
		if (!page)
 | 
						|
			return ERR_PTR(-ENOMEM);
 | 
						|
		err = add_to_page_cache_lru(page, mapping, index, gfp);
 | 
						|
		if (unlikely(err)) {
 | 
						|
			put_page(page);
 | 
						|
			if (err == -EEXIST)
 | 
						|
				goto repeat;
 | 
						|
			/* Presumably ENOMEM for xarray node */
 | 
						|
			return ERR_PTR(err);
 | 
						|
		}
 | 
						|
 | 
						|
filler:
 | 
						|
		err = filler(data, page);
 | 
						|
		if (err < 0) {
 | 
						|
			put_page(page);
 | 
						|
			return ERR_PTR(err);
 | 
						|
		}
 | 
						|
 | 
						|
		page = wait_on_page_read(page);
 | 
						|
		if (IS_ERR(page))
 | 
						|
			return page;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	if (PageUptodate(page))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Page is not up to date and may be locked due one of the following
 | 
						|
	 * case a: Page is being filled and the page lock is held
 | 
						|
	 * case b: Read/write error clearing the page uptodate status
 | 
						|
	 * case c: Truncation in progress (page locked)
 | 
						|
	 * case d: Reclaim in progress
 | 
						|
	 *
 | 
						|
	 * Case a, the page will be up to date when the page is unlocked.
 | 
						|
	 *    There is no need to serialise on the page lock here as the page
 | 
						|
	 *    is pinned so the lock gives no additional protection. Even if the
 | 
						|
	 *    the page is truncated, the data is still valid if PageUptodate as
 | 
						|
	 *    it's a race vs truncate race.
 | 
						|
	 * Case b, the page will not be up to date
 | 
						|
	 * Case c, the page may be truncated but in itself, the data may still
 | 
						|
	 *    be valid after IO completes as it's a read vs truncate race. The
 | 
						|
	 *    operation must restart if the page is not uptodate on unlock but
 | 
						|
	 *    otherwise serialising on page lock to stabilise the mapping gives
 | 
						|
	 *    no additional guarantees to the caller as the page lock is
 | 
						|
	 *    released before return.
 | 
						|
	 * Case d, similar to truncation. If reclaim holds the page lock, it
 | 
						|
	 *    will be a race with remove_mapping that determines if the mapping
 | 
						|
	 *    is valid on unlock but otherwise the data is valid and there is
 | 
						|
	 *    no need to serialise with page lock.
 | 
						|
	 *
 | 
						|
	 * As the page lock gives no additional guarantee, we optimistically
 | 
						|
	 * wait on the page to be unlocked and check if it's up to date and
 | 
						|
	 * use the page if it is. Otherwise, the page lock is required to
 | 
						|
	 * distinguish between the different cases. The motivation is that we
 | 
						|
	 * avoid spurious serialisations and wakeups when multiple processes
 | 
						|
	 * wait on the same page for IO to complete.
 | 
						|
	 */
 | 
						|
	wait_on_page_locked(page);
 | 
						|
	if (PageUptodate(page))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Distinguish between all the cases under the safety of the lock */
 | 
						|
	lock_page(page);
 | 
						|
 | 
						|
	/* Case c or d, restart the operation */
 | 
						|
	if (!page->mapping) {
 | 
						|
		unlock_page(page);
 | 
						|
		put_page(page);
 | 
						|
		goto repeat;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Someone else locked and filled the page in a very small window */
 | 
						|
	if (PageUptodate(page)) {
 | 
						|
		unlock_page(page);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
	goto filler;
 | 
						|
 | 
						|
out:
 | 
						|
	mark_page_accessed(page);
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * read_cache_page - read into page cache, fill it if needed
 | 
						|
 * @mapping:	the page's address_space
 | 
						|
 * @index:	the page index
 | 
						|
 * @filler:	function to perform the read
 | 
						|
 * @data:	first arg to filler(data, page) function, often left as NULL
 | 
						|
 *
 | 
						|
 * Read into the page cache. If a page already exists, and PageUptodate() is
 | 
						|
 * not set, try to fill the page and wait for it to become unlocked.
 | 
						|
 *
 | 
						|
 * If the page does not get brought uptodate, return -EIO.
