forked from mirrors/linux
		
	 174cd4b1e5
			
		
	
	
		174cd4b1e5
		
	
	
	
	
		
			
			Fix up affected files that include this signal functionality via sched.h. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
			
				
	
	
		
			809 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			809 lines
		
	
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
 | |
|  *
 | |
|  * Created by:	Nicolas Pitre, March 2012
 | |
|  * Copyright:	(C) 2012-2013  Linaro Limited
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <uapi/linux/sched/types.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/cpu_pm.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/hrtimer.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/irqchip/arm-gic.h>
 | |
| #include <linux/moduleparam.h>
 | |
| 
 | |
| #include <asm/smp_plat.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/suspend.h>
 | |
| #include <asm/mcpm.h>
 | |
| #include <asm/bL_switcher.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/power_cpu_migrate.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
 | |
|  * __attribute_const__ and we don't want the compiler to assume any
 | |
|  * constness here as the value _does_ change along some code paths.
 | |
|  */
 | |
| 
 | |
| static int read_mpidr(void)
 | |
| {
 | |
| 	unsigned int id;
 | |
| 	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
 | |
| 	return id & MPIDR_HWID_BITMASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bL switcher core code.
 | |
|  */
 | |
| 
 | |
| static void bL_do_switch(void *_arg)
 | |
| {
 | |
| 	unsigned ib_mpidr, ib_cpu, ib_cluster;
 | |
| 	long volatile handshake, **handshake_ptr = _arg;
 | |
| 
 | |
| 	pr_debug("%s\n", __func__);
 | |
| 
 | |
| 	ib_mpidr = cpu_logical_map(smp_processor_id());
 | |
| 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
 | |
| 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
 | |
| 
 | |
| 	/* Advertise our handshake location */
 | |
| 	if (handshake_ptr) {
 | |
| 		handshake = 0;
 | |
| 		*handshake_ptr = &handshake;
 | |
| 	} else
 | |
| 		handshake = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Our state has been saved at this point.  Let's release our
 | |
| 	 * inbound CPU.
 | |
| 	 */
 | |
| 	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
 | |
| 	sev();
 | |
| 
 | |
| 	/*
 | |
| 	 * From this point, we must assume that our counterpart CPU might
 | |
| 	 * have taken over in its parallel world already, as if execution
 | |
| 	 * just returned from cpu_suspend().  It is therefore important to
 | |
| 	 * be very careful not to make any change the other guy is not
 | |
| 	 * expecting.  This is why we need stack isolation.
 | |
| 	 *
 | |
| 	 * Fancy under cover tasks could be performed here.  For now
 | |
| 	 * we have none.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's wait until our inbound is alive.
 | |
| 	 */
 | |
| 	while (!handshake) {
 | |
| 		wfe();
 | |
| 		smp_mb();
 | |
| 	}
 | |
| 
 | |
| 	/* Let's put ourself down. */
 | |
| 	mcpm_cpu_power_down();
 | |
| 
 | |
| 	/* should never get here */
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stack isolation.  To ensure 'current' remains valid, we just use another
 | |
|  * piece of our thread's stack space which should be fairly lightly used.
 | |
|  * The selected area starts just above the thread_info structure located
 | |
|  * at the very bottom of the stack, aligned to a cache line, and indexed
 | |
|  * with the cluster number.
 | |
|  */
 | |
| #define STACK_SIZE 512
 | |
| extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
 | |
| static int bL_switchpoint(unsigned long _arg)
 | |
| {
 | |
| 	unsigned int mpidr = read_mpidr();
 | |
| 	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
 | |
| 	void *stack = current_thread_info() + 1;
 | |
| 	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
 | |
| 	stack += clusterid * STACK_SIZE + STACK_SIZE;
 | |
| 	call_with_stack(bL_do_switch, (void *)_arg, stack);
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic switcher interface
 | |
|  */
 | |
| 
 | |
