forked from mirrors/linux
		
	 748c0e312f
			
		
	
	
		748c0e312f
		
	
	
	
	
		
			
			The patch is to make kvm_set_spte_hva() return int and caller can check return value to determine flush tlb or not. Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			814 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			814 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
 | |
|  *
 | |
|  * Author: Yu Liu, yu.liu@freescale.com
 | |
|  *         Scott Wood, scottwood@freescale.com
 | |
|  *         Ashish Kalra, ashish.kalra@freescale.com
 | |
|  *         Varun Sethi, varun.sethi@freescale.com
 | |
|  *         Alexander Graf, agraf@suse.de
 | |
|  *
 | |
|  * Description:
 | |
|  * This file is based on arch/powerpc/kvm/44x_tlb.c,
 | |
|  * by Hollis Blanchard <hollisb@us.ibm.com>.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License, version 2, as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/kvm.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <asm/kvm_ppc.h>
 | |
| #include <asm/pte-walk.h>
 | |
| 
 | |
| #include "e500.h"
 | |
| #include "timing.h"
 | |
| #include "e500_mmu_host.h"
 | |
| 
 | |
| #include "trace_booke.h"
 | |
| 
 | |
| #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
 | |
| 
 | |
| static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
 | |
| 
 | |
| static inline unsigned int tlb1_max_shadow_size(void)
 | |
| {
 | |
| 	/* reserve one entry for magic page */
 | |
| 	return host_tlb_params[1].entries - tlbcam_index - 1;
 | |
| }
 | |
| 
 | |
| static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
 | |
| {
 | |
| 	/* Mask off reserved bits. */
 | |
| 	mas3 &= MAS3_ATTRIB_MASK;
 | |
| 
 | |
| #ifndef CONFIG_KVM_BOOKE_HV
 | |
| 	if (!usermode) {
 | |
| 		/* Guest is in supervisor mode,
 | |
| 		 * so we need to translate guest
 | |
| 		 * supervisor permissions into user permissions. */
 | |
| 		mas3 &= ~E500_TLB_USER_PERM_MASK;
 | |
| 		mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
 | |
| 	}
 | |
| 	mas3 |= E500_TLB_SUPER_PERM_MASK;
 | |
| #endif
 | |
| 	return mas3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * writing shadow tlb entry to host TLB
 | |
|  */
 | |
| static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
 | |
| 				     uint32_t mas0,
 | |
| 				     uint32_t lpid)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	mtspr(SPRN_MAS0, mas0);
 | |
| 	mtspr(SPRN_MAS1, stlbe->mas1);
 | |
| 	mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
 | |
| 	mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
 | |
| 	mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
 | |
| #ifdef CONFIG_KVM_BOOKE_HV
 | |
| 	mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid));
 | |
| #endif
 | |
| 	asm volatile("isync; tlbwe" : : : "memory");
 | |
| 
 | |
| #ifdef CONFIG_KVM_BOOKE_HV
 | |
| 	/* Must clear mas8 for other host tlbwe's */
 | |
| 	mtspr(SPRN_MAS8, 0);
 | |
| 	isync();
 | |
| #endif
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
 | |
| 	                              stlbe->mas2, stlbe->mas7_3);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Acquire a mas0 with victim hint, as if we just took a TLB miss.
 | |
|  *
 | |
|  * We don't care about the address we're searching for, other than that it's
 | |
|  * in the right set and is not present in the TLB.  Using a zero PID and a
 | |
|  * userspace address means we don't have to set and then restore MAS5, or
 | |
|  * calculate a proper MAS6 value.
