forked from mirrors/linux
		
	 9df95e8ec5
			
		
	
	
		9df95e8ec5
		
	
	
	
	
		
			
			This patch enables sparc64's bpf_int_jit_compile() to provide bpf_line_info by calling bpf_prog_fill_jited_linfo(). Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
		
			
				
	
	
		
			1589 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1589 lines
		
	
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #include <linux/moduleloader.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/filter.h>
 | |
| #include <linux/bpf.h>
 | |
| #include <linux/cache.h>
 | |
| #include <linux/if_vlan.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/ptrace.h>
 | |
| 
 | |
| #include "bpf_jit_64.h"
 | |
| 
 | |
| static inline bool is_simm13(unsigned int value)
 | |
| {
 | |
| 	return value + 0x1000 < 0x2000;
 | |
| }
 | |
| 
 | |
| static inline bool is_simm10(unsigned int value)
 | |
| {
 | |
| 	return value + 0x200 < 0x400;
 | |
| }
 | |
| 
 | |
| static inline bool is_simm5(unsigned int value)
 | |
| {
 | |
| 	return value + 0x10 < 0x20;
 | |
| }
 | |
| 
 | |
| static inline bool is_sethi(unsigned int value)
 | |
| {
 | |
| 	return (value & ~0x3fffff) == 0;
 | |
| }
 | |
| 
 | |
| static void bpf_flush_icache(void *start_, void *end_)
 | |
| {
 | |
| 	/* Cheetah's I-cache is fully coherent.  */
 | |
| 	if (tlb_type == spitfire) {
 | |
| 		unsigned long start = (unsigned long) start_;
 | |
| 		unsigned long end = (unsigned long) end_;
 | |
| 
 | |
| 		start &= ~7UL;
 | |
| 		end = (end + 7UL) & ~7UL;
 | |
| 		while (start < end) {
 | |
| 			flushi(start);
 | |
| 			start += 32;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define S13(X)		((X) & 0x1fff)
 | |
| #define S5(X)		((X) & 0x1f)
 | |
| #define IMMED		0x00002000
 | |
| #define RD(X)		((X) << 25)
 | |
| #define RS1(X)		((X) << 14)
 | |
| #define RS2(X)		((X))
 | |
| #define OP(X)		((X) << 30)
 | |
| #define OP2(X)		((X) << 22)
 | |
| #define OP3(X)		((X) << 19)
 | |
| #define COND(X)		(((X) & 0xf) << 25)
 | |
| #define CBCOND(X)	(((X) & 0x1f) << 25)
 | |
| #define F1(X)		OP(X)
 | |
| #define F2(X, Y)	(OP(X) | OP2(Y))
 | |
| #define F3(X, Y)	(OP(X) | OP3(Y))
 | |
| #define ASI(X)		(((X) & 0xff) << 5)
 | |
| 
 | |
| #define CONDN		COND(0x0)
 | |
| #define CONDE		COND(0x1)
 | |
| #define CONDLE		COND(0x2)
 | |
| #define CONDL		COND(0x3)
 | |
| #define CONDLEU		COND(0x4)
 | |
| #define CONDCS		COND(0x5)
 | |
| #define CONDNEG		COND(0x6)
 | |
| #define CONDVC		COND(0x7)
 | |
| #define CONDA		COND(0x8)
 | |
| #define CONDNE		COND(0x9)
 | |
| #define CONDG		COND(0xa)
 | |
| #define CONDGE		COND(0xb)
 | |
| #define CONDGU		COND(0xc)
 | |
| #define CONDCC		COND(0xd)
 | |
| #define CONDPOS		COND(0xe)
 | |
| #define CONDVS		COND(0xf)
 | |
| 
 | |
| #define CONDGEU		CONDCC
 | |
| #define CONDLU		CONDCS
 | |
| 
 | |
| #define WDISP22(X)	(((X) >> 2) & 0x3fffff)
 | |
| #define WDISP19(X)	(((X) >> 2) & 0x7ffff)
 | |
| 
 | |
| /* The 10-bit branch displacement for CBCOND is split into two fields */
 | |
| static u32 WDISP10(u32 off)
 | |
| {
 | |
| 	u32 ret = ((off >> 2) & 0xff) << 5;
 | |
| 
 | |
| 	ret |= ((off >> (2 + 8)) & 0x03) << 19;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define CBCONDE		CBCOND(0x09)
 | |
| #define CBCONDLE	CBCOND(0x0a)
 | |
| #define CBCONDL		CBCOND(0x0b)
 | |
| #define CBCONDLEU	CBCOND(0x0c)
 | |
| #define CBCONDCS	CBCOND(0x0d)
 | |
| #define CBCONDN		CBCOND(0x0e)
 | |
| #define CBCONDVS	CBCOND(0x0f)
 | |
| #define CBCONDNE	CBCOND(0x19)
 | |
| #define CBCONDG		CBCOND(0x1a)
 | |
| #define CBCONDGE	CBCOND(0x1b)
 | |
| #define CBCONDGU	CBCOND(0x1c)
 | |
| #define CBCONDCC	CBCOND(0x1d)
 | |
| #define CBCONDPOS	CBCOND(0x1e)
 | |
| #define CBCONDVC	CBCOND(0x1f)
 | |
| 
 | |
| #define CBCONDGEU	CBCONDCC
 | |
| #define CBCONDLU	CBCONDCS
 | |
| 
 | |
| #define ANNUL		(1 << 29)
 | |
| #define XCC		(1 << 21)
 | |
| 
 | |
| #define BRANCH		(F2(0, 1) | XCC)
 | |
| #define CBCOND_OP	(F2(0, 3) | XCC)
 | |
| 
 | |
| #define BA		(BRANCH | CONDA)
 | |
| #define BG		(BRANCH | CONDG)
 | |
| #define BL		(BRANCH | CONDL)
 | |
| #define BLE		(BRANCH | CONDLE)
 | |
| #define BGU		(BRANCH | CONDGU)
 | |
| #define BLEU		(BRANCH | CONDLEU)
 | |
| #define BGE		(BRANCH | CONDGE)
 | |
| #define BGEU		(BRANCH | CONDGEU)
 | |
| #define BLU		(BRANCH | CONDLU)
 | |
| #define BE		(BRANCH | CONDE)
 | |
| #define BNE		(BRANCH | CONDNE)
 | |
| 
 | |
| #define SETHI(K, REG)	\
 | |
| 	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
 | |
| #define OR_LO(K, REG)	\
 | |
| 	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
 | |
| 
 | |
| #define ADD		F3(2, 0x00)
 | |
| #define AND		F3(2, 0x01)
 | |
| #define ANDCC		F3(2, 0x11)
 | |
| #define OR		F3(2, 0x02)
 | |
| #define XOR		F3(2, 0x03)
 | |
| #define SUB		F3(2, 0x04)
 | |
| #define SUBCC		F3(2, 0x14)
 | |
| #define MUL		F3(2, 0x0a)
 | |
| #define MULX		F3(2, 0x09)
 | |
| #define UDIVX		F3(2, 0x0d)
 | |
| #define DIV		F3(2, 0x0e)
 | |
| #define SLL		F3(2, 0x25)
 | |
| #define SLLX		(F3(2, 0x25)|(1<<12))
 | |
| #define SRA		F3(2, 0x27)
 | |
| #define SRAX		(F3(2, 0x27)|(1<<12))
 | |
| #define SRL		F3(2, 0x26)
 | |
| #define SRLX		(F3(2, 0x26)|(1<<12))
 | |
| #define JMPL		F3(2, 0x38)
 | |
| #define SAVE		F3(2, 0x3c)
 | |
| #define RESTORE		F3(2, 0x3d)
 | |
| #define CALL		F1(1)
 | |
| #define BR		F2(0, 0x01)
 | |
| #define RD_Y		F3(2, 0x28)
 | |
| #define WR_Y		F3(2, 0x30)
 | |
| 
 | |
| #define LD32		F3(3, 0x00)
 | |
| #define LD8		F3(3, 0x01)
 | |
| #define LD16		F3(3, 0x02)
 | |
| #define LD64		F3(3, 0x0b)
 | |
| #define LD64A		F3(3, 0x1b)
 | |
| #define ST8		F3(3, 0x05)
 | |
| #define ST16		F3(3, 0x06)
 | |
| #define ST32		F3(3, 0x04)
 | |
| #define ST64		F3(3, 0x0e)
 | |
| 
 | |
