forked from mirrors/linux
		
	 0ef0fd3515
			
		
	
	
		0ef0fd3515
		
	
	
	
	
		
			
			* POWER: support for direct access to the POWER9 XIVE interrupt controller, memory and performance optimizations. * x86: support for accessing memory not backed by struct page, fixes and refactoring * Generic: dirty page tracking improvements -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7 eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I= =D0+p -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM updates from Paolo Bonzini: "ARM: - support for SVE and Pointer Authentication in guests - PMU improvements POWER: - support for direct access to the POWER9 XIVE interrupt controller - memory and performance optimizations x86: - support for accessing memory not backed by struct page - fixes and refactoring Generic: - dirty page tracking improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits) kvm: fix compilation on aarch64 Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU" kvm: x86: Fix L1TF mitigation for shadow MMU KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing" KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete tests: kvm: Add tests for KVM_SET_NESTED_STATE KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID tests: kvm: Add tests to .gitignore KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one KVM: Fix the bitmap range to copy during clear dirty KVM: arm64: Fix ptrauth ID register masking logic KVM: x86: use direct accessors for RIP and RSP KVM: VMX: Use accessors for GPRs outside of dedicated caching logic KVM: x86: Omit caching logic for always-available GPRs kvm, x86: Properly check whether a pfn is an MMIO or not ...
		
			
				
	
	
		
			6080 lines
		
	
	
	
		
			158 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6080 lines
		
	
	
	
		
