forked from mirrors/linux
		
	 636deed6c0
			
		
	
	
		636deed6c0
		
	
	
	
	
		
			
			for 32-bit guests
 
 s390: interrupt cleanup, introduction of the Guest Information Block,
 preparation for processor subfunctions in cpu models
 
 PPC: bug fixes and improvements, especially related to machine checks
 and protection keys
 
 x86: many, many cleanups, including removing a bunch of MMU code for
 unnecessary optimizations; plus AVIC fixes.
 
 Generic: memcg accounting
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
 16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
 l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
 RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
 gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
 2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
 =XIzU
 -----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
 "ARM:
   - some cleanups
   - direct physical timer assignment
   - cache sanitization for 32-bit guests
  s390:
   - interrupt cleanup
   - introduction of the Guest Information Block
   - preparation for processor subfunctions in cpu models
  PPC:
   - bug fixes and improvements, especially related to machine checks
     and protection keys
  x86:
   - many, many cleanups, including removing a bunch of MMU code for
     unnecessary optimizations
   - AVIC fixes
  Generic:
   - memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
  kvm: vmx: fix formatting of a comment
  KVM: doc: Document the life cycle of a VM and its resources
  MAINTAINERS: Add KVM selftests to existing KVM entry
  Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
  KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
  KVM: PPC: Fix compilation when KVM is not enabled
  KVM: Minor cleanups for kvm_main.c
  KVM: s390: add debug logging for cpu model subfunctions
  KVM: s390: implement subfunction processor calls
  arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
  KVM: arm/arm64: Remove unused timer variable
  KVM: PPC: Book3S: Improve KVM reference counting
  KVM: PPC: Book3S HV: Fix build failure without IOMMU support
  Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
  x86: kvmguest: use TSC clocksource if invariant TSC is exposed
  KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
  KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
  KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
  KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
  KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
  ...
		
	
			
		
			
				
	
	
		