 | 
						|
 */
 | 
						|
struct page *read_cache_page(struct address_space *mapping,
 | 
						|
				pgoff_t index,
 | 
						|
				int (*filler)(void *, struct page *),
 | 
						|
				void *data)
 | 
						|
{
 | 
						|
	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(read_cache_page);
 | 
						|
 | 
						|
/**
 | 
						|
 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
 | 
						|
 * @mapping:	the page's address_space
 | 
						|
 * @index:	the page index
 | 
						|
 * @gfp:	the page allocator flags to use if allocating
 | 
						|
 *
 | 
						|
 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
 | 
						|
 * any new page allocations done using the specified allocation flags.
 | 
						|
 *
 | 
						|
 * If the page does not get brought uptodate, return -EIO.
 | 
						|
 */
 | 
						|
struct page *read_cache_page_gfp(struct address_space *mapping,
 | 
						|
				pgoff_t index,
 | 
						|
				gfp_t gfp)
 | 
						|
{
 | 
						|
	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
 | 
						|
 | 
						|
	return do_read_cache_page(mapping, index, filler, NULL, gfp);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(read_cache_page_gfp);
 | 
						|
 | 
						|
/*
 | 
						|
 * Don't operate on ranges the page cache doesn't support, and don't exceed the
 | 
						|
 * LFS limits.  If pos is under the limit it becomes a short access.  If it
 | 
						|
 * exceeds the limit we return -EFBIG.
 | 
						|
 */
 | 
						|
static int generic_access_check_limits(struct file *file, loff_t pos,
 | 
						|
				       loff_t *count)
 | 
						|
{
 | 
						|
	struct inode *inode = file->f_mapping->host;
 | 
						|
	loff_t max_size = inode->i_sb->s_maxbytes;
 | 
						|
 | 
						|
	if (!(file->f_flags & O_LARGEFILE))
 | 
						|
		max_size = MAX_NON_LFS;
 | 
						|
 | 
						|
	if (unlikely(pos >= max_size))
 | 
						|
		return -EFBIG;
 | 
						|
	*count = min(*count, max_size - pos);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int generic_write_check_limits(struct file *file, loff_t pos,
 | 
						|
				      loff_t *count)
 | 
						|
{
 | 
						|
	loff_t limit = rlimit(RLIMIT_FSIZE);
 | 
						|
 | 
						|
	if (limit != RLIM_INFINITY) {
 | 
						|
		if (pos >= limit) {
 | 
						|
			send_sig(SIGXFSZ, current, 0);
 | 
						|
			return -EFBIG;
 | 
						|
		}
 | 
						|
		*count = min(*count, limit - pos);
 | 
						|
	}
 | 
						|
 | 
						|
	return generic_access_check_limits(file, pos, count);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Performs necessary checks before doing a write
 | 
						|
 *
 | 
						|
 * Can adjust writing position or amount of bytes to write.
 | 
						|
 * Returns appropriate error code that caller should return or
 | 
						|
 * zero in case that write should be allowed.
 | 
						|
 */
 | 
						|
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	struct file *file = iocb->ki_filp;
 | 
						|
	struct inode *inode = file->f_mapping->host;
 | 
						|
	loff_t count;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (!iov_iter_count(from))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* FIXME: this is for backwards compatibility with 2.4 */
 | 
						|
	if (iocb->ki_flags & IOCB_APPEND)
 | 
						|
		iocb->ki_pos = i_size_read(inode);
 | 
						|
 | 
						|
	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	count = iov_iter_count(from);
 | 
						|
	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	iov_iter_truncate(from, count);
 | 
						|
	return iov_iter_count(from);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(generic_write_checks);
 | 
						|
 | 
						|
/*
 | 
						|
 * Performs necessary checks before doing a clone.
 | 
						|
 *
 | 
						|
 * Can adjust amount of bytes to clone.
 | 
						|
 * Returns appropriate error code that caller should return or
 | 
						|
 * zero in case the clone should be allowed.