			158 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * This module enables machines with Intel VT-x extensions to run virtual
 | |
|  * machines without emulation or binary translation.
 | |
|  *
 | |
|  * MMU support
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "irq.h"
 | |
| #include "mmu.h"
 | |
| #include "x86.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "cpuid.h"
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/srcu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/kern_levels.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/pat.h>
 | |
| #include <asm/cmpxchg.h>
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/vmx.h>
 | |
| #include <asm/kvm_page_track.h>
 | |
| #include "trace.h"
 | |
| 
 | |
| /*
 | |
|  * When setting this variable to true it enables Two-Dimensional-Paging
 | |
|  * where the hardware walks 2 page tables:
 | |
|  * 1. the guest-virtual to guest-physical
 | |
|  * 2. while doing 1. it walks guest-physical to host-physical
 | |
|  * If the hardware supports that we don't need to do shadow paging.
 | |
|  */
 | |
| bool tdp_enabled = false;
 | |
| 
 | |
| enum {
 | |
| 	AUDIT_PRE_PAGE_FAULT,
 | |
| 	AUDIT_POST_PAGE_FAULT,
 | |
| 	AUDIT_PRE_PTE_WRITE,
 | |
| 	AUDIT_POST_PTE_WRITE,
 | |
| 	AUDIT_PRE_SYNC,
 | |
| 	AUDIT_POST_SYNC
 | |
| };
 | |
| 
 | |
| #undef MMU_DEBUG
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| static bool dbg = 0;
 | |
| module_param(dbg, bool, 0644);
 | |
| 
 | |
| #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
 | |
| #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
 | |
| #define MMU_WARN_ON(x) WARN_ON(x)
 | |
| #else
 | |
| #define pgprintk(x...) do { } while (0)
 | |
| #define rmap_printk(x...) do { } while (0)
 | |
| #define MMU_WARN_ON(x) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define PTE_PREFETCH_NUM		8
 | |
| 
 | |
| #define PT_FIRST_AVAIL_BITS_SHIFT 10
 | |
| #define PT64_SECOND_AVAIL_BITS_SHIFT 52
 | |
| 
 | |
| #define PT64_LEVEL_BITS 9
 | |
| 
 | |
| #define PT64_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
 | |
| 
 | |
| #define PT64_INDEX(address, level)\
 | |
| 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #define PT32_LEVEL_BITS 10
 | |
| 
 | |
| #define PT32_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 | |
| 
 | |
| #define PT32_LVL_OFFSET_MASK(level) \
 | |
| 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT32_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT32_INDEX(address, level)\
 | |
| 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
 | |
| #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
 | |
| #else
 | |
| #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
 | |
| #endif
 | |
| #define PT64_LVL_ADDR_MASK(level) \
 | |
| 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT64_LEVEL_BITS))) - 1))
 | |
| #define PT64_LVL_OFFSET_MASK(level) \
 | |
| 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT64_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT32_BASE_ADDR_MASK PAGE_MASK
 | |
| #define PT32_DIR_BASE_ADDR_MASK \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 | |
| #define PT32_LVL_ADDR_MASK(level) \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 					    * PT32_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
 | |
| 			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
 | |
| 
 | |
| #define ACC_EXEC_MASK    1
 | |
| #define ACC_WRITE_MASK   PT_WRITABLE_MASK
 | |
| #define ACC_USER_MASK    PT_USER_MASK
 | |
| #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 | |
| 
 | |
| /* The mask for the R/X bits in EPT PTEs */
 | |
| #define PT64_EPT_READABLE_MASK			0x1ull
 | |
| #define PT64_EPT_EXECUTABLE_MASK		0x4ull
 | |
| 
 | |
| #include <trace/events/kvm.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "mmutrace.h"
 | |
| 
 | |
| #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 | |
| #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
 | |
| 
 | |
| #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 | |
| 
 | |
| /* make pte_list_desc fit well in cache line */
 | |
| #define PTE_LIST_EXT 3
 | |
| 
 | |
| /*
 | |
|  * Return values of handle_mmio_page_fault and mmu.page_fault:
 | |
|  * RET_PF_RETRY: let CPU fault again on the address.
 | |
|  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
 | |
|  *
 | |
|  * For handle_mmio_page_fault only:
 | |
|  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
 | |
|  */
 | |
| enum {
 | |
| 	RET_PF_RETRY = 0,
 | |
| 	RET_PF_EMULATE = 1,
 | |
| 	RET_PF_INVALID = 2,
 | |
| };
 | |
| 
 | |
| struct pte_list_desc {
 | |
| 	u64 *sptes[PTE_LIST_EXT];
 | |
| 	struct pte_list_desc *more;
 | |
| };
 | |
| 
 | |
| struct kvm_shadow_walk_iterator {
 | |
| 	u64 addr;
 | |
| 	hpa_t shadow_addr;
 | |
| 	u64 *sptep;
 | |
| 	int level;
 | |
| 	unsigned index;
 | |
| };
 | |
| 
 | |
| static const union kvm_mmu_page_role mmu_base_role_mask = {
 | |
| 	.cr0_wp = 1,
 | |
| 	.gpte_is_8_bytes = 1,
 | |
| 	.nxe = 1,
 | |
| 	.smep_andnot_wp = 1,
 | |
| 	.smap_andnot_wp = 1,
 | |
| 	.smm = 1,
 | |
| 	.guest_mode = 1,
 | |
| 	.ad_disabled = 1,
 | |
| };
 | |
| 
 | |
| #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
 | |
| 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
 | |
| 					 (_root), (_addr));                \
 | |
| 	     shadow_walk_okay(&(_walker));			           \
 | |
| 	     shadow_walk_next(&(_walker)))
 | |
| 
 | |
| #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
 | |
| 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
 | |
| 	     shadow_walk_okay(&(_walker));			\
 | |
| 	     shadow_walk_next(&(_walker)))
 | |
| 
 | |
| #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
 | |
| 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
 | |
| 	     shadow_walk_okay(&(_walker)) &&				\
 | |
| 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
 | |
| 	     __shadow_walk_next(&(_walker), spte))
 | |
| 
 | |
| static struct kmem_cache *pte_list_desc_cache;
 | |
| static struct kmem_cache *mmu_page_header_cache;
 | |
| static struct percpu_counter kvm_total_used_mmu_pages;
 | |
| 
 | |
| static u64 __read_mostly shadow_nx_mask;
 | |
| static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
 | |
| static u64 __read_mostly shadow_user_mask;
 | |
| static u64 __read_mostly shadow_accessed_mask;
 | |
| static u64 __read_mostly shadow_dirty_mask;
 | |
| static u64 __read_mostly shadow_mmio_mask;
 | |
| static u64 __read_mostly shadow_mmio_value;
 | |
| static u64 __read_mostly shadow_present_mask;
 | |
| static u64 __read_mostly shadow_me_mask;
 | |
| 
 | |
| /*
 | |
|  * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
 | |
|  * Non-present SPTEs with shadow_acc_track_value set are in place for access
 | |
|  * tracking.
 | |
|  */
 | |
| static u64 __read_mostly shadow_acc_track_mask;
 | |
| static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
 | |
| 
 | |
| /*
 | |
|  * The mask/shift to use for saving the original R/X bits when marking the PTE
 | |
|  * as not-present for access tracking purposes. We do not save the W bit as the
 | |
|  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
 | |
|  * restored only when a write is attempted to the page.
 | |
|  */
 | |
| static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
 | |
| 						    PT64_EPT_EXECUTABLE_MASK;
 | |
| static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
 | |
| 
 | |
| /*
 | |
|  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
 | |
|  * to guard against L1TF attacks.
 | |
|  */
 | |
| static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
 | |
| 
 | |
| /*
 | |
|  * The number of high-order 1 bits to use in the mask above.
 | |
|  */
 | |
| static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
 | |
| 
 | |
| /*
 | |
|  * In some cases, we need to preserve the GFN of a non-present or reserved
 | |
|  * SPTE when we usurp the upper five bits of the physical address space to
 | |
|  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
 | |
|  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
 | |
|  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
 | |
|  * high and low parts.  This mask covers the lower bits of the GFN.
 | |
|  */
 | |
| static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
 | |
| 
 | |
| 
 | |
| static void mmu_spte_set(u64 *sptep, u64 spte);
 | |
| static union kvm_mmu_page_role
 | |
| kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| 
 | |
| static inline bool kvm_available_flush_tlb_with_range(void)
 | |
| {
 | |
| 	return kvm_x86_ops->tlb_remote_flush_with_range;
 | |
| }
 | |
| 
 | |
| static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
 | |
| 		struct kvm_tlb_range *range)
 | |
| {
 | |
| 	int ret = -ENOTSUPP;
 | |
| 
 | |
| 	if (range && kvm_x86_ops->tlb_remote_flush_with_range)
 | |
| 		ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
 | |
| 
 | |
| 	if (ret)
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| }
 | |
| 
 | |
| static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
 | |
| 		u64 start_gfn, u64 pages)
 | |
| {
 | |
| 	struct kvm_tlb_range range;
 | |
| 
 | |
| 	range.start_gfn = start_gfn;
 | |
| 	range.pages = pages;
 | |
| 
 | |
| 	kvm_flush_remote_tlbs_with_range(kvm, &range);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
 | |
| {
 | |
| 	BUG_ON((mmio_mask & mmio_value) != mmio_value);
 | |
| 	shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
 | |
| 	shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 | |
| 
 | |
| static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	return sp->role.ad_disabled;
 | |
| }
 | |
| 
 | |
| static inline bool spte_ad_enabled(u64 spte)
 | |
| {
 | |
| 	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 | |
| 	return !(spte & shadow_acc_track_value);
 | |
| }
 | |
| 
 | |
| static inline u64 spte_shadow_accessed_mask(u64 spte)
 | |
| {
 | |
| 	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 | |
| 	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
 | |
| }
 | |
| 
 | |
| static inline u64 spte_shadow_dirty_mask(u64 spte)
 | |
| {
 | |
| 	MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
 | |
| 	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
 | |
| }
 | |
| 
 | |
| static inline bool is_access_track_spte(u64 spte)
 | |
| {
 | |
| 	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
 | |
|  * the memslots generation and is derived as follows:
 | |
|  *
 | |
|  * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
 | |
|  * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
 | |
|  *
 | |
|  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
 | |
|  * the MMIO generation number, as doing so would require stealing a bit from
 | |
|  * the "real" generation number and thus effectively halve the maximum number
 | |
|  * of MMIO generations that can be handled before encountering a wrap (which
 | |
|  * requires a full MMU zap).  The flag is instead explicitly queried when
 | |
|  * checking for MMIO spte cache hits.
 | |
|  */
 | |
| #define MMIO_SPTE_GEN_MASK		GENMASK_ULL(18, 0)
 | |
| 
 | |
| #define MMIO_SPTE_GEN_LOW_START		3
 | |
| #define MMIO_SPTE_GEN_LOW_END		11
 | |
| #define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
 | |
| 						    MMIO_SPTE_GEN_LOW_START)
 | |
| 
 | |
| #define MMIO_SPTE_GEN_HIGH_START	52
 | |
| #define MMIO_SPTE_GEN_HIGH_END		61
 | |
| #define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
 | |
| 						    MMIO_SPTE_GEN_HIGH_START)
 | |
| static u64 generation_mmio_spte_mask(u64 gen)
 | |
| {
 | |
| 	u64 mask;
 | |
| 
 | |
| 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
 | |
| 
 | |
| 	mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
 | |
| 	mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static u64 get_mmio_spte_generation(u64 spte)
 | |
| {
 | |
| 	u64 gen;
 | |
| 
 | |
| 	spte &= ~shadow_mmio_mask;
 | |
| 
 | |
| 	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
 | |
| 	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
 | |
| 	return gen;
 | |
| }
 | |
| 
 | |
| static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
 | |
| 			   unsigned access)
 | |
| {
 | |
| 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
 | |
| 	u64 mask = generation_mmio_spte_mask(gen);
 | |
| 	u64 gpa = gfn << PAGE_SHIFT;
 | |
| 
 | |
| 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
 | |
| 	mask |= shadow_mmio_value | access;
 | |
| 	mask |= gpa | shadow_nonpresent_or_rsvd_mask;
 | |
| 	mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
 | |
| 		<< shadow_nonpresent_or_rsvd_mask_len;
 | |
| 
 | |
| 	page_header(__pa(sptep))->mmio_cached = true;
 | |
| 
 | |
| 	trace_mark_mmio_spte(sptep, gfn, access, gen);
 | |
| 	mmu_spte_set(sptep, mask);
 | |
| }
 | |
| 
 | |
| static bool is_mmio_spte(u64 spte)
 | |
| {
 | |
| 	return (spte & shadow_mmio_mask) == shadow_mmio_value;
 | |
| }
 | |
| 
 | |
| static gfn_t get_mmio_spte_gfn(u64 spte)
 | |
| {
 | |
| 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
 | |
| 
 | |
| 	gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
 | |
| 	       & shadow_nonpresent_or_rsvd_mask;
 | |
| 
 | |
| 	return gpa >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static unsigned get_mmio_spte_access(u64 spte)
 | |
| {
 | |
| 	u64 mask = generation_mmio_spte_mask(MMIO_SPTE_GEN_MASK) | shadow_mmio_mask;
 | |
| 	return (spte & ~mask) & ~PAGE_MASK;
 | |
| }
 | |
| 
 | |
| static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
 | |
| 			  kvm_pfn_t pfn, unsigned access)
 | |
| {
 | |
| 	if (unlikely(is_noslot_pfn(pfn))) {
 | |
| 		mark_mmio_spte(vcpu, sptep, gfn, access);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
 | |
| {
 | |
| 	u64 kvm_gen, spte_gen, gen;
 | |
| 
 | |
| 	gen = kvm_vcpu_memslots(vcpu)->generation;
 | |
| 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
 | |
| 		return false;
 | |
| 
 | |
| 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
 | |
| 	spte_gen = get_mmio_spte_generation(spte);
 | |
| 
 | |
| 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 | |
| 	return likely(kvm_gen == spte_gen);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sets the shadow PTE masks used by the MMU.
 | |
|  *
 | |
|  * Assumptions:
 | |
|  *  - Setting either @accessed_mask or @dirty_mask requires setting both
 | |
|  *  - At least one of @accessed_mask or @acc_track_mask must be set
 | |
|  */
 | |
| void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 | |
| 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
 | |
| 		u64 acc_track_mask, u64 me_mask)
 | |
| {
 | |
| 	BUG_ON(!dirty_mask != !accessed_mask);
 | |
| 	BUG_ON(!accessed_mask && !acc_track_mask);
 | |
| 	BUG_ON(acc_track_mask & shadow_acc_track_value);
 | |
| 
 | |
| 	shadow_user_mask = user_mask;
 | |
| 	shadow_accessed_mask = accessed_mask;
 | |
| 	shadow_dirty_mask = dirty_mask;
 | |
| 	shadow_nx_mask = nx_mask;
 | |
| 	shadow_x_mask = x_mask;
 | |
| 	shadow_present_mask = p_mask;
 | |
| 	shadow_acc_track_mask = acc_track_mask;
 | |
| 	shadow_me_mask = me_mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 | |
| 
 | |
| static void kvm_mmu_reset_all_pte_masks(void)
 | |
| {
 | |
| 	u8 low_phys_bits;
 | |
| 
 | |
| 	shadow_user_mask = 0;
 | |
| 	shadow_accessed_mask = 0;
 | |
| 	shadow_dirty_mask = 0;
 | |
| 	shadow_nx_mask = 0;
 | |
| 	shadow_x_mask = 0;
 | |
| 	shadow_mmio_mask = 0;
 | |
| 	shadow_present_mask = 0;
 | |
| 	shadow_acc_track_mask = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the CPU has 46 or less physical address bits, then set an
 | |
| 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
 | |
| 	 * assumed that the CPU is not vulnerable to L1TF.
 | |
| 	 *
 | |
| 	 * Some Intel CPUs address the L1 cache using more PA bits than are
 | |
| 	 * reported by CPUID. Use the PA width of the L1 cache when possible
 | |
| 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
 | |
| 	 * the most significant bits of legal physical address space.
 | |
| 	 */
 | |
| 	shadow_nonpresent_or_rsvd_mask = 0;
 | |
| 	low_phys_bits = boot_cpu_data.x86_cache_bits;
 | |
| 	if (boot_cpu_data.x86_cache_bits <
 | |
| 	    52 - shadow_nonpresent_or_rsvd_mask_len) {
 | |
| 		shadow_nonpresent_or_rsvd_mask =
 | |
| 			rsvd_bits(boot_cpu_data.x86_cache_bits -
 | |
| 				  shadow_nonpresent_or_rsvd_mask_len,
 | |
| 				  boot_cpu_data.x86_cache_bits - 1);
 | |
| 		low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
 | |
| 	} else
 | |
| 		WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
 | |
| 
 | |
| 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
 | |
| 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static int is_cpuid_PSE36(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int is_nx(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.efer & EFER_NX;
 | |
| }
 | |
| 
 | |
| static int is_shadow_present_pte(u64 pte)
 | |
| {
 | |
| 	return (pte != 0) && !is_mmio_spte(pte);
 | |
| }
 | |
| 
 | |
| static int is_large_pte(u64 pte)
 | |
| {
 | |
| 	return pte & PT_PAGE_SIZE_MASK;
 | |
| }
 | |
| 
 | |
| static int is_last_spte(u64 pte, int level)
 | |
| {
 | |
| 	if (level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return 1;
 | |
| 	if (is_large_pte(pte))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool is_executable_pte(u64 spte)
 | |
| {
 | |
| 	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
 | |
| }
 | |
| 
 | |
| static kvm_pfn_t spte_to_pfn(u64 pte)
 | |
| {
 | |
| 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static gfn_t pse36_gfn_delta(u32 gpte)
 | |
| {
 | |
| 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 | |
| 
 | |
| 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void __set_spte(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	WRITE_ONCE(*sptep, spte);
 | |
| }
 | |
| 
 | |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	WRITE_ONCE(*sptep, spte);
 | |
| }
 | |
| 
 | |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	return xchg(sptep, spte);
 | |
| }
 | |
| 
 | |
| static u64 __get_spte_lockless(u64 *sptep)
 | |
| {
 | |
| 	return READ_ONCE(*sptep);
 | |
| }
 | |
| #else
 | |
| union split_spte {
 | |
| 	struct {
 | |
| 		u32 spte_low;
 | |
| 		u32 spte_high;
 | |
| 	};
 | |
| 	u64 spte;
 | |
| };
 | |
| 
 | |
| static void count_spte_clear(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 | |
| 
 | |
| 	if (is_shadow_present_pte(spte))
 | |
| 		return;
 | |
| 
 | |
| 	/* Ensure the spte is completely set before we increase the count */
 | |
| 	smp_wmb();
 | |
| 	sp->clear_spte_count++;
 | |
| }
 | |
| 
 | |
| static void __set_spte(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we map the spte from nonpresent to present, We should store
 | |
| 	 * the high bits firstly, then set present bit, so cpu can not
 | |
| 	 * fetch this spte while we are setting the spte.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 | |
| }
 | |
| 
 | |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we map the spte from present to nonpresent, we should clear
 | |
| 	 * present bit firstly to avoid vcpu fetch the old high bits.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 	count_spte_clear(sptep, spte);
 | |
| }
 | |
| 
 | |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte, orig;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	/* xchg acts as a barrier before the setting of the high bits */
 | |
| 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 | |
| 	orig.spte_high = ssptep->spte_high;
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 	count_spte_clear(sptep, spte);
 | |
| 
 | |
| 	return orig.spte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The idea using the light way get the spte on x86_32 guest is from