			1460 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1460 lines
		
	
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 | |
|  * Authors: Rusty Russell <rusty@rustcorp.com.au>
 | |
|  *          Christoffer Dall <c.dall@virtualopensystems.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License, version 2, as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 | |
|  */
 | |
| 
 | |
| #include <linux/bsearch.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/kvm_arm.h>
 | |
| #include <asm/kvm_host.h>
 | |
| #include <asm/kvm_emulate.h>
 | |
| #include <asm/kvm_coproc.h>
 | |
| #include <asm/kvm_mmu.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/cputype.h>
 | |
| #include <trace/events/kvm.h>
 | |
| #include <asm/vfp.h>
 | |
| #include "../vfp/vfpinstr.h"
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "trace.h"
 | |
| #include "coproc.h"
 | |
| 
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Co-processor emulation
 | |
|  *****************************************************************************/
 | |
| 
 | |
| static bool write_to_read_only(struct kvm_vcpu *vcpu,
 | |
| 			       const struct coproc_params *params)
 | |
| {
 | |
| 	WARN_ONCE(1, "CP15 write to read-only register\n");
 | |
| 	print_cp_instr(params);
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool read_from_write_only(struct kvm_vcpu *vcpu,
 | |
| 				 const struct coproc_params *params)
 | |
| {
 | |
| 	WARN_ONCE(1, "CP15 read to write-only register\n");
 | |
| 	print_cp_instr(params);
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
 | |
| static u32 cache_levels;
 | |
| 
 | |
| /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
 | |
| #define CSSELR_MAX 12
 | |
| 
 | |
| /*
 | |
|  * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
 | |
|  * of cp15 registers can be viewed either as couple of two u32 registers
 | |
|  * or one u64 register. Current u64 register encoding is that least
 | |
|  * significant u32 word is followed by most significant u32 word.
 | |
|  */
 | |
| static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
 | |
| 				       const struct coproc_reg *r,
 | |
| 				       u64 val)
 | |
| {
 | |
| 	vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
 | |
| 	vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
 | |
| }
 | |
| 
 | |
| static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
 | |
| 				      const struct coproc_reg *r)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	val = vcpu_cp15(vcpu, r->reg + 1);
 | |
| 	val = val << 32;
 | |
| 	val = val | vcpu_cp15(vcpu, r->reg);
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	/*
 | |
| 	 * We can get here, if the host has been built without VFPv3 support,
 | |
| 	 * but the guest attempted a floating point operation.
 | |
| 	 */
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	kvm_inject_undefined(vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
 | |
| {
 | |
| 	/*
 | |
| 	 * Compute guest MPIDR. We build a virtual cluster out of the
 | |
| 	 * vcpu_id, but we read the 'U' bit from the underlying
 | |
| 	 * hardware directly.
 | |
| 	 */
 | |
| 	vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
 | |
| 				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
 | |
| 				     (vcpu->vcpu_id & 3));
 | |
| }
 | |
| 
 | |
| /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
 | |
| static bool access_actlr(struct kvm_vcpu *vcpu,
 | |
| 			 const struct coproc_params *p,
 | |
| 			 const struct coproc_reg *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return ignore_write(vcpu, p);
 | |
| 
 | |
| 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
 | |
| static bool access_cbar(struct kvm_vcpu *vcpu,
 | |
| 			const struct coproc_params *p,
 | |
| 			const struct coproc_reg *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return write_to_read_only(vcpu, p);
 | |
| 	return read_zero(vcpu, p);
 | |
| }
 | |
| 
 | |
| /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
 | |
| static bool access_l2ctlr(struct kvm_vcpu *vcpu,
 | |
| 			  const struct coproc_params *p,
 | |
| 			  const struct coproc_reg *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return ignore_write(vcpu, p);
 | |
| 
 | |
| 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
 | |
| {
 | |
| 	u32 l2ctlr, ncores;
 | |
| 
 | |
| 	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
 | |
| 	l2ctlr &= ~(3 << 24);
 | |
| 	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
 | |
| 	/* How many cores in the current cluster and the next ones */
 | |
| 	ncores -= (vcpu->vcpu_id & ~3);
 | |
| 	/* Cap it to the maximum number of cores in a single cluster */
 | |
| 	ncores = min(ncores, 3U);
 | |
| 	l2ctlr |= (ncores & 3) << 24;
 | |
| 
 | |
| 	vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
 | |
| }
 | |
| 
 | |
| static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
 | |
| {
 | |
| 	u32 actlr;
 | |
| 
 | |
| 	/* ACTLR contains SMP bit: make sure you create all cpus first! */
 | |
| 	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
 | |
| 	/* Make the SMP bit consistent with the guest configuration */
 | |
| 	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
 | |
| 		actlr |= 1U << 6;
 | |
| 	else
 | |
| 		actlr &= ~(1U << 6);
 | |
| 
 | |
| 	vcpu_cp15(vcpu, c1_ACTLR) = actlr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TRM entries: A7:4.3.50, A15:4.3.49
 | |
|  * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
 | |
|  */
 | |
| static bool access_l2ectlr(struct kvm_vcpu *vcpu,
 | |
| 			   const struct coproc_params *p,
 | |
| 			   const struct coproc_reg *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return ignore_write(vcpu, p);
 | |
| 
 | |
| 	*vcpu_reg(vcpu, p->Rt1) = 0;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 | |
|  */
 | |
| static bool access_dcsw(struct kvm_vcpu *vcpu,
 | |
| 			const struct coproc_params *p,
 | |
| 			const struct coproc_reg *r)
 | |
| {
 | |
| 	if (!p->is_write)
 | |
| 		return read_from_write_only(vcpu, p);
 | |
| 
 | |
| 	kvm_set_way_flush(vcpu);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic accessor for VM registers. Only called as long as HCR_TVM
 | |
|  * is set.  If the guest enables the MMU, we stop trapping the VM
 | |
|  * sys_regs and leave it in complete control of the caches.
 | |
|  *
 | |
|  * Used by the cpu-specific code.
 | |
|  */
 | |
| bool access_vm_reg(struct kvm_vcpu *vcpu,
 | |
| 		   const struct coproc_params *p,
 | |
| 		   const struct coproc_reg *r)
 | |
| {
 | |