| static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
 | |
| static int bL_switcher_cpu_pairing[NR_CPUS];
 | |
| 
 | |
| /*
 | |
|  * bL_switch_to - Switch to a specific cluster for the current CPU
 | |
|  * @new_cluster_id: the ID of the cluster to switch to.
 | |
|  *
 | |
|  * This function must be called on the CPU to be switched.
 | |
|  * Returns 0 on success, else a negative status code.
 | |
|  */
 | |
| static int bL_switch_to(unsigned int new_cluster_id)
 | |
| {
 | |
| 	unsigned int mpidr, this_cpu, that_cpu;
 | |
| 	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
 | |
| 	struct completion inbound_alive;
 | |
| 	long volatile *handshake_ptr;
 | |
| 	int ipi_nr, ret;
 | |
| 
 | |
| 	this_cpu = smp_processor_id();
 | |
| 	ob_mpidr = read_mpidr();
 | |
| 	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
 | |
| 	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
 | |
| 	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
 | |
| 
 | |
| 	if (new_cluster_id == ob_cluster)
 | |
| 		return 0;
 | |
| 
 | |
| 	that_cpu = bL_switcher_cpu_pairing[this_cpu];
 | |
| 	ib_mpidr = cpu_logical_map(that_cpu);
 | |
| 	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
 | |
| 	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
 | |
| 
 | |
| 	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
 | |
| 		 this_cpu, ob_mpidr, ib_mpidr);
 | |
| 
 | |
| 	this_cpu = smp_processor_id();
 | |
| 
 | |
| 	/* Close the gate for our entry vectors */
 | |
| 	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
 | |
| 	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
 | |
| 
 | |
| 	/* Install our "inbound alive" notifier. */
 | |
| 	init_completion(&inbound_alive);
 | |
| 	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
 | |
| 	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
 | |
| 	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's wake up the inbound CPU now in case it requires some delay
 | |
| 	 * to come online, but leave it gated in our entry vector code.
 | |
| 	 */
 | |
| 	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
 | |
| 	if (ret) {
 | |
| 		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
 | |
| 	 * in a possible WFI, such as in bL_power_down().
 | |
| 	 */
 | |
| 	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for the inbound to come up.  This allows for other
 | |
| 	 * tasks to be scheduled in the mean time.
 | |
| 	 */
 | |
| 	wait_for_completion(&inbound_alive);
 | |
| 	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * From this point we are entering the switch critical zone
 | |
| 	 * and can't take any interrupts anymore.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 	local_fiq_disable();
 | |
| 	trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
 | |
| 
 | |
| 	/* redirect GIC's SGIs to our counterpart */
 | |
| 	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
 | |
| 
 | |
| 	tick_suspend_local();
 | |
| 
 | |
| 	ret = cpu_pm_enter();
 | |
| 
 | |
| 	/* we can not tolerate errors at this point */
 | |
| 	if (ret)
 | |
| 		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
 | |
| 
 | |
| 	/* Swap the physical CPUs in the logical map for this logical CPU. */
 | |
| 	cpu_logical_map(this_cpu) = ib_mpidr;
 | |
| 	cpu_logical_map(that_cpu) = ob_mpidr;
 | |
| 
 | |
| 	/* Let's do the actual CPU switch. */
 | |
| 	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
 | |
| 	if (ret > 0)
 | |
| 		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
 | |
| 
 | |
| 	/* We are executing on the inbound CPU at this point */
 | |
| 	mpidr = read_mpidr();
 | |
| 	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
 | |
| 	BUG_ON(mpidr != ib_mpidr);
 | |
| 
 | |
| 	mcpm_cpu_powered_up();
 | |
| 
 | |
| 	ret = cpu_pm_exit();
 | |
| 
 | |
| 	tick_resume_local();
 | |
| 
 | |
| 	trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
 | |
| 	local_fiq_enable();
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	*handshake_ptr = 1;
 | |
| 	dsb_sev();
 | |
| 
 | |
| 	if (ret)
 | |
| 		pr_err("%s exiting with error %d\n", __func__, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct bL_thread {