| #define CAS		F3(3, 0x3c)
 | |
| #define CASX		F3(3, 0x3e)
 | |
| 
 | |
| #define LDPTR		LD64
 | |
| #define BASE_STACKFRAME	176
 | |
| 
 | |
| #define LD32I		(LD32 | IMMED)
 | |
| #define LD8I		(LD8 | IMMED)
 | |
| #define LD16I		(LD16 | IMMED)
 | |
| #define LD64I		(LD64 | IMMED)
 | |
| #define LDPTRI		(LDPTR | IMMED)
 | |
| #define ST32I		(ST32 | IMMED)
 | |
| 
 | |
| struct jit_ctx {
 | |
| 	struct bpf_prog		*prog;
 | |
| 	unsigned int		*offset;
 | |
| 	int			idx;
 | |
| 	int			epilogue_offset;
 | |
| 	bool 			tmp_1_used;
 | |
| 	bool 			tmp_2_used;
 | |
| 	bool 			tmp_3_used;
 | |
| 	bool			saw_frame_pointer;
 | |
| 	bool			saw_call;
 | |
| 	bool			saw_tail_call;
 | |
| 	u32			*image;
 | |
| };
 | |
| 
 | |
| #define TMP_REG_1	(MAX_BPF_JIT_REG + 0)
 | |
| #define TMP_REG_2	(MAX_BPF_JIT_REG + 1)
 | |
| #define TMP_REG_3	(MAX_BPF_JIT_REG + 2)
 | |
| 
 | |
| /* Map BPF registers to SPARC registers */
 | |
| static const int bpf2sparc[] = {
 | |
| 	/* return value from in-kernel function, and exit value from eBPF */
 | |
| 	[BPF_REG_0] = O5,
 | |
| 
 | |
| 	/* arguments from eBPF program to in-kernel function */
 | |
| 	[BPF_REG_1] = O0,
 | |
| 	[BPF_REG_2] = O1,
 | |
| 	[BPF_REG_3] = O2,
 | |
| 	[BPF_REG_4] = O3,
 | |
| 	[BPF_REG_5] = O4,
 | |
| 
 | |
| 	/* callee saved registers that in-kernel function will preserve */
 | |
| 	[BPF_REG_6] = L0,
 | |
| 	[BPF_REG_7] = L1,
 | |
| 	[BPF_REG_8] = L2,
 | |
| 	[BPF_REG_9] = L3,
 | |
| 
 | |
| 	/* read-only frame pointer to access stack */
 | |
| 	[BPF_REG_FP] = L6,
 | |
| 
 | |
| 	[BPF_REG_AX] = G7,
 | |
| 
 | |
| 	/* temporary register for internal BPF JIT */
 | |
| 	[TMP_REG_1] = G1,
 | |
| 	[TMP_REG_2] = G2,
 | |
| 	[TMP_REG_3] = G3,
 | |
| };
 | |
| 
 | |
| static void emit(const u32 insn, struct jit_ctx *ctx)
 | |
| {
 | |
| 	if (ctx->image != NULL)
 | |
| 		ctx->image[ctx->idx] = insn;
 | |
| 
 | |
| 	ctx->idx++;
 | |
| }
 | |
| 
 | |
| static void emit_call(u32 *func, struct jit_ctx *ctx)
 | |
| {
 | |
| 	if (ctx->image != NULL) {
 | |
| 		void *here = &ctx->image[ctx->idx];
 | |
| 		unsigned int off;
 | |
| 
 | |
| 		off = (void *)func - here;
 | |
| 		ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
 | |
| 	}
 | |
| 	ctx->idx++;
 | |
| }
 | |
| 
 | |
| static void emit_nop(struct jit_ctx *ctx)
 | |
| {
 | |
| 	emit(SETHI(0, G0), ctx);
 | |
| }
 | |
| 
 | |
| static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
 | |
| {
 | |
| 	emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
 | |
| }
 | |
| 
 | |
| /* Emit 32-bit constant, zero extended. */
 | |
| static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
 | |
| {
 | |
| 	emit(SETHI(K, reg), ctx);
 | |
| 	emit(OR_LO(K, reg), ctx);
 | |
| }
 | |
| 
 | |
| /* Emit 32-bit constant, sign extended. */
 | |
| static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
 | |
| {
 | |
| 	if (K >= 0) {
 | |
| 		emit(SETHI(K, reg), ctx);
 | |
| 		emit(OR_LO(K, reg), ctx);
 | |
| 	} else {
 | |
| 		u32 hbits = ~(u32) K;
 | |
| 		u32 lbits = -0x400 | (u32) K;
 | |
| 
 | |
| 		emit(SETHI(hbits, reg), ctx);
 | |
| 		emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
 | |
| {
 | |
| 	emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
 | |
| }
 | |
| 
 | |
| static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
 | |
| {
 | |
| 	emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
 | |
| }
 | |
| 
 | |
| static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
 | |
| 		       struct jit_ctx *ctx)
 | |
| {
 | |
| 	bool small_immed = is_simm13(imm);
 | |
| 	unsigned int insn = opcode;
 | |
| 
 | |
| 	insn |= RS1(dst) | RD(dst);
 | |
| 	if (small_immed) {
 | |
| 		emit(insn | IMMED | S13(imm), ctx);
 | |
| 	} else {
 | |
| 		unsigned int tmp = bpf2sparc[TMP_REG_1];
 | |
| 
 | |
| 		ctx->tmp_1_used = true;
 | |
| 
 | |
| 		emit_set_const_sext(imm, tmp, ctx);
 | |
| 		emit(insn | RS2(tmp), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
 | |
| 			unsigned int dst, struct jit_ctx *ctx)
 | |
| {
 | |
| 	bool small_immed = is_simm13(imm);
 | |
| 	unsigned int insn = opcode;
 | |
| 
 | |
| 	insn |= RS1(src) | RD(dst);
 | |
| 	if (small_immed) {
 | |
| 		emit(insn | IMMED | S13(imm), ctx);
 | |
| 	} else {
 | |
| 		unsigned int tmp = bpf2sparc[TMP_REG_1];
 | |
| 
 | |
| 		ctx->tmp_1_used = true;
 | |
| 
 | |
| 		emit_set_const_sext(imm, tmp, ctx);
 | |
| 		emit(insn | RS2(tmp), ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
 | |
| {
 | |
| 	if (K >= 0 && is_simm13(K)) {
 | |
| 		/* or %g0, K, DEST */
 | |
| 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
 | |
| 	} else {
 | |
| 		emit_set_const(K, dest, ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
 | |
| {
 | |
| 	if (is_simm13(K)) {
 | |
| 		/* or %g0, K, DEST */
 | |
| 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
 | |
| 	} else {
 | |
| 		emit_set_const(K, dest, ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
 | |
| {
 | |
| 	if (is_simm13(K)) {
 | |
| 		/* or %g0, K, DEST */
 | |
| 		emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
 | |
| 	} else {
 | |
| 		emit_set_const_sext(K, dest, ctx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
 | |
| 				   int *hbsp, int *lbsp, int *abbasp)
 | |
| {
 | |
| 	int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
 | |
| 	int i;
 | |
| 
 | |
| 	lowest_bit_set = highest_bit_set = -1;
 | |
| 	i = 0;
 | |
| 	do {
 | |
| 		if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
 | |
| 			lowest_bit_set = i;
 | |
| 		if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
 | |
| 			highest_bit_set = (64 - i - 1);
 | |
| 	}  while (++i < 32 && (highest_bit_set == -1 ||
 | |
| 			       lowest_bit_set == -1));