| 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
 | |
| 
 | |
| 	BUG_ON(!p->is_write);
 | |
| 
 | |
| 	vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
 | |
| 	if (p->is_64bit)
 | |
| 		vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
 | |
| 
 | |
| 	kvm_toggle_cache(vcpu, was_enabled);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 | |
| 			   const struct coproc_params *p,
 | |
| 			   const struct coproc_reg *r)
 | |
| {
 | |
| 	u64 reg;
 | |
| 	bool g1;
 | |
| 
 | |
| 	if (!p->is_write)
 | |
| 		return read_from_write_only(vcpu, p);
 | |
| 
 | |
| 	reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
 | |
| 	reg |= *vcpu_reg(vcpu, p->Rt1) ;
 | |
| 
 | |
| 	/*
 | |
| 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
 | |
| 	 * Group0 SGIs only, while ICC_SGI1R can generate either group,
 | |
| 	 * depending on the SGI configuration. ICC_ASGI1R is effectively
 | |
| 	 * equivalent to ICC_SGI0R, as there is no "alternative" secure
 | |
| 	 * group.
 | |
| 	 */
 | |
| 	switch (p->Op1) {
 | |
| 	default:		/* Keep GCC quiet */
 | |
| 	case 0:			/* ICC_SGI1R */
 | |
| 		g1 = true;
 | |
| 		break;
 | |
| 	case 1:			/* ICC_ASGI1R */
 | |
| 	case 2:			/* ICC_SGI0R */
 | |
| 		g1 = false;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	vgic_v3_dispatch_sgi(vcpu, reg, g1);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_gic_sre(struct kvm_vcpu *vcpu,
 | |
| 			   const struct coproc_params *p,
 | |
| 			   const struct coproc_reg *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return ignore_write(vcpu, p);
 | |
| 
 | |
| 	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_cntp_tval(struct kvm_vcpu *vcpu,
 | |
| 			     const struct coproc_params *p,
 | |
| 			     const struct coproc_reg *r)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		val = *vcpu_reg(vcpu, p->Rt1);
 | |
| 		kvm_arm_timer_write_sysreg(vcpu,
 | |
| 					   TIMER_PTIMER, TIMER_REG_TVAL, val);
 | |
| 	} else {
 | |
| 		val = kvm_arm_timer_read_sysreg(vcpu,
 | |
| 						TIMER_PTIMER, TIMER_REG_TVAL);
 | |
| 		*vcpu_reg(vcpu, p->Rt1) = val;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
 | |
| 			    const struct coproc_params *p,
 | |
| 			    const struct coproc_reg *r)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		val = *vcpu_reg(vcpu, p->Rt1);
 | |
| 		kvm_arm_timer_write_sysreg(vcpu,
 | |
| 					   TIMER_PTIMER, TIMER_REG_CTL, val);
 | |
| 	} else {
 | |
| 		val = kvm_arm_timer_read_sysreg(vcpu,
 | |
| 						TIMER_PTIMER, TIMER_REG_CTL);
 | |
| 		*vcpu_reg(vcpu, p->Rt1) = val;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool access_cntp_cval(struct kvm_vcpu *vcpu,
 | |
| 			     const struct coproc_params *p,
 | |
| 			     const struct coproc_reg *r)
 | |
| {
 | |
| 	u64 val;
 | |
| 
 | |
| 	if (p->is_write) {
 | |
| 		val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
 | |
| 		val |= *vcpu_reg(vcpu, p->Rt1);
 | |
| 		kvm_arm_timer_write_sysreg(vcpu,
 | |
| 					   TIMER_PTIMER, TIMER_REG_CVAL, val);
 | |
| 	} else {
 | |
| 		val = kvm_arm_timer_read_sysreg(vcpu,
 | |
| 						TIMER_PTIMER, TIMER_REG_CVAL);
 | |
| 		*vcpu_reg(vcpu, p->Rt1) = val;
 | |
| 		*vcpu_reg(vcpu, p->Rt2) = val >> 32;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We could trap ID_DFR0 and tell the guest we don't support performance
 | |
|  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
 | |
|  * NAKed, so it will read the PMCR anyway.
 | |
|  *
 | |
|  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
 | |
|  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
 | |
|  * all PM registers, which doesn't crash the guest kernel at least.
 | |
|  */
 | |
| static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 | |
| 		    const struct coproc_params *p,
 | |
| 		    const struct coproc_reg *r)
 | |
| {
 | |
| 	if (p->is_write)
 | |
| 		return ignore_write(vcpu, p);
 | |
| 	else
 | |
| 		return read_zero(vcpu, p);
 | |
| }
 | |
| 
 | |
| #define access_pmcr trap_raz_wi
 | |
| #define access_pmcntenset trap_raz_wi
 | |
| #define access_pmcntenclr trap_raz_wi
 | |
| #define access_pmovsr trap_raz_wi
 | |
| #define access_pmselr trap_raz_wi
 | |
| #define access_pmceid0 trap_raz_wi
 | |
| #define access_pmceid1 trap_raz_wi
 | |
| #define access_pmccntr trap_raz_wi
 | |
| #define access_pmxevtyper trap_raz_wi
 | |
| #define access_pmxevcntr trap_raz_wi
 | |
| #define access_pmuserenr trap_raz_wi
 | |
| #define access_pmintenset trap_raz_wi
 | |
| #define access_pmintenclr trap_raz_wi
 | |
| 
 | |
| /* Architected CP15 registers.
 | |
|  * CRn denotes the primary register number, but is copied to the CRm in the
 | |
|  * user space API for 64-bit register access in line with the terminology used
 | |
|  * in the ARM ARM.
 | |
|  * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
 | |
|  *            registers preceding 32-bit ones.
 | |
|  */
 | |
| static const struct coproc_reg cp15_regs[] = {
 | |
| 	/* MPIDR: we use VMPIDR for guest access. */
 | |
| 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
 | |
| 			NULL, reset_mpidr, c0_MPIDR },
 | |
| 
 | |
| 	/* CSSELR: swapped by interrupt.S. */
 | |
| 	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
 | |
| 			NULL, reset_unknown, c0_CSSELR },
 | |
| 
 | |
| 	/* ACTLR: trapped by HCR.TAC bit. */
 | |
| 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
 | |
| 			access_actlr, reset_actlr, c1_ACTLR },
 | |
| 
 | |
| 	/* CPACR: swapped by interrupt.S. */
 | |
| 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
 | |
| 			NULL, reset_val, c1_CPACR, 0x00000000 },
 | |
| 
 | |
| 	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
 | |
| 	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
 | |
| 	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
 | |
| 			access_vm_reg, reset_unknown, c2_TTBR0 },
 | |
| 	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
 | |
| 			access_vm_reg, reset_unknown, c2_TTBR1 },
 | |
| 	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
 | |
| 			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
 | |
| 	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
 | |
| 
 | |
| 
 | |
| 	/* DACR: swapped by interrupt.S. */
 | |
| 	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
 | |
| 			access_vm_reg, reset_unknown, c3_DACR },
 | |
| 
 | |
| 	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
 | |
| 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
 | |
| 			access_vm_reg, reset_unknown, c5_DFSR },
 | |
| 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
 | |
| 			access_vm_reg, reset_unknown, c5_IFSR },