 | |
|  */
 | |
| static u32 get_host_mas0(unsigned long eaddr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 mas0;
 | |
| 	u32 mas4;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	mtspr(SPRN_MAS6, 0);
 | |
| 	mas4 = mfspr(SPRN_MAS4);
 | |
| 	mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK);
 | |
| 	asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
 | |
| 	mas0 = mfspr(SPRN_MAS0);
 | |
| 	mtspr(SPRN_MAS4, mas4);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return mas0;
 | |
| }
 | |
| 
 | |
| /* sesel is for tlb1 only */
 | |
| static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
 | |
| 		int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
 | |
| {
 | |
| 	u32 mas0;
 | |
| 
 | |
| 	if (tlbsel == 0) {
 | |
| 		mas0 = get_host_mas0(stlbe->mas2);
 | |
| 		__write_host_tlbe(stlbe, mas0, vcpu_e500->vcpu.kvm->arch.lpid);
 | |
| 	} else {
 | |
| 		__write_host_tlbe(stlbe,
 | |
| 				  MAS0_TLBSEL(1) |
 | |
| 				  MAS0_ESEL(to_htlb1_esel(sesel)),
 | |
| 				  vcpu_e500->vcpu.kvm->arch.lpid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* sesel is for tlb1 only */
 | |
| static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
 | |
| 			struct kvm_book3e_206_tlb_entry *gtlbe,
 | |
| 			struct kvm_book3e_206_tlb_entry *stlbe,
 | |
| 			int stlbsel, int sesel)
 | |
| {
 | |
| 	int stid;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
 | |
| 
 | |
| 	stlbe->mas1 |= MAS1_TID(stid);
 | |
| 	write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KVM_E500V2
 | |
| /* XXX should be a hook in the gva2hpa translation */
 | |
| void kvmppc_map_magic(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 | |
| 	struct kvm_book3e_206_tlb_entry magic;
 | |
| 	ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
 | |
| 	unsigned int stid;
 | |
| 	kvm_pfn_t pfn;
 | |
| 
 | |
| 	pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
 | |
| 	get_page(pfn_to_page(pfn));
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
 | |
| 
 | |
| 	magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
 | |
| 		     MAS1_TSIZE(BOOK3E_PAGESZ_4K);
 | |
| 	magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
 | |
| 	magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
 | |
| 		       MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
 | |
| 	magic.mas8 = 0;
 | |
| 
 | |
| 	__write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0);
 | |
| 	preempt_enable();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
 | |
| 			 int esel)
 | |
| {
 | |
| 	struct kvm_book3e_206_tlb_entry *gtlbe =
 | |
| 		get_entry(vcpu_e500, tlbsel, esel);
 | |
| 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref;
 | |
| 
 | |
| 	/* Don't bother with unmapped entries */
 | |
| 	if (!(ref->flags & E500_TLB_VALID)) {
 | |
| 		WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0),
 | |
| 		     "%s: flags %x\n", __func__, ref->flags);
 | |
| 		WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]);
 | |
| 	}
 | |
| 
 | |
| 	if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) {
 | |
| 		u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
 | |
| 		int hw_tlb_indx;
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		local_irq_save(flags);
 | |
| 		while (tmp) {
 | |
| 			hw_tlb_indx = __ilog2_u64(tmp & -tmp);
 | |
| 			mtspr(SPRN_MAS0,
 | |
| 			      MAS0_TLBSEL(1) |
 | |
| 			      MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
 | |
| 			mtspr(SPRN_MAS1, 0);
 | |
| 			asm volatile("tlbwe");
 | |
| 			vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
 | |
| 			tmp &= tmp - 1;
 | |
| 		}
 | |
| 		mb();
 | |
| 		vcpu_e500->g2h_tlb1_map[esel] = 0;
 | |
| 		ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID);
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| 
 | |
| 	if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) {
 | |
| 		/*
 | |
| 		 * TLB1 entry is backed by 4k pages. This should happen
 | |
| 		 * rarely and is not worth optimizing. Invalidate everything.