 | 
						|
 */
 | 
						|
int generic_remap_checks(struct file *file_in, loff_t pos_in,
 | 
						|
			 struct file *file_out, loff_t pos_out,
 | 
						|
			 loff_t *req_count, unsigned int remap_flags)
 | 
						|
{
 | 
						|
	struct inode *inode_in = file_in->f_mapping->host;
 | 
						|
	struct inode *inode_out = file_out->f_mapping->host;
 | 
						|
	uint64_t count = *req_count;
 | 
						|
	uint64_t bcount;
 | 
						|
	loff_t size_in, size_out;
 | 
						|
	loff_t bs = inode_out->i_sb->s_blocksize;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* The start of both ranges must be aligned to an fs block. */
 | 
						|
	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Ensure offsets don't wrap. */
 | 
						|
	if (pos_in + count < pos_in || pos_out + count < pos_out)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	size_in = i_size_read(inode_in);
 | 
						|
	size_out = i_size_read(inode_out);
 | 
						|
 | 
						|
	/* Dedupe requires both ranges to be within EOF. */
 | 
						|
	if ((remap_flags & REMAP_FILE_DEDUP) &&
 | 
						|
	    (pos_in >= size_in || pos_in + count > size_in ||
 | 
						|
	     pos_out >= size_out || pos_out + count > size_out))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* Ensure the infile range is within the infile. */
 | 
						|
	if (pos_in >= size_in)
 | 
						|
		return -EINVAL;
 | 
						|
	count = min(count, size_in - (uint64_t)pos_in);
 | 
						|
 | 
						|
	ret = generic_access_check_limits(file_in, pos_in, &count);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = generic_write_check_limits(file_out, pos_out, &count);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the user wanted us to link to the infile's EOF, round up to the
 | 
						|
	 * next block boundary for this check.
 | 
						|
	 *
 | 
						|
	 * Otherwise, make sure the count is also block-aligned, having
 | 
						|
	 * already confirmed the starting offsets' block alignment.
 | 
						|
	 */
 | 
						|
	if (pos_in + count == size_in) {
 | 
						|
		bcount = ALIGN(size_in, bs) - pos_in;
 | 
						|
	} else {
 | 
						|
		if (!IS_ALIGNED(count, bs))
 | 
						|
			count = ALIGN_DOWN(count, bs);
 | 
						|
		bcount = count;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Don't allow overlapped cloning within the same file. */
 | 
						|
	if (inode_in == inode_out &&
 | 
						|
	    pos_out + bcount > pos_in &&
 | 
						|
	    pos_out < pos_in + bcount)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We shortened the request but the caller can't deal with that, so
 | 
						|
	 * bounce the request back to userspace.
 | 
						|
	 */
 | 
						|
	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	*req_count = count;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int pagecache_write_begin(struct file *file, struct address_space *mapping,
 | 
						|
				loff_t pos, unsigned len, unsigned flags,
 | 
						|
				struct page **pagep, void **fsdata)
 | 
						|
{
 | 
						|
	const struct address_space_operations *aops = mapping->a_ops;
 | 
						|
 | 
						|
	return aops->write_begin(file, mapping, pos, len, flags,
 | 
						|
							pagep, fsdata);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pagecache_write_begin);
 | 
						|
 | 
						|
int pagecache_write_end(struct file *file, struct address_space *mapping,
 | 
						|
				loff_t pos, unsigned len, unsigned copied,
 | 
						|
				struct page *page, void *fsdata)
 | 
						|
{
 | 
						|
	const struct address_space_operations *aops = mapping->a_ops;
 | 
						|
 | 
						|
	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pagecache_write_end);
 | 
						|
 | 
						|
ssize_t
 | 
						|
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	struct file	*file = iocb->ki_filp;
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
	struct inode	*inode = mapping->host;
 | 
						|
	loff_t		pos = iocb->ki_pos;
 | 
						|
	ssize_t		written;
 | 
						|
	size_t		write_len;
 | 
						|
	pgoff_t		end;
 | 
						|
 | 
						|
	write_len = iov_iter_count(from);
 | 
						|
	end = (pos + write_len - 1) >> PAGE_SHIFT;
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_NOWAIT) {
 | 
						|
		/* If there are pages to writeback, return */
 | 
						|
		if (filemap_range_has_page(inode->i_mapping, pos,
 | 
						|
					   pos + write_len - 1))
 | 
						|
			return -EAGAIN;
 | 
						|
	} else {
 | 
						|
		written = filemap_write_and_wait_range(mapping, pos,
 | 
						|
							pos + write_len - 1);
 | 
						|
		if (written)
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * After a write we want buffered reads to be sure to go to disk to get
 | 
						|
	 * the new data.  We invalidate clean cached page from the region we're
 | 
						|
	 * about to write.  We do this *before* the write so that we can return
 | 
						|
	 * without clobbering -EIOCBQUEUED from ->direct_IO().