 | |
| 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
 | |
| 			access_vm_reg, reset_unknown, c5_ADFSR },
 | |
| 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
 | |
| 			access_vm_reg, reset_unknown, c5_AIFSR },
 | |
| 
 | |
| 	/* DFAR/IFAR: swapped by interrupt.S. */
 | |
| 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
 | |
| 			access_vm_reg, reset_unknown, c6_DFAR },
 | |
| 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
 | |
| 			access_vm_reg, reset_unknown, c6_IFAR },
 | |
| 
 | |
| 	/* PAR swapped by interrupt.S */
 | |
| 	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
 | |
| 
 | |
| 	/*
 | |
| 	 * DC{C,I,CI}SW operations:
 | |
| 	 */
 | |
| 	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
 | |
| 	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
 | |
| 	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
 | |
| 	/*
 | |
| 	 * L2CTLR access (guest wants to know #CPUs).
 | |
| 	 */
 | |
| 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
 | |
| 			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
 | |
| 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
 | |
| 
 | |
| 	/*
 | |
| 	 * Dummy performance monitor implementation.
 | |
| 	 */
 | |
| 	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
 | |
| 	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
 | |
| 	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
 | |
| 	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
 | |
| 	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
 | |
| 	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
 | |
| 	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
 | |
| 	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
 | |
| 	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
 | |
| 	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
 | |
| 	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
 | |
| 	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
 | |
| 	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
 | |
| 
 | |
| 	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
 | |
| 	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
 | |
| 			access_vm_reg, reset_unknown, c10_PRRR},
 | |
| 	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
 | |
| 			access_vm_reg, reset_unknown, c10_NMRR},
 | |
| 
 | |
| 	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
 | |
| 	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
 | |
| 			access_vm_reg, reset_unknown, c10_AMAIR0},
 | |
| 	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
 | |
| 			access_vm_reg, reset_unknown, c10_AMAIR1},
 | |
| 
 | |
| 	/* ICC_SGI1R */
 | |
| 	{ CRm64(12), Op1( 0), is64, access_gic_sgi},
 | |
| 
 | |
| 	/* VBAR: swapped by interrupt.S. */
 | |
| 	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
 | |
| 			NULL, reset_val, c12_VBAR, 0x00000000 },
 | |
| 
 | |
| 	/* ICC_ASGI1R */
 | |
| 	{ CRm64(12), Op1( 1), is64, access_gic_sgi},
 | |
| 	/* ICC_SGI0R */
 | |
| 	{ CRm64(12), Op1( 2), is64, access_gic_sgi},
 | |
| 	/* ICC_SRE */
 | |
| 	{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
 | |
| 
 | |
| 	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
 | |
| 	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
 | |
| 			access_vm_reg, reset_val, c13_CID, 0x00000000 },
 | |
| 	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
 | |
| 			NULL, reset_unknown, c13_TID_URW },
 | |
| 	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
 | |
| 			NULL, reset_unknown, c13_TID_URO },
 | |
| 	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
 | |
| 			NULL, reset_unknown, c13_TID_PRIV },
 | |
| 
 | |
| 	/* CNTP */
 | |
| 	{ CRm64(14), Op1( 2), is64, access_cntp_cval},
 | |
| 
 | |
| 	/* CNTKCTL: swapped by interrupt.S. */
 | |
| 	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
 | |
| 			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
 | |
| 
 | |
| 	/* CNTP */
 | |
| 	{ CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
 | |
| 	{ CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
 | |
| 
 | |
| 	/* The Configuration Base Address Register. */
 | |
| 	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
 | |
| };
 | |
| 
 | |
| static int check_reg_table(const struct coproc_reg *table, unsigned int n)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 1; i < n; i++) {
 | |
| 		if (cmp_reg(&table[i-1], &table[i]) >= 0) {
 | |
| 			kvm_err("reg table %p out of order (%d)\n", table, i - 1);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Target specific emulation tables */
 | |
| static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
 | |
| 
 | |
| void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
 | |
| {
 | |
| 	BUG_ON(check_reg_table(table->table, table->num));
 | |
| 	target_tables[table->target] = table;
 | |
| }
 | |
| 
 | |
| /* Get specific register table for this target. */
 | |
| static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
 | |
| {
 | |
| 	struct kvm_coproc_target_table *table;
 | |
| 
 | |
| 	table = target_tables[target];
 | |
| 	*num = table->num;
 | |
| 	return table->table;
 | |
| }
 | |
| 
 | |
| #define reg_to_match_value(x)						\
 | |
| 	({								\
 | |
| 		unsigned long val;					\
 | |
| 		val  = (x)->CRn << 11;					\
 | |
| 		val |= (x)->CRm << 7;					\
 | |
| 		val |= (x)->Op1 << 4;					\
 | |
| 		val |= (x)->Op2 << 1;					\
 | |
| 		val |= !(x)->is_64bit;					\
 | |
| 		val;							\
 | |
| 	 })
 | |
| 
 | |
| static int match_reg(const void *key, const void *elt)
 | |
| {
 | |
| 	const unsigned long pval = (unsigned long)key;
 | |
| 	const struct coproc_reg *r = elt;
 | |
| 
 | |
| 	return pval - reg_to_match_value(r);
 | |
| }
 | |
| 
 | |
| static const struct coproc_reg *find_reg(const struct coproc_params *params,
 | |
| 					 const struct coproc_reg table[],
 | |
| 					 unsigned int num)
 | |
| {
 | |
| 	unsigned long pval = reg_to_match_value(params);
 | |
| 
 | |
| 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
 | |
| }
 | |
| 
 | |
| static int emulate_cp15(struct kvm_vcpu *vcpu,
 | |
| 			const struct coproc_params *params)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct coproc_reg *table, *r;
 | |
| 
 | |
| 	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
 | |
| 				   params->CRm, params->Op2, params->is_write);
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, &num);
 | |
| 
 | |
| 	/* Search target-specific then generic table. */
 | |
| 	r = find_reg(params, table, num);
 | |
| 	if (!r)
 | |