 | |
| 		 */
 | |
| 		kvmppc_e500_tlbil_all(vcpu_e500);
 | |
| 		ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If TLB entry is still valid then it's a TLB0 entry, and thus
 | |
| 	 * backed by at most one host tlbe per shadow pid
 | |
| 	 */
 | |
| 	if (ref->flags & E500_TLB_VALID)
 | |
| 		kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
 | |
| 
 | |
| 	/* Mark the TLB as not backed by the host anymore */
 | |
| 	ref->flags = 0;
 | |
| }
 | |
| 
 | |
| static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
 | |
| {
 | |
| 	return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
 | |
| }
 | |
| 
 | |
| static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
 | |
| 					 struct kvm_book3e_206_tlb_entry *gtlbe,
 | |
| 					 kvm_pfn_t pfn, unsigned int wimg)
 | |
| {
 | |
| 	ref->pfn = pfn;
 | |
| 	ref->flags = E500_TLB_VALID;
 | |
| 
 | |
| 	/* Use guest supplied MAS2_G and MAS2_E */
 | |
| 	ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg;
 | |
| 
 | |
| 	/* Mark the page accessed */
 | |
| 	kvm_set_pfn_accessed(pfn);
 | |
| 
 | |
| 	if (tlbe_is_writable(gtlbe))
 | |
| 		kvm_set_pfn_dirty(pfn);
 | |
| }
 | |
| 
 | |
| static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
 | |
| {
 | |
| 	if (ref->flags & E500_TLB_VALID) {
 | |
| 		/* FIXME: don't log bogus pfn for TLB1 */
 | |
| 		trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
 | |
| 		ref->flags = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
 | |
| {
 | |
| 	if (vcpu_e500->g2h_tlb1_map)
 | |
| 		memset(vcpu_e500->g2h_tlb1_map, 0,
 | |
| 		       sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
 | |
| 	if (vcpu_e500->h2g_tlb1_rmap)
 | |
| 		memset(vcpu_e500->h2g_tlb1_rmap, 0,
 | |
| 		       sizeof(unsigned int) * host_tlb_params[1].entries);
 | |
| }
 | |
| 
 | |
| static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
 | |
| {
 | |
| 	int tlbsel;
 | |
| 	int i;
 | |
| 
 | |
| 	for (tlbsel = 0; tlbsel <= 1; tlbsel++) {
 | |
| 		for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
 | |
| 			struct tlbe_ref *ref =
 | |
| 				&vcpu_e500->gtlb_priv[tlbsel][i].ref;
 | |
| 			kvmppc_e500_ref_release(ref);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 | |
| 	kvmppc_e500_tlbil_all(vcpu_e500);
 | |
| 	clear_tlb_privs(vcpu_e500);
 | |
| 	clear_tlb1_bitmap(vcpu_e500);
 | |
| }
 | |
| 
 | |
| /* TID must be supplied by the caller */
 | |
| static void kvmppc_e500_setup_stlbe(
 | |
| 	struct kvm_vcpu *vcpu,
 | |
| 	struct kvm_book3e_206_tlb_entry *gtlbe,
 | |
| 	int tsize, struct tlbe_ref *ref, u64 gvaddr,
 | |
| 	struct kvm_book3e_206_tlb_entry *stlbe)
 | |
| {
 | |
| 	kvm_pfn_t pfn = ref->pfn;
 | |
| 	u32 pr = vcpu->arch.shared->msr & MSR_PR;
 | |
| 
 | |
| 	BUG_ON(!(ref->flags & E500_TLB_VALID));
 | |
| 
 | |
| 	/* Force IPROT=0 for all guest mappings. */
 | |
| 	stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
 | |
| 	stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR);
 | |
| 	stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
 | |
| 			e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
 | |
| }
 | |
| 
 | |
| static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
 | |
| 	u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
 | |
| 	int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
 | |
| 	struct tlbe_ref *ref)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	unsigned long pfn = 0; /* silence GCC warning */
 | |
| 	unsigned long hva;
 | |
| 	int pfnmap = 0;
 | |
| 	int tsize = BOOK3E_PAGESZ_4K;
 | |
| 	int ret = 0;
 | |
| 	unsigned long mmu_seq;
 | |
| 	struct kvm *kvm = vcpu_e500->vcpu.kvm;
 | |
| 	unsigned long tsize_pages = 0;
 | |
| 	pte_t *ptep;
 | |
| 	unsigned int wimg = 0;
 | |
| 	pgd_t *pgdir;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* used to check for invalidations in progress */
 | |
| 	mmu_seq = kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Translate guest physical to true physical, acquiring
 | |
| 	 * a page reference if it is normal, non-reserved memory.