 | |
| 	if (i == 32) {
 | |
| 		i = 0;
 | |
| 		do {
 | |
| 			if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
 | |
| 				lowest_bit_set = i + 32;
 | |
| 			if (highest_bit_set == -1 &&
 | |
| 			    ((low_bits >> (32 - i - 1)) & 1))
 | |
| 				highest_bit_set = 32 - i - 1;
 | |
| 		} while (++i < 32 && (highest_bit_set == -1 ||
 | |
| 				      lowest_bit_set == -1));
 | |
| 	}
 | |
| 
 | |
| 	all_bits_between_are_set = 1;
 | |
| 	for (i = lowest_bit_set; i <= highest_bit_set; i++) {
 | |
| 		if (i < 32) {
 | |
| 			if ((low_bits & (1 << i)) != 0)
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			if ((high_bits & (1 << (i - 32))) != 0)
 | |
| 				continue;
 | |
| 		}
 | |
| 		all_bits_between_are_set = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	*hbsp = highest_bit_set;
 | |
| 	*lbsp = lowest_bit_set;
 | |
| 	*abbasp = all_bits_between_are_set;
 | |
| }
 | |
| 
 | |
| static unsigned long create_simple_focus_bits(unsigned long high_bits,
 | |
| 					      unsigned long low_bits,
 | |
| 					      int lowest_bit_set, int shift)
 | |
| {
 | |
| 	long hi, lo;
 | |
| 
 | |
| 	if (lowest_bit_set < 32) {
 | |
| 		lo = (low_bits >> lowest_bit_set) << shift;
 | |
| 		hi = ((high_bits << (32 - lowest_bit_set)) << shift);
 | |
| 	} else {
 | |
| 		lo = 0;
 | |
| 		hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
 | |
| 	}
 | |
| 	return hi | lo;
 | |
| }
 | |
| 
 | |
| static bool const64_is_2insns(unsigned long high_bits,
 | |
| 			      unsigned long low_bits)
 | |
| {
 | |
| 	int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
 | |
| 
 | |
| 	if (high_bits == 0 || high_bits == 0xffffffff)
 | |
| 		return true;
 | |
| 
 | |
| 	analyze_64bit_constant(high_bits, low_bits,
 | |
| 			       &highest_bit_set, &lowest_bit_set,
 | |
| 			       &all_bits_between_are_set);
 | |
| 
 | |
| 	if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
 | |
| 	    all_bits_between_are_set != 0)
 | |
| 		return true;
 | |
| 
 | |
| 	if (highest_bit_set - lowest_bit_set < 21)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void sparc_emit_set_const64_quick2(unsigned long high_bits,
 | |
| 					  unsigned long low_imm,
 | |
| 					  unsigned int dest,
 | |
| 					  int shift_count, struct jit_ctx *ctx)
 | |
| {
 | |
| 	emit_loadimm32(high_bits, dest, ctx);
 | |
| 
 | |
| 	/* Now shift it up into place.  */
 | |
| 	emit_alu_K(SLLX, dest, shift_count, ctx);
 | |
| 
 | |
| 	/* If there is a low immediate part piece, finish up by
 | |
| 	 * putting that in as well.
 | |
| 	 */
 | |
| 	if (low_imm != 0)
 | |
| 		emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
 | |
| }
 | |
| 
 | |
| static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
 | |
| {
 | |
| 	int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
 | |
| 	unsigned int tmp = bpf2sparc[TMP_REG_1];
 | |
| 	u32 low_bits = (K & 0xffffffff);
 | |
| 	u32 high_bits = (K >> 32);
 | |
| 
 | |
| 	/* These two tests also take care of all of the one
 | |
| 	 * instruction cases.
 | |
| 	 */
 | |
| 	if (high_bits == 0xffffffff && (low_bits & 0x80000000))
 | |
| 		return emit_loadimm_sext(K, dest, ctx);
 | |
| 	if (high_bits == 0x00000000)
 | |
| 		return emit_loadimm32(K, dest, ctx);
 | |
| 
 | |
| 	analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
 | |
| 			       &lowest_bit_set, &all_bits_between_are_set);
 | |
| 
 | |
| 	/* 1) mov	-1, %reg
 | |
| 	 *    sllx	%reg, shift, %reg
 | |
| 	 * 2) mov	-1, %reg
 | |
| 	 *    srlx	%reg, shift, %reg
 | |
| 	 * 3) mov	some_small_const, %reg
 | |
| 	 *    sllx	%reg, shift, %reg
 | |
| 	 */
 | |
| 	if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
 | |
| 	     all_bits_between_are_set != 0) ||
 | |
| 	    ((highest_bit_set - lowest_bit_set) < 12)) {
 | |
| 		int shift = lowest_bit_set;
 | |
| 		long the_const = -1;
 | |
| 
 | |
| 		if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
 | |
| 		    all_bits_between_are_set == 0) {
 | |
| 			the_const =
 | |
| 				create_simple_focus_bits(high_bits, low_bits,
 | |
| 							 lowest_bit_set, 0);
 | |
| 		} else if (lowest_bit_set == 0)
 | |
| 			shift = -(63 - highest_bit_set);
 | |
| 
 | |
| 		emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
 | |
| 		if (shift > 0)
 | |
| 			emit_alu_K(SLLX, dest, shift, ctx);
 | |
| 		else if (shift < 0)
 | |
| 			emit_alu_K(SRLX, dest, -shift, ctx);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Now a range of 22 or less bits set somewhere.
 | |
| 	 * 1) sethi	%hi(focus_bits), %reg
 | |
| 	 *    sllx	%reg, shift, %reg
 | |
| 	 * 2) sethi	%hi(focus_bits), %reg
 | |
| 	 *    srlx	%reg, shift, %reg
 | |
| 	 */
 | |
| 	if ((highest_bit_set - lowest_bit_set) < 21) {
 | |
| 		unsigned long focus_bits =
 | |
| 			create_simple_focus_bits(high_bits, low_bits,
 | |
| 						 lowest_bit_set, 10);
 | |
| 
 | |
| 		emit(SETHI(focus_bits, dest), ctx);
 | |
| 
 | |
| 		/* If lowest_bit_set == 10 then a sethi alone could
 | |
| 		 * have done it.
 | |
| 		 */
 | |
| 		if (lowest_bit_set < 10)
 | |
| 			emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
 | |
| 		else if (lowest_bit_set > 10)
 | |
| 			emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Ok, now 3 instruction sequences.  */
 | |
| 	if (low_bits == 0) {
 | |
| 		emit_loadimm32(high_bits, dest, ctx);
 | |
| 		emit_alu_K(SLLX, dest, 32, ctx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* We may be able to do something quick
 | |
| 	 * when the constant is negated, so try that.
 | |
| 	 */
 | |
| 	if (const64_is_2insns((~high_bits) & 0xffffffff,
 | |
| 			      (~low_bits) & 0xfffffc00)) {
 | |
| 		/* NOTE: The trailing bits get XOR'd so we need the
 | |
| 		 * non-negated bits, not the negated ones.