 | 
						|
	 */
 | 
						|
	written = invalidate_inode_pages2_range(mapping,
 | 
						|
					pos >> PAGE_SHIFT, end);
 | 
						|
	/*
 | 
						|
	 * If a page can not be invalidated, return 0 to fall back
 | 
						|
	 * to buffered write.
 | 
						|
	 */
 | 
						|
	if (written) {
 | 
						|
		if (written == -EBUSY)
 | 
						|
			return 0;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	written = mapping->a_ops->direct_IO(iocb, from);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Finally, try again to invalidate clean pages which might have been
 | 
						|
	 * cached by non-direct readahead, or faulted in by get_user_pages()
 | 
						|
	 * if the source of the write was an mmap'ed region of the file
 | 
						|
	 * we're writing.  Either one is a pretty crazy thing to do,
 | 
						|
	 * so we don't support it 100%.  If this invalidation
 | 
						|
	 * fails, tough, the write still worked...
 | 
						|
	 *
 | 
						|
	 * Most of the time we do not need this since dio_complete() will do
 | 
						|
	 * the invalidation for us. However there are some file systems that
 | 
						|
	 * do not end up with dio_complete() being called, so let's not break
 | 
						|
	 * them by removing it completely
 | 
						|
	 */
 | 
						|
	if (mapping->nrpages)
 | 
						|
		invalidate_inode_pages2_range(mapping,
 | 
						|
					pos >> PAGE_SHIFT, end);
 | 
						|
 | 
						|
	if (written > 0) {
 | 
						|
		pos += written;
 | 
						|
		write_len -= written;
 | 
						|
		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
 | 
						|
			i_size_write(inode, pos);
 | 
						|
			mark_inode_dirty(inode);
 | 
						|
		}
 | 
						|
		iocb->ki_pos = pos;
 | 
						|
	}
 | 
						|
	iov_iter_revert(from, write_len - iov_iter_count(from));
 | 
						|
out:
 | 
						|
	return written;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(generic_file_direct_write);
 | 
						|
 | 
						|
/*
 | 
						|
 * Find or create a page at the given pagecache position. Return the locked
 | 
						|
 * page. This function is specifically for buffered writes.
 | 
						|
 */
 | 
						|
struct page *grab_cache_page_write_begin(struct address_space *mapping,
 | 
						|
					pgoff_t index, unsigned flags)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
 | 
						|
 | 
						|
	if (flags & AOP_FLAG_NOFS)
 | 
						|
		fgp_flags |= FGP_NOFS;
 | 
						|
 | 
						|
	page = pagecache_get_page(mapping, index, fgp_flags,
 | 
						|
			mapping_gfp_mask(mapping));
 | 
						|
	if (page)
 | 
						|
		wait_for_stable_page(page);
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(grab_cache_page_write_begin);
 | 
						|
 | 
						|
ssize_t generic_perform_write(struct file *file,
 | 
						|
				struct iov_iter *i, loff_t pos)
 | 
						|
{
 | 
						|
	struct address_space *mapping = file->f_mapping;
 | 
						|
	const struct address_space_operations *a_ops = mapping->a_ops;
 | 
						|
	long status = 0;
 | 
						|
	ssize_t written = 0;
 | 
						|
	unsigned int flags = 0;
 | 
						|
 | 
						|
	do {
 | 
						|
		struct page *page;
 | 
						|
		unsigned long offset;	/* Offset into pagecache page */
 | 
						|
		unsigned long bytes;	/* Bytes to write to page */
 | 
						|
		size_t copied;		/* Bytes copied from user */
 | 
						|
		void *fsdata;
 | 
						|
 | 
						|
		offset = (pos & (PAGE_SIZE - 1));
 | 
						|
		bytes = min_t(unsigned long, PAGE_SIZE - offset,
 | 
						|
						iov_iter_count(i));
 | 
						|
 | 
						|
again:
 | 
						|
		/*
 | 
						|
		 * Bring in the user page that we will copy from _first_.
 | 
						|
		 * Otherwise there's a nasty deadlock on copying from the
 | 
						|
		 * same page as we're writing to, without it being marked
 | 
						|
		 * up-to-date.