 | |
| 	 *
 | |
| 	 * gfn_to_memslot() must succeed because otherwise we wouldn't
 | |
| 	 * have gotten this far.  Eventually we should just pass the slot
 | |
| 	 * pointer through from the first lookup.
 | |
| 	 */
 | |
| 	slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
 | |
| 	hva = gfn_to_hva_memslot(slot, gfn);
 | |
| 
 | |
| 	if (tlbsel == 1) {
 | |
| 		struct vm_area_struct *vma;
 | |
| 		down_read(¤t->mm->mmap_sem);
 | |
| 
 | |
| 		vma = find_vma(current->mm, hva);
 | |
| 		if (vma && hva >= vma->vm_start &&
 | |
| 		    (vma->vm_flags & VM_PFNMAP)) {
 | |
| 			/*
 | |
| 			 * This VMA is a physically contiguous region (e.g.
 | |
| 			 * /dev/mem) that bypasses normal Linux page
 | |
| 			 * management.  Find the overlap between the
 | |
| 			 * vma and the memslot.
 | |
| 			 */
 | |
| 
 | |
| 			unsigned long start, end;
 | |
| 			unsigned long slot_start, slot_end;
 | |
| 
 | |
| 			pfnmap = 1;
 | |
| 
 | |
| 			start = vma->vm_pgoff;
 | |
| 			end = start +
 | |
| 			      vma_pages(vma);
 | |
| 
 | |
| 			pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
 | |
| 
 | |
| 			slot_start = pfn - (gfn - slot->base_gfn);
 | |
| 			slot_end = slot_start + slot->npages;
 | |
| 
 | |
| 			if (start < slot_start)
 | |
| 				start = slot_start;
 | |
| 			if (end > slot_end)
 | |
| 				end = slot_end;
 | |
| 
 | |
| 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
 | |
| 				MAS1_TSIZE_SHIFT;
 | |
| 
 | |
| 			/*
 | |
| 			 * e500 doesn't implement the lowest tsize bit,
 | |
| 			 * or 1K pages.
 | |
| 			 */
 | |
| 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
 | |
| 
 | |
| 			/*
 | |
| 			 * Now find the largest tsize (up to what the guest
 | |
| 			 * requested) that will cover gfn, stay within the
 | |
| 			 * range, and for which gfn and pfn are mutually
 | |
| 			 * aligned.
 | |
| 			 */
 | |
| 
 | |
| 			for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
 | |
| 				unsigned long gfn_start, gfn_end;
 | |
| 				tsize_pages = 1UL << (tsize - 2);
 | |
| 
 | |
| 				gfn_start = gfn & ~(tsize_pages - 1);
 | |
| 				gfn_end = gfn_start + tsize_pages;
 | |
| 
 | |
| 				if (gfn_start + pfn - gfn < start)
 | |
| 					continue;
 | |
| 				if (gfn_end + pfn - gfn > end)
 | |
| 					continue;
 | |
| 				if ((gfn & (tsize_pages - 1)) !=
 | |
| 				    (pfn & (tsize_pages - 1)))
 | |
| 					continue;
 | |
| 
 | |
| 				gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
 | |
| 				pfn &= ~(tsize_pages - 1);
 | |
| 				break;
 | |
| 			}
 | |
| 		} else if (vma && hva >= vma->vm_start &&
 | |
| 			   (vma->vm_flags & VM_HUGETLB)) {
 | |
| 			unsigned long psize = vma_kernel_pagesize(vma);
 | |
| 
 | |
| 			tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
 | |
| 				MAS1_TSIZE_SHIFT;
 | |
| 
 | |
| 			/*
 | |
| 			 * Take the largest page size that satisfies both host
 | |
| 			 * and guest mapping
 | |
| 			 */
 | |
| 			tsize = min(__ilog2(psize) - 10, tsize);
 | |
| 
 | |
| 			/*
 | |
| 			 * e500 doesn't implement the lowest tsize bit,
 | |
| 			 * or 1K pages.