 | |
| 		 */
 | |
| 		unsigned long trailing_bits = low_bits & 0x3ff;
 | |
| 
 | |
| 		if ((((~high_bits) & 0xffffffff) == 0 &&
 | |
| 		     ((~low_bits) & 0x80000000) == 0) ||
 | |
| 		    (((~high_bits) & 0xffffffff) == 0xffffffff &&
 | |
| 		     ((~low_bits) & 0x80000000) != 0)) {
 | |
| 			unsigned long fast_int = (~low_bits & 0xffffffff);
 | |
| 
 | |
| 			if ((is_sethi(fast_int) &&
 | |
| 			     (~high_bits & 0xffffffff) == 0)) {
 | |
| 				emit(SETHI(fast_int, dest), ctx);
 | |
| 			} else if (is_simm13(fast_int)) {
 | |
| 				emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
 | |
| 			} else {
 | |
| 				emit_loadimm64(fast_int, dest, ctx);
 | |
| 			}
 | |
| 		} else {
 | |
| 			u64 n = ((~low_bits) & 0xfffffc00) |
 | |
| 				(((unsigned long)((~high_bits) & 0xffffffff))<<32);
 | |
| 			emit_loadimm64(n, dest, ctx);
 | |
| 		}
 | |
| 
 | |
| 		low_bits = -0x400 | trailing_bits;
 | |
| 
 | |
| 		emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* 1) sethi	%hi(xxx), %reg
 | |
| 	 *    or	%reg, %lo(xxx), %reg
 | |
| 	 *    sllx	%reg, yyy, %reg
 | |
| 	 */
 | |
| 	if ((highest_bit_set - lowest_bit_set) < 32) {
 | |
| 		unsigned long focus_bits =
 | |
| 			create_simple_focus_bits(high_bits, low_bits,
 | |
| 						 lowest_bit_set, 0);
 | |
| 
 | |
| 		/* So what we know is that the set bits straddle the
 | |
| 		 * middle of the 64-bit word.
 | |
| 		 */
 | |
| 		sparc_emit_set_const64_quick2(focus_bits, 0, dest,
 | |
| 					      lowest_bit_set, ctx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* 1) sethi	%hi(high_bits), %reg
 | |
| 	 *    or	%reg, %lo(high_bits), %reg
 | |
| 	 *    sllx	%reg, 32, %reg
 | |
| 	 *    or	%reg, low_bits, %reg
 | |
| 	 */
 | |
| 	if (is_simm13(low_bits) && ((int)low_bits > 0)) {
 | |
| 		sparc_emit_set_const64_quick2(high_bits, low_bits,
 | |
| 					      dest, 32, ctx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Oh well, we tried... Do a full 64-bit decomposition.  */
 | |
| 	ctx->tmp_1_used = true;
 | |
| 
 | |
| 	emit_loadimm32(high_bits, tmp, ctx);
 | |
| 	emit_loadimm32(low_bits, dest, ctx);
 | |
| 	emit_alu_K(SLLX, tmp, 32, ctx);
 | |
| 	emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
 | |
| }
 | |
| 
 | |
| static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
 | |
| 			struct jit_ctx *ctx)
 | |
| {
 | |
| 	unsigned int off = to_idx - from_idx;
 | |
| 
 | |
| 	if (br_opc & XCC)
 | |
| 		emit(br_opc | WDISP19(off << 2), ctx);
 | |
| 	else
 | |
| 		emit(br_opc | WDISP22(off << 2), ctx);
 | |
| }
 | |
| 
 | |
| static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
 | |
| 			const u8 dst, const u8 src, struct jit_ctx *ctx)
 | |
| {
 | |
| 	unsigned int off = to_idx - from_idx;
 | |
| 
 | |
| 	emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
 | |
| }
 | |
| 
 | |
| static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
 | |
| 			 const u8 dst, s32 imm, struct jit_ctx *ctx)
 | |
| {
 | |
| 	unsigned int off = to_idx - from_idx;
 | |
| 
 | |
| 	emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
 | |
| }
 | |
| 
 | |
| #define emit_read_y(REG, CTX)	emit(RD_Y | RD(REG), CTX)
 | |
| #define emit_write_y(REG, CTX)	emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
 | |
| 
 | |
| #define emit_cmp(R1, R2, CTX)				\
 | |
| 	emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
 | |
| 
 | |
| #define emit_cmpi(R1, IMM, CTX)				\
 | |
| 	emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
 | |
| 
 | |
| #define emit_btst(R1, R2, CTX)				\
 | |
| 	emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
 | |
| 
 | |
| #define emit_btsti(R1, IMM, CTX)			\
 | |
| 	emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
 | |
| 
 | |
| static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
 | |
| 				   const s32 imm, bool is_imm, int branch_dst,
 | |
| 				   struct jit_ctx *ctx)
 | |
| {
 | |
| 	bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
 | |
| 	const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 
 | |
| 	branch_dst = ctx->offset[branch_dst];
 | |
| 
 | |
| 	if (!is_simm10(branch_dst - ctx->idx) ||
 | |
| 	    BPF_OP(code) == BPF_JSET)
 | |
| 		use_cbcond = false;
 | |
| 
 | |
| 	if (is_imm) {
 | |
| 		bool fits = true;
 | |
| 
 | |
| 		if (use_cbcond) {
 | |
| 			if (!is_simm5(imm))
 | |
| 				fits = false;
 | |
| 		} else if (!is_simm13(imm)) {
 | |
| 			fits = false;
 | |
| 		}
 | |
| 		if (!fits) {
 | |
| 			ctx->tmp_1_used = true;
 | |
| 			emit_loadimm_sext(imm, tmp, ctx);
 | |
| 			src = tmp;
 | |
| 			is_imm = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!use_cbcond) {
 | |
| 		u32 br_opcode;
 | |
| 
 | |
| 		if (BPF_OP(code) == BPF_JSET) {
 | |
| 			if (is_imm)
 | |
| 				emit_btsti(dst, imm, ctx);
 | |
| 			else
 | |
| 				emit_btst(dst, src, ctx);
 | |
| 		} else {
 | |
| 			if (is_imm)
 | |
| 				emit_cmpi(dst, imm, ctx);
 | |
| 			else
 | |
| 				emit_cmp(dst, src, ctx);
 | |
| 		}
 | |
| 		switch (BPF_OP(code)) {
 | |
| 		case BPF_JEQ:
 | |
| 			br_opcode = BE;
 | |
| 			break;
 | |
| 		case BPF_JGT:
 | |
| 			br_opcode = BGU;
 | |
| 			break;
 | |
| 		case BPF_JLT:
 | |
| 			br_opcode = BLU;
 | |
| 			break;
 | |
| 		case BPF_JGE:
 | |
| 			br_opcode = BGEU;
 | |
| 			break;
 | |
| 		case BPF_JLE:
 | |
| 			br_opcode = BLEU;
 | |
| 			break;
 | |
| 		case BPF_JSET:
 | |
| 		case BPF_JNE:
 | |
| 			br_opcode = BNE;
 | |
| 			break;
 | |
| 		case BPF_JSGT:
 | |
| 			br_opcode = BG;
 | |
| 			break;
 | |
| 		case BPF_JSLT:
 | |
| 			br_opcode = BL;
 | |
| 			break;
 | |
| 		case BPF_JSGE:
 | |
| 			br_opcode = BGE;
 | |
| 			break;
 | |
| 		case BPF_JSLE:
 | |
| 			br_opcode = BLE;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Make sure we dont leak kernel information to the
 | |
| 			 * user.
 | |
| 			 */
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
 | |
| 		emit_nop(ctx);
 | |
| 	} else {
 | |
| 		u32 cbcond_opcode;
 | |
| 
 | |
| 		switch (BPF_OP(code)) {
 | |
| 		case BPF_JEQ:
 | |
| 			cbcond_opcode = CBCONDE;
 | |
| 			break;
 | |
| 		case BPF_JGT:
 | |
| 			cbcond_opcode = CBCONDGU;
 | |
| 			break;
 | |
| 		case BPF_JLT:
 | |
| 			cbcond_opcode = CBCONDLU;
 | |
| 			break;
 | |
| 		case BPF_JGE:
 | |
| 			cbcond_opcode = CBCONDGEU;
 | |
| 			break;
 | |
| 		case BPF_JLE:
 | |
| 			cbcond_opcode = CBCONDLEU;
 | |
| 			break;
 | |
| 		case BPF_JNE:
 | |
| 			cbcond_opcode = CBCONDNE;
 | |
| 			break;
 | |
| 		case BPF_JSGT:
 | |
| 			cbcond_opcode = CBCONDG;
 | |
| 			break;
 | |
| 		case BPF_JSLT:
 | |
| 			cbcond_opcode = CBCONDL;
 | |
| 			break;
 | |
| 		case BPF_JSGE:
 | |
| 			cbcond_opcode = CBCONDGE;
 | |
| 			break;
 | |
| 		case BPF_JSLE:
 | |
| 			cbcond_opcode = CBCONDLE;
 | |
| 			break;
 | |
| 		default:
 | |
| 			/* Make sure we dont leak kernel information to the
 | |
| 			 * user.