| 		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
 | |
| 
 | |
| 	if (likely(r)) {
 | |
| 		/* If we don't have an accessor, we should never get here! */
 | |
| 		BUG_ON(!r->access);
 | |
| 
 | |
| 		if (likely(r->access(vcpu, params, r))) {
 | |
| 			/* Skip instruction, since it was emulated */
 | |
| 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* If access function fails, it should complain. */
 | |
| 		kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
 | |
| 			*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
 | |
| 		print_cp_instr(params);
 | |
| 		kvm_inject_undefined(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct coproc_params params;
 | |
| 
 | |
| 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
 | |
| 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
 | |
| 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
 | |
| 	params.is_64bit = true;
 | |
| 
 | |
| 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
 | |
| 	params.Op2 = 0;
 | |
| 	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
 | |
| 	params.CRm = 0;
 | |
| 
 | |
| 	return params;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	struct coproc_params params = decode_64bit_hsr(vcpu);
 | |
| 
 | |
| 	return emulate_cp15(vcpu, ¶ms);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	struct coproc_params params = decode_64bit_hsr(vcpu);
 | |
| 
 | |
| 	/* raz_wi cp14 */
 | |
| 	trap_raz_wi(vcpu, ¶ms, NULL);
 | |
| 
 | |
| 	/* handled */
 | |
| 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void reset_coproc_regs(struct kvm_vcpu *vcpu,
 | |
| 			      const struct coproc_reg *table, size_t num)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	for (i = 0; i < num; i++)
 | |
| 		if (table[i].reset)
 | |
| 			table[i].reset(vcpu, &table[i]);
 | |
| }
 | |
| 
 | |
| static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct coproc_params params;
 | |
| 
 | |
| 	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
 | |
| 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
 | |
| 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
 | |
| 	params.is_64bit = false;
 | |
| 
 | |
| 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
 | |
| 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
 | |
| 	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
 | |
| 	params.Rt2 = 0;
 | |
| 
 | |
| 	return params;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	struct coproc_params params = decode_32bit_hsr(vcpu);
 | |
| 	return emulate_cp15(vcpu, ¶ms);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
 | |
|  * @vcpu: The VCPU pointer
 | |
|  * @run:  The kvm_run struct
 | |
|  */
 | |
| int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 | |
| {
 | |
| 	struct coproc_params params = decode_32bit_hsr(vcpu);
 | |
| 
 | |
| 	/* raz_wi cp14 */
 | |
| 	trap_raz_wi(vcpu, ¶ms, NULL);
 | |
| 
 | |
| 	/* handled */
 | |
| 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Userspace API
 | |
|  *****************************************************************************/
 | |
| 
 | |
| static bool index_to_params(u64 id, struct coproc_params *params)
 | |
| {
 | |
| 	switch (id & KVM_REG_SIZE_MASK) {
 | |
| 	case KVM_REG_SIZE_U32:
 | |
| 		/* Any unused index bits means it's not valid. */
 | |
| 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
 | |
| 			   | KVM_REG_ARM_COPROC_MASK
 | |
| 			   | KVM_REG_ARM_32_CRN_MASK
 | |
| 			   | KVM_REG_ARM_CRM_MASK
 | |
| 			   | KVM_REG_ARM_OPC1_MASK
 | |
| 			   | KVM_REG_ARM_32_OPC2_MASK))
 | |
| 			return false;
 | |
| 
 | |
| 		params->is_64bit = false;
 | |
| 		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
 | |
| 			       >> KVM_REG_ARM_32_CRN_SHIFT);
 | |
| 		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
 | |
| 			       >> KVM_REG_ARM_CRM_SHIFT);
 | |
| 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
 | |
| 			       >> KVM_REG_ARM_OPC1_SHIFT);
 | |
| 		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
 | |
| 			       >> KVM_REG_ARM_32_OPC2_SHIFT);
 | |
| 		return true;
 | |
| 	case KVM_REG_SIZE_U64:
 | |
| 		/* Any unused index bits means it's not valid. */
 | |
| 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
 | |
| 			      | KVM_REG_ARM_COPROC_MASK
 | |
| 			      | KVM_REG_ARM_CRM_MASK
 | |
| 			      | KVM_REG_ARM_OPC1_MASK))
 | |
| 			return false;
 | |
| 		params->is_64bit = true;
 | |
| 		/* CRm to CRn: see cp15_to_index for details */
 | |
| 		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
 | |
| 			       >> KVM_REG_ARM_CRM_SHIFT);
 | |
| 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
 | |
| 			       >> KVM_REG_ARM_OPC1_SHIFT);
 | |
| 		params->Op2 = 0;
 | |
| 		params->CRm = 0;
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Decode an index value, and find the cp15 coproc_reg entry. */
 | |
| static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
 | |
| 						    u64 id)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct coproc_reg *table, *r;
 | |
| 	struct coproc_params params;
 | |
| 
 | |
| 	/* We only do cp15 for now. */
 | |
| 	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!index_to_params(id, ¶ms))
 | |
| 		return NULL;
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, &num);
 | |
| 	r = find_reg(¶ms, table, num);
 | |
| 	if (!r)
 | |
| 		r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
 | |
| 
 | |
| 	/* Not saved in the cp15 array? */
 | |
| 	if (r && !r->reg)
 | |
| 		r = NULL;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These are the invariant cp15 registers: we let the guest see the host
 | |
|  * versions of these, so they're part of the guest state.
 | |
|  *
 | |
|  * A future CPU may provide a mechanism to present different values to
 | |
|  * the guest, or a future kvm may trap them.
 | |
|  */
 | |
| /* Unfortunately, there's no register-argument for mrc, so generate. */
 | |
| #define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
 | |
| 	static void get_##name(struct kvm_vcpu *v,			\
 | |
| 			       const struct coproc_reg *r)		\
 | |
| 	{								\
 | |
| 		u32 val;						\
 | |
| 									\
 | |
| 		asm volatile("mrc p15, " __stringify(op1)		\
 | |
| 			     ", %0, c" __stringify(crn)			\
 | |
| 			     ", c" __stringify(crm)			\
 | |
| 			     ", " __stringify(op2) "\n" : "=r" (val));	\
 | |
| 		((struct coproc_reg *)r)->val = val;			\
 | |
| 	}
 | |
| 
 | |
| FUNCTION_FOR32(0, 0, 0, 0, MIDR)
 | |
| FUNCTION_FOR32(0, 0, 0, 1, CTR)
 | |
| FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
 | |
| FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
 | |
| FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
 | |
| FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
 | |
| FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
 | |
| FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
 | |
| FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
 | |
| FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
 | |
| FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
 | |
| FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
 | |
| FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
 | |
| FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
 | |
| FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
 | |
| FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
 | |
| FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
 | |
| FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
 | |
| FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
 | |
| FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
 | |
| FUNCTION_FOR32(0, 0, 1, 7, AIDR)
 | |
| 
 | |
| /* ->val is filled in by kvm_invariant_coproc_table_init() */
 | |
| static struct coproc_reg invariant_cp15[] = {
 | |
| 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
 | |
| 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
 | |
| 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
 | |
| 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
 | |
| 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
 | |
| 
 | |
| 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
 | |
| 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
 | |
| 
 | |
| 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
 | |
| 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
 | |
| 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
 | |
| 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
 | |
| 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
 | |
| 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
 | |
| 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
 | |
| 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
 | |
| 
 | |
| 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
 | |
| 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
 | |
| 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
 | |
| 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
 | |
| 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
 | |
| 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Reads a register value from a userspace address to a kernel
 | |
|  * variable. Make sure that register size matches sizeof(*__val).
 | |
|  */
 | |
| static int reg_from_user(void *val, const void __user *uaddr, u64 id)
 | |
| {
 | |
| 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Writes a register value to a userspace address from a kernel variable.
 | |
|  * Make sure that register size matches sizeof(*__val).
 | |
|  */
 | |
| static int reg_to_user(void __user *uaddr, const void *val, u64 id)
 | |
| {
 | |
| 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_invariant_cp15(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	struct coproc_params params;
 | |
| 	const struct coproc_reg *r;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!index_to_params(id, ¶ms))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
 | |
| 	if (!r)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	ret = -ENOENT;
 | |
| 	if (KVM_REG_SIZE(id) == 4) {
 | |
| 		u32 val = r->val;
 | |
| 
 | |
| 		ret = reg_to_user(uaddr, &val, id);
 | |
| 	} else if (KVM_REG_SIZE(id) == 8) {
 | |
| 		ret = reg_to_user(uaddr, &r->val, id);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int set_invariant_cp15(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	struct coproc_params params;
 | |
| 	const struct coproc_reg *r;
 | |
| 	int err;
 | |
| 	u64 val;
 | |
| 
 | |
| 	if (!index_to_params(id, ¶ms))
 | |
| 		return -ENOENT;
 | |
| 	r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
 | |
| 	if (!r)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	err = -ENOENT;
 | |
| 	if (KVM_REG_SIZE(id) == 4) {
 | |
| 		u32 val32;
 | |
| 
 | |
| 		err = reg_from_user(&val32, uaddr, id);
 | |
| 		if (!err)
 | |
| 			val = val32;
 | |
| 	} else if (KVM_REG_SIZE(id) == 8) {
 | |
| 		err = reg_from_user(&val, uaddr, id);
 | |
| 	}
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* This is what we mean by invariant: you can't change it. */
 | |
| 	if (r->val != val)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool is_valid_cache(u32 val)
 | |
| {
 | |
| 	u32 level, ctype;
 | |
| 
 | |
| 	if (val >= CSSELR_MAX)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
 | |
|         level = (val >> 1);
 | |
|         ctype = (cache_levels >> (level * 3)) & 7;
 | |
| 
 | |
| 	switch (ctype) {
 | |
| 	case 0: /* No cache */
 | |
| 		return false;
 | |
| 	case 1: /* Instruction cache only */
 | |
| 		return (val & 1);
 | |
| 	case 2: /* Data cache only */
 | |
| 	case 4: /* Unified cache */
 | |
| 		return !(val & 1);
 | |
| 	case 3: /* Separate instruction and data caches */
 | |
| 		return true;
 | |
| 	default: /* Reserved: we can't know instruction or data. */
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Which cache CCSIDR represents depends on CSSELR value. */
 | |
| static u32 get_ccsidr(u32 csselr)
 | |
| {
 | |
| 	u32 ccsidr;
 | |
| 
 | |
| 	/* Make sure noone else changes CSSELR during this! */
 | |
| 	local_irq_disable();
 | |
| 	/* Put value into CSSELR */
 | |
| 	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
 | |
| 	isb();
 | |
| 	/* Read result out of CCSIDR */
 | |
| 	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	return ccsidr;
 | |
| }
 | |
| 
 | |
| static int demux_c15_get(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	u32 val;
 | |
| 	u32 __user *uval = uaddr;
 | |
| 
 | |
| 	/* Fail if we have unknown bits set. */
 | |
| 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 | |
| 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 | |
| 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 | |
| 		if (KVM_REG_SIZE(id) != 4)
 | |
| 			return -ENOENT;
 | |
| 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
 | |
| 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
 | |
| 		if (!is_valid_cache(val))
 | |
| 			return -ENOENT;
 | |
| 
 | |
| 		return put_user(get_ccsidr(val), uval);
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int demux_c15_set(u64 id, void __user *uaddr)
 | |
| {
 | |
| 	u32 val, newval;
 | |