 | |
| 			 */
 | |
| 			tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
 | |
| 		}
 | |
| 
 | |
| 		up_read(¤t->mm->mmap_sem);
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!pfnmap)) {
 | |
| 		tsize_pages = 1UL << (tsize + 10 - PAGE_SHIFT);
 | |
| 		pfn = gfn_to_pfn_memslot(slot, gfn);
 | |
| 		if (is_error_noslot_pfn(pfn)) {
 | |
| 			if (printk_ratelimit())
 | |
| 				pr_err("%s: real page not found for gfn %lx\n",
 | |
| 				       __func__, (long)gfn);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/* Align guest and physical address to page map boundaries */
 | |
| 		pfn &= ~(tsize_pages - 1);
 | |
| 		gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(kvm, mmu_seq)) {
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	pgdir = vcpu_e500->vcpu.arch.pgdir;
 | |
| 	/*
 | |
| 	 * We are just looking at the wimg bits, so we don't
 | |
| 	 * care much about the trans splitting bit.
 | |
| 	 * We are holding kvm->mmu_lock so a notifier invalidate
 | |
| 	 * can't run hence pfn won't change.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	ptep = find_linux_pte(pgdir, hva, NULL, NULL);
 | |
| 	if (ptep) {
 | |
| 		pte_t pte = READ_ONCE(*ptep);
 | |
| 
 | |
| 		if (pte_present(pte)) {
 | |
| 			wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) &
 | |
| 				MAS2_WIMGE_MASK;
 | |
| 			local_irq_restore(flags);
 | |
| 		} else {
 | |
| 			local_irq_restore(flags);
 | |
| 			pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
 | |
| 					   __func__, (long)gfn, pfn);
 | |
| 			ret = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg);
 | |
| 
 | |
| 	kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
 | |
| 				ref, gvaddr, stlbe);
 | |
| 
 | |
| 	/* Clear i-cache for new pages */
 | |
| 	kvmppc_mmu_flush_icache(pfn);
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	/* Drop refcount on page, so that mmu notifiers can clear it */
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* XXX only map the one-one case, for now use TLB0 */
 | |
| static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel,
 | |
| 				struct kvm_book3e_206_tlb_entry *stlbe)
 | |
| {
 | |
| 	struct kvm_book3e_206_tlb_entry *gtlbe;
 | |
| 	struct tlbe_ref *ref;
 | |
| 	int stlbsel = 0;
 | |
| 	int sesel = 0;
 | |
| 	int r;
 | |
| 
 | |
| 	gtlbe = get_entry(vcpu_e500, 0, esel);
 | |
| 	ref = &vcpu_e500->gtlb_priv[0][esel].ref;
 | |
| 
 | |
| 	r = kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
 | |
| 			get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
 | |
| 			gtlbe, 0, stlbe, ref);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500,
 | |
| 				     struct tlbe_ref *ref,
 | |
| 				     int esel)
 | |
| {
 | |
| 	unsigned int sesel = vcpu_e500->host_tlb1_nv++;
 | |
| 
 | |
| 	if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
 | |
| 		vcpu_e500->host_tlb1_nv = 0;
 | |
| 
 | |
| 	if (vcpu_e500->h2g_tlb1_rmap[sesel]) {
 | |
| 		unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1;
 | |
| 		vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel);
 | |
| 	}
 | |
| 
 | |
| 	vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
 | |
| 	vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel;
 | |
| 	vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1;
 | |
| 	WARN_ON(!(ref->flags & E500_TLB_VALID));
 | |
| 
 | |
| 	return sesel;
 | |
| }
 | |
| 
 | |
| /* Caller must ensure that the specified guest TLB entry is safe to insert into
 | |
|  * the shadow TLB. */
 | |
| /* For both one-one and one-to-many */
 | |
| static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
 | |
| 		u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
 | |
| 		struct kvm_book3e_206_tlb_entry *stlbe, int esel)
 | |
| {
 | |
| 	struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref;