 | 
						|
		 *
 | 
						|
		 * Not only is this an optimisation, but it is also required
 | 
						|
		 * to check that the address is actually valid, when atomic
 | 
						|
		 * usercopies are used, below.
 | 
						|
		 */
 | 
						|
		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
 | 
						|
			status = -EFAULT;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (fatal_signal_pending(current)) {
 | 
						|
			status = -EINTR;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
 | 
						|
						&page, &fsdata);
 | 
						|
		if (unlikely(status < 0))
 | 
						|
			break;
 | 
						|
 | 
						|
		if (mapping_writably_mapped(mapping))
 | 
						|
			flush_dcache_page(page);
 | 
						|
 | 
						|
		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
 | 
						|
		flush_dcache_page(page);
 | 
						|
 | 
						|
		status = a_ops->write_end(file, mapping, pos, bytes, copied,
 | 
						|
						page, fsdata);
 | 
						|
		if (unlikely(status < 0))
 | 
						|
			break;
 | 
						|
		copied = status;
 | 
						|
 | 
						|
		cond_resched();
 | 
						|
 | 
						|
		iov_iter_advance(i, copied);
 | 
						|
		if (unlikely(copied == 0)) {
 | 
						|
			/*
 | 
						|
			 * If we were unable to copy any data at all, we must
 | 
						|
			 * fall back to a single segment length write.
 | 
						|
			 *
 | 
						|
			 * If we didn't fallback here, we could livelock
 | 
						|
			 * because not all segments in the iov can be copied at
 | 
						|
			 * once without a pagefault.
 | 
						|
			 */
 | 
						|
			bytes = min_t(unsigned long, PAGE_SIZE - offset,
 | 
						|
						iov_iter_single_seg_count(i));
 | 
						|
			goto again;
 | 
						|
		}
 | 
						|
		pos += copied;
 | 
						|
		written += copied;
 | 
						|
 | 
						|
		balance_dirty_pages_ratelimited(mapping);
 | 
						|
	} while (iov_iter_count(i));
 | 
						|
 | 
						|
	return written ? written : status;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(generic_perform_write);
 | 
						|
 | 
						|
/**
 | 
						|
 * __generic_file_write_iter - write data to a file
 | 
						|
 * @iocb:	IO state structure (file, offset, etc.)
 | 
						|
 * @from:	iov_iter with data to write
 | 
						|
 *
 | 
						|
 * This function does all the work needed for actually writing data to a
 | 
						|
 * file. It does all basic checks, removes SUID from the file, updates
 | 
						|
 * modification times and calls proper subroutines depending on whether we
 | 
						|
 * do direct IO or a standard buffered write.
 | 
						|
 *
 | 
						|
 * It expects i_mutex to be grabbed unless we work on a block device or similar
 | 
						|
 * object which does not need locking at all.
 | 
						|
 *
 | 
						|
 * This function does *not* take care of syncing data in case of O_SYNC write.
 | 
						|
 * A caller has to handle it. This is mainly due to the fact that we want to
 | 
						|
 * avoid syncing under i_mutex.
 | 
						|
 */
 | 
						|
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	struct file *file = iocb->ki_filp;
 | 
						|
	struct address_space * mapping = file->f_mapping;
 | 
						|
	struct inode 	*inode = mapping->host;
 | 
						|
	ssize_t		written = 0;
 | 
						|
	ssize_t		err;
 | 
						|
	ssize_t		status;
 | 
						|
 | 
						|
	/* We can write back this queue in page reclaim */
 | 
						|
	current->backing_dev_info = inode_to_bdi(inode);
 | 
						|
	err = file_remove_privs(file);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	err = file_update_time(file);
 | 
						|
	if (err)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (iocb->ki_flags & IOCB_DIRECT) {
 | 
						|
		loff_t pos, endbyte;
 | 
						|
 | 
						|
		written = generic_file_direct_write(iocb, from);
 | 
						|
		/*
 | 
						|
		 * If the write stopped short of completing, fall back to
 | 
						|
		 * buffered writes.  Some filesystems do this for writes to
 | 
						|
		 * holes, for example.  For DAX files, a buffered write will
 | 
						|
		 * not succeed (even if it did, DAX does not handle dirty
 | 
						|
		 * page-cache pages correctly).