 | |
|  * gup_get_pte(arch/x86/mm/gup.c).
 | |
|  *
 | |
|  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 | |
|  * coalesces them and we are running out of the MMU lock.  Therefore
 | |
|  * we need to protect against in-progress updates of the spte.
 | |
|  *
 | |
|  * Reading the spte while an update is in progress may get the old value
 | |
|  * for the high part of the spte.  The race is fine for a present->non-present
 | |
|  * change (because the high part of the spte is ignored for non-present spte),
 | |
|  * but for a present->present change we must reread the spte.
 | |
|  *
 | |
|  * All such changes are done in two steps (present->non-present and
 | |
|  * non-present->present), hence it is enough to count the number of
 | |
|  * present->non-present updates: if it changed while reading the spte,
 | |
|  * we might have hit the race.  This is done using clear_spte_count.
 | |
|  */
 | |
| static u64 __get_spte_lockless(u64 *sptep)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 | |
| 	union split_spte spte, *orig = (union split_spte *)sptep;
 | |
| 	int count;
 | |
| 
 | |
| retry:
 | |
| 	count = sp->clear_spte_count;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	spte.spte_low = orig->spte_low;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	spte.spte_high = orig->spte_high;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (unlikely(spte.spte_low != orig->spte_low ||
 | |
| 	      count != sp->clear_spte_count))
 | |
| 		goto retry;
 | |
| 
 | |
| 	return spte.spte;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool spte_can_locklessly_be_made_writable(u64 spte)
 | |
| {
 | |
| 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
 | |
| 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
 | |
| }
 | |
| 
 | |
| static bool spte_has_volatile_bits(u64 spte)
 | |
| {
 | |
| 	if (!is_shadow_present_pte(spte))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always atomically update spte if it can be updated
 | |
| 	 * out of mmu-lock, it can ensure dirty bit is not lost,
 | |
| 	 * also, it can help us to get a stable is_writable_pte()
 | |
| 	 * to ensure tlb flush is not missed.
 | |
| 	 */
 | |
| 	if (spte_can_locklessly_be_made_writable(spte) ||
 | |
| 	    is_access_track_spte(spte))
 | |
| 		return true;
 | |
| 
 | |
| 	if (spte_ad_enabled(spte)) {
 | |
| 		if ((spte & shadow_accessed_mask) == 0 ||
 | |
| 	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool is_accessed_spte(u64 spte)
 | |
| {
 | |
| 	u64 accessed_mask = spte_shadow_accessed_mask(spte);
 | |
| 
 | |
| 	return accessed_mask ? spte & accessed_mask
 | |
| 			     : !is_access_track_spte(spte);
 | |
| }
 | |
| 
 | |
| static bool is_dirty_spte(u64 spte)
 | |
| {
 | |
| 	u64 dirty_mask = spte_shadow_dirty_mask(spte);
 | |
| 
 | |
| 	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
 | |
| }
 | |
| 
 | |
| /* Rules for using mmu_spte_set:
 | |
|  * Set the sptep from nonpresent to present.
 | |
|  * Note: the sptep being assigned *must* be either not present
 | |
|  * or in a state where the hardware will not attempt to update
 | |
|  * the spte.
 | |
|  */
 | |
| static void mmu_spte_set(u64 *sptep, u64 new_spte)
 | |
| {
 | |
| 	WARN_ON(is_shadow_present_pte(*sptep));
 | |
| 	__set_spte(sptep, new_spte);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the SPTE (excluding the PFN), but do not track changes in its
 | |
|  * accessed/dirty status.
 | |
|  */
 | |
| static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
 | |
| {
 | |
| 	u64 old_spte = *sptep;
 | |
| 
 | |
| 	WARN_ON(!is_shadow_present_pte(new_spte));
 | |
| 
 | |
| 	if (!is_shadow_present_pte(old_spte)) {
 | |
| 		mmu_spte_set(sptep, new_spte);
 | |
| 		return old_spte;
 | |
| 	}
 | |
| 
 | |
| 	if (!spte_has_volatile_bits(old_spte))
 | |
| 		__update_clear_spte_fast(sptep, new_spte);
 | |
| 	else
 | |
| 		old_spte = __update_clear_spte_slow(sptep, new_spte);
 | |
| 
 | |
| 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
 | |
| 
 | |
| 	return old_spte;
 | |
| }
 | |
| 
 | |
| /* Rules for using mmu_spte_update:
 | |
|  * Update the state bits, it means the mapped pfn is not changed.
 | |
|  *
 | |
|  * Whenever we overwrite a writable spte with a read-only one we
 | |
|  * should flush remote TLBs. Otherwise rmap_write_protect
 | |
|  * will find a read-only spte, even though the writable spte
 | |
|  * might be cached on a CPU's TLB, the return value indicates this
 | |
|  * case.
 | |
|  *
 | |
|  * Returns true if the TLB needs to be flushed
 | |
|  */
 | |
| static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 | |
| {
 | |
| 	bool flush = false;
 | |
| 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
 | |
| 
 | |
| 	if (!is_shadow_present_pte(old_spte))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * For the spte updated out of mmu-lock is safe, since
 | |
| 	 * we always atomically update it, see the comments in
 | |
| 	 * spte_has_volatile_bits().
 | |
| 	 */
 | |
| 	if (spte_can_locklessly_be_made_writable(old_spte) &&
 | |
| 	      !is_writable_pte(new_spte))
 | |
| 		flush = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush TLB when accessed/dirty states are changed in the page tables,
 | |
| 	 * to guarantee consistency between TLB and page tables.
 | |
| 	 */
 | |
| 
 | |
| 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
 | |
| 		flush = true;
 | |
| 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 | |
| 	}
 | |
| 
 | |
| 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
 | |
| 		flush = true;
 | |
| 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rules for using mmu_spte_clear_track_bits:
 | |
|  * It sets the sptep from present to nonpresent, and track the
 | |
|  * state bits, it is used to clear the last level sptep.
 | |
|  * Returns non-zero if the PTE was previously valid.
 | |
|  */
 | |
| static int mmu_spte_clear_track_bits(u64 *sptep)
 | |
| {
 | |
| 	kvm_pfn_t pfn;
 | |
| 	u64 old_spte = *sptep;
 | |
| 
 | |
| 	if (!spte_has_volatile_bits(old_spte))
 | |
| 		__update_clear_spte_fast(sptep, 0ull);
 | |
| 	else
 | |
| 		old_spte = __update_clear_spte_slow(sptep, 0ull);
 | |
| 
 | |
| 	if (!is_shadow_present_pte(old_spte))
 | |
| 		return 0;
 | |
| 
 | |
| 	pfn = spte_to_pfn(old_spte);
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM does not hold the refcount of the page used by
 | |
| 	 * kvm mmu, before reclaiming the page, we should
 | |
| 	 * unmap it from mmu first.
 | |
| 	 */
 | |
| 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
 | |
| 
 | |
| 	if (is_accessed_spte(old_spte))
 | |
| 		kvm_set_pfn_accessed(pfn);
 | |
| 
 | |
| 	if (is_dirty_spte(old_spte))
 | |
| 		kvm_set_pfn_dirty(pfn);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rules for using mmu_spte_clear_no_track:
 | |
|  * Directly clear spte without caring the state bits of sptep,
 | |
|  * it is used to set the upper level spte.
 | |
|  */
 | |
| static void mmu_spte_clear_no_track(u64 *sptep)
 | |
| {
 | |
| 	__update_clear_spte_fast(sptep, 0ull);
 | |
| }
 | |
| 
 | |
| static u64 mmu_spte_get_lockless(u64 *sptep)
 | |
| {
 | |
| 	return __get_spte_lockless(sptep);
 | |
| }
 | |
| 
 | |
| static u64 mark_spte_for_access_track(u64 spte)
 | |
| {
 | |
| 	if (spte_ad_enabled(spte))
 | |
| 		return spte & ~shadow_accessed_mask;
 | |
| 
 | |
| 	if (is_access_track_spte(spte))
 | |
| 		return spte;
 | |
| 
 | |
| 	/*
 | |
| 	 * Making an Access Tracking PTE will result in removal of write access
 | |
| 	 * from the PTE. So, verify that we will be able to restore the write
 | |
| 	 * access in the fast page fault path later on.
 | |
| 	 */
 | |
| 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
 | |
| 		  !spte_can_locklessly_be_made_writable(spte),
 | |
| 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
 | |
| 
 | |
| 	WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
 | |
| 			  shadow_acc_track_saved_bits_shift),
 | |
| 		  "kvm: Access Tracking saved bit locations are not zero\n");
 | |
| 
 | |
| 	spte |= (spte & shadow_acc_track_saved_bits_mask) <<
 | |
| 		shadow_acc_track_saved_bits_shift;
 | |
| 	spte &= ~shadow_acc_track_mask;
 | |
| 
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| /* Restore an acc-track PTE back to a regular PTE */
 | |
| static u64 restore_acc_track_spte(u64 spte)
 | |
| {
 | |
| 	u64 new_spte = spte;
 | |
| 	u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
 | |
| 			 & shadow_acc_track_saved_bits_mask;
 | |
| 
 | |
| 	WARN_ON_ONCE(spte_ad_enabled(spte));
 | |
| 	WARN_ON_ONCE(!is_access_track_spte(spte));
 | |
| 
 | |
| 	new_spte &= ~shadow_acc_track_mask;
 | |
| 	new_spte &= ~(shadow_acc_track_saved_bits_mask <<
 | |
| 		      shadow_acc_track_saved_bits_shift);
 | |
| 	new_spte |= saved_bits;
 | |
| 
 | |
| 	return new_spte;
 | |
| }
 | |
| 
 | |
| /* Returns the Accessed status of the PTE and resets it at the same time. */
 | |
| static bool mmu_spte_age(u64 *sptep)
 | |
| {
 | |
| 	u64 spte = mmu_spte_get_lockless(sptep);
 | |
| 
 | |
| 	if (!is_accessed_spte(spte))
 | |
| 		return false;
 | |
| 
 | |
| 	if (spte_ad_enabled(spte)) {
 | |
| 		clear_bit((ffs(shadow_accessed_mask) - 1),
 | |
| 			  (unsigned long *)sptep);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Capture the dirty status of the page, so that it doesn't get
 | |
| 		 * lost when the SPTE is marked for access tracking.
 | |
| 		 */
 | |
| 		if (is_writable_pte(spte))
 | |
| 			kvm_set_pfn_dirty(spte_to_pfn(spte));
 | |
| 
 | |
| 		spte = mark_spte_for_access_track(spte);
 | |
| 		mmu_spte_update_no_track(sptep, spte);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Prevent page table teardown by making any free-er wait during
 | |
| 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure a following spte read is not reordered ahead of the write
 | |
| 	 * to vcpu->mode.
 | |
| 	 */
 | |
| 	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
 | |
| }
 | |
| 
 | |
| static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Make sure the write to vcpu->mode is not reordered in front of
 | |
| 	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
 | |
| 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
 | |
| 	 */
 | |
| 	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
 | |
| 	local_irq_enable();
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 | |
| 				  struct kmem_cache *base_cache, int min)
 | |
| {
 | |
| 	void *obj;
 | |
| 
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 | |
| 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
 | |
| 		if (!obj)
 | |
| 			return cache->nobjs >= min ? 0 : -ENOMEM;
 | |
| 		cache->objects[cache->nobjs++] = obj;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
 | |
| {
 | |
| 	return cache->nobjs;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
 | |
| 				  struct kmem_cache *cache)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 | |
| 				       int min)
 | |
| {
 | |
| 	void *page;
 | |
| 
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 | |
| 		page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
 | |
| 		if (!page)
 | |
| 			return cache->nobjs >= min ? 0 : -ENOMEM;
 | |
| 		cache->objects[cache->nobjs++] = page;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		free_page((unsigned long)mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 | |
| 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 | |
| 				   mmu_page_header_cache, 4);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 | |
| 				pte_list_desc_cache);
 | |
| 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
 | |
| 				mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	BUG_ON(!mc->nobjs);
 | |
| 	p = mc->objects[--mc->nobjs];
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
 | |
| }
 | |
| 
 | |
| static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
 | |
| {
 | |
| 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
 | |
| }
 | |
| 
 | |
| static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
 | |
| {
 | |
| 	if (!sp->role.direct)
 | |
| 		return sp->gfns[index];
 | |
| 
 | |
| 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
 | |
| {
 | |
| 	if (sp->role.direct)
 | |
| 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
 | |
| 	else
 | |
| 		sp->gfns[index] = gfn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the pointer to the large page information for a given gfn,
 | |
|  * handling slots that are not large page aligned.
 | |
|  */
 | |
| static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
 | |
| 					      struct kvm_memory_slot *slot,
 | |
| 					      int level)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	idx = gfn_to_index(gfn, slot->base_gfn, level);
 | |
| 	return &slot->arch.lpage_info[level - 2][idx];
 | |
| }
 | |
| 
 | |
| static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
 | |
| 					    gfn_t gfn, int count)
 | |
| {
 | |
| 	struct kvm_lpage_info *linfo;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
 | |
| 		linfo = lpage_info_slot(gfn, slot, i);
 | |
| 		linfo->disallow_lpage += count;
 | |
| 		WARN_ON(linfo->disallow_lpage < 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
 | |
| {
 | |
| 	update_gfn_disallow_lpage_count(slot, gfn, 1);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
 | |
| {
 | |
| 	update_gfn_disallow_lpage_count(slot, gfn, -1);
 | |
| }
 | |
| 
 | |
| static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	kvm->arch.indirect_shadow_pages++;
 | |
| 	gfn = sp->gfn;
 | |
| 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
 | |
| 	slot = __gfn_to_memslot(slots, gfn);
 | |
| 
 | |
| 	/* the non-leaf shadow pages are keeping readonly. */
 | |
| 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
 | |
| 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
 | |
| 						    KVM_PAGE_TRACK_WRITE);
 | |
| 
 | |
| 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
 | |
| }
 | |
| 
 | |
| static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	kvm->arch.indirect_shadow_pages--;
 | |
| 	gfn = sp->gfn;
 | |
| 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
 | |
| 	slot = __gfn_to_memslot(slots, gfn);
 | |
| 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
 | |
| 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
 | |
| 						       KVM_PAGE_TRACK_WRITE);
 | |
| 
 | |
| 	kvm_mmu_gfn_allow_lpage(slot, gfn);
 | |
| }
 | |
| 
 | |
| static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
 | |
| 					  struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	struct kvm_lpage_info *linfo;
 | |
| 
 | |
| 	if (slot) {
 | |
| 		linfo = lpage_info_slot(gfn, slot, level);
 | |
| 		return !!linfo->disallow_lpage;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 					int level)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 | |
| 	return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
 | |
| }
 | |
| 
 | |
| static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	unsigned long page_size;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	page_size = kvm_host_page_size(kvm, gfn);
 | |
| 
 | |
| 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
 | |
| 		if (page_size >= KVM_HPAGE_SIZE(i))
 | |
| 			ret = i;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
 | |
| 					  bool no_dirty_log)
 | |
| {
 | |
| 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
 | |
| 		return false;
 | |
| 	if (no_dirty_log && slot->dirty_bitmap)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct kvm_memory_slot *
 | |
| gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 			    bool no_dirty_log)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 | |
| 	if (!memslot_valid_for_gpte(slot, no_dirty_log))
 | |
| 		slot = NULL;
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| 
 | |
| static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
 | |
| 			 bool *force_pt_level)
 | |
| {
 | |
| 	int host_level, level, max_level;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	if (unlikely(*force_pt_level))
 | |
| 		return PT_PAGE_TABLE_LEVEL;
 | |
| 
 | |
| 	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
 | |
| 	*force_pt_level = !memslot_valid_for_gpte(slot, true);
 | |
| 	if (unlikely(*force_pt_level))
 | |
| 		return PT_PAGE_TABLE_LEVEL;
 | |
| 
 | |
| 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
 | |
| 
 | |
| 	if (host_level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return host_level;
 | |
| 
 | |
| 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
 | |
| 
 | |
| 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
 | |
| 		if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
 | |
| 			break;
 | |
| 
 | |
| 	return level - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * About rmap_head encoding:
 | |
|  *
 | |
|  * If the bit zero of rmap_head->val is clear, then it points to the only spte
 | |
|  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
 | |
|  * pte_list_desc containing more mappings.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Returns the number of pointers in the rmap chain, not counting the new one.
 | |
|  */
 | |
| static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
 | |
| 			struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	struct pte_list_desc *desc;
 | |
| 	int i, count = 0;
 | |
| 
 | |
| 	if (!rmap_head->val) {
 | |
| 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
 | |
| 		rmap_head->val = (unsigned long)spte;
 | |
| 	} else if (!(rmap_head->val & 1)) {
 | |
| 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
 | |
| 		desc = mmu_alloc_pte_list_desc(vcpu);
 | |
| 		desc->sptes[0] = (u64 *)rmap_head->val;
 | |
| 		desc->sptes[1] = spte;
 | |
| 		rmap_head->val = (unsigned long)desc | 1;
 | |
| 		++count;
 | |
| 	} else {
 | |
| 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
 | |
| 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 | |
| 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
 | |
| 			desc = desc->more;
 | |
| 			count += PTE_LIST_EXT;
 | |
| 		}
 | |
| 		if (desc->sptes[PTE_LIST_EXT-1]) {
 | |
| 			desc->more = mmu_alloc_pte_list_desc(vcpu);
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		for (i = 0; desc->sptes[i]; ++i)
 | |
| 			++count;
 | |
| 		desc->sptes[i] = spte;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void
 | |
| pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
 | |
| 			   struct pte_list_desc *desc, int i,
 | |
| 			   struct pte_list_desc *prev_desc)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
 | |
| 		;
 | |
| 	desc->sptes[i] = desc->sptes[j];
 | |
| 	desc->sptes[j] = NULL;
 | |
| 	if (j != 0)
 | |
| 		return;
 | |
| 	if (!prev_desc && !desc->more)
 | |
| 		rmap_head->val = (unsigned long)desc->sptes[0];
 | |
| 	else
 | |
| 		if (prev_desc)
 | |
| 			prev_desc->more = desc->more;
 | |
| 		else
 | |
| 			rmap_head->val = (unsigned long)desc->more | 1;
 | |
| 	mmu_free_pte_list_desc(desc);
 | |
| }
 | |
| 
 | |
| static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	struct pte_list_desc *desc;
 | |
| 	struct pte_list_desc *prev_desc;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!rmap_head->val) {
 | |
| 		pr_err("%s: %p 0->BUG\n", __func__, spte);
 | |
| 		BUG();
 | |
| 	} else if (!(rmap_head->val & 1)) {
 | |
| 		rmap_printk("%s:  %p 1->0\n", __func__, spte);
 | |
| 		if ((u64 *)rmap_head->val != spte) {
 | |
| 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
 | |
| 			BUG();
 | |
| 		}
 | |
| 		rmap_head->val = 0;
 | |
| 	} else {
 | |
| 		rmap_printk("%s:  %p many->many\n", __func__, spte);