 | |
| 			 */
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 		cbcond_opcode |= CBCOND_OP;
 | |
| 		if (is_imm)
 | |
| 			emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
 | |
| 				     dst, imm, ctx);
 | |
| 		else
 | |
| 			emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
 | |
| 				    dst, src, ctx);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Just skip the save instruction and the ctx register move.  */
 | |
| #define BPF_TAILCALL_PROLOGUE_SKIP	32
 | |
| #define BPF_TAILCALL_CNT_SP_OFF		(STACK_BIAS + 128)
 | |
| 
 | |
| static void build_prologue(struct jit_ctx *ctx)
 | |
| {
 | |
| 	s32 stack_needed = BASE_STACKFRAME;
 | |
| 
 | |
| 	if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
 | |
| 		struct bpf_prog *prog = ctx->prog;
 | |
| 		u32 stack_depth;
 | |
| 
 | |
| 		stack_depth = prog->aux->stack_depth;
 | |
| 		stack_needed += round_up(stack_depth, 16);
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->saw_tail_call)
 | |
| 		stack_needed += 8;
 | |
| 
 | |
| 	/* save %sp, -176, %sp */
 | |
| 	emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
 | |
| 
 | |
| 	/* tail_call_cnt = 0 */
 | |
| 	if (ctx->saw_tail_call) {
 | |
| 		u32 off = BPF_TAILCALL_CNT_SP_OFF;
 | |
| 
 | |
| 		emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
 | |
| 	} else {
 | |
| 		emit_nop(ctx);
 | |
| 	}
 | |
| 	if (ctx->saw_frame_pointer) {
 | |
| 		const u8 vfp = bpf2sparc[BPF_REG_FP];
 | |
| 
 | |
| 		emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
 | |
| 	} else {
 | |
| 		emit_nop(ctx);
 | |
| 	}
 | |
| 
 | |
| 	emit_reg_move(I0, O0, ctx);
 | |
| 	emit_reg_move(I1, O1, ctx);
 | |
| 	emit_reg_move(I2, O2, ctx);
 | |
| 	emit_reg_move(I3, O3, ctx);
 | |
| 	emit_reg_move(I4, O4, ctx);
 | |
| 	/* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
 | |
| }
 | |
| 
 | |
| static void build_epilogue(struct jit_ctx *ctx)
 | |
| {
 | |
| 	ctx->epilogue_offset = ctx->idx;
 | |
| 
 | |
| 	/* ret (jmpl %i7 + 8, %g0) */
 | |
| 	emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
 | |
| 
 | |
| 	/* restore %i5, %g0, %o0 */
 | |
| 	emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
 | |
| }
 | |
| 
 | |
| static void emit_tail_call(struct jit_ctx *ctx)
 | |
| {
 | |
| 	const u8 bpf_array = bpf2sparc[BPF_REG_2];
 | |
| 	const u8 bpf_index = bpf2sparc[BPF_REG_3];
 | |
| 	const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 	u32 off;
 | |
| 
 | |
| 	ctx->saw_tail_call = true;
 | |
| 
 | |
| 	off = offsetof(struct bpf_array, map.max_entries);
 | |
| 	emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
 | |
| 	emit_cmp(bpf_index, tmp, ctx);
 | |
| #define OFFSET1 17
 | |
| 	emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
 | |
| 	emit_nop(ctx);
 | |
| 
 | |
| 	off = BPF_TAILCALL_CNT_SP_OFF;
 | |
| 	emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
 | |
| 	emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
 | |
| #define OFFSET2 13
 | |
| 	emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
 | |
| 	emit_nop(ctx);
 | |
| 
 | |
| 	emit_alu_K(ADD, tmp, 1, ctx);
 | |
| 	off = BPF_TAILCALL_CNT_SP_OFF;
 | |
| 	emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
 | |
| 
 | |
| 	emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
 | |
| 	emit_alu(ADD, bpf_array, tmp, ctx);
 | |
| 	off = offsetof(struct bpf_array, ptrs);
 | |
| 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
 | |
| 
 | |
| 	emit_cmpi(tmp, 0, ctx);
 | |
| #define OFFSET3 5
 | |
| 	emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
 | |
| 	emit_nop(ctx);
 | |
| 
 | |
| 	off = offsetof(struct bpf_prog, bpf_func);
 | |
| 	emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
 | |
| 
 | |
| 	off = BPF_TAILCALL_PROLOGUE_SKIP;
 | |
| 	emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
 | |
| 	emit_nop(ctx);
 | |
| }
 | |
| 
 | |
| static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
 | |
| {
 | |
| 	const u8 code = insn->code;
 | |
| 	const u8 dst = bpf2sparc[insn->dst_reg];
 | |
| 	const u8 src = bpf2sparc[insn->src_reg];
 | |
| 	const int i = insn - ctx->prog->insnsi;
 | |
| 	const s16 off = insn->off;
 | |
| 	const s32 imm = insn->imm;
 | |
| 
 | |
| 	if (insn->src_reg == BPF_REG_FP)
 | |
| 		ctx->saw_frame_pointer = true;
 | |
| 
 | |
| 	switch (code) {
 | |
| 	/* dst = src */
 | |
| 	case BPF_ALU | BPF_MOV | BPF_X:
 | |
| 		emit_alu3_K(SRL, src, 0, dst, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU64 | BPF_MOV | BPF_X:
 | |
| 		emit_reg_move(src, dst, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst OP src */
 | |
| 	case BPF_ALU | BPF_ADD | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_ADD | BPF_X:
 | |
| 		emit_alu(ADD, src, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_SUB | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_SUB | BPF_X:
 | |
| 		emit_alu(SUB, src, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_AND | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_AND | BPF_X:
 | |
| 		emit_alu(AND, src, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_OR | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_OR | BPF_X:
 | |
| 		emit_alu(OR, src, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_XOR | BPF_X:
 | |
| 	case BPF_ALU64 | BPF_XOR | BPF_X:
 | |
| 		emit_alu(XOR, src, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_MUL | BPF_X:
 | |
| 		emit_alu(MUL, src, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU64 | BPF_MUL | BPF_X:
 | |
| 		emit_alu(MULX, src, dst, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU | BPF_DIV | BPF_X:
 | |
| 		emit_write_y(G0, ctx);
 | |
| 		emit_alu(DIV, src, dst, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU64 | BPF_DIV | BPF_X:
 | |
| 		emit_alu(UDIVX, src, dst, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU | BPF_MOD | BPF_X: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 
 | |
| 		ctx->tmp_1_used = true;
 | |
| 
 | |
| 		emit_write_y(G0, ctx);
 | |
| 		emit_alu3(DIV, dst, src, tmp, ctx);
 | |
| 		emit_alu3(MULX, tmp, src, tmp, ctx);
 | |
| 		emit_alu3(SUB, dst, tmp, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	}
 | |
| 	case BPF_ALU64 | BPF_MOD | BPF_X: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 
 | |
| 		ctx->tmp_1_used = true;
 | |
| 
 | |
| 		emit_alu3(UDIVX, dst, src, tmp, ctx);
 | |
| 		emit_alu3(MULX, tmp, src, tmp, ctx);
 | |
| 		emit_alu3(SUB, dst, tmp, dst, ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 	case BPF_ALU | BPF_LSH | BPF_X:
 | |
| 		emit_alu(SLL, src, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU64 | BPF_LSH | BPF_X:
 | |
| 		emit_alu(SLLX, src, dst, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU | BPF_RSH | BPF_X:
 | |
| 		emit_alu(SRL, src, dst, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU64 | BPF_RSH | BPF_X:
 | |
| 		emit_alu(SRLX, src, dst, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU | BPF_ARSH | BPF_X:
 | |
| 		emit_alu(SRA, src, dst, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU64 | BPF_ARSH | BPF_X:
 | |
| 		emit_alu(SRAX, src, dst, ctx);
 | |
| 		break;
 | |
| 
 | |
| 	/* dst = -dst */
 | |