 | |
| 	int sesel;
 | |
| 	int r;
 | |
| 
 | |
| 	r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe,
 | |
| 				   ref);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	/* Use TLB0 when we can only map a page with 4k */
 | |
| 	if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) {
 | |
| 		vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0;
 | |
| 		write_stlbe(vcpu_e500, gtlbe, stlbe, 0, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Otherwise map into TLB1 */
 | |
| 	sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel);
 | |
| 	write_stlbe(vcpu_e500, gtlbe, stlbe, 1, sesel);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
 | |
| 		    unsigned int index)
 | |
| {
 | |
| 	struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
 | |
| 	struct tlbe_priv *priv;
 | |
| 	struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
 | |
| 	int tlbsel = tlbsel_of(index);
 | |
| 	int esel = esel_of(index);
 | |
| 
 | |
| 	gtlbe = get_entry(vcpu_e500, tlbsel, esel);
 | |
| 
 | |
| 	switch (tlbsel) {
 | |
| 	case 0:
 | |
| 		priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
 | |
| 
 | |
| 		/* Triggers after clear_tlb_privs or on initial mapping */
 | |
| 		if (!(priv->ref.flags & E500_TLB_VALID)) {
 | |
| 			kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
 | |
| 		} else {
 | |
| 			kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
 | |
| 						&priv->ref, eaddr, &stlbe);
 | |
| 			write_stlbe(vcpu_e500, gtlbe, &stlbe, 0, 0);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case 1: {
 | |
| 		gfn_t gfn = gpaddr >> PAGE_SHIFT;
 | |
| 		kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn, gtlbe, &stlbe,
 | |
| 				     esel);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KVM_BOOKE_HV
 | |
| int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
 | |
| 		enum instruction_fetch_type type, u32 *instr)
 | |
| {
 | |
| 	gva_t geaddr;
 | |
| 	hpa_t addr;
 | |
| 	hfn_t pfn;
 | |
| 	hva_t eaddr;
 | |
| 	u32 mas1, mas2, mas3;
 | |
| 	u64 mas7_mas3;
 | |
| 	struct page *page;
 | |
| 	unsigned int addr_space, psize_shift;
 | |
| 	bool pr;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Search TLB for guest pc to get the real address */
 | |
| 	geaddr = kvmppc_get_pc(vcpu);
 | |
| 
 | |
| 	addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space);
 | |
| 	mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu));
 | |
| 	asm volatile("tlbsx 0, %[geaddr]\n" : :
 | |
| 		     [geaddr] "r" (geaddr));
 | |
| 	mtspr(SPRN_MAS5, 0);
 | |
| 	mtspr(SPRN_MAS8, 0);
 | |
| 	mas1 = mfspr(SPRN_MAS1);
 | |
| 	mas2 = mfspr(SPRN_MAS2);
 | |
| 	mas3 = mfspr(SPRN_MAS3);
 | |
| #ifdef CONFIG_64BIT
 | |
| 	mas7_mas3 = mfspr(SPRN_MAS7_MAS3);
 | |
| #else
 | |
| 	mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3;
 | |
| #endif
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the TLB entry for guest pc was evicted, return to the guest.
 | |
| 	 * There are high chances to find a valid TLB entry next time.
 | |
| 	 */
 | |
| 	if (!(mas1 & MAS1_VALID))
 | |
| 		return EMULATE_AGAIN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Another thread may rewrite the TLB entry in parallel, don't
 | |
| 	 * execute from the address if the execute permission is not set
 | |
| 	 */
 | |
| 	pr = vcpu->arch.shared->msr & MSR_PR;
 | |
| 	if (unlikely((pr && !(mas3 & MAS3_UX)) ||
 | |
| 		     (!pr && !(mas3 & MAS3_SX)))) {
 | |
| 		pr_err_ratelimited(
 | |
| 			"%s: Instruction emulation from guest address %08lx without execute permission\n",
 | |
| 			__func__, geaddr);
 | |
| 		return EMULATE_AGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The real address will be mapped by a cacheable, memory coherent,
 | |
| 	 * write-back page. Check for mismatches when LRAT is used.