| 	u32 __user *uval = uaddr;
 | |
| 
 | |
| 	/* Fail if we have unknown bits set. */
 | |
| 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 | |
| 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 | |
| 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 | |
| 		if (KVM_REG_SIZE(id) != 4)
 | |
| 			return -ENOENT;
 | |
| 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
 | |
| 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
 | |
| 		if (!is_valid_cache(val))
 | |
| 			return -ENOENT;
 | |
| 
 | |
| 		if (get_user(newval, uval))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		/* This is also invariant: you can't change it. */
 | |
| 		if (newval != get_ccsidr(val))
 | |
| 			return -EINVAL;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_VFPv3
 | |
| static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
 | |
| 				   KVM_REG_ARM_VFP_FPSCR,
 | |
| 				   KVM_REG_ARM_VFP_FPINST,
 | |
| 				   KVM_REG_ARM_VFP_FPINST2,
 | |
| 				   KVM_REG_ARM_VFP_MVFR0,
 | |
| 				   KVM_REG_ARM_VFP_MVFR1,
 | |
| 				   KVM_REG_ARM_VFP_FPSID };
 | |
| 
 | |
| static unsigned int num_fp_regs(void)
 | |
| {
 | |
| 	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
 | |
| 		return 32;
 | |
| 	else
 | |
| 		return 16;
 | |
| }
 | |
| 
 | |
| static unsigned int num_vfp_regs(void)
 | |
| {
 | |
| 	/* Normal FP regs + control regs. */
 | |
| 	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
 | |
| }
 | |
| 
 | |
| static int copy_vfp_regids(u64 __user *uindices)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
 | |
| 	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 | |
| 
 | |
| 	for (i = 0; i < num_fp_regs(); i++) {
 | |
| 		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
 | |
| 			     uindices))
 | |
| 			return -EFAULT;
 | |
| 		uindices++;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
 | |
| 		if (put_user(u32reg | vfp_sysregs[i], uindices))
 | |
| 			return -EFAULT;
 | |
| 		uindices++;
 | |
| 	}
 | |
| 
 | |
| 	return num_vfp_regs();
 | |
| }
 | |
| 
 | |
| static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
 | |
| {
 | |
| 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Fail if we have unknown bits set. */
 | |
| 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 | |
| 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (vfpid < num_fp_regs()) {
 | |
| 		if (KVM_REG_SIZE(id) != 8)
 | |
| 			return -ENOENT;
 | |
| 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
 | |
| 				   id);
 | |
| 	}
 | |
| 
 | |
| 	/* FP control registers are all 32 bit. */
 | |
| 	if (KVM_REG_SIZE(id) != 4)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (vfpid) {
 | |
| 	case KVM_REG_ARM_VFP_FPEXC:
 | |
| 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
 | |
| 	case KVM_REG_ARM_VFP_FPSCR:
 | |
| 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
 | |
| 	case KVM_REG_ARM_VFP_FPINST:
 | |
| 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
 | |
| 	case KVM_REG_ARM_VFP_FPINST2:
 | |
| 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
 | |
| 	case KVM_REG_ARM_VFP_MVFR0:
 | |
| 		val = fmrx(MVFR0);
 | |
| 		return reg_to_user(uaddr, &val, id);
 | |
| 	case KVM_REG_ARM_VFP_MVFR1:
 | |
| 		val = fmrx(MVFR1);
 | |
| 		return reg_to_user(uaddr, &val, id);
 | |
| 	case KVM_REG_ARM_VFP_FPSID:
 | |
| 		val = fmrx(FPSID);
 | |
| 		return reg_to_user(uaddr, &val, id);
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
 | |
| {
 | |
| 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
 | |
| 	u32 val;
 | |
| 
 | |
| 	/* Fail if we have unknown bits set. */
 | |
| 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 | |
| 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (vfpid < num_fp_regs()) {
 | |
| 		if (KVM_REG_SIZE(id) != 8)
 | |
| 			return -ENOENT;
 | |
| 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
 | |
| 				     uaddr, id);
 | |
| 	}
 | |
| 
 | |
| 	/* FP control registers are all 32 bit. */
 | |
| 	if (KVM_REG_SIZE(id) != 4)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	switch (vfpid) {
 | |
| 	case KVM_REG_ARM_VFP_FPEXC:
 | |
| 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
 | |
| 	case KVM_REG_ARM_VFP_FPSCR:
 | |
| 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
 | |
| 	case KVM_REG_ARM_VFP_FPINST:
 | |
| 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
 | |
| 	case KVM_REG_ARM_VFP_FPINST2:
 | |
| 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
 | |
| 	/* These are invariant. */
 | |
| 	case KVM_REG_ARM_VFP_MVFR0:
 | |
| 		if (reg_from_user(&val, uaddr, id))
 | |
| 			return -EFAULT;
 | |
| 		if (val != fmrx(MVFR0))
 | |
| 			return -EINVAL;
 | |
| 		return 0;
 | |
| 	case KVM_REG_ARM_VFP_MVFR1:
 | |
| 		if (reg_from_user(&val, uaddr, id))
 | |
| 			return -EFAULT;
 | |
| 		if (val != fmrx(MVFR1))
 | |
| 			return -EINVAL;
 | |
| 		return 0;
 | |
| 	case KVM_REG_ARM_VFP_FPSID:
 | |
| 		if (reg_from_user(&val, uaddr, id))
 | |
| 			return -EFAULT;
 | |
| 		if (val != fmrx(FPSID))
 | |
| 			return -EINVAL;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| }
 | |
| #else /* !CONFIG_VFPv3 */
 | |
| static unsigned int num_vfp_regs(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int copy_vfp_regids(u64 __user *uindices)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
 | |
| {
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
 | |
| {
 | |
| 	return -ENOENT;
 | |
| }
 | |
| #endif /* !CONFIG_VFPv3 */
 | |
| 
 | |
| int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 | |
| {
 | |
| 	const struct coproc_reg *r;
 | |
| 	void __user *uaddr = (void __user *)(long)reg->addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
 | |
| 		return demux_c15_get(reg->id, uaddr);
 | |
| 
 | |
| 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
 | |
| 		return vfp_get_reg(vcpu, reg->id, uaddr);
 | |
| 
 | |
| 	r = index_to_coproc_reg(vcpu, reg->id);
 | |
| 	if (!r)
 | |
| 		return get_invariant_cp15(reg->id, uaddr);
 | |
| 
 | |
| 	ret = -ENOENT;
 | |
| 	if (KVM_REG_SIZE(reg->id) == 8) {
 | |
| 		u64 val;
 | |
| 
 | |
| 		val = vcpu_cp15_reg64_get(vcpu, r);
 | |
| 		ret = reg_to_user(uaddr, &val, reg->id);
 | |
| 	} else if (KVM_REG_SIZE(reg->id) == 4) {
 | |
| 		ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
 | |
| {
 | |
| 	const struct coproc_reg *r;
 | |
| 	void __user *uaddr = (void __user *)(long)reg->addr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
 | |
| 		return demux_c15_set(reg->id, uaddr);
 | |
| 
 | |
| 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
 | |