| 	case BPF_ALU | BPF_NEG:
 | |
| 	case BPF_ALU64 | BPF_NEG:
 | |
| 		emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 
 | |
| 	case BPF_ALU | BPF_END | BPF_FROM_BE:
 | |
| 		switch (imm) {
 | |
| 		case 16:
 | |
| 			emit_alu_K(SLL, dst, 16, ctx);
 | |
| 			emit_alu_K(SRL, dst, 16, ctx);
 | |
| 			break;
 | |
| 		case 32:
 | |
| 			emit_alu_K(SRL, dst, 0, ctx);
 | |
| 			break;
 | |
| 		case 64:
 | |
| 			/* nop */
 | |
| 			break;
 | |
| 
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	/* dst = BSWAP##imm(dst) */
 | |
| 	case BPF_ALU | BPF_END | BPF_FROM_LE: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
 | |
| 
 | |
| 		ctx->tmp_1_used = true;
 | |
| 		switch (imm) {
 | |
| 		case 16:
 | |
| 			emit_alu3_K(AND, dst, 0xff, tmp, ctx);
 | |
| 			emit_alu3_K(SRL, dst, 8, dst, ctx);
 | |
| 			emit_alu3_K(AND, dst, 0xff, dst, ctx);
 | |
| 			emit_alu3_K(SLL, tmp, 8, tmp, ctx);
 | |
| 			emit_alu(OR, tmp, dst, ctx);
 | |
| 			break;
 | |
| 
 | |
| 		case 32:
 | |
| 			ctx->tmp_2_used = true;
 | |
| 			emit_alu3_K(SRL, dst, 24, tmp, ctx);	/* tmp  = dst >> 24 */
 | |
| 			emit_alu3_K(SRL, dst, 16, tmp2, ctx);	/* tmp2 = dst >> 16 */
 | |
| 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
 | |
| 			emit_alu3_K(SLL, tmp2, 8, tmp2, ctx);	/* tmp2 = tmp2 << 8 */
 | |
| 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
 | |
| 			emit_alu3_K(SRL, dst, 8, tmp2, ctx);	/* tmp2 = dst >> 8 */
 | |
| 			emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
 | |
| 			emit_alu3_K(SLL, tmp2, 16, tmp2, ctx);	/* tmp2 = tmp2 << 16 */
 | |
| 			emit_alu(OR, tmp2, tmp, ctx);		/* tmp  = tmp | tmp2 */
 | |
| 			emit_alu3_K(AND, dst, 0xff, dst, ctx);	/* dst	= dst & 0xff */
 | |
| 			emit_alu3_K(SLL, dst, 24, dst, ctx);	/* dst  = dst << 24 */
 | |
| 			emit_alu(OR, tmp, dst, ctx);		/* dst  = dst | tmp */
 | |
| 			break;
 | |
| 
 | |
| 		case 64:
 | |
| 			emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
 | |
| 			emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
 | |
| 			emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	/* dst = imm */
 | |
| 	case BPF_ALU | BPF_MOV | BPF_K:
 | |
| 		emit_loadimm32(imm, dst, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU64 | BPF_MOV | BPF_K:
 | |
| 		emit_loadimm_sext(imm, dst, ctx);
 | |
| 		break;
 | |
| 	/* dst = dst OP imm */
 | |
| 	case BPF_ALU | BPF_ADD | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_ADD | BPF_K:
 | |
| 		emit_alu_K(ADD, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_SUB | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_SUB | BPF_K:
 | |
| 		emit_alu_K(SUB, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_AND | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_AND | BPF_K:
 | |
| 		emit_alu_K(AND, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_OR | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_OR | BPF_K:
 | |
| 		emit_alu_K(OR, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_XOR | BPF_K:
 | |
| 	case BPF_ALU64 | BPF_XOR | BPF_K:
 | |
| 		emit_alu_K(XOR, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU | BPF_MUL | BPF_K:
 | |
| 		emit_alu_K(MUL, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU64 | BPF_MUL | BPF_K:
 | |
| 		emit_alu_K(MULX, dst, imm, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU | BPF_DIV | BPF_K:
 | |
| 		if (imm == 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		emit_write_y(G0, ctx);
 | |
| 		emit_alu_K(DIV, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU64 | BPF_DIV | BPF_K:
 | |
| 		if (imm == 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		emit_alu_K(UDIVX, dst, imm, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU64 | BPF_MOD | BPF_K:
 | |
| 	case BPF_ALU | BPF_MOD | BPF_K: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_2];
 | |
| 		unsigned int div;
 | |
| 
 | |
| 		if (imm == 0)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
 | |
| 
 | |
| 		ctx->tmp_2_used = true;
 | |
| 
 | |
| 		if (BPF_CLASS(code) != BPF_ALU64)
 | |
| 			emit_write_y(G0, ctx);
 | |
| 		if (is_simm13(imm)) {
 | |
| 			emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
 | |
| 			emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
 | |
| 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
 | |
| 		} else {
 | |
| 			const u8 tmp1 = bpf2sparc[TMP_REG_1];
 | |
| 
 | |
| 			ctx->tmp_1_used = true;
 | |
| 
 | |
| 			emit_set_const_sext(imm, tmp1, ctx);
 | |
| 			emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
 | |
| 			emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
 | |
| 			emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
 | |
| 		}
 | |
| 		goto do_alu32_trunc;
 | |
| 	}
 | |
| 	case BPF_ALU | BPF_LSH | BPF_K:
 | |
| 		emit_alu_K(SLL, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU64 | BPF_LSH | BPF_K:
 | |
| 		emit_alu_K(SLLX, dst, imm, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU | BPF_RSH | BPF_K:
 | |
| 		emit_alu_K(SRL, dst, imm, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU64 | BPF_RSH | BPF_K:
 | |
| 		emit_alu_K(SRLX, dst, imm, ctx);
 | |
| 		break;
 | |
| 	case BPF_ALU | BPF_ARSH | BPF_K:
 | |
| 		emit_alu_K(SRA, dst, imm, ctx);
 | |
| 		goto do_alu32_trunc;
 | |
| 	case BPF_ALU64 | BPF_ARSH | BPF_K:
 | |
| 		emit_alu_K(SRAX, dst, imm, ctx);
 | |
| 		break;
 | |
| 
 | |
| 	do_alu32_trunc:
 | |
| 		if (BPF_CLASS(code) == BPF_ALU)
 | |
| 			emit_alu_K(SRL, dst, 0, ctx);
 | |
| 		break;
 | |
| 
 | |
| 	/* JUMP off */
 | |
| 	case BPF_JMP | BPF_JA:
 | |
| 		emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
 | |
| 		emit_nop(ctx);
 | |
| 		break;
 | |
| 	/* IF (dst COND src) JUMP off */
 | |
| 	case BPF_JMP | BPF_JEQ | BPF_X:
 | |
| 	case BPF_JMP | BPF_JGT | BPF_X:
 | |
| 	case BPF_JMP | BPF_JLT | BPF_X:
 | |
| 	case BPF_JMP | BPF_JGE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JLE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JNE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSGT | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSLT | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSGE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSLE | BPF_X:
 | |
| 	case BPF_JMP | BPF_JSET | BPF_X: {
 | |
| 		int err;
 | |
| 
 | |
| 		err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		break;
 | |
| 	}
 | |
| 	/* IF (dst COND imm) JUMP off */
 | |
| 	case BPF_JMP | BPF_JEQ | BPF_K:
 | |
| 	case BPF_JMP | BPF_JGT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JLT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JGE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JLE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JNE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSGT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSLT | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSGE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSLE | BPF_K:
 | |
| 	case BPF_JMP | BPF_JSET | BPF_K: {
 | |
| 		int err;
 | |
| 
 | |
| 		err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* function call */
 | |
| 	case BPF_JMP | BPF_CALL:
 | |
| 	{
 | |
| 		u8 *func = ((u8 *)__bpf_call_base) + imm;
 | |
| 