 | |
| 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 | |
| 		prev_desc = NULL;
 | |
| 		while (desc) {
 | |
| 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
 | |
| 				if (desc->sptes[i] == spte) {
 | |
| 					pte_list_desc_remove_entry(rmap_head,
 | |
| 							desc, i, prev_desc);
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 			prev_desc = desc;
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		pr_err("%s: %p many->many\n", __func__, spte);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
 | |
| {
 | |
| 	mmu_spte_clear_track_bits(sptep);
 | |
| 	__pte_list_remove(sptep, rmap_head);
 | |
| }
 | |
| 
 | |
| static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
 | |
| 					   struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	idx = gfn_to_index(gfn, slot->base_gfn, level);
 | |
| 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
 | |
| }
 | |
| 
 | |
| static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
 | |
| 					 struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
 | |
| 	slot = __gfn_to_memslot(slots, gfn);
 | |
| 	return __gfn_to_rmap(gfn, sp->role.level, slot);
 | |
| }
 | |
| 
 | |
| static bool rmap_can_add(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_memory_cache *cache;
 | |
| 
 | |
| 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
 | |
| 	return mmu_memory_cache_free_objects(cache);
 | |
| }
 | |
| 
 | |
| static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
 | |
| 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
 | |
| 	return pte_list_add(vcpu, spte, rmap_head);
 | |
| }
 | |
| 
 | |
| static void rmap_remove(struct kvm *kvm, u64 *spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	gfn_t gfn;
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
 | |
| 	rmap_head = gfn_to_rmap(kvm, gfn, sp);
 | |
| 	__pte_list_remove(spte, rmap_head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by the following functions to iterate through the sptes linked by a
 | |
|  * rmap.  All fields are private and not assumed to be used outside.
 | |
|  */
 | |
| struct rmap_iterator {
 | |
| 	/* private fields */
 | |
| 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
 | |
| 	int pos;			/* index of the sptep */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Iteration must be started by this function.  This should also be used after
 | |
|  * removing/dropping sptes from the rmap link because in such cases the
 | |
|  * information in the itererator may not be valid.
 | |
|  *
 | |
|  * Returns sptep if found, NULL otherwise.
 | |
|  */
 | |
| static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
 | |
| 			   struct rmap_iterator *iter)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 
 | |
| 	if (!rmap_head->val)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!(rmap_head->val & 1)) {
 | |
| 		iter->desc = NULL;
 | |
| 		sptep = (u64 *)rmap_head->val;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 | |
| 	iter->pos = 0;
 | |
| 	sptep = iter->desc->sptes[iter->pos];
 | |
| out:
 | |
| 	BUG_ON(!is_shadow_present_pte(*sptep));
 | |
| 	return sptep;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be used with a valid iterator: e.g. after rmap_get_first().
 | |
|  *
 | |
|  * Returns sptep if found, NULL otherwise.
 | |
|  */
 | |
| static u64 *rmap_get_next(struct rmap_iterator *iter)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 
 | |
| 	if (iter->desc) {
 | |
| 		if (iter->pos < PTE_LIST_EXT - 1) {
 | |
| 			++iter->pos;
 | |
| 			sptep = iter->desc->sptes[iter->pos];
 | |
| 			if (sptep)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		iter->desc = iter->desc->more;
 | |
| 
 | |
| 		if (iter->desc) {
 | |
| 			iter->pos = 0;
 | |
| 			/* desc->sptes[0] cannot be NULL */
 | |
| 			sptep = iter->desc->sptes[iter->pos];
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| out:
 | |
| 	BUG_ON(!is_shadow_present_pte(*sptep));
 | |
| 	return sptep;
 | |
| }
 | |
| 
 | |
| #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
 | |
| 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
 | |
| 	     _spte_; _spte_ = rmap_get_next(_iter_))
 | |
| 
 | |
| static void drop_spte(struct kvm *kvm, u64 *sptep)
 | |
| {
 | |
| 	if (mmu_spte_clear_track_bits(sptep))
 | |
| 		rmap_remove(kvm, sptep);
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
 | |
| {
 | |
| 	if (is_large_pte(*sptep)) {
 | |
| 		WARN_ON(page_header(__pa(sptep))->role.level ==
 | |
| 			PT_PAGE_TABLE_LEVEL);
 | |
| 		drop_spte(kvm, sptep);
 | |
| 		--kvm->stat.lpages;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
 | |
| {
 | |
| 	if (__drop_large_spte(vcpu->kvm, sptep)) {
 | |
| 		struct kvm_mmu_page *sp = page_header(__pa(sptep));
 | |
| 
 | |
| 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
 | |
| 			KVM_PAGES_PER_HPAGE(sp->role.level));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write-protect on the specified @sptep, @pt_protect indicates whether
 | |
|  * spte write-protection is caused by protecting shadow page table.
 | |
|  *
 | |
|  * Note: write protection is difference between dirty logging and spte
 | |
|  * protection:
 | |
|  * - for dirty logging, the spte can be set to writable at anytime if
 | |
|  *   its dirty bitmap is properly set.
 | |
|  * - for spte protection, the spte can be writable only after unsync-ing
 | |
|  *   shadow page.
 | |
|  *
 | |
|  * Return true if tlb need be flushed.
 | |
|  */
 | |
| static bool spte_write_protect(u64 *sptep, bool pt_protect)
 | |
| {
 | |
| 	u64 spte = *sptep;
 | |
| 
 | |
| 	if (!is_writable_pte(spte) &&
 | |
| 	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
 | |
| 		return false;
 | |
| 
 | |
| 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
 | |
| 
 | |
| 	if (pt_protect)
 | |
| 		spte &= ~SPTE_MMU_WRITEABLE;
 | |
| 	spte = spte & ~PT_WRITABLE_MASK;
 | |
| 
 | |
| 	return mmu_spte_update(sptep, spte);
 | |
| }
 | |
| 
 | |
| static bool __rmap_write_protect(struct kvm *kvm,
 | |
| 				 struct kvm_rmap_head *rmap_head,
 | |
| 				 bool pt_protect)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		flush |= spte_write_protect(sptep, pt_protect);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static bool spte_clear_dirty(u64 *sptep)
 | |
| {
 | |
| 	u64 spte = *sptep;
 | |
| 
 | |
| 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
 | |
| 
 | |
| 	spte &= ~shadow_dirty_mask;
 | |
| 
 | |
| 	return mmu_spte_update(sptep, spte);
 | |
| }
 | |
| 
 | |
| static bool wrprot_ad_disabled_spte(u64 *sptep)
 | |
| {
 | |
| 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
 | |
| 					       (unsigned long *)sptep);
 | |
| 	if (was_writable)
 | |
| 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
 | |
| 
 | |
| 	return was_writable;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gets the GFN ready for another round of dirty logging by clearing the
 | |
|  *	- D bit on ad-enabled SPTEs, and
 | |
|  *	- W bit on ad-disabled SPTEs.
 | |
|  * Returns true iff any D or W bits were cleared.
 | |
|  */
 | |
| static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		if (spte_ad_enabled(*sptep))
 | |
| 			flush |= spte_clear_dirty(sptep);
 | |
| 		else
 | |
| 			flush |= wrprot_ad_disabled_spte(sptep);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static bool spte_set_dirty(u64 *sptep)
 | |
| {
 | |
| 	u64 spte = *sptep;
 | |
| 
 | |
| 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
 | |
| 
 | |
| 	spte |= shadow_dirty_mask;
 | |
| 
 | |
| 	return mmu_spte_update(sptep, spte);
 | |
| }
 | |
| 
 | |
| static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		if (spte_ad_enabled(*sptep))
 | |
| 			flush |= spte_set_dirty(sptep);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 | |
|  * @kvm: kvm instance
 | |
|  * @slot: slot to protect
 | |
|  * @gfn_offset: start of the BITS_PER_LONG pages we care about
 | |
|  * @mask: indicates which pages we should protect
 | |
|  *
 | |
|  * Used when we do not need to care about huge page mappings: e.g. during dirty
 | |
|  * logging we do not have any such mappings.
 | |
|  */
 | |
| static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
 | |
| 				     struct kvm_memory_slot *slot,
 | |
| 				     gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 
 | |
| 	while (mask) {
 | |
| 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
 | |
| 					  PT_PAGE_TABLE_LEVEL, slot);
 | |
| 		__rmap_write_protect(kvm, rmap_head, false);
 | |
| 
 | |
| 		/* clear the first set bit */
 | |
| 		mask &= mask - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 | |
|  * protect the page if the D-bit isn't supported.
 | |
|  * @kvm: kvm instance
 | |
|  * @slot: slot to clear D-bit
 | |
|  * @gfn_offset: start of the BITS_PER_LONG pages we care about
 | |
|  * @mask: indicates which pages we should clear D-bit
 | |
|  *
 | |
|  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 | |
|  */
 | |
| void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
 | |
| 				     struct kvm_memory_slot *slot,
 | |
| 				     gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 
 | |
| 	while (mask) {
 | |
| 		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
 | |
| 					  PT_PAGE_TABLE_LEVEL, slot);
 | |
| 		__rmap_clear_dirty(kvm, rmap_head);
 | |
| 
 | |
| 		/* clear the first set bit */
 | |
| 		mask &= mask - 1;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
 | |
| 
 | |
| /**
 | |
|  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 | |
|  * PT level pages.
 | |
|  *
 | |
|  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 | |
|  * enable dirty logging for them.
 | |
|  *
 | |
|  * Used when we do not need to care about huge page mappings: e.g. during dirty
 | |
|  * logging we do not have any such mappings.
 | |
|  */
 | |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 | |
| 				struct kvm_memory_slot *slot,
 | |
| 				gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	if (kvm_x86_ops->enable_log_dirty_pt_masked)
 | |
| 		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
 | |
| 				mask);
 | |
| 	else
 | |
| 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_arch_write_log_dirty - emulate dirty page logging
 | |
|  * @vcpu: Guest mode vcpu
 | |
|  *
 | |
|  * Emulate arch specific page modification logging for the
 | |
|  * nested hypervisor
 | |
|  */
 | |
| int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_x86_ops->write_log_dirty)
 | |
| 		return kvm_x86_ops->write_log_dirty(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
 | |
| 				    struct kvm_memory_slot *slot, u64 gfn)
 | |
| {
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 	int i;
 | |
| 	bool write_protected = false;
 | |
| 
 | |
| 	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
 | |
| 		rmap_head = __gfn_to_rmap(gfn, i, slot);
 | |
| 		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
 | |
| 	}
 | |
| 
 | |
| 	return write_protected;
 | |
| }
 | |
| 
 | |
| static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 | |
| 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
 | |
| }
 | |
| 
 | |
| static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	while ((sptep = rmap_get_first(rmap_head, &iter))) {
 | |
| 		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
 | |
| 
 | |
| 		pte_list_remove(rmap_head, sptep);
 | |
| 		flush = true;
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
 | |
| 			   unsigned long data)
 | |
| {
 | |
| 	return kvm_zap_rmapp(kvm, rmap_head);
 | |
| }
 | |
| 
 | |
| static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
 | |
| 			     unsigned long data)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	int need_flush = 0;
 | |
| 	u64 new_spte;
 | |
| 	pte_t *ptep = (pte_t *)data;
 | |
| 	kvm_pfn_t new_pfn;
 | |
| 
 | |
| 	WARN_ON(pte_huge(*ptep));
 | |
| 	new_pfn = pte_pfn(*ptep);
 | |
| 
 | |
| restart:
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep) {
 | |
| 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
 | |
| 			    sptep, *sptep, gfn, level);
 | |
| 
 | |
| 		need_flush = 1;
 | |
| 
 | |
| 		if (pte_write(*ptep)) {
 | |
| 			pte_list_remove(rmap_head, sptep);
 | |
| 			goto restart;
 | |
| 		} else {
 | |
| 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
 | |
| 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
 | |
| 
 | |
| 			new_spte &= ~PT_WRITABLE_MASK;
 | |
| 			new_spte &= ~SPTE_HOST_WRITEABLE;
 | |
| 
 | |
| 			new_spte = mark_spte_for_access_track(new_spte);
 | |
| 
 | |
| 			mmu_spte_clear_track_bits(sptep);
 | |
| 			mmu_spte_set(sptep, new_spte);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (need_flush && kvm_available_flush_tlb_with_range()) {
 | |
| 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return need_flush;
 | |
| }
 | |
| 
 | |
| struct slot_rmap_walk_iterator {
 | |
| 	/* input fields. */
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	gfn_t start_gfn;
 | |
| 	gfn_t end_gfn;
 | |
| 	int start_level;
 | |
| 	int end_level;
 | |
| 
 | |
| 	/* output fields. */
 | |
| 	gfn_t gfn;
 | |
| 	struct kvm_rmap_head *rmap;
 | |
| 	int level;
 | |
| 
 | |
| 	/* private field. */
 | |
| 	struct kvm_rmap_head *end_rmap;
 | |
| };
 | |
| 
 | |
| static void
 | |
| rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
 | |
| {
 | |
| 	iterator->level = level;
 | |
| 	iterator->gfn = iterator->start_gfn;
 | |
| 	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
 | |
| 	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
 | |
| 					   iterator->slot);
 | |
| }
 | |
| 
 | |
| static void
 | |
| slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
 | |
| 		    struct kvm_memory_slot *slot, int start_level,
 | |
| 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
 | |
| {
 | |
| 	iterator->slot = slot;
 | |
| 	iterator->start_level = start_level;
 | |
| 	iterator->end_level = end_level;
 | |
| 	iterator->start_gfn = start_gfn;
 | |
| 	iterator->end_gfn = end_gfn;
 | |
| 
 | |
| 	rmap_walk_init_level(iterator, iterator->start_level);
 | |
| }
 | |
| 
 | |
| static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
 | |
| {
 | |
| 	return !!iterator->rmap;
 | |
| }
 | |
| 
 | |
| static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
 | |
| {
 | |
| 	if (++iterator->rmap <= iterator->end_rmap) {
 | |
| 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (++iterator->level > iterator->end_level) {
 | |
| 		iterator->rmap = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rmap_walk_init_level(iterator, iterator->level);
 | |
| }
 | |
| 
 | |
| #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
 | |
| 	   _start_gfn, _end_gfn, _iter_)				\
 | |
| 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
 | |
| 				 _end_level_, _start_gfn, _end_gfn);	\
 | |
| 	     slot_rmap_walk_okay(_iter_);				\
 | |
| 	     slot_rmap_walk_next(_iter_))
 | |
| 
 | |
| static int kvm_handle_hva_range(struct kvm *kvm,
 | |
| 				unsigned long start,
 | |
| 				unsigned long end,
 | |
| 				unsigned long data,
 | |
| 				int (*handler)(struct kvm *kvm,
 | |
| 					       struct kvm_rmap_head *rmap_head,
 | |
| 					       struct kvm_memory_slot *slot,
 | |
| 					       gfn_t gfn,
 | |
| 					       int level,
 | |
| 					       unsigned long data))
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	struct slot_rmap_walk_iterator iterator;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 | |
| 		slots = __kvm_memslots(kvm, i);
 | |
| 		kvm_for_each_memslot(memslot, slots) {
 | |
| 			unsigned long hva_start, hva_end;
 | |
| 			gfn_t gfn_start, gfn_end;
 | |
| 
 | |
| 			hva_start = max(start, memslot->userspace_addr);
 | |
| 			hva_end = min(end, memslot->userspace_addr +
 | |
| 				      (memslot->npages << PAGE_SHIFT));
 | |
| 			if (hva_start >= hva_end)
 | |
| 				continue;
 | |
| 			/*
 | |
| 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 | |
| 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 | |
| 			 */
 | |
| 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
 | |
| 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
 | |
| 
 | |
| 			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
 | |
| 						 PT_MAX_HUGEPAGE_LEVEL,
 | |
| 						 gfn_start, gfn_end - 1,
 | |
| 						 &iterator)
 | |
| 				ret |= handler(kvm, iterator.rmap, memslot,
 | |
| 					       iterator.gfn, iterator.level, data);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
 | |
| 			  unsigned long data,
 | |
| 			  int (*handler)(struct kvm *kvm,
 | |
| 					 struct kvm_rmap_head *rmap_head,
 | |
| 					 struct kvm_memory_slot *slot,
 | |
| 					 gfn_t gfn, int level,
 | |
| 					 unsigned long data))
 | |
| {
 | |
| 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
 | |
| }
 | |
| 
 | |
| int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
 | |
| }
 | |
| 
 | |
| int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 | |
| {
 | |
| 	return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
 | |
| }
 | |
| 
 | |
| static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
 | |
| 			 unsigned long data)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator uninitialized_var(iter);
 | |
| 	int young = 0;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		young |= mmu_spte_age(sptep);
 | |
| 
 | |
| 	trace_kvm_age_page(gfn, level, slot, young);
 | |
| 	return young;
 | |
| }
 | |
| 
 | |
| static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			      struct kvm_memory_slot *slot, gfn_t gfn,
 | |
| 			      int level, unsigned long data)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		if (is_accessed_spte(*sptep))
 | |
| 			return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define RMAP_RECYCLE_THRESHOLD 1000
 | |
| 
 | |
| static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 
 | |
| 	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
 | |
| 
 | |
| 	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
 | |
| 	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
 | |
| 			KVM_PAGES_PER_HPAGE(sp->role.level));
 | |
| }
 | |
| 
 | |
| int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
 | |
| }
 | |
| 
 | |
| int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
 | |
| }
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| static int is_empty_shadow_page(u64 *spt)
 | |
| {
 | |
| 	u64 *pos;
 | |
| 	u64 *end;
 | |
| 
 | |
| 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
 | |
| 		if (is_shadow_present_pte(*pos)) {
 | |
| 			printk(KERN_ERR "%s: %p %llx\n", __func__,
 | |
| 			       pos, *pos);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This value is the sum of all of the kvm instances's
 | |
|  * kvm->arch.n_used_mmu_pages values.  We need a global,
 | |
|  * aggregate version in order to make the slab shrinker
 | |
|  * faster
 | |
|  */
 | |
| static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
 | |
| {
 | |
| 	kvm->arch.n_used_mmu_pages += nr;
 | |
| 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
 | |
| 	hlist_del(&sp->hash_link);
 | |
| 	list_del(&sp->link);
 | |
| 	free_page((unsigned long)sp->spt);
 | |
| 	if (!sp->role.direct)
 | |
| 		free_page((unsigned long)sp->gfns);
 | |
| 	kmem_cache_free(mmu_page_header_cache, sp);
 | |
| }
 | |
| 
 | |
| static unsigned kvm_page_table_hashfn(gfn_t gfn)
 | |
| {
 | |
| 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
 | |
| }
 | |
| 
 | |
| static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp, u64 *parent_pte)
 | |
| {
 | |
| 	if (!parent_pte)
 | |
| 		return;
 | |
| 
 | |
| 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
 | |
| }
 | |
| 
 | |
| static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
 | |