| 		return vfp_set_reg(vcpu, reg->id, uaddr);
 | |
| 
 | |
| 	r = index_to_coproc_reg(vcpu, reg->id);
 | |
| 	if (!r)
 | |
| 		return set_invariant_cp15(reg->id, uaddr);
 | |
| 
 | |
| 	ret = -ENOENT;
 | |
| 	if (KVM_REG_SIZE(reg->id) == 8) {
 | |
| 		u64 val;
 | |
| 
 | |
| 		ret = reg_from_user(&val, uaddr, reg->id);
 | |
| 		if (!ret)
 | |
| 			vcpu_cp15_reg64_set(vcpu, r, val);
 | |
| 	} else if (KVM_REG_SIZE(reg->id) == 4) {
 | |
| 		ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned int num_demux_regs(void)
 | |
| {
 | |
| 	unsigned int i, count = 0;
 | |
| 
 | |
| 	for (i = 0; i < CSSELR_MAX; i++)
 | |
| 		if (is_valid_cache(i))
 | |
| 			count++;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int write_demux_regids(u64 __user *uindices)
 | |
| {
 | |
| 	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
 | |
| 	for (i = 0; i < CSSELR_MAX; i++) {
 | |
| 		if (!is_valid_cache(i))
 | |
| 			continue;
 | |
| 		if (put_user(val | i, uindices))
 | |
| 			return -EFAULT;
 | |
| 		uindices++;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 cp15_to_index(const struct coproc_reg *reg)
 | |
| {
 | |
| 	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
 | |
| 	if (reg->is_64bit) {
 | |
| 		val |= KVM_REG_SIZE_U64;
 | |
| 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
 | |
| 		/*
 | |
| 		 * CRn always denotes the primary coproc. reg. nr. for the
 | |
| 		 * in-kernel representation, but the user space API uses the
 | |
| 		 * CRm for the encoding, because it is modelled after the
 | |
| 		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
 | |
| 		 * B3-1445
 | |
| 		 */
 | |
| 		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
 | |
| 	} else {
 | |
| 		val |= KVM_REG_SIZE_U32;
 | |
| 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
 | |
| 		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
 | |
| 		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
 | |
| 		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
 | |
| 	}
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
 | |
| {
 | |
| 	if (!*uind)
 | |
| 		return true;
 | |
| 
 | |
| 	if (put_user(cp15_to_index(reg), *uind))
 | |
| 		return false;
 | |
| 
 | |
| 	(*uind)++;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Assumed ordered tables, see kvm_coproc_table_init. */
 | |
| static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
 | |
| {
 | |
| 	const struct coproc_reg *i1, *i2, *end1, *end2;
 | |
| 	unsigned int total = 0;
 | |
| 	size_t num;
 | |
| 
 | |
| 	/* We check for duplicates here, to allow arch-specific overrides. */
 | |
| 	i1 = get_target_table(vcpu->arch.target, &num);
 | |
| 	end1 = i1 + num;
 | |
| 	i2 = cp15_regs;
 | |
| 	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
 | |
| 
 | |
| 	BUG_ON(i1 == end1 || i2 == end2);
 | |
| 
 | |
| 	/* Walk carefully, as both tables may refer to the same register. */
 | |
| 	while (i1 || i2) {
 | |
| 		int cmp = cmp_reg(i1, i2);
 | |
| 		/* target-specific overrides generic entry. */
 | |
| 		if (cmp <= 0) {
 | |
| 			/* Ignore registers we trap but don't save. */
 | |
| 			if (i1->reg) {
 | |
| 				if (!copy_reg_to_user(i1, &uind))
 | |
| 					return -EFAULT;
 | |
| 				total++;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* Ignore registers we trap but don't save. */
 | |
| 			if (i2->reg) {
 | |
| 				if (!copy_reg_to_user(i2, &uind))
 | |
| 					return -EFAULT;
 | |
| 				total++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (cmp <= 0 && ++i1 == end1)
 | |
| 			i1 = NULL;
 | |
| 		if (cmp >= 0 && ++i2 == end2)
 | |
| 			i2 = NULL;
 | |
| 	}
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return ARRAY_SIZE(invariant_cp15)
 | |
| 		+ num_demux_regs()
 | |
| 		+ num_vfp_regs()
 | |
| 		+ walk_cp15(vcpu, (u64 __user *)NULL);
 | |
| }
 | |
| 
 | |
| int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Then give them all the invariant registers' indices. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
 | |
| 		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
 | |
| 			return -EFAULT;
 | |
| 		uindices++;
 | |
| 	}
 | |
| 
 | |
| 	err = walk_cp15(vcpu, uindices);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	uindices += err;
 | |
| 
 | |
| 	err = copy_vfp_regids(uindices);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	uindices += err;
 | |
| 
 | |
| 	return write_demux_regids(uindices);
 | |
| }
 | |
| 
 | |
| void kvm_coproc_table_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Make sure tables are unique and in order. */
 | |
| 	BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
 | |
| 	BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
 | |
| 
 | |
| 	/* We abuse the reset function to overwrite the table itself. */
 | |
| 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
 | |
| 		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
 | |
| 
 | |
| 	/*
 | |
| 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
 | |
| 	 *
 | |
| 	 *   If software reads the Cache Type fields from Ctype1
 | |
| 	 *   upwards, once it has seen a value of 0b000, no caches
 | |
| 	 *   exist at further-out levels of the hierarchy. So, for
 | |
| 	 *   example, if Ctype3 is the first Cache Type field with a
 | |
| 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
 | |
| 	 *   ignored.
 | |
| 	 */
 | |
| 	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
 | |
| 	for (i = 0; i < 7; i++)
 | |
| 		if (((cache_levels >> (i*3)) & 7) == 0)
 | |
| 			break;
 | |
| 	/* Clear all higher bits. */
 | |
| 	cache_levels &= (1 << (i*3))-1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_reset_coprocs - sets cp15 registers to reset value
 | |
|  * @vcpu: The VCPU pointer
 | |
|  *
 | |
|  * This function finds the right table above and sets the registers on the
 | |
|  * virtual CPU struct to their architecturally defined reset values.
 | |
|  */
 | |
| void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	size_t num;
 | |
| 	const struct coproc_reg *table;
 | |
| 
 | |
| 	/* Catch someone adding a register without putting in reset entry. */
 | |
| 	memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
 | |
| 
 | |
| 	/* Generic chip reset first (so target could override). */
 | |
| 	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
 | |
| 
 | |
| 	table = get_target_table(vcpu->arch.target, &num);
 | |
| 	reset_coproc_regs(vcpu, table, num);
 | |
| 
 | |
| 	for (num = 1; num < NR_CP15_REGS; num++)
 | |
| 		WARN(vcpu_cp15(vcpu, num) == 0x42424242,
 | |
| 		     "Didn't reset vcpu_cp15(vcpu, %zi)", num);
 | |
| }
 |