 | |
| 	spinlock_t lock;
 | |
| 	struct task_struct *task;
 | |
| 	wait_queue_head_t wq;
 | |
| 	int wanted_cluster;
 | |
| 	struct completion started;
 | |
| 	bL_switch_completion_handler completer;
 | |
| 	void *completer_cookie;
 | |
| };
 | |
| 
 | |
| static struct bL_thread bL_threads[NR_CPUS];
 | |
| 
 | |
| static int bL_switcher_thread(void *arg)
 | |
| {
 | |
| 	struct bL_thread *t = arg;
 | |
| 	struct sched_param param = { .sched_priority = 1 };
 | |
| 	int cluster;
 | |
| 	bL_switch_completion_handler completer;
 | |
| 	void *completer_cookie;
 | |
| 
 | |
| 	sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
 | |
| 	complete(&t->started);
 | |
| 
 | |
| 	do {
 | |
| 		if (signal_pending(current))
 | |
| 			flush_signals(current);
 | |
| 		wait_event_interruptible(t->wq,
 | |
| 				t->wanted_cluster != -1 ||
 | |
| 				kthread_should_stop());
 | |
| 
 | |
| 		spin_lock(&t->lock);
 | |
| 		cluster = t->wanted_cluster;
 | |
| 		completer = t->completer;
 | |
| 		completer_cookie = t->completer_cookie;
 | |
| 		t->wanted_cluster = -1;
 | |
| 		t->completer = NULL;
 | |
| 		spin_unlock(&t->lock);
 | |
| 
 | |
| 		if (cluster != -1) {
 | |
| 			bL_switch_to(cluster);
 | |
| 
 | |
| 			if (completer)
 | |
| 				completer(completer_cookie);
 | |
| 		}
 | |
| 	} while (!kthread_should_stop());
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
 | |
| {
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	task = kthread_create_on_node(bL_switcher_thread, arg,
 | |
| 				      cpu_to_node(cpu), "kswitcher_%d", cpu);
 | |
| 	if (!IS_ERR(task)) {
 | |
| 		kthread_bind(task, cpu);
 | |
| 		wake_up_process(task);
 | |
| 	} else
 | |
| 		pr_err("%s failed for CPU %d\n", __func__, cpu);
 | |
| 	return task;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
 | |
|  *      with completion notification via a callback
 | |
|  *
 | |
|  * @cpu: the CPU to switch
 | |
|  * @new_cluster_id: the ID of the cluster to switch to.
 | |
|  * @completer: switch completion callback.  if non-NULL,
 | |
|  *	@completer(@completer_cookie) will be called on completion of
 | |
|  *	the switch, in non-atomic context.
 | |
|  * @completer_cookie: opaque context argument for @completer.
 | |
|  *
 | |
|  * This function causes a cluster switch on the given CPU by waking up
 | |
|  * the appropriate switcher thread.  This function may or may not return
 | |
|  * before the switch has occurred.
 | |
|  *
 | |
|  * If a @completer callback function is supplied, it will be called when
 | |
|  * the switch is complete.  This can be used to determine asynchronously
 | |
|  * when the switch is complete, regardless of when bL_switch_request()
 | |
|  * returns.  When @completer is supplied, no new switch request is permitted
 | |
|  * for the affected CPU until after the switch is complete, and @completer
 | |
|  * has returned.
 | |
|  */
 | |
| int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
 | |
| 			 bL_switch_completion_handler completer,
 | |
| 			 void *completer_cookie)
 | |
| {
 | |
| 	struct bL_thread *t;
 | |
| 
 | |
| 	if (cpu >= ARRAY_SIZE(bL_threads)) {
 | |
| 		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	t = &bL_threads[cpu];
 | |
| 
 | |
| 	if (IS_ERR(t->task))
 | |
| 		return PTR_ERR(t->task);
 | |
| 	if (!t->task)
 | |
| 		return -ESRCH;
 | |
| 
 | |
| 	spin_lock(&t->lock);
 | |
| 	if (t->completer) {
 | |
| 		spin_unlock(&t->lock);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	t->completer = completer;
 | |
| 	t->completer_cookie = completer_cookie;
 | |
| 	t->wanted_cluster = new_cluster_id;
 | |
| 	spin_unlock(&t->lock);
 | |
| 	wake_up(&t->wq);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bL_switch_request_cb);
 | |
| 
 | |
| /*
 | |
|  * Activation and configuration code.
 | |
|  */
 | |
| 
 | |
| static DEFINE_MUTEX(bL_switcher_activation_lock);
 | |
| static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
 | |
| static unsigned int bL_switcher_active;
 | |
| static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
 | |