| 				       u64 *parent_pte)
 | |
| {
 | |
| 	__pte_list_remove(parent_pte, &sp->parent_ptes);
 | |
| }
 | |
| 
 | |
| static void drop_parent_pte(struct kvm_mmu_page *sp,
 | |
| 			    u64 *parent_pte)
 | |
| {
 | |
| 	mmu_page_remove_parent_pte(sp, parent_pte);
 | |
| 	mmu_spte_clear_no_track(parent_pte);
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
 | |
| 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
 | |
| 	if (!direct)
 | |
| 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
 | |
| 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
 | |
| 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
 | |
| 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void mark_unsync(u64 *spte);
 | |
| static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 
 | |
| 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
 | |
| 		mark_unsync(sptep);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mark_unsync(u64 *spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned int index;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	index = spte - sp->spt;
 | |
| 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
 | |
| 		return;
 | |
| 	if (sp->unsync_children++)
 | |
| 		return;
 | |
| 	kvm_mmu_mark_parents_unsync(sp);
 | |
| }
 | |
| 
 | |
| static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
 | |
| 			       struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
 | |
| 				 struct kvm_mmu_page *sp, u64 *spte,
 | |
| 				 const void *pte)
 | |
| {
 | |
| 	WARN_ON(1);
 | |
| }
 | |
| 
 | |
| #define KVM_PAGE_ARRAY_NR 16
 | |
| 
 | |
| struct kvm_mmu_pages {
 | |
| 	struct mmu_page_and_offset {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 		unsigned int idx;
 | |
| 	} page[KVM_PAGE_ARRAY_NR];
 | |
| 	unsigned int nr;
 | |
| };
 | |
| 
 | |
| static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
 | |
| 			 int idx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (sp->unsync)
 | |
| 		for (i=0; i < pvec->nr; i++)
 | |
| 			if (pvec->page[i].sp == sp)
 | |
| 				return 0;
 | |
| 
 | |
| 	pvec->page[pvec->nr].sp = sp;
 | |
| 	pvec->page[pvec->nr].idx = idx;
 | |
| 	pvec->nr++;
 | |
| 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
 | |
| }
 | |
| 
 | |
| static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
 | |
| {
 | |
| 	--sp->unsync_children;
 | |
| 	WARN_ON((int)sp->unsync_children < 0);
 | |
| 	__clear_bit(idx, sp->unsync_child_bitmap);
 | |
| }
 | |
| 
 | |
| static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
 | |
| 			   struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	int i, ret, nr_unsync_leaf = 0;
 | |
| 
 | |
| 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
 | |
| 		struct kvm_mmu_page *child;
 | |
| 		u64 ent = sp->spt[i];
 | |
| 
 | |
| 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
 | |
| 			clear_unsync_child_bit(sp, i);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		child = page_header(ent & PT64_BASE_ADDR_MASK);
 | |
| 
 | |
| 		if (child->unsync_children) {
 | |
| 			if (mmu_pages_add(pvec, child, i))
 | |
| 				return -ENOSPC;
 | |
| 
 | |
| 			ret = __mmu_unsync_walk(child, pvec);
 | |
| 			if (!ret) {
 | |
| 				clear_unsync_child_bit(sp, i);
 | |
| 				continue;
 | |
| 			} else if (ret > 0) {
 | |
| 				nr_unsync_leaf += ret;
 | |
| 			} else
 | |
| 				return ret;
 | |
| 		} else if (child->unsync) {
 | |
| 			nr_unsync_leaf++;
 | |
| 			if (mmu_pages_add(pvec, child, i))
 | |
| 				return -ENOSPC;
 | |
| 		} else
 | |
| 			clear_unsync_child_bit(sp, i);
 | |
| 	}
 | |
| 
 | |
| 	return nr_unsync_leaf;
 | |
| }
 | |
| 
 | |
| #define INVALID_INDEX (-1)
 | |
| 
 | |
| static int mmu_unsync_walk(struct kvm_mmu_page *sp,
 | |
| 			   struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	pvec->nr = 0;
 | |
| 	if (!sp->unsync_children)
 | |
| 		return 0;
 | |
| 
 | |
| 	mmu_pages_add(pvec, sp, INVALID_INDEX);
 | |
| 	return __mmu_unsync_walk(sp, pvec);
 | |
| }
 | |
| 
 | |
| static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	WARN_ON(!sp->unsync);
 | |
| 	trace_kvm_mmu_sync_page(sp);
 | |
| 	sp->unsync = 0;
 | |
| 	--kvm->stat.mmu_unsync;
 | |
| }
 | |
| 
 | |
| static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 				     struct list_head *invalid_list);
 | |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm,
 | |
| 				    struct list_head *invalid_list);
 | |
| 
 | |
| 
 | |
| #define for_each_valid_sp(_kvm, _sp, _gfn)				\
 | |
| 	hlist_for_each_entry(_sp,					\
 | |
| 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
 | |
| 		if ((_sp)->role.invalid) {    \
 | |
| 		} else
 | |
| 
 | |
| #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
 | |
| 	for_each_valid_sp(_kvm, _sp, _gfn)				\
 | |
| 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
 | |
| 
 | |
| static inline bool is_ept_sp(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
 | |
| }
 | |
| 
 | |
| /* @sp->gfn should be write-protected at the call site */
 | |
| static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 			    struct list_head *invalid_list)
 | |
| {
 | |
| 	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
 | |
| 	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
 | |
| 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
 | |
| 					struct list_head *invalid_list,
 | |
| 					bool remote_flush)
 | |
| {
 | |
| 	if (!remote_flush && list_empty(invalid_list))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!list_empty(invalid_list))
 | |
| 		kvm_mmu_commit_zap_page(kvm, invalid_list);
 | |
| 	else
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
 | |
| 				 struct list_head *invalid_list,
 | |
| 				 bool remote_flush, bool local_flush)
 | |
| {
 | |
| 	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
 | |
| 		return;
 | |
| 
 | |
| 	if (local_flush)
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KVM_MMU_AUDIT
 | |
| #include "mmu_audit.c"
 | |
| #else
 | |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
 | |
| static void mmu_audit_disable(void) { }
 | |
| #endif
 | |
| 
 | |
| static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 			 struct list_head *invalid_list)
 | |
| {
 | |
| 	kvm_unlink_unsync_page(vcpu->kvm, sp);
 | |
| 	return __kvm_sync_page(vcpu, sp, invalid_list);
 | |
| }
 | |
| 
 | |
| /* @gfn should be write-protected at the call site */
 | |
| static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 			   struct list_head *invalid_list)
 | |
| {
 | |
| 	struct kvm_mmu_page *s;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
 | |
| 		if (!s->unsync)
 | |
| 			continue;
 | |
| 
 | |
| 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
 | |
| 		ret |= kvm_sync_page(vcpu, s, invalid_list);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct mmu_page_path {
 | |
| 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
 | |
| 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
 | |
| };
 | |
| 
 | |
| #define for_each_sp(pvec, sp, parents, i)			\
 | |
| 		for (i = mmu_pages_first(&pvec, &parents);	\
 | |
| 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
 | |
| 			i = mmu_pages_next(&pvec, &parents, i))
 | |
| 
 | |
| static int mmu_pages_next(struct kvm_mmu_pages *pvec,
 | |
| 			  struct mmu_page_path *parents,
 | |
| 			  int i)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	for (n = i+1; n < pvec->nr; n++) {
 | |
| 		struct kvm_mmu_page *sp = pvec->page[n].sp;
 | |
| 		unsigned idx = pvec->page[n].idx;
 | |
| 		int level = sp->role.level;
 | |
| 
 | |
| 		parents->idx[level-1] = idx;
 | |
| 		if (level == PT_PAGE_TABLE_LEVEL)
 | |
| 			break;
 | |
| 
 | |
| 		parents->parent[level-2] = sp;
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static int mmu_pages_first(struct kvm_mmu_pages *pvec,
 | |
| 			   struct mmu_page_path *parents)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int level;
 | |
| 
 | |
| 	if (pvec->nr == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
 | |
| 
 | |
| 	sp = pvec->page[0].sp;
 | |
| 	level = sp->role.level;
 | |
| 	WARN_ON(level == PT_PAGE_TABLE_LEVEL);
 | |
| 
 | |
| 	parents->parent[level-2] = sp;
 | |
| 
 | |
| 	/* Also set up a sentinel.  Further entries in pvec are all
 | |
| 	 * children of sp, so this element is never overwritten.
 | |
| 	 */
 | |
| 	parents->parent[level-1] = NULL;
 | |
| 	return mmu_pages_next(pvec, parents, 0);
 | |
| }
 | |
| 
 | |
| static void mmu_pages_clear_parents(struct mmu_page_path *parents)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned int level = 0;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int idx = parents->idx[level];
 | |
| 		sp = parents->parent[level];
 | |
| 		if (!sp)
 | |
| 			return;
 | |
| 
 | |
| 		WARN_ON(idx == INVALID_INDEX);
 | |
| 		clear_unsync_child_bit(sp, idx);
 | |
| 		level++;
 | |
| 	} while (!sp->unsync_children);
 | |
| }
 | |
| 
 | |
| static void mmu_sync_children(struct kvm_vcpu *vcpu,
 | |
| 			      struct kvm_mmu_page *parent)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct mmu_page_path parents;
 | |
| 	struct kvm_mmu_pages pages;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	while (mmu_unsync_walk(parent, &pages)) {
 | |
| 		bool protected = false;
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i)
 | |
| 			protected |= rmap_write_protect(vcpu, sp->gfn);
 | |
| 
 | |
| 		if (protected) {
 | |
| 			kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 			flush = false;
 | |
| 		}
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i) {
 | |
| 			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
 | |
| 			mmu_pages_clear_parents(&parents);
 | |
| 		}
 | |
| 		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
 | |
| 			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
 | |
| 			cond_resched_lock(&vcpu->kvm->mmu_lock);
 | |
| 			flush = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
 | |
| }
 | |
| 
 | |
| static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	atomic_set(&sp->write_flooding_count,  0);
 | |
| }
 | |
| 
 | |
| static void clear_sp_write_flooding_count(u64 *spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
 | |
| 
 | |
| 	__clear_sp_write_flooding_count(sp);
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
 | |
| 					     gfn_t gfn,
 | |
| 					     gva_t gaddr,
 | |
| 					     unsigned level,
 | |
| 					     int direct,
 | |
| 					     unsigned access)
 | |
| {
 | |
| 	union kvm_mmu_page_role role;
 | |
| 	unsigned quadrant;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	bool need_sync = false;
 | |
| 	bool flush = false;
 | |
| 	int collisions = 0;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 
 | |
| 	role = vcpu->arch.mmu->mmu_role.base;
 | |
| 	role.level = level;
 | |
| 	role.direct = direct;
 | |
| 	if (role.direct)
 | |
| 		role.gpte_is_8_bytes = true;
 | |
| 	role.access = access;
 | |
| 	if (!vcpu->arch.mmu->direct_map
 | |
| 	    && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
 | |
| 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
 | |
| 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
 | |
| 		role.quadrant = quadrant;
 | |
| 	}
 | |
| 	for_each_valid_sp(vcpu->kvm, sp, gfn) {
 | |
| 		if (sp->gfn != gfn) {
 | |
| 			collisions++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!need_sync && sp->unsync)
 | |
| 			need_sync = true;
 | |
| 
 | |
| 		if (sp->role.word != role.word)
 | |
| 			continue;
 | |
| 
 | |
| 		if (sp->unsync) {
 | |
| 			/* The page is good, but __kvm_sync_page might still end
 | |
| 			 * up zapping it.  If so, break in order to rebuild it.
 | |
| 			 */
 | |
| 			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
 | |
| 				break;
 | |
| 
 | |
| 			WARN_ON(!list_empty(&invalid_list));
 | |
| 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 | |
| 		}
 | |
| 
 | |
| 		if (sp->unsync_children)
 | |
| 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
 | |
| 
 | |
| 		__clear_sp_write_flooding_count(sp);
 | |
| 		trace_kvm_mmu_get_page(sp, false);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	++vcpu->kvm->stat.mmu_cache_miss;
 | |
| 
 | |
| 	sp = kvm_mmu_alloc_page(vcpu, direct);
 | |
| 
 | |
| 	sp->gfn = gfn;
 | |
| 	sp->role = role;
 | |
| 	hlist_add_head(&sp->hash_link,
 | |
| 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
 | |
| 	if (!direct) {
 | |
| 		/*
 | |
| 		 * we should do write protection before syncing pages
 | |
| 		 * otherwise the content of the synced shadow page may
 | |
| 		 * be inconsistent with guest page table.
 | |
| 		 */
 | |
| 		account_shadowed(vcpu->kvm, sp);
 | |
| 		if (level == PT_PAGE_TABLE_LEVEL &&
 | |
| 		      rmap_write_protect(vcpu, gfn))
 | |
| 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
 | |
| 
 | |
| 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
 | |
| 			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
 | |
| 	}
 | |
| 	clear_page(sp->spt);
 | |
| 	trace_kvm_mmu_get_page(sp, true);
 | |
| 
 | |
| 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
 | |
| out:
 | |
| 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
 | |
| 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
 | |
| 					struct kvm_vcpu *vcpu, hpa_t root,
 | |
| 					u64 addr)
 | |
| {
 | |
| 	iterator->addr = addr;
 | |
| 	iterator->shadow_addr = root;
 | |
| 	iterator->level = vcpu->arch.mmu->shadow_root_level;
 | |
| 
 | |
| 	if (iterator->level == PT64_ROOT_4LEVEL &&
 | |
| 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
 | |
| 	    !vcpu->arch.mmu->direct_map)
 | |
| 		--iterator->level;
 | |
| 
 | |
| 	if (iterator->level == PT32E_ROOT_LEVEL) {
 | |
| 		/*
 | |
| 		 * prev_root is currently only used for 64-bit hosts. So only
 | |
| 		 * the active root_hpa is valid here.
 | |
| 		 */
 | |
| 		BUG_ON(root != vcpu->arch.mmu->root_hpa);
 | |
| 
 | |
| 		iterator->shadow_addr
 | |
| 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
 | |
| 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
 | |
| 		--iterator->level;
 | |
| 		if (!iterator->shadow_addr)
 | |
| 			iterator->level = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
 | |
| 			     struct kvm_vcpu *vcpu, u64 addr)
 | |
| {
 | |
| 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
 | |
| 				    addr);
 | |
| }
 | |
| 
 | |
| static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
 | |
| {
 | |
| 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
 | |
| 		return false;
 | |
| 
 | |
| 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
 | |
| 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
 | |
| 			       u64 spte)
 | |
| {
 | |
| 	if (is_last_spte(spte, iterator->level)) {
 | |
| 		iterator->level = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
 | |
| 	--iterator->level;
 | |
| }
 | |
| 
 | |
| static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
 | |
| {
 | |
| 	__shadow_walk_next(iterator, *iterator->sptep);
 | |
| }
 | |
| 
 | |
| static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 			     struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 spte;
 | |
| 
 | |
| 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
 | |
| 
 | |
| 	spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
 | |
| 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
 | |
| 
 | |
| 	if (sp_ad_disabled(sp))
 | |
| 		spte |= shadow_acc_track_value;
 | |
| 	else
 | |
| 		spte |= shadow_accessed_mask;
 | |
| 
 | |
| 	mmu_spte_set(sptep, spte);
 | |
| 
 | |
| 	mmu_page_add_parent_pte(vcpu, sp, sptep);
 | |
| 
 | |
| 	if (sp->unsync_children || sp->unsync)
 | |
| 		mark_unsync(sptep);
 | |
| }
 | |
| 
 | |
| static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 				   unsigned direct_access)
 | |
| {
 | |
| 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
 | |
| 		struct kvm_mmu_page *child;
 | |
| 
 | |
| 		/*
 | |
| 		 * For the direct sp, if the guest pte's dirty bit
 | |
| 		 * changed form clean to dirty, it will corrupt the
 | |
| 		 * sp's access: allow writable in the read-only sp,
 | |
| 		 * so we should update the spte at this point to get
 | |
| 		 * a new sp with the correct access.
 | |
| 		 */
 | |
| 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
 | |
| 		if (child->role.access == direct_access)
 | |
| 			return;
 | |
| 
 | |
| 		drop_parent_pte(child, sptep);
 | |
| 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 			     u64 *spte)
 | |
| {
 | |
| 	u64 pte;
 | |
| 	struct kvm_mmu_page *child;
 | |
| 
 | |
| 	pte = *spte;
 | |
| 	if (is_shadow_present_pte(pte)) {
 | |
| 		if (is_last_spte(pte, sp->role.level)) {
 | |
| 			drop_spte(kvm, spte);
 | |
| 			if (is_large_pte(pte))
 | |
| 				--kvm->stat.lpages;
 | |
| 		} else {
 | |
| 			child = page_header(pte & PT64_BASE_ADDR_MASK);
 | |
| 			drop_parent_pte(child, spte);
 | |
| 		}
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (is_mmio_spte(pte))
 | |
| 		mmu_spte_clear_no_track(spte);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_page_unlink_children(struct kvm *kvm,
 | |
| 					 struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
 | |
| 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 
 | |
| 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
 | |
| 		drop_parent_pte(sp, sptep);
 | |
| }
 | |
| 
 | |
| static int mmu_zap_unsync_children(struct kvm *kvm,
 | |
| 				   struct kvm_mmu_page *parent,
 | |
| 				   struct list_head *invalid_list)
 | |
| {
 | |
| 	int i, zapped = 0;
 | |
| 	struct mmu_page_path parents;
 | |
| 	struct kvm_mmu_pages pages;
 | |
| 
 | |
| 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (mmu_unsync_walk(parent, &pages)) {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i) {
 | |
| 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
 | |
| 			mmu_pages_clear_parents(&parents);
 | |
| 			zapped++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return zapped;
 | |
| }
 | |
| 
 | |
| static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
 | |
| 				       struct kvm_mmu_page *sp,
 | |
| 				       struct list_head *invalid_list,
 | |
| 				       int *nr_zapped)
 | |
| {
 | |
| 	bool list_unstable;
 | |
| 
 | |
| 	trace_kvm_mmu_prepare_zap_page(sp);
 | |
| 	++kvm->stat.mmu_shadow_zapped;
 | |
| 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
 | |
| 	kvm_mmu_page_unlink_children(kvm, sp);
 | |
| 	kvm_mmu_unlink_parents(kvm, sp);
 | |
| 
 | |
| 	/* Zapping children means active_mmu_pages has become unstable. */
 | |
| 	list_unstable = *nr_zapped;
 | |
| 
 | |
| 	if (!sp->role.invalid && !sp->role.direct)
 | |
| 		unaccount_shadowed(kvm, sp);
 | |
| 
 | |
| 	if (sp->unsync)
 | |
| 		kvm_unlink_unsync_page(kvm, sp);
 | |
| 	if (!sp->root_count) {
 | |
| 		/* Count self */
 | |
| 		(*nr_zapped)++;
 | |
| 		list_move(&sp->link, invalid_list);
 | |
| 		kvm_mod_used_mmu_pages(kvm, -1);
 | |
| 	} else {
 | |
| 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
 | |
| 
 | |
| 		if (!sp->role.invalid)
 | |
| 			kvm_reload_remote_mmus(kvm);
 | |
| 	}
 | |
| 
 | |
| 	sp->role.invalid = 1;
 | |
| 	return list_unstable;
 | |
| }
 | |
| 
 | |
| static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 				     struct list_head *invalid_list)
 | |
| {
 | |
| 	int nr_zapped;
 | |
| 
 | |
| 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
 | |
| 	return nr_zapped;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm,
 | |
| 				    struct list_head *invalid_list)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *nsp;
 | |
| 
 | |
| 	if (list_empty(invalid_list))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to make sure everyone sees our modifications to
 | |
| 	 * the page tables and see changes to vcpu->mode here. The barrier
 | |