 | |
| 	 */
 | |
| 	if (has_feature(vcpu, VCPU_FTR_MMU_V2) &&
 | |
| 	    unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) {
 | |
| 		pr_err_ratelimited(
 | |
| 			"%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
 | |
| 			__func__, geaddr);
 | |
| 		return EMULATE_AGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/* Get pfn */
 | |
| 	psize_shift = MAS1_GET_TSIZE(mas1) + 10;
 | |
| 	addr = (mas7_mas3 & (~0ULL << psize_shift)) |
 | |
| 	       (geaddr & ((1ULL << psize_shift) - 1ULL));
 | |
| 	pfn = addr >> PAGE_SHIFT;
 | |
| 
 | |
| 	/* Guard against emulation from devices area */
 | |
| 	if (unlikely(!page_is_ram(pfn))) {
 | |
| 		pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
 | |
| 			 __func__, addr);
 | |
| 		return EMULATE_AGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/* Map a page and get guest's instruction */
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	eaddr = (unsigned long)kmap_atomic(page);
 | |
| 	*instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK));
 | |
| 	kunmap_atomic((u32 *)eaddr);
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| #else
 | |
| int kvmppc_load_last_inst(struct kvm_vcpu *vcpu,
 | |
| 		enum instruction_fetch_type type, u32 *instr)
 | |
| {
 | |
| 	return EMULATE_AGAIN;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /************* MMU Notifiers *************/
 | |
| 
 | |
| static int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	trace_kvm_unmap_hva(hva);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all shadow tlb entries everywhere. This is slow, but
 | |
| 	 * we are 100% sure that we catch the to be unmapped page
 | |
| 	 */
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/* kvm_unmap_hva flushes everything anyways */
 | |
| 	kvm_unmap_hva(kvm, start);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/* XXX could be more clever ;) */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	/* XXX could be more clever ;) */
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 | |
| {
 | |
| 	/* The page will get remapped properly on its next fault */
 | |
| 	kvm_unmap_hva(kvm, hva);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*****************************************/
 | |
| 
 | |
| int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500)
 | |
| {
 | |
| 	host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
 | |
| 	host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
 | |
| 
 | |
| 	/*
 | |
| 	 * This should never happen on real e500 hardware, but is
 | |
| 	 * architecturally possible -- e.g. in some weird nested
 | |
| 	 * virtualization case.
 | |
| 	 */
 | |
| 	if (host_tlb_params[0].entries == 0 ||
 | |
| 	    host_tlb_params[1].entries == 0) {
 | |
| 		pr_err("%s: need to know host tlb size\n", __func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
 | |
| 				  TLBnCFG_ASSOC_SHIFT;
 | |
| 	host_tlb_params[1].ways = host_tlb_params[1].entries;
 | |
| 
 | |
| 	if (!is_power_of_2(host_tlb_params[0].entries) ||
 | |
| 	    !is_power_of_2(host_tlb_params[0].ways) ||
 | |
| 	    host_tlb_params[0].entries < host_tlb_params[0].ways ||
 | |
| 	    host_tlb_params[0].ways == 0) {
 | |
| 		pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
 | |
| 		       __func__, host_tlb_params[0].entries,
 | |
| 		       host_tlb_params[0].ways);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	host_tlb_params[0].sets =
 | |
| 		host_tlb_params[0].entries / host_tlb_params[0].ways;
 | |
| 	host_tlb_params[1].sets = 1;
 | |
| 	vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries,
 | |
| 					   sizeof(*vcpu_e500->h2g_tlb1_rmap),
 | |
| 					   GFP_KERNEL);
 | |
| 	if (!vcpu_e500->h2g_tlb1_rmap)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
 | |
| {
 | |
| 	kfree(vcpu_e500->h2g_tlb1_rmap);
 | |
| }
 |