| static cpumask_t bL_switcher_removed_logical_cpus;
 | |
| 
 | |
| int bL_switcher_register_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
 | |
| 
 | |
| int bL_switcher_unregister_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
 | |
| 
 | |
| static int bL_activation_notify(unsigned long val)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
 | |
| 	if (ret & NOTIFY_STOP_MASK)
 | |
| 		pr_err("%s: notifier chain failed with status 0x%x\n",
 | |
| 			__func__, ret);
 | |
| 	return notifier_to_errno(ret);
 | |
| }
 | |
| 
 | |
| static void bL_switcher_restore_cpus(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
 | |
| 		struct device *cpu_dev = get_cpu_device(i);
 | |
| 		int ret = device_online(cpu_dev);
 | |
| 		if (ret)
 | |
| 			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int bL_switcher_halve_cpus(void)
 | |
| {
 | |
| 	int i, j, cluster_0, gic_id, ret;
 | |
| 	unsigned int cpu, cluster, mask;
 | |
| 	cpumask_t available_cpus;
 | |
| 
 | |
| 	/* First pass to validate what we have */
 | |
| 	mask = 0;
 | |
| 	for_each_online_cpu(i) {
 | |
| 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
 | |
| 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
 | |
| 		if (cluster >= 2) {
 | |
| 			pr_err("%s: only dual cluster systems are supported\n", __func__);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
 | |
| 			return -EINVAL;
 | |
| 		mask |= (1 << cluster);
 | |
| 	}
 | |
| 	if (mask != 3) {
 | |
| 		pr_err("%s: no CPU pairing possible\n", __func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now let's do the pairing.  We match each CPU with another CPU
 | |
| 	 * from a different cluster.  To get a uniform scheduling behavior
 | |
| 	 * without fiddling with CPU topology and compute capacity data,
 | |
| 	 * we'll use logical CPUs initially belonging to the same cluster.
 | |
| 	 */
 | |
| 	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
 | |
| 	cpumask_copy(&available_cpus, cpu_online_mask);
 | |
| 	cluster_0 = -1;
 | |
| 	for_each_cpu(i, &available_cpus) {
 | |
| 		int match = -1;
 | |
| 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
 | |
| 		if (cluster_0 == -1)
 | |
| 			cluster_0 = cluster;
 | |
| 		if (cluster != cluster_0)
 | |
| 			continue;
 | |
| 		cpumask_clear_cpu(i, &available_cpus);
 | |
| 		for_each_cpu(j, &available_cpus) {
 | |
| 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
 | |
| 			/*
 | |
| 			 * Let's remember the last match to create "odd"
 | |
| 			 * pairings on purpose in order for other code not
 | |
| 			 * to assume any relation between physical and
 | |
| 			 * logical CPU numbers.
 | |
| 			 */
 | |
| 			if (cluster != cluster_0)
 | |
| 				match = j;
 | |
| 		}
 | |
| 		if (match != -1) {
 | |
| 			bL_switcher_cpu_pairing[i] = match;
 | |
| 			cpumask_clear_cpu(match, &available_cpus);
 | |
| 			pr_info("CPU%d paired with CPU%d\n", i, match);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we disable the unwanted CPUs i.e. everything that has no
 | |
| 	 * pairing information (that includes the pairing counterparts).
 | |
| 	 */
 | |
| 	cpumask_clear(&bL_switcher_removed_logical_cpus);
 | |
| 	for_each_online_cpu(i) {
 | |
| 		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
 | |
| 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
 | |
| 
 | |
| 		/* Let's take note of the GIC ID for this CPU */
 | |
| 		gic_id = gic_get_cpu_id(i);
 | |
| 		if (gic_id < 0) {
 | |
| 			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
 | |
| 			bL_switcher_restore_cpus();
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		bL_gic_id[cpu][cluster] = gic_id;
 | |
| 		pr_info("GIC ID for CPU %u cluster %u is %u\n",
 | |
| 			cpu, cluster, gic_id);
 | |
| 
 | |
| 		if (bL_switcher_cpu_pairing[i] != -1) {
 | |
| 			bL_switcher_cpu_original_cluster[i] = cluster;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = device_offline(get_cpu_device(i));
 | |
| 		if (ret) {
 | |
| 			bL_switcher_restore_cpus();
 | |
| 			return ret;
 | |
| 		}
 | |
| 		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Determine the logical CPU a given physical CPU is grouped on. */