| 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
 | |
| 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
 | |
| 	 *
 | |
| 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
 | |
| 	 * guest mode and/or lockless shadow page table walks.
 | |
| 	 */
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| 
 | |
| 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
 | |
| 		WARN_ON(!sp->role.invalid || sp->root_count);
 | |
| 		kvm_mmu_free_page(sp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
 | |
| 					struct list_head *invalid_list)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (list_empty(&kvm->arch.active_mmu_pages))
 | |
| 		return false;
 | |
| 
 | |
| 	sp = list_last_entry(&kvm->arch.active_mmu_pages,
 | |
| 			     struct kvm_mmu_page, link);
 | |
| 	return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Changing the number of mmu pages allocated to the vm
 | |
|  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
 | |
|  */
 | |
| void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
 | |
| {
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
 | |
| 		/* Need to free some mmu pages to achieve the goal. */
 | |
| 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
 | |
| 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
 | |
| 				break;
 | |
| 
 | |
| 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
 | |
| 	}
 | |
| 
 | |
| 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
 | |
| 	r = 0;
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
 | |
| 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
 | |
| 			 sp->role.word);
 | |
| 		r = 1;
 | |
| 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
 | |
| 	}
 | |
| 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
 | |
| 
 | |
| static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	trace_kvm_mmu_unsync_page(sp);
 | |
| 	++vcpu->kvm->stat.mmu_unsync;
 | |
| 	sp->unsync = 1;
 | |
| 
 | |
| 	kvm_mmu_mark_parents_unsync(sp);
 | |
| }
 | |
| 
 | |
| static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 				   bool can_unsync)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
 | |
| 		return true;
 | |
| 
 | |
| 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
 | |
| 		if (!can_unsync)
 | |
| 			return true;
 | |
| 
 | |
| 		if (sp->unsync)
 | |
| 			continue;
 | |
| 
 | |
| 		WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
 | |
| 		kvm_unsync_page(vcpu, sp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to ensure that the marking of unsync pages is visible
 | |
| 	 * before the SPTE is updated to allow writes because
 | |
| 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
 | |
| 	 * the MMU lock and so can race with this. If the SPTE was updated
 | |
| 	 * before the page had been marked as unsync-ed, something like the
 | |
| 	 * following could happen:
 | |
| 	 *
 | |
| 	 * CPU 1                    CPU 2
 | |
| 	 * ---------------------------------------------------------------------
 | |
| 	 * 1.2 Host updates SPTE
 | |
| 	 *     to be writable
 | |
| 	 *                      2.1 Guest writes a GPTE for GVA X.
 | |
| 	 *                          (GPTE being in the guest page table shadowed
 | |
| 	 *                           by the SP from CPU 1.)
 | |
| 	 *                          This reads SPTE during the page table walk.
 | |
| 	 *                          Since SPTE.W is read as 1, there is no
 | |
| 	 *                          fault.
 | |
| 	 *
 | |
| 	 *                      2.2 Guest issues TLB flush.
 | |
| 	 *                          That causes a VM Exit.
 | |
| 	 *
 | |
| 	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
 | |
| 	 *                          Since it is false, so it just returns.
 | |
| 	 *
 | |
| 	 *                      2.4 Guest accesses GVA X.
 | |
| 	 *                          Since the mapping in the SP was not updated,
 | |
| 	 *                          so the old mapping for GVA X incorrectly
 | |
| 	 *                          gets used.
 | |
| 	 * 1.1 Host marks SP
 | |
| 	 *     as unsync
 | |
| 	 *     (sp->unsync = true)
 | |
| 	 *
 | |
| 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
 | |
| 	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
 | |
| 	 * pairs with this write barrier.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
 | |
| {
 | |
| 	if (pfn_valid(pfn))
 | |
| 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
 | |
| 			/*
 | |
| 			 * Some reserved pages, such as those from NVDIMM
 | |
| 			 * DAX devices, are not for MMIO, and can be mapped
 | |
| 			 * with cached memory type for better performance.
 | |
| 			 * However, the above check misconceives those pages
 | |
| 			 * as MMIO, and results in KVM mapping them with UC
 | |
| 			 * memory type, which would hurt the performance.
 | |
| 			 * Therefore, we check the host memory type in addition
 | |
| 			 * and only treat UC/UC-/WC pages as MMIO.
 | |
| 			 */
 | |
| 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
 | |
| 
 | |
| 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
 | |
| 				     pfn_to_hpa(pfn + 1) - 1,
 | |
| 				     E820_TYPE_RAM);
 | |
| }
 | |
| 
 | |
| /* Bits which may be returned by set_spte() */
 | |
| #define SET_SPTE_WRITE_PROTECTED_PT	BIT(0)
 | |
| #define SET_SPTE_NEED_REMOTE_TLB_FLUSH	BIT(1)
 | |
| 
 | |
| static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 		    unsigned pte_access, int level,
 | |
| 		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
 | |
| 		    bool can_unsync, bool host_writable)
 | |
| {
 | |
| 	u64 spte = 0;
 | |
| 	int ret = 0;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
 | |
| 		return 0;
 | |
| 
 | |
| 	sp = page_header(__pa(sptep));
 | |
| 	if (sp_ad_disabled(sp))
 | |
| 		spte |= shadow_acc_track_value;
 | |
| 
 | |
| 	/*
 | |
| 	 * For the EPT case, shadow_present_mask is 0 if hardware
 | |
| 	 * supports exec-only page table entries.  In that case,
 | |
| 	 * ACC_USER_MASK and shadow_user_mask are used to represent
 | |
| 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
 | |
| 	 */
 | |
| 	spte |= shadow_present_mask;
 | |
| 	if (!speculative)
 | |
| 		spte |= spte_shadow_accessed_mask(spte);
 | |
| 
 | |
| 	if (pte_access & ACC_EXEC_MASK)
 | |
| 		spte |= shadow_x_mask;
 | |
| 	else
 | |
| 		spte |= shadow_nx_mask;
 | |
| 
 | |
| 	if (pte_access & ACC_USER_MASK)
 | |
| 		spte |= shadow_user_mask;
 | |
| 
 | |
| 	if (level > PT_PAGE_TABLE_LEVEL)
 | |
| 		spte |= PT_PAGE_SIZE_MASK;
 | |
| 	if (tdp_enabled)
 | |
| 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
 | |
| 			kvm_is_mmio_pfn(pfn));
 | |
| 
 | |
| 	if (host_writable)
 | |
| 		spte |= SPTE_HOST_WRITEABLE;
 | |
| 	else
 | |
| 		pte_access &= ~ACC_WRITE_MASK;
 | |
| 
 | |
| 	if (!kvm_is_mmio_pfn(pfn))
 | |
| 		spte |= shadow_me_mask;
 | |
| 
 | |
| 	spte |= (u64)pfn << PAGE_SHIFT;
 | |
| 
 | |
| 	if (pte_access & ACC_WRITE_MASK) {
 | |
| 
 | |
| 		/*
 | |
| 		 * Other vcpu creates new sp in the window between
 | |
| 		 * mapping_level() and acquiring mmu-lock. We can
 | |
| 		 * allow guest to retry the access, the mapping can
 | |
| 		 * be fixed if guest refault.
 | |
| 		 */
 | |
| 		if (level > PT_PAGE_TABLE_LEVEL &&
 | |
| 		    mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
 | |
| 			goto done;
 | |
| 
 | |
| 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Optimization: for pte sync, if spte was writable the hash
 | |
| 		 * lookup is unnecessary (and expensive). Write protection
 | |
| 		 * is responsibility of mmu_get_page / kvm_sync_page.
 | |
| 		 * Same reasoning can be applied to dirty page accounting.
 | |
| 		 */
 | |
| 		if (!can_unsync && is_writable_pte(*sptep))
 | |
| 			goto set_pte;
 | |
| 
 | |
| 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
 | |
| 			pgprintk("%s: found shadow page for %llx, marking ro\n",
 | |
| 				 __func__, gfn);
 | |
| 			ret |= SET_SPTE_WRITE_PROTECTED_PT;
 | |
| 			pte_access &= ~ACC_WRITE_MASK;
 | |
| 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pte_access & ACC_WRITE_MASK) {
 | |
| 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
 | |
| 		spte |= spte_shadow_dirty_mask(spte);
 | |
| 	}
 | |
| 
 | |
| 	if (speculative)
 | |
| 		spte = mark_spte_for_access_track(spte);
 | |
| 
 | |
| set_pte:
 | |
| 	if (mmu_spte_update(sptep, spte))
 | |
| 		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
 | |
| done:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
 | |
| 			int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
 | |
| 		       	bool speculative, bool host_writable)
 | |
| {
 | |
| 	int was_rmapped = 0;
 | |
| 	int rmap_count;
 | |
| 	int set_spte_ret;
 | |
| 	int ret = RET_PF_RETRY;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
 | |
| 		 *sptep, write_fault, gfn);
 | |
| 
 | |
| 	if (is_shadow_present_pte(*sptep)) {
 | |
| 		/*
 | |
| 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
 | |
| 		 * the parent of the now unreachable PTE.
 | |
| 		 */
 | |
| 		if (level > PT_PAGE_TABLE_LEVEL &&
 | |
| 		    !is_large_pte(*sptep)) {
 | |
| 			struct kvm_mmu_page *child;
 | |
| 			u64 pte = *sptep;
 | |
| 
 | |
| 			child = page_header(pte & PT64_BASE_ADDR_MASK);
 | |
| 			drop_parent_pte(child, sptep);
 | |
| 			flush = true;
 | |
| 		} else if (pfn != spte_to_pfn(*sptep)) {
 | |
| 			pgprintk("hfn old %llx new %llx\n",
 | |
| 				 spte_to_pfn(*sptep), pfn);
 | |
| 			drop_spte(vcpu->kvm, sptep);
 | |
| 			flush = true;
 | |
| 		} else
 | |
| 			was_rmapped = 1;
 | |
| 	}
 | |
| 
 | |
| 	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
 | |
| 				speculative, true, host_writable);
 | |
| 	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
 | |
| 		if (write_fault)
 | |
| 			ret = RET_PF_EMULATE;
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
 | |
| 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
 | |
| 				KVM_PAGES_PER_HPAGE(level));
 | |
| 
 | |
| 	if (unlikely(is_mmio_spte(*sptep)))
 | |
| 		ret = RET_PF_EMULATE;
 | |
| 
 | |
| 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
 | |
| 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
 | |
| 		 is_large_pte(*sptep)? "2MB" : "4kB",
 | |
| 		 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
 | |
| 		 *sptep, sptep);
 | |
| 	if (!was_rmapped && is_large_pte(*sptep))
 | |
| 		++vcpu->kvm->stat.lpages;
 | |
| 
 | |
| 	if (is_shadow_present_pte(*sptep)) {
 | |
| 		if (!was_rmapped) {
 | |
| 			rmap_count = rmap_add(vcpu, sptep, gfn);
 | |
| 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
 | |
| 				rmap_recycle(vcpu, sptep, gfn);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 				     bool no_dirty_log)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
 | |
| 	if (!slot)
 | |
| 		return KVM_PFN_ERR_FAULT;
 | |
| 
 | |
| 	return gfn_to_pfn_memslot_atomic(slot, gfn);
 | |
| }
 | |
| 
 | |
| static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp,
 | |
| 				    u64 *start, u64 *end)
 | |
| {
 | |
| 	struct page *pages[PTE_PREFETCH_NUM];
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	unsigned access = sp->role.access;
 | |
| 	int i, ret;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
 | |
| 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
 | |
| 	if (!slot)
 | |
| 		return -1;
 | |
| 
 | |
| 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
 | |
| 	if (ret <= 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	for (i = 0; i < ret; i++, gfn++, start++)
 | |
| 		mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
 | |
| 			     page_to_pfn(pages[i]), true, true);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp, u64 *sptep)
 | |
| {
 | |
| 	u64 *spte, *start = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON(!sp->role.direct);
 | |
| 
 | |
| 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
 | |
| 	spte = sp->spt + i;
 | |
| 
 | |
| 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
 | |
| 		if (is_shadow_present_pte(*spte) || spte == sptep) {
 | |
| 			if (!start)
 | |
| 				continue;
 | |
| 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
 | |
| 				break;
 | |
| 			start = NULL;
 | |
| 		} else if (!start)
 | |
| 			start = spte;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = page_header(__pa(sptep));
 | |
| 
 | |
| 	/*
 | |
| 	 * Without accessed bits, there's no way to distinguish between
 | |
| 	 * actually accessed translations and prefetched, so disable pte
 | |
| 	 * prefetch if accessed bits aren't available.
 | |
| 	 */
 | |
| 	if (sp_ad_disabled(sp))
 | |
| 		return;
 | |
| 
 | |
| 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
 | |
| 		return;
 | |
| 
 | |
| 	__direct_pte_prefetch(vcpu, sp, sptep);
 | |
| }
 | |
| 
 | |
| static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
 | |
| 			int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int emulate = 0;
 | |
| 	gfn_t pseudo_gfn;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
 | |
| 		if (iterator.level == level) {
 | |
| 			emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
 | |
| 					       write, level, gfn, pfn, prefault,
 | |
| 					       map_writable);
 | |
| 			direct_pte_prefetch(vcpu, iterator.sptep);
 | |
| 			++vcpu->stat.pf_fixed;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		drop_large_spte(vcpu, iterator.sptep);
 | |
| 		if (!is_shadow_present_pte(*iterator.sptep)) {
 | |
| 			u64 base_addr = iterator.addr;
 | |
| 
 | |
| 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
 | |
| 			pseudo_gfn = base_addr >> PAGE_SHIFT;
 | |
| 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
 | |
| 					      iterator.level - 1, 1, ACC_ALL);
 | |
| 
 | |
| 			link_shadow_page(vcpu, iterator.sptep, sp);
 | |
| 		}
 | |
| 	}
 | |
| 	return emulate;
 | |
| }
 | |
| 
 | |
| static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
 | |
| {
 | |
| 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
 | |
| }
 | |
| 
 | |
| static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
 | |
| {
 | |
| 	/*
 | |
| 	 * Do not cache the mmio info caused by writing the readonly gfn
 | |
| 	 * into the spte otherwise read access on readonly gfn also can
 | |
| 	 * caused mmio page fault and treat it as mmio access.
 | |
| 	 */
 | |
| 	if (pfn == KVM_PFN_ERR_RO_FAULT)
 | |
| 		return RET_PF_EMULATE;
 | |
| 
 | |
| 	if (pfn == KVM_PFN_ERR_HWPOISON) {
 | |
| 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
 | |
| 		return RET_PF_RETRY;
 | |
| 	}
 | |
| 
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
 | |
| 					gfn_t *gfnp, kvm_pfn_t *pfnp,
 | |
| 					int *levelp)
 | |
| {
 | |
| 	kvm_pfn_t pfn = *pfnp;
 | |
| 	gfn_t gfn = *gfnp;
 | |
| 	int level = *levelp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if it's a transparent hugepage. If this would be an
 | |
| 	 * hugetlbfs page, level wouldn't be set to
 | |
| 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
 | |
| 	    level == PT_PAGE_TABLE_LEVEL &&
 | |
| 	    PageTransCompoundMap(pfn_to_page(pfn)) &&
 | |
| 	    !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
 | |
| 		unsigned long mask;
 | |
| 		/*
 | |
| 		 * mmu_notifier_retry was successful and we hold the
 | |
| 		 * mmu_lock here, so the pmd can't become splitting
 | |
| 		 * from under us, and in turn
 | |
| 		 * __split_huge_page_refcount() can't run from under
 | |
| 		 * us and we can safely transfer the refcount from
 | |
| 		 * PG_tail to PG_head as we switch the pfn to tail to
 | |
| 		 * head.
 | |
| 		 */
 | |
| 		*levelp = level = PT_DIRECTORY_LEVEL;
 | |
| 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
 | |
| 		VM_BUG_ON((gfn & mask) != (pfn & mask));
 | |
| 		if (pfn & mask) {
 | |
| 			gfn &= ~mask;
 | |
| 			*gfnp = gfn;
 | |
| 			kvm_release_pfn_clean(pfn);
 | |
| 			pfn &= ~mask;
 | |
| 			kvm_get_pfn(pfn);
 | |
| 			*pfnp = pfn;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
 | |
| 				kvm_pfn_t pfn, unsigned access, int *ret_val)
 | |
| {
 | |
| 	/* The pfn is invalid, report the error! */
 | |
| 	if (unlikely(is_error_pfn(pfn))) {
 | |
| 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(is_noslot_pfn(pfn)))
 | |
| 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool page_fault_can_be_fast(u32 error_code)
 | |
| {
 | |
| 	/*
 | |
| 	 * Do not fix the mmio spte with invalid generation number which
 | |
| 	 * need to be updated by slow page fault path.
 | |
| 	 */
 | |
| 	if (unlikely(error_code & PFERR_RSVD_MASK))
 | |
| 		return false;
 | |
| 
 | |
| 	/* See if the page fault is due to an NX violation */
 | |
| 	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
 | |
| 		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * #PF can be fast if:
 | |
| 	 * 1. The shadow page table entry is not present, which could mean that
 | |
| 	 *    the fault is potentially caused by access tracking (if enabled).
 | |
| 	 * 2. The shadow page table entry is present and the fault
 | |
| 	 *    is caused by write-protect, that means we just need change the W
 | |
| 	 *    bit of the spte which can be done out of mmu-lock.
 | |
| 	 *
 | |
| 	 * However, if access tracking is disabled we know that a non-present
 | |
| 	 * page must be a genuine page fault where we have to create a new SPTE.
 | |
| 	 * So, if access tracking is disabled, we return true only for write
 | |
| 	 * accesses to a present page.
 | |
| 	 */
 | |
| 
 | |
| 	return shadow_acc_track_mask != 0 ||
 | |
| 	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
 | |
| 		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the SPTE was fixed successfully. Otherwise,
 | |
|  * someone else modified the SPTE from its original value.
 | |
|  */
 | |
| static bool
 | |
| fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 			u64 *sptep, u64 old_spte, u64 new_spte)
 | |
| {
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	WARN_ON(!sp->role.direct);
 | |
| 
 | |
| 	/*
 | |
| 	 * Theoretically we could also set dirty bit (and flush TLB) here in
 | |
| 	 * order to eliminate unnecessary PML logging. See comments in
 | |
| 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
 | |
| 	 * enabled, so we do not do this. This might result in the same GPA
 | |
| 	 * to be logged in PML buffer again when the write really happens, and
 | |
| 	 * eventually to be called by mark_page_dirty twice. But it's also no
 | |
| 	 * harm. This also avoids the TLB flush needed after setting dirty bit
 | |
| 	 * so non-PML cases won't be impacted.
 | |
| 	 *
 | |
| 	 * Compare with set_spte where instead shadow_dirty_mask is set.
 | |
| 	 */
 | |
| 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
 | |
| 		return false;
 | |
| 
 | |
| 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
 | |
| 		/*
 | |
| 		 * The gfn of direct spte is stable since it is
 | |
| 		 * calculated by sp->gfn.
 | |
| 		 */
 | |
| 		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
 | |
| 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool is_access_allowed(u32 fault_err_code, u64 spte)
 | |
| {
 | |
| 	if (fault_err_code & PFERR_FETCH_MASK)
 | |
| 		return is_executable_pte(spte);
 | |
| 
 | |
| 	if (fault_err_code & PFERR_WRITE_MASK)
 | |
| 		return is_writable_pte(spte);
 | |
| 
 | |
| 	/* Fault was on Read access */
 | |
| 	return spte & PT_PRESENT_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return value:
 | |
|  * - true: let the vcpu to access on the same address again.
 | |
|  * - false: let the real page fault path to fix it.
 | |
|  */
 | |
| static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
 | |
| 			    u32 error_code)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	bool fault_handled = false;
 | |
| 	u64 spte = 0ull;