 | |
| 		ctx->saw_call = true;
 | |
| 
 | |
| 		emit_call((u32 *)func, ctx);
 | |
| 		emit_nop(ctx);
 | |
| 
 | |
| 		emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* tail call */
 | |
| 	case BPF_JMP | BPF_TAIL_CALL:
 | |
| 		emit_tail_call(ctx);
 | |
| 		break;
 | |
| 
 | |
| 	/* function return */
 | |
| 	case BPF_JMP | BPF_EXIT:
 | |
| 		/* Optimization: when last instruction is EXIT,
 | |
| 		   simply fallthrough to epilogue. */
 | |
| 		if (i == ctx->prog->len - 1)
 | |
| 			break;
 | |
| 		emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
 | |
| 		emit_nop(ctx);
 | |
| 		break;
 | |
| 
 | |
| 	/* dst = imm64 */
 | |
| 	case BPF_LD | BPF_IMM | BPF_DW:
 | |
| 	{
 | |
| 		const struct bpf_insn insn1 = insn[1];
 | |
| 		u64 imm64;
 | |
| 
 | |
| 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
 | |
| 		emit_loadimm64(imm64, dst, ctx);
 | |
| 
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* LDX: dst = *(size *)(src + off) */
 | |
| 	case BPF_LDX | BPF_MEM | BPF_W:
 | |
| 	case BPF_LDX | BPF_MEM | BPF_H:
 | |
| 	case BPF_LDX | BPF_MEM | BPF_B:
 | |
| 	case BPF_LDX | BPF_MEM | BPF_DW: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 		u32 opcode = 0, rs2;
 | |
| 
 | |
| 		ctx->tmp_1_used = true;
 | |
| 		switch (BPF_SIZE(code)) {
 | |
| 		case BPF_W:
 | |
| 			opcode = LD32;
 | |
| 			break;
 | |
| 		case BPF_H:
 | |
| 			opcode = LD16;
 | |
| 			break;
 | |
| 		case BPF_B:
 | |
| 			opcode = LD8;
 | |
| 			break;
 | |
| 		case BPF_DW:
 | |
| 			opcode = LD64;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (is_simm13(off)) {
 | |
| 			opcode |= IMMED;
 | |
| 			rs2 = S13(off);
 | |
| 		} else {
 | |
| 			emit_loadimm(off, tmp, ctx);
 | |
| 			rs2 = RS2(tmp);
 | |
| 		}
 | |
| 		emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 	/* ST: *(size *)(dst + off) = imm */
 | |
| 	case BPF_ST | BPF_MEM | BPF_W:
 | |
| 	case BPF_ST | BPF_MEM | BPF_H:
 | |
| 	case BPF_ST | BPF_MEM | BPF_B:
 | |
| 	case BPF_ST | BPF_MEM | BPF_DW: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
 | |
| 		u32 opcode = 0, rs2;
 | |
| 
 | |
| 		if (insn->dst_reg == BPF_REG_FP)
 | |
| 			ctx->saw_frame_pointer = true;
 | |
| 
 | |
| 		ctx->tmp_2_used = true;
 | |
| 		emit_loadimm(imm, tmp2, ctx);
 | |
| 
 | |
| 		switch (BPF_SIZE(code)) {
 | |
| 		case BPF_W:
 | |
| 			opcode = ST32;
 | |
| 			break;
 | |
| 		case BPF_H:
 | |
| 			opcode = ST16;
 | |
| 			break;
 | |
| 		case BPF_B:
 | |
| 			opcode = ST8;
 | |
| 			break;
 | |
| 		case BPF_DW:
 | |
| 			opcode = ST64;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (is_simm13(off)) {
 | |
| 			opcode |= IMMED;
 | |
| 			rs2 = S13(off);
 | |
| 		} else {
 | |
| 			ctx->tmp_1_used = true;
 | |
| 			emit_loadimm(off, tmp, ctx);
 | |
| 			rs2 = RS2(tmp);
 | |
| 		}
 | |
| 		emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* STX: *(size *)(dst + off) = src */
 | |
| 	case BPF_STX | BPF_MEM | BPF_W:
 | |
| 	case BPF_STX | BPF_MEM | BPF_H:
 | |
| 	case BPF_STX | BPF_MEM | BPF_B:
 | |
| 	case BPF_STX | BPF_MEM | BPF_DW: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 		u32 opcode = 0, rs2;
 | |
| 
 | |
| 		if (insn->dst_reg == BPF_REG_FP)
 | |
| 			ctx->saw_frame_pointer = true;
 | |
| 
 | |
| 		switch (BPF_SIZE(code)) {
 | |
| 		case BPF_W:
 | |
| 			opcode = ST32;
 | |
| 			break;
 | |
| 		case BPF_H:
 | |
| 			opcode = ST16;
 | |
| 			break;
 | |
| 		case BPF_B:
 | |
| 			opcode = ST8;
 | |
| 			break;
 | |
| 		case BPF_DW:
 | |
| 			opcode = ST64;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (is_simm13(off)) {
 | |
| 			opcode |= IMMED;
 | |
| 			rs2 = S13(off);
 | |
| 		} else {
 | |
| 			ctx->tmp_1_used = true;
 | |
| 			emit_loadimm(off, tmp, ctx);
 | |
| 			rs2 = RS2(tmp);
 | |
| 		}
 | |
| 		emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* STX XADD: lock *(u32 *)(dst + off) += src */
 | |
| 	case BPF_STX | BPF_XADD | BPF_W: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
 | |
| 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
 | |
| 
 | |
| 		if (insn->dst_reg == BPF_REG_FP)
 | |
| 			ctx->saw_frame_pointer = true;
 | |
| 
 | |
| 		ctx->tmp_1_used = true;
 | |
| 		ctx->tmp_2_used = true;
 | |
| 		ctx->tmp_3_used = true;
 | |
| 		emit_loadimm(off, tmp, ctx);
 | |
| 		emit_alu3(ADD, dst, tmp, tmp, ctx);
 | |
| 
 | |
| 		emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
 | |
| 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
 | |
| 		emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
 | |
| 		emit_cmp(tmp2, tmp3, ctx);
 | |
| 		emit_branch(BNE, 4, 0, ctx);
 | |
| 		emit_nop(ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 	/* STX XADD: lock *(u64 *)(dst + off) += src */
 | |
| 	case BPF_STX | BPF_XADD | BPF_DW: {
 | |
| 		const u8 tmp = bpf2sparc[TMP_REG_1];
 | |
| 		const u8 tmp2 = bpf2sparc[TMP_REG_2];
 | |
| 		const u8 tmp3 = bpf2sparc[TMP_REG_3];
 | |
| 
 | |
| 		if (insn->dst_reg == BPF_REG_FP)
 | |
| 			ctx->saw_frame_pointer = true;
 | |
| 
 | |
| 		ctx->tmp_1_used = true;
 | |
| 		ctx->tmp_2_used = true;
 | |
| 		ctx->tmp_3_used = true;
 | |
| 		emit_loadimm(off, tmp, ctx);
 | |
| 		emit_alu3(ADD, dst, tmp, tmp, ctx);
 | |
| 
 | |
| 		emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
 | |
| 		emit_alu3(ADD, tmp2, src, tmp3, ctx);
 | |
| 		emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
 | |
| 		emit_cmp(tmp2, tmp3, ctx);
 | |
| 		emit_branch(BNE, 4, 0, ctx);
 | |
| 		emit_nop(ctx);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		pr_err_once("unknown opcode %02x\n", code);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int build_body(struct jit_ctx *ctx)
 | |
| {
 | |
| 	const struct bpf_prog *prog = ctx->prog;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < prog->len; i++) {
 | |
| 		const struct bpf_insn *insn = &prog->insnsi[i];
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = build_insn(insn, ctx);
 | |
| 
 | |
| 		if (ret > 0) {
 | |
| 			i++;
 | |
| 			ctx->offset[i] = ctx->idx;
 | |
| 			continue;
 | |
| 		}
 | |
| 		ctx->offset[i] = ctx->idx;
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void jit_fill_hole(void *area, unsigned int size)
 | |
| {
 | |
| 	u32 *ptr;
 | |
| 	/* We are guaranteed to have aligned memory. */
 | |
| 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 | |
| 		*ptr++ = 0x91d02005; /* ta 5 */
 | |
| }
 | |
| 
 | |
| struct sparc64_jit_data {
 | |
| 	struct bpf_binary_header *header;
 | |
| 	u8 *image;
 | |
| 	struct jit_ctx ctx;
 | |
| };
 | |
| 
 | |
| struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
 | |
| {
 | |
| 	struct bpf_prog *tmp, *orig_prog = prog;
 | |
| 	struct sparc64_jit_data *jit_data;
 | |
| 	struct bpf_binary_header *header;
 | |
| 	u32 prev_image_size, image_size;
 | |
| 	bool tmp_blinded = false;
 | |
| 	bool extra_pass = false;
 | |
| 	struct jit_ctx ctx;
 | |
| 	u8 *image_ptr;
 | |
| 	int pass, i;
 | |
| 
 | |
| 	if (!prog->jit_requested)
 | |
| 		return orig_prog;
 | |
| 
 | |
| 	tmp = bpf_jit_blind_constants(prog);
 | |
| 	/* If blinding was requested and we failed during blinding,
 | |
| 	 * we must fall back to the interpreter.