 | |
| int bL_switcher_get_logical_index(u32 mpidr)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!bL_switcher_active)
 | |
| 		return -EUNATCH;
 | |
| 
 | |
| 	mpidr &= MPIDR_HWID_BITMASK;
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		int pairing = bL_switcher_cpu_pairing[cpu];
 | |
| 		if (pairing == -1)
 | |
| 			continue;
 | |
| 		if ((mpidr == cpu_logical_map(cpu)) ||
 | |
| 		    (mpidr == cpu_logical_map(pairing)))
 | |
| 			return cpu;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
 | |
| {
 | |
| 	trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
 | |
| }
 | |
| 
 | |
| int bL_switcher_trace_trigger(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	bL_switcher_trace_trigger_cpu(NULL);
 | |
| 	ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
 | |
| 
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
 | |
| 
 | |
| static int bL_switcher_enable(void)
 | |
| {
 | |
| 	int cpu, ret;
 | |
| 
 | |
| 	mutex_lock(&bL_switcher_activation_lock);
 | |
| 	lock_device_hotplug();
 | |
| 	if (bL_switcher_active) {
 | |
| 		unlock_device_hotplug();
 | |
| 		mutex_unlock(&bL_switcher_activation_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("big.LITTLE switcher initializing\n");
 | |
| 
 | |
| 	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
 | |
| 	if (ret)
 | |
| 		goto error;
 | |
| 
 | |
| 	ret = bL_switcher_halve_cpus();
 | |
| 	if (ret)
 | |
| 		goto error;
 | |
| 
 | |
| 	bL_switcher_trace_trigger();
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct bL_thread *t = &bL_threads[cpu];
 | |
| 		spin_lock_init(&t->lock);
 | |
| 		init_waitqueue_head(&t->wq);
 | |
| 		init_completion(&t->started);
 | |
| 		t->wanted_cluster = -1;
 | |
| 		t->task = bL_switcher_thread_create(cpu, t);
 | |
| 	}
 | |
| 
 | |
| 	bL_switcher_active = 1;
 | |
| 	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
 | |
| 	pr_info("big.LITTLE switcher initialized\n");
 | |
| 	goto out;
 | |
| 
 | |
| error:
 | |
| 	pr_warn("big.LITTLE switcher initialization failed\n");
 | |
| 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
 | |
| 
 | |
| out:
 | |
| 	unlock_device_hotplug();
 | |
| 	mutex_unlock(&bL_switcher_activation_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| 
 | |
| static void bL_switcher_disable(void)
 | |
| {
 | |
| 	unsigned int cpu, cluster;
 | |
| 	struct bL_thread *t;
 | |
| 	struct task_struct *task;
 | |
| 
 | |
| 	mutex_lock(&bL_switcher_activation_lock);
 | |
| 	lock_device_hotplug();
 | |
| 
 | |
| 	if (!bL_switcher_active)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
 | |
| 		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	bL_switcher_active = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * To deactivate the switcher, we must shut down the switcher
 | |
| 	 * threads to prevent any other requests from being accepted.
 | |
| 	 * Then, if the final cluster for given logical CPU is not the
 | |
| 	 * same as the original one, we'll recreate a switcher thread
 | |
| 	 * just for the purpose of switching the CPU back without any
 | |
| 	 * possibility for interference from external requests.
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		t = &bL_threads[cpu];
 | |
| 		task = t->task;
 | |
| 		t->task = NULL;
 | |
| 		if (!task || IS_ERR(task))
 | |
| 			continue;
 | |
| 		kthread_stop(task);
 | |
| 		/* no more switch may happen on this CPU at this point */
 | |
| 		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
 | |
| 		if (cluster == bL_switcher_cpu_original_cluster[cpu])
 | |
| 			continue;
 | |
| 		init_completion(&t->started);
 | |
| 		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
 | |
| 		task = bL_switcher_thread_create(cpu, t);
 | |
| 		if (!IS_ERR(task)) {
 | |
| 			wait_for_completion(&t->started);
 | |
| 			kthread_stop(task);
 | |
| 			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
 | |
| 			if (cluster == bL_switcher_cpu_original_cluster[cpu])
 | |
| 				continue;
 | |
| 		}
 | |
| 		/* If execution gets here, we're in trouble. */
 | |
| 		pr_crit("%s: unable to restore original cluster for CPU %d\n",