 | 
						|
		 */
 | 
						|
		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
 | 
						|
			goto out;
 | 
						|
 | 
						|
		status = generic_perform_write(file, from, pos = iocb->ki_pos);
 | 
						|
		/*
 | 
						|
		 * If generic_perform_write() returned a synchronous error
 | 
						|
		 * then we want to return the number of bytes which were
 | 
						|
		 * direct-written, or the error code if that was zero.  Note
 | 
						|
		 * that this differs from normal direct-io semantics, which
 | 
						|
		 * will return -EFOO even if some bytes were written.
 | 
						|
		 */
 | 
						|
		if (unlikely(status < 0)) {
 | 
						|
			err = status;
 | 
						|
			goto out;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * We need to ensure that the page cache pages are written to
 | 
						|
		 * disk and invalidated to preserve the expected O_DIRECT
 | 
						|
		 * semantics.
 | 
						|
		 */
 | 
						|
		endbyte = pos + status - 1;
 | 
						|
		err = filemap_write_and_wait_range(mapping, pos, endbyte);
 | 
						|
		if (err == 0) {
 | 
						|
			iocb->ki_pos = endbyte + 1;
 | 
						|
			written += status;
 | 
						|
			invalidate_mapping_pages(mapping,
 | 
						|
						 pos >> PAGE_SHIFT,
 | 
						|
						 endbyte >> PAGE_SHIFT);
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * We don't know how much we wrote, so just return
 | 
						|
			 * the number of bytes which were direct-written
 | 
						|
			 */
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		written = generic_perform_write(file, from, iocb->ki_pos);
 | 
						|
		if (likely(written > 0))
 | 
						|
			iocb->ki_pos += written;
 | 
						|
	}
 | 
						|
out:
 | 
						|
	current->backing_dev_info = NULL;
 | 
						|
	return written ? written : err;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__generic_file_write_iter);
 | 
						|
 | 
						|
/**
 | 
						|
 * generic_file_write_iter - write data to a file
 | 
						|
 * @iocb:	IO state structure
 | 
						|
 * @from:	iov_iter with data to write
 | 
						|
 *
 | 
						|
 * This is a wrapper around __generic_file_write_iter() to be used by most
 | 
						|
 * filesystems. It takes care of syncing the file in case of O_SYNC file
 | 
						|
 * and acquires i_mutex as needed.
 | 
						|
 */
 | 
						|
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 | 
						|
{
 | 
						|
	struct file *file = iocb->ki_filp;
 | 
						|
	struct inode *inode = file->f_mapping->host;
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	inode_lock(inode);
 | 
						|
	ret = generic_write_checks(iocb, from);
 | 
						|
	if (ret > 0)
 | 
						|
		ret = __generic_file_write_iter(iocb, from);
 | 
						|
	inode_unlock(inode);
 | 
						|
 | 
						|
	if (ret > 0)
 | 
						|
		ret = generic_write_sync(iocb, ret);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(generic_file_write_iter);
 | 
						|
 | 
						|
/**
 | 
						|
 * try_to_release_page() - release old fs-specific metadata on a page
 | 
						|
 *
 | 
						|
 * @page: the page which the kernel is trying to free
 | 
						|
 * @gfp_mask: memory allocation flags (and I/O mode)
 | 
						|
 *
 | 
						|
 * The address_space is to try to release any data against the page
 | 
						|
 * (presumably at page->private).  If the release was successful, return '1'.
 | 
						|
 * Otherwise return zero.
 | 
						|
 *
 | 
						|
 * This may also be called if PG_fscache is set on a page, indicating that the
 | 
						|
 * page is known to the local caching routines.
 | 
						|
 *
 | 
						|
 * The @gfp_mask argument specifies whether I/O may be performed to release
 | 
						|
 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
 | 
						|
 *
 | 
						|
 */
 | 
						|
int try_to_release_page(struct page *page, gfp_t gfp_mask)
 | 
						|
{
 | 
						|
	struct address_space * const mapping = page->mapping;
 | 
						|
 | 
						|
	BUG_ON(!PageLocked(page));
 | 
						|
	if (PageWriteback(page))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (mapping && mapping->a_ops->releasepage)
 | 
						|
		return mapping->a_ops->releasepage(page, gfp_mask);
 | 
						|
	return try_to_free_buffers(page);
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(try_to_release_page);
 |