 | |
| 	uint retry_count = 0;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!page_fault_can_be_fast(error_code))
 | |
| 		return false;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 
 | |
| 	do {
 | |
| 		u64 new_spte;
 | |
| 
 | |
| 		for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
 | |
| 			if (!is_shadow_present_pte(spte) ||
 | |
| 			    iterator.level < level)
 | |
| 				break;
 | |
| 
 | |
| 		sp = page_header(__pa(iterator.sptep));
 | |
| 		if (!is_last_spte(spte, sp->role.level))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check whether the memory access that caused the fault would
 | |
| 		 * still cause it if it were to be performed right now. If not,
 | |
| 		 * then this is a spurious fault caused by TLB lazily flushed,
 | |
| 		 * or some other CPU has already fixed the PTE after the
 | |
| 		 * current CPU took the fault.
 | |
| 		 *
 | |
| 		 * Need not check the access of upper level table entries since
 | |
| 		 * they are always ACC_ALL.
 | |
| 		 */
 | |
| 		if (is_access_allowed(error_code, spte)) {
 | |
| 			fault_handled = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		new_spte = spte;
 | |
| 
 | |
| 		if (is_access_track_spte(spte))
 | |
| 			new_spte = restore_acc_track_spte(new_spte);
 | |
| 
 | |
| 		/*
 | |
| 		 * Currently, to simplify the code, write-protection can
 | |
| 		 * be removed in the fast path only if the SPTE was
 | |
| 		 * write-protected for dirty-logging or access tracking.
 | |
| 		 */
 | |
| 		if ((error_code & PFERR_WRITE_MASK) &&
 | |
| 		    spte_can_locklessly_be_made_writable(spte))
 | |
| 		{
 | |
| 			new_spte |= PT_WRITABLE_MASK;
 | |
| 
 | |
| 			/*
 | |
| 			 * Do not fix write-permission on the large spte.  Since
 | |
| 			 * we only dirty the first page into the dirty-bitmap in
 | |
| 			 * fast_pf_fix_direct_spte(), other pages are missed
 | |
| 			 * if its slot has dirty logging enabled.
 | |
| 			 *
 | |
| 			 * Instead, we let the slow page fault path create a
 | |
| 			 * normal spte to fix the access.
 | |
| 			 *
 | |
| 			 * See the comments in kvm_arch_commit_memory_region().
 | |
| 			 */
 | |
| 			if (sp->role.level > PT_PAGE_TABLE_LEVEL)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* Verify that the fault can be handled in the fast path */
 | |
| 		if (new_spte == spte ||
 | |
| 		    !is_access_allowed(error_code, new_spte))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Currently, fast page fault only works for direct mapping
 | |
| 		 * since the gfn is not stable for indirect shadow page. See
 | |
| 		 * Documentation/virtual/kvm/locking.txt to get more detail.
 | |
| 		 */
 | |
| 		fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
 | |
| 							iterator.sptep, spte,
 | |
| 							new_spte);
 | |
| 		if (fault_handled)
 | |
| 			break;
 | |
| 
 | |
| 		if (++retry_count > 4) {
 | |
| 			printk_once(KERN_WARNING
 | |
| 				"kvm: Fast #PF retrying more than 4 times.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	} while (true);
 | |
| 
 | |
| 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
 | |
| 			      spte, fault_handled);
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| 
 | |
| 	return fault_handled;
 | |
| }
 | |
| 
 | |
| static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
 | |
| 			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
 | |
| static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
 | |
| 			 gfn_t gfn, bool prefault)
 | |
| {
 | |
| 	int r;
 | |
| 	int level;
 | |
| 	bool force_pt_level = false;
 | |
| 	kvm_pfn_t pfn;
 | |
| 	unsigned long mmu_seq;
 | |
| 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
 | |
| 
 | |
| 	level = mapping_level(vcpu, gfn, &force_pt_level);
 | |
| 	if (likely(!force_pt_level)) {
 | |
| 		/*
 | |
| 		 * This path builds a PAE pagetable - so we can map
 | |
| 		 * 2mb pages at maximum. Therefore check if the level
 | |
| 		 * is larger than that.
 | |
| 		 */
 | |
| 		if (level > PT_DIRECTORY_LEVEL)
 | |
| 			level = PT_DIRECTORY_LEVEL;
 | |
| 
 | |
| 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
 | |
| 	}
 | |
| 
 | |
| 	if (fast_page_fault(vcpu, v, level, error_code))
 | |
| 		return RET_PF_RETRY;
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
 | |
| 		return RET_PF_RETRY;
 | |
| 
 | |
| 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 	if (make_mmu_pages_available(vcpu) < 0)
 | |
| 		goto out_unlock;
 | |
| 	if (likely(!force_pt_level))
 | |
| 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
 | |
| 	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	return r;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return RET_PF_RETRY;
 | |
| }
 | |
| 
 | |
| static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
 | |
| 			       struct list_head *invalid_list)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (!VALID_PAGE(*root_hpa))
 | |
| 		return;
 | |
| 
 | |
| 	sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
 | |
| 	--sp->root_count;
 | |
| 	if (!sp->root_count && sp->role.invalid)
 | |
| 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
 | |
| 
 | |
| 	*root_hpa = INVALID_PAGE;
 | |
| }
 | |
| 
 | |
| /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
 | |
| void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 			ulong roots_to_free)
 | |
| {
 | |
| 	int i;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
 | |
| 
 | |
| 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
 | |
| 
 | |
| 	/* Before acquiring the MMU lock, see if we need to do any real work. */
 | |
| 	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
 | |
| 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
 | |
| 			    VALID_PAGE(mmu->prev_roots[i].hpa))
 | |
| 				break;
 | |
| 
 | |
| 		if (i == KVM_MMU_NUM_PREV_ROOTS)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
 | |
| 			mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
 | |
| 					   &invalid_list);
 | |
| 
 | |
| 	if (free_active_root) {
 | |
| 		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
 | |
| 		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
 | |
| 			mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
 | |
| 					   &invalid_list);
 | |
| 		} else {
 | |
| 			for (i = 0; i < 4; ++i)
 | |
| 				if (mmu->pae_root[i] != 0)
 | |
| 					mmu_free_root_page(vcpu->kvm,
 | |
| 							   &mmu->pae_root[i],
 | |
| 							   &invalid_list);
 | |
| 			mmu->root_hpa = INVALID_PAGE;
 | |
| 		}
 | |
| 		mmu->root_cr3 = 0;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
 | |
| 
 | |
| static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
 | |
| 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		if(make_mmu_pages_available(vcpu) < 0) {
 | |
| 			spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 		sp = kvm_mmu_get_page(vcpu, 0, 0,
 | |
| 				vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
 | |
| 		++sp->root_count;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		vcpu->arch.mmu->root_hpa = __pa(sp->spt);
 | |
| 	} else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
 | |
| 		for (i = 0; i < 4; ++i) {
 | |
| 			hpa_t root = vcpu->arch.mmu->pae_root[i];
 | |
| 
 | |
| 			MMU_WARN_ON(VALID_PAGE(root));
 | |
| 			spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 			if (make_mmu_pages_available(vcpu) < 0) {
 | |
| 				spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 				return -ENOSPC;
 | |
| 			}
 | |
| 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
 | |
| 					i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
 | |
| 			root = __pa(sp->spt);
 | |
| 			++sp->root_count;
 | |
| 			spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
 | |
| 		}
 | |
| 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
 | |
| 	} else
 | |
| 		BUG();
 | |
| 	vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	u64 pdptr, pm_mask;
 | |
| 	gfn_t root_gfn, root_cr3;
 | |
| 	int i;
 | |
| 
 | |
| 	root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
 | |
| 	root_gfn = root_cr3 >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (mmu_check_root(vcpu, root_gfn))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we shadow a long mode page table? If so we need to
 | |
| 	 * write-protect the guests page table root.
 | |
| 	 */
 | |
| 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu->root_hpa;
 | |
| 
 | |
| 		MMU_WARN_ON(VALID_PAGE(root));
 | |
| 
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		if (make_mmu_pages_available(vcpu) < 0) {
 | |
| 			spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
 | |
| 				vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
 | |
| 		root = __pa(sp->spt);
 | |
| 		++sp->root_count;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		vcpu->arch.mmu->root_hpa = root;
 | |
| 		goto set_root_cr3;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We shadow a 32 bit page table. This may be a legacy 2-level
 | |
| 	 * or a PAE 3-level page table. In either case we need to be aware that
 | |
| 	 * the shadow page table may be a PAE or a long mode page table.
 | |
| 	 */
 | |
| 	pm_mask = PT_PRESENT_MASK;
 | |
| 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
 | |
| 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
 | |
| 
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu->pae_root[i];
 | |
| 
 | |
| 		MMU_WARN_ON(VALID_PAGE(root));
 | |
| 		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
 | |
| 			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
 | |
| 			if (!(pdptr & PT_PRESENT_MASK)) {
 | |
| 				vcpu->arch.mmu->pae_root[i] = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 			root_gfn = pdptr >> PAGE_SHIFT;
 | |
| 			if (mmu_check_root(vcpu, root_gfn))
 | |
| 				return 1;
 | |
| 		}
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		if (make_mmu_pages_available(vcpu) < 0) {
 | |
| 			spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 			return -ENOSPC;
 | |
| 		}
 | |
| 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
 | |
| 				      0, ACC_ALL);
 | |
| 		root = __pa(sp->spt);
 | |
| 		++sp->root_count;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
 | |
| 	}
 | |
| 	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we shadow a 32 bit page table with a long mode page
 | |
| 	 * table we enter this path.
 | |
| 	 */
 | |
| 	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
 | |
| 		if (vcpu->arch.mmu->lm_root == NULL) {
 | |
| 			/*
 | |
| 			 * The additional page necessary for this is only
 | |
| 			 * allocated on demand.
 | |
| 			 */
 | |
| 
 | |
| 			u64 *lm_root;
 | |
| 
 | |
| 			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
 | |
| 			if (lm_root == NULL)
 | |
| 				return 1;
 | |
| 
 | |
| 			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
 | |
| 
 | |
| 			vcpu->arch.mmu->lm_root = lm_root;
 | |
| 		}
 | |
| 
 | |
| 		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
 | |
| 	}
 | |
| 
 | |
| set_root_cr3:
 | |
| 	vcpu->arch.mmu->root_cr3 = root_cr3;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.mmu->direct_map)
 | |
| 		return mmu_alloc_direct_roots(vcpu);
 | |
| 	else
 | |
| 		return mmu_alloc_shadow_roots(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (vcpu->arch.mmu->direct_map)
 | |
| 		return;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 | |
| 		return;
 | |
| 
 | |
| 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
 | |
| 
 | |
| 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu->root_hpa;
 | |
| 		sp = page_header(root);
 | |
| 
 | |
| 		/*
 | |
| 		 * Even if another CPU was marking the SP as unsync-ed
 | |
| 		 * simultaneously, any guest page table changes are not
 | |
| 		 * guaranteed to be visible anyway until this VCPU issues a TLB
 | |
| 		 * flush strictly after those changes are made. We only need to
 | |
| 		 * ensure that the other CPU sets these flags before any actual
 | |
| 		 * changes to the page tables are made. The comments in
 | |
| 		 * mmu_need_write_protect() describe what could go wrong if this
 | |
| 		 * requirement isn't satisfied.
 | |
| 		 */
 | |
| 		if (!smp_load_acquire(&sp->unsync) &&
 | |
| 		    !smp_load_acquire(&sp->unsync_children))
 | |
| 			return;
 | |
| 
 | |
| 		spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
 | |
| 
 | |
| 		mmu_sync_children(vcpu, sp);
 | |
| 
 | |
| 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
 | |
| 
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu->pae_root[i];
 | |
| 
 | |
| 		if (root && VALID_PAGE(root)) {
 | |
| 			root &= PT64_BASE_ADDR_MASK;
 | |
| 			sp = page_header(root);
 | |
| 			mmu_sync_children(vcpu, sp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
 | |
| 
 | |
| static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
 | |
| 				  u32 access, struct x86_exception *exception)
 | |
| {
 | |
| 	if (exception)
 | |
| 		exception->error_code = 0;
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
 | |
| 					 u32 access,
 | |
| 					 struct x86_exception *exception)
 | |
| {
 | |
| 	if (exception)
 | |
| 		exception->error_code = 0;
 | |
| 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
 | |
| }
 | |
| 
 | |
| static bool
 | |
| __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
 | |
| {
 | |
| 	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
 | |
| 
 | |
| 	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
 | |
| 		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
 | |
| }
 | |
| 
 | |
| static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
 | |
| {
 | |
| 	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
 | |
| }
 | |
| 
 | |
| static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
 | |
| {
 | |
| 	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
 | |
| }
 | |
| 
 | |
| static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
 | |
| {
 | |
| 	/*
 | |
| 	 * A nested guest cannot use the MMIO cache if it is using nested
 | |
| 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
 | |
| 	 */
 | |
| 	if (mmu_is_nested(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (direct)
 | |
| 		return vcpu_match_mmio_gpa(vcpu, addr);
 | |
| 
 | |
| 	return vcpu_match_mmio_gva(vcpu, addr);
 | |
| }
 | |
| 
 | |
| /* return true if reserved bit is detected on spte. */
 | |
| static bool
 | |
| walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
 | |
| 	int root, leaf;
 | |
| 	bool reserved = false;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 | |
| 		goto exit;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 
 | |
| 	for (shadow_walk_init(&iterator, vcpu, addr),
 | |
| 		 leaf = root = iterator.level;
 | |
| 	     shadow_walk_okay(&iterator);
 | |
| 	     __shadow_walk_next(&iterator, spte)) {
 | |
| 		spte = mmu_spte_get_lockless(iterator.sptep);
 | |
| 
 | |
| 		sptes[leaf - 1] = spte;
 | |
| 		leaf--;
 | |
| 
 | |
| 		if (!is_shadow_present_pte(spte))
 | |
| 			break;
 | |
| 
 | |
| 		reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
 | |
| 						    iterator.level);
 | |
| 	}
 | |
| 
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| 
 | |
| 	if (reserved) {
 | |
| 		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
 | |
| 		       __func__, addr);
 | |
| 		while (root > leaf) {
 | |
| 			pr_err("------ spte 0x%llx level %d.\n",
 | |
| 			       sptes[root - 1], root);
 | |
| 			root--;
 | |
| 		}
 | |
| 	}
 | |
| exit:
 | |
| 	*sptep = spte;
 | |
| 	return reserved;
 | |
| }
 | |
| 
 | |
| static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
 | |
| {
 | |
| 	u64 spte;
 | |
| 	bool reserved;
 | |
| 
 | |
| 	if (mmio_info_in_cache(vcpu, addr, direct))
 | |
| 		return RET_PF_EMULATE;
 | |
| 
 | |
| 	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
 | |
| 	if (WARN_ON(reserved))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (is_mmio_spte(spte)) {
 | |
| 		gfn_t gfn = get_mmio_spte_gfn(spte);
 | |
| 		unsigned access = get_mmio_spte_access(spte);
 | |
| 
 | |
| 		if (!check_mmio_spte(vcpu, spte))
 | |
| 			return RET_PF_INVALID;
 | |
| 
 | |
| 		if (direct)
 | |
| 			addr = 0;
 | |
| 
 | |
| 		trace_handle_mmio_page_fault(addr, gfn, access);
 | |
| 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
 | |
| 		return RET_PF_EMULATE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the page table is zapped by other cpus, let CPU fault again on
 | |
| 	 * the address.
 | |
| 	 */
 | |
| 	return RET_PF_RETRY;
 | |
| }
 | |
| 
 | |
| static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
 | |
| 					 u32 error_code, gfn_t gfn)
 | |
| {
 | |
| 	if (unlikely(error_code & PFERR_RSVD_MASK))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!(error_code & PFERR_PRESENT_MASK) ||
 | |
| 	      !(error_code & PFERR_WRITE_MASK))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * guest is writing the page which is write tracked which can
 | |
| 	 * not be fixed by page fault handler.
 | |
| 	 */
 | |
| 	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	u64 spte;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
 | |
| 		return;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
 | |
| 		clear_sp_write_flooding_count(iterator.sptep);
 | |
| 		if (!is_shadow_present_pte(spte))
 | |
| 			break;
 | |
| 	}
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| }
 | |
| 
 | |
| static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 				u32 error_code, bool prefault)
 | |
| {
 | |
| 	gfn_t gfn = gva >> PAGE_SHIFT;
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
 | |
| 
 | |
| 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
 | |
| 		return RET_PF_EMULATE;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
 | |
| 
 | |
| 
 | |
| 	return nonpaging_map(vcpu, gva & PAGE_MASK,
 | |
| 			     error_code, gfn, prefault);
 | |
| }
 | |
| 
 | |
| static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_arch_async_pf arch;
 | |
| 
 | |
| 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
 | |
| 	arch.gfn = gfn;
 | |
| 	arch.direct_map = vcpu->arch.mmu->direct_map;
 | |
| 	arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
 | |
| 
 | |
| 	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
 | |
| }
 | |
| 
 | |
| bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (unlikely(!lapic_in_kernel(vcpu) ||
 | |
| 		     kvm_event_needs_reinjection(vcpu) ||
 | |
| 		     vcpu->arch.exception.pending))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	return kvm_x86_ops->interrupt_allowed(vcpu);
 | |
| }
 | |
| 
 | |
| static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
 | |
| 			 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	bool async;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't expose private memslots to L2.
 | |
| 	 */
 | |
| 	if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
 | |
| 		*pfn = KVM_PFN_NOSLOT;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 | |
| 	async = false;
 | |
| 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
 | |
| 	if (!async)
 | |
| 		return false; /* *pfn has correct page already */
 | |
| 
 | |
| 	if (!prefault && kvm_can_do_async_pf(vcpu)) {
 | |
| 		trace_kvm_try_async_get_page(gva, gfn);
 | |
| 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
 | |
| 			trace_kvm_async_pf_doublefault(gva, gfn);
 | |
| 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
 | |
| 			return true;
 | |
| 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 | |
| 				u64 fault_address, char *insn, int insn_len)
 | |
| {
 | |
| 	int r = 1;
 | |
| 
 | |
| 	vcpu->arch.l1tf_flush_l1d = true;
 | |
| 	switch (vcpu->arch.apf.host_apf_reason) {
 | |
| 	default:
 | |
| 		trace_kvm_page_fault(fault_address, error_code);
 | |
| 
 | |