 | |
| 			__func__, cpu);
 | |
| 		pr_crit("%s: CPU %d can't be restored\n",
 | |
| 			__func__, bL_switcher_cpu_pairing[cpu]);
 | |
| 		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
 | |
| 				  &bL_switcher_removed_logical_cpus);
 | |
| 	}
 | |
| 
 | |
| 	bL_switcher_restore_cpus();
 | |
| 	bL_switcher_trace_trigger();
 | |
| 
 | |
| 	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
 | |
| 
 | |
| out:
 | |
| 	unlock_device_hotplug();
 | |
| 	mutex_unlock(&bL_switcher_activation_lock);
 | |
| }
 | |
| 
 | |
| static ssize_t bL_switcher_active_show(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", bL_switcher_active);
 | |
| }
 | |
| 
 | |
| static ssize_t bL_switcher_active_store(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, const char *buf, size_t count)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (buf[0]) {
 | |
| 	case '0':
 | |
| 		bL_switcher_disable();
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	case '1':
 | |
| 		ret = bL_switcher_enable();
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return (ret >= 0) ? count : ret;
 | |
| }
 | |
| 
 | |
| static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, const char *buf, size_t count)
 | |
| {
 | |
| 	int ret = bL_switcher_trace_trigger();
 | |
| 
 | |
| 	return ret ? ret : count;
 | |
| }
 | |
| 
 | |
| static struct kobj_attribute bL_switcher_active_attr =
 | |
| 	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
 | |
| 
 | |
| static struct kobj_attribute bL_switcher_trace_trigger_attr =
 | |
| 	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
 | |
| 
 | |
| static struct attribute *bL_switcher_attrs[] = {
 | |
| 	&bL_switcher_active_attr.attr,
 | |
| 	&bL_switcher_trace_trigger_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group bL_switcher_attr_group = {
 | |
| 	.attrs = bL_switcher_attrs,
 | |
| };
 | |
| 
 | |
| static struct kobject *bL_switcher_kobj;
 | |
| 
 | |
| static int __init bL_switcher_sysfs_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
 | |
| 	if (!bL_switcher_kobj)
 | |
| 		return -ENOMEM;
 | |
| 	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
 | |
| 	if (ret)
 | |
| 		kobject_put(bL_switcher_kobj);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif  /* CONFIG_SYSFS */
 | |
| 
 | |
| bool bL_switcher_get_enabled(void)
 | |
| {
 | |
| 	mutex_lock(&bL_switcher_activation_lock);
 | |
| 
 | |
| 	return bL_switcher_active;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
 | |
| 
 | |
| void bL_switcher_put_enabled(void)
 | |
| {
 | |
| 	mutex_unlock(&bL_switcher_activation_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
 | |
| 
 | |
| /*
 | |
|  * Veto any CPU hotplug operation on those CPUs we've removed
 | |
|  * while the switcher is active.
 | |
|  * We're just not ready to deal with that given the trickery involved.
 | |
|  */
 | |
| static int bL_switcher_cpu_pre(unsigned int cpu)
 | |
| {
 | |
| 	int pairing;
 | |
| 
 | |
| 	if (!bL_switcher_active)
 | |
| 		return 0;
 | |
| 
 | |
| 	pairing = bL_switcher_cpu_pairing[cpu];
 | |
| 
 | |
| 	if (pairing == -1)
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool no_bL_switcher;
 | |
| core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
 | |
| 
 | |
| static int __init bL_switcher_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!mcpm_is_available())
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
 | |
| 				  bL_switcher_cpu_pre, NULL);
 | |
| 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
 | |
| 					NULL, bL_switcher_cpu_pre);
 | |
| 	if (ret < 0) {
 | |
| 		cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
 | |
| 		pr_err("bL_switcher: Failed to allocate a hotplug state\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 	if (!no_bL_switcher) {
 | |
| 		ret = bL_switcher_enable();
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| 	ret = bL_switcher_sysfs_init();
 | |
| 	if (ret)
 | |
| 		pr_err("%s: unable to create sysfs entry\n", __func__);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| late_initcall(bL_switcher_init);
 |