 | |
| 	 */
 | |
| 	if (IS_ERR(tmp))
 | |
| 		return orig_prog;
 | |
| 	if (tmp != prog) {
 | |
| 		tmp_blinded = true;
 | |
| 		prog = tmp;
 | |
| 	}
 | |
| 
 | |
| 	jit_data = prog->aux->jit_data;
 | |
| 	if (!jit_data) {
 | |
| 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
 | |
| 		if (!jit_data) {
 | |
| 			prog = orig_prog;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		prog->aux->jit_data = jit_data;
 | |
| 	}
 | |
| 	if (jit_data->ctx.offset) {
 | |
| 		ctx = jit_data->ctx;
 | |
| 		image_ptr = jit_data->image;
 | |
| 		header = jit_data->header;
 | |
| 		extra_pass = true;
 | |
| 		image_size = sizeof(u32) * ctx.idx;
 | |
| 		prev_image_size = image_size;
 | |
| 		pass = 1;
 | |
| 		goto skip_init_ctx;
 | |
| 	}
 | |
| 
 | |
| 	memset(&ctx, 0, sizeof(ctx));
 | |
| 	ctx.prog = prog;
 | |
| 
 | |
| 	ctx.offset = kmalloc_array(prog->len, sizeof(unsigned int), GFP_KERNEL);
 | |
| 	if (ctx.offset == NULL) {
 | |
| 		prog = orig_prog;
 | |
| 		goto out_off;
 | |
| 	}
 | |
| 
 | |
| 	/* Longest sequence emitted is for bswap32, 12 instructions.  Pre-cook
 | |
| 	 * the offset array so that we converge faster.
 | |
| 	 */
 | |
| 	for (i = 0; i < prog->len; i++)
 | |
| 		ctx.offset[i] = i * (12 * 4);
 | |
| 
 | |
| 	prev_image_size = ~0U;
 | |
| 	for (pass = 1; pass < 40; pass++) {
 | |
| 		ctx.idx = 0;
 | |
| 
 | |
| 		build_prologue(&ctx);
 | |
| 		if (build_body(&ctx)) {
 | |
| 			prog = orig_prog;
 | |
| 			goto out_off;
 | |
| 		}
 | |
| 		build_epilogue(&ctx);
 | |
| 
 | |
| 		if (bpf_jit_enable > 1)
 | |
| 			pr_info("Pass %d: size = %u, seen = [%c%c%c%c%c%c]\n", pass,
 | |
| 				ctx.idx * 4,
 | |
| 				ctx.tmp_1_used ? '1' : ' ',
 | |
| 				ctx.tmp_2_used ? '2' : ' ',
 | |
| 				ctx.tmp_3_used ? '3' : ' ',
 | |
| 				ctx.saw_frame_pointer ? 'F' : ' ',
 | |
| 				ctx.saw_call ? 'C' : ' ',
 | |
| 				ctx.saw_tail_call ? 'T' : ' ');
 | |
| 
 | |
| 		if (ctx.idx * 4 == prev_image_size)
 | |
| 			break;
 | |
| 		prev_image_size = ctx.idx * 4;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	/* Now we know the actual image size. */
 | |
| 	image_size = sizeof(u32) * ctx.idx;
 | |
| 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
 | |
| 				      sizeof(u32), jit_fill_hole);
 | |
| 	if (header == NULL) {
 | |
| 		prog = orig_prog;
 | |
| 		goto out_off;
 | |
| 	}
 | |
| 
 | |
| 	ctx.image = (u32 *)image_ptr;
 | |
| skip_init_ctx:
 | |
| 	ctx.idx = 0;
 | |
| 
 | |
| 	build_prologue(&ctx);
 | |
| 
 | |
| 	if (build_body(&ctx)) {
 | |
| 		bpf_jit_binary_free(header);
 | |
| 		prog = orig_prog;
 | |
| 		goto out_off;
 | |
| 	}
 | |
| 
 | |
| 	build_epilogue(&ctx);
 | |
| 
 | |
| 	if (ctx.idx * 4 != prev_image_size) {
 | |
| 		pr_err("bpf_jit: Failed to converge, prev_size=%u size=%d\n",
 | |
| 		       prev_image_size, ctx.idx * 4);
 | |
| 		bpf_jit_binary_free(header);
 | |
| 		prog = orig_prog;
 | |
| 		goto out_off;
 | |
| 	}
 | |
| 
 | |
| 	if (bpf_jit_enable > 1)
 | |
| 		bpf_jit_dump(prog->len, image_size, pass, ctx.image);
 | |
| 
 | |
| 	bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
 | |
| 
 | |
| 	if (!prog->is_func || extra_pass) {
 | |
| 		bpf_jit_binary_lock_ro(header);
 | |
| 	} else {
 | |
| 		jit_data->ctx = ctx;
 | |
| 		jit_data->image = image_ptr;
 | |
| 		jit_data->header = header;
 | |
| 	}
 | |
| 
 | |
| 	prog->bpf_func = (void *)ctx.image;
 | |
| 	prog->jited = 1;
 | |
| 	prog->jited_len = image_size;
 | |
| 
 | |
| 	if (!prog->is_func || extra_pass) {
 | |
| 		bpf_prog_fill_jited_linfo(prog, ctx.offset);
 | |
| out_off:
 | |
| 		kfree(ctx.offset);
 | |
| 		kfree(jit_data);
 | |
| 		prog->aux->jit_data = NULL;
 | |
| 	}
 | |
| out:
 | |
| 	if (tmp_blinded)
 | |
| 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
 | |
| 					   tmp : orig_prog);
 | |
| 	return prog;
 | |
| }
 |