| 		if (kvm_event_needs_reinjection(vcpu))
 | |
| 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
 | |
| 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
 | |
| 				insn_len);
 | |
| 		break;
 | |
| 	case KVM_PV_REASON_PAGE_NOT_PRESENT:
 | |
| 		vcpu->arch.apf.host_apf_reason = 0;
 | |
| 		local_irq_disable();
 | |
| 		kvm_async_pf_task_wait(fault_address, 0);
 | |
| 		local_irq_enable();
 | |
| 		break;
 | |
| 	case KVM_PV_REASON_PAGE_READY:
 | |
| 		vcpu->arch.apf.host_apf_reason = 0;
 | |
| 		local_irq_disable();
 | |
| 		kvm_async_pf_task_wake(fault_address);
 | |
| 		local_irq_enable();
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
 | |
| 
 | |
| static bool
 | |
| check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
 | |
| {
 | |
| 	int page_num = KVM_PAGES_PER_HPAGE(level);
 | |
| 
 | |
| 	gfn &= ~(page_num - 1);
 | |
| 
 | |
| 	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
 | |
| }
 | |
| 
 | |
| static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
 | |
| 			  bool prefault)
 | |
| {
 | |
| 	kvm_pfn_t pfn;
 | |
| 	int r;
 | |
| 	int level;
 | |
| 	bool force_pt_level;
 | |
| 	gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 	unsigned long mmu_seq;
 | |
| 	int write = error_code & PFERR_WRITE_MASK;
 | |
| 	bool map_writable;
 | |
| 
 | |
| 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
 | |
| 
 | |
| 	if (page_fault_handle_page_track(vcpu, error_code, gfn))
 | |
| 		return RET_PF_EMULATE;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
 | |
| 							   PT_DIRECTORY_LEVEL);
 | |
| 	level = mapping_level(vcpu, gfn, &force_pt_level);
 | |
| 	if (likely(!force_pt_level)) {
 | |
| 		if (level > PT_DIRECTORY_LEVEL &&
 | |
| 		    !check_hugepage_cache_consistency(vcpu, gfn, level))
 | |
| 			level = PT_DIRECTORY_LEVEL;
 | |
| 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
 | |
| 	}
 | |
| 
 | |
| 	if (fast_page_fault(vcpu, gpa, level, error_code))
 | |
| 		return RET_PF_RETRY;
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
 | |
| 		return RET_PF_RETRY;
 | |
| 
 | |
| 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 	if (make_mmu_pages_available(vcpu) < 0)
 | |
| 		goto out_unlock;
 | |
| 	if (likely(!force_pt_level))
 | |
| 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
 | |
| 	r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	return r;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return RET_PF_RETRY;
 | |
| }
 | |
| 
 | |
| static void nonpaging_init_context(struct kvm_vcpu *vcpu,
 | |
| 				   struct kvm_mmu *context)
 | |
| {
 | |
| 	context->page_fault = nonpaging_page_fault;
 | |
| 	context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 	context->sync_page = nonpaging_sync_page;
 | |
| 	context->invlpg = nonpaging_invlpg;
 | |
| 	context->update_pte = nonpaging_update_pte;
 | |
| 	context->root_level = 0;
 | |
| 	context->shadow_root_level = PT32E_ROOT_LEVEL;
 | |
| 	context->direct_map = true;
 | |
| 	context->nx = false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find out if a previously cached root matching the new CR3/role is available.
 | |
|  * The current root is also inserted into the cache.
 | |
|  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 | |
|  * returned.
 | |
|  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 | |
|  * false is returned. This root should now be freed by the caller.
 | |
|  */
 | |
| static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
 | |
| 				  union kvm_mmu_page_role new_role)
 | |
| {
 | |
| 	uint i;
 | |
| 	struct kvm_mmu_root_info root;
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 
 | |
| 	root.cr3 = mmu->root_cr3;
 | |
| 	root.hpa = mmu->root_hpa;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 | |
| 		swap(root, mmu->prev_roots[i]);
 | |
| 
 | |
| 		if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
 | |
| 		    page_header(root.hpa) != NULL &&
 | |
| 		    new_role.word == page_header(root.hpa)->role.word)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	mmu->root_hpa = root.hpa;
 | |
| 	mmu->root_cr3 = root.cr3;
 | |
| 
 | |
| 	return i < KVM_MMU_NUM_PREV_ROOTS;
 | |
| }
 | |
| 
 | |
| static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
 | |
| 			    union kvm_mmu_page_role new_role,
 | |
| 			    bool skip_tlb_flush)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 
 | |
| 	/*
 | |
| 	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
 | |
| 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
 | |
| 	 * later if necessary.
 | |
| 	 */
 | |
| 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
 | |
| 	    mmu->root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
 | |
| 			return false;
 | |
| 
 | |
| 		if (cached_root_available(vcpu, new_cr3, new_role)) {
 | |
| 			kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
 | |
| 			if (!skip_tlb_flush) {
 | |
| 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
 | |
| 				kvm_x86_ops->tlb_flush(vcpu, true);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * The last MMIO access's GVA and GPA are cached in the
 | |
| 			 * VCPU. When switching to a new CR3, that GVA->GPA
 | |
| 			 * mapping may no longer be valid. So clear any cached
 | |
| 			 * MMIO info even when we don't need to sync the shadow
 | |
| 			 * page tables.
 | |
| 			 */
 | |
| 			vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
 | |
| 
 | |
| 			__clear_sp_write_flooding_count(
 | |
| 				page_header(mmu->root_hpa));
 | |
| 
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
 | |
| 			      union kvm_mmu_page_role new_role,
 | |
| 			      bool skip_tlb_flush)
 | |
| {
 | |
| 	if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
 | |
| 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
 | |
| 				   KVM_MMU_ROOT_CURRENT);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
 | |
| {
 | |
| 	__kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
 | |
| 			  skip_tlb_flush);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
 | |
| 
 | |
| static unsigned long get_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_read_cr3(vcpu);
 | |
| }
 | |
| 
 | |
| static void inject_page_fault(struct kvm_vcpu *vcpu,
 | |
| 			      struct x86_exception *fault)
 | |
| {
 | |
| 	vcpu->arch.mmu->inject_page_fault(vcpu, fault);
 | |
| }
 | |
| 
 | |
| static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
 | |
| 			   unsigned access, int *nr_present)
 | |
| {
 | |
| 	if (unlikely(is_mmio_spte(*sptep))) {
 | |
| 		if (gfn != get_mmio_spte_gfn(*sptep)) {
 | |
| 			mmu_spte_clear_no_track(sptep);
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		(*nr_present)++;
 | |
| 		mark_mmio_spte(vcpu, sptep, gfn, access);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool is_last_gpte(struct kvm_mmu *mmu,
 | |
| 				unsigned level, unsigned gpte)
 | |
| {
 | |
| 	/*
 | |
| 	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
 | |
| 	 * If it is clear, there are no large pages at this level, so clear
 | |
| 	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
 | |
| 	 */
 | |
| 	gpte &= level - mmu->last_nonleaf_level;
 | |
| 
 | |
| 	/*
 | |
| 	 * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
 | |
| 	 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
 | |
| 	 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
 | |
| 	 */
 | |
| 	gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
 | |
| 
 | |
| 	return gpte & PT_PAGE_SIZE_MASK;
 | |
| }
 | |
| 
 | |
| #define PTTYPE_EPT 18 /* arbitrary */
 | |
| #define PTTYPE PTTYPE_EPT
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| #define PTTYPE 64
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| #define PTTYPE 32
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| static void
 | |
| __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
 | |
| 			struct rsvd_bits_validate *rsvd_check,
 | |
| 			int maxphyaddr, int level, bool nx, bool gbpages,
 | |
| 			bool pse, bool amd)
 | |
| {
 | |
| 	u64 exb_bit_rsvd = 0;
 | |
| 	u64 gbpages_bit_rsvd = 0;
 | |
| 	u64 nonleaf_bit8_rsvd = 0;
 | |
| 
 | |
| 	rsvd_check->bad_mt_xwr = 0;
 | |
| 
 | |
| 	if (!nx)
 | |
| 		exb_bit_rsvd = rsvd_bits(63, 63);
 | |
| 	if (!gbpages)
 | |
| 		gbpages_bit_rsvd = rsvd_bits(7, 7);
 | |
| 
 | |
| 	/*
 | |
| 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
 | |
| 	 * leaf entries) on AMD CPUs only.
 | |
| 	 */
 | |
| 	if (amd)
 | |
| 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PT32_ROOT_LEVEL:
 | |
| 		/* no rsvd bits for 2 level 4K page table entries */
 | |
| 		rsvd_check->rsvd_bits_mask[0][1] = 0;
 | |
| 		rsvd_check->rsvd_bits_mask[0][0] = 0;
 | |
| 		rsvd_check->rsvd_bits_mask[1][0] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][0];
 | |
| 
 | |
| 		if (!pse) {
 | |
| 			rsvd_check->rsvd_bits_mask[1][1] = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (is_cpuid_PSE36())
 | |
| 			/* 36bits PSE 4MB page */
 | |
| 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
 | |
| 		else
 | |
| 			/* 32 bits PSE 4MB page */
 | |
| 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
 | |
| 		break;
 | |
| 	case PT32E_ROOT_LEVEL:
 | |
| 		rsvd_check->rsvd_bits_mask[0][2] =
 | |
| 			rsvd_bits(maxphyaddr, 63) |
 | |
| 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
 | |
| 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62);	/* PDE */
 | |
| 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
 | |
| 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62) |
 | |
| 			rsvd_bits(13, 20);		/* large page */
 | |
| 		rsvd_check->rsvd_bits_mask[1][0] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][0];
 | |
| 		break;
 | |
| 	case PT64_ROOT_5LEVEL:
 | |
| 		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
 | |
| 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		rsvd_check->rsvd_bits_mask[1][4] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][4];
 | |
| 		/* fall through */
 | |
| 	case PT64_ROOT_4LEVEL:
 | |
| 		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
 | |
| 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
 | |
| 			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		rsvd_check->rsvd_bits_mask[1][3] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][3];
 | |
| 		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
 | |
| 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
 | |
| 			rsvd_bits(13, 29);
 | |
| 		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) |
 | |
| 			rsvd_bits(13, 20);		/* large page */
 | |
| 		rsvd_check->rsvd_bits_mask[1][0] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][0];
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu *context)
 | |
| {
 | |
| 	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
 | |
| 				cpuid_maxphyaddr(vcpu), context->root_level,
 | |
| 				context->nx,
 | |
| 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
 | |
| 				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
 | |
| }
 | |
| 
 | |
| static void
 | |
| __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
 | |
| 			    int maxphyaddr, bool execonly)
 | |
| {
 | |
| 	u64 bad_mt_xwr;
 | |
| 
 | |
| 	rsvd_check->rsvd_bits_mask[0][4] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
 | |
| 	rsvd_check->rsvd_bits_mask[0][3] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
 | |
| 	rsvd_check->rsvd_bits_mask[0][2] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
 | |
| 	rsvd_check->rsvd_bits_mask[0][1] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
 | |
| 	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
 | |
| 
 | |
| 	/* large page */
 | |
| 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
 | |
| 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
 | |
| 	rsvd_check->rsvd_bits_mask[1][2] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
 | |
| 	rsvd_check->rsvd_bits_mask[1][1] =
 | |
| 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
 | |
| 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
 | |
| 
 | |
| 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
 | |
| 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
 | |
| 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
 | |
| 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
 | |
| 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
 | |
| 	if (!execonly) {
 | |
| 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
 | |
| 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
 | |
| 	}
 | |
| 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
 | |
| }
 | |
| 
 | |
| static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
 | |
| 		struct kvm_mmu *context, bool execonly)
 | |
| {
 | |
| 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
 | |
| 				    cpuid_maxphyaddr(vcpu), execonly);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the page table on host is the shadow page table for the page
 | |
|  * table in guest or amd nested guest, its mmu features completely
 | |
|  * follow the features in guest.
 | |
|  */
 | |
| void
 | |
| reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
 | |
| {
 | |
| 	bool uses_nx = context->nx ||
 | |
| 		context->mmu_role.base.smep_andnot_wp;
 | |
| 	struct rsvd_bits_validate *shadow_zero_check;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Passing "true" to the last argument is okay; it adds a check
 | |
| 	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
 | |
| 	 */
 | |
| 	shadow_zero_check = &context->shadow_zero_check;
 | |
| 	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
 | |
| 				boot_cpu_data.x86_phys_bits,
 | |
| 				context->shadow_root_level, uses_nx,
 | |
| 				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
 | |
| 				is_pse(vcpu), true);
 | |
| 
 | |
| 	if (!shadow_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = context->shadow_root_level; --i >= 0;) {
 | |
| 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
 | |
| 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
 | |
| 
 | |
| static inline bool boot_cpu_is_amd(void)
 | |
| {
 | |
| 	WARN_ON_ONCE(!tdp_enabled);
 | |
| 	return shadow_x_mask == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the direct page table on host, use as much mmu features as
 | |
|  * possible, however, kvm currently does not do execution-protection.
 | |
|  */
 | |
| static void
 | |
| reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_mmu *context)
 | |
| {
 | |
| 	struct rsvd_bits_validate *shadow_zero_check;
 | |
| 	int i;
 | |
| 
 | |
| 	shadow_zero_check = &context->shadow_zero_check;
 | |
| 
 | |
| 	if (boot_cpu_is_amd())
 | |
| 		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
 | |
| 					boot_cpu_data.x86_phys_bits,
 | |
| 					context->shadow_root_level, false,
 | |
| 					boot_cpu_has(X86_FEATURE_GBPAGES),
 | |
| 					true, true);
 | |
| 	else
 | |
| 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
 | |
| 					    boot_cpu_data.x86_phys_bits,
 | |
| 					    false);
 | |
| 
 | |
| 	if (!shadow_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = context->shadow_root_level; --i >= 0;) {
 | |
| 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
 | |
| 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * as the comments in reset_shadow_zero_bits_mask() except it
 | |
|  * is the shadow page table for intel nested guest.
 | |
|  */
 | |
| static void
 | |
| reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_mmu *context, bool execonly)
 | |
| {
 | |
| 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
 | |
| 				    boot_cpu_data.x86_phys_bits, execonly);
 | |
| }
 | |
| 
 | |
| #define BYTE_MASK(access) \
 | |
| 	((1 & (access) ? 2 : 0) | \
 | |
| 	 (2 & (access) ? 4 : 0) | \
 | |
| 	 (3 & (access) ? 8 : 0) | \
 | |
| 	 (4 & (access) ? 16 : 0) | \
 | |
| 	 (5 & (access) ? 32 : 0) | \
 | |
| 	 (6 & (access) ? 64 : 0) | \
 | |
| 	 (7 & (access) ? 128 : 0))
 | |
| 
 | |
| 
 | |
| static void update_permission_bitmask(struct kvm_vcpu *vcpu,
 | |
| 				      struct kvm_mmu *mmu, bool ept)
 | |
| {
 | |
| 	unsigned byte;
 | |
| 
 | |
| 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
 | |
| 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
 | |
| 	const u8 u = BYTE_MASK(ACC_USER_MASK);
 | |
| 
 | |
| 	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
 | |
| 	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
 | |
| 	bool cr0_wp = is_write_protection(vcpu);
 | |
| 
 | |
| 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
 | |
| 		unsigned pfec = byte << 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Each "*f" variable has a 1 bit for each UWX value
 | |
| 		 * that causes a fault with the given PFEC.
 | |
| 		 */
 | |
| 
 | |
| 		/* Faults from writes to non-writable pages */
 | |
| 		u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
 | |
| 		/* Faults from user mode accesses to supervisor pages */
 | |
| 		u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
 | |
| 		/* Faults from fetches of non-executable pages*/
 | |
| 		u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
 | |
| 		/* Faults from kernel mode fetches of user pages */
 | |
| 		u8 smepf = 0;
 | |
| 		/* Faults from kernel mode accesses of user pages */
 | |
| 		u8 smapf = 0;
 | |
| 
 | |
| 		if (!ept) {
 | |
| 			/* Faults from kernel mode accesses to user pages */
 | |
| 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
 | |
| 
 | |
| 			/* Not really needed: !nx will cause pte.nx to fault */
 | |
| 			if (!mmu->nx)
 | |
| 				ff = 0;
 | |
| 
 | |
| 			/* Allow supervisor writes if !cr0.wp */
 | |
| 			if (!cr0_wp)
 | |
| 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
 | |
| 
 | |
| 			/* Disallow supervisor fetches of user code if cr4.smep */
 | |
| 			if (cr4_smep)
 | |
| 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * SMAP:kernel-mode data accesses from user-mode
 | |
| 			 * mappings should fault. A fault is considered
 | |
| 			 * as a SMAP violation if all of the following
 | |
| 			 * conditions are true:
 | |
| 			 *   - X86_CR4_SMAP is set in CR4
 | |
| 			 *   - A user page is accessed
 | |
| 			 *   - The access is not a fetch
 | |
| 			 *   - Page fault in kernel mode
 | |
| 			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
 | |
| 			 *
 | |
| 			 * Here, we cover the first three conditions.
 | |
| 			 * The fourth is computed dynamically in permission_fault();
 | |
| 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
 | |
| 			 * *not* subject to SMAP restrictions.
 | |
| 			 */
 | |
| 			if (cr4_smap)
 | |
| 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
 | |
| 		}
 | |
| 
 | |
| 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| * PKU is an additional mechanism by which the paging controls access to
 | |
| * user-mode addresses based on the value in the PKRU register.  Protection
 | |
| * key violations are reported through a bit in the page fault error code.
 | |
| * Unlike other bits of the error code, the PK bit is not known at the
 | |
| * call site of e.g. gva_to_gpa; it must be computed directly in
 | |
| * permission_fault based on two bits of PKRU, on some machine state (CR4,
 | |
| * CR0, EFER, CPL), and on other bits of the error code and the page tables.
 | |
| *
 | |
| * In particular the following conditions come from the error code, the
 | |
| * page tables and the machine state:
 | |
| * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
 | |
| * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
 | |
| * - PK is always zero if U=0 in the page tables
 | |
| * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
 | |
| *
 | |
| * The PKRU bitmask caches the result of these four conditions.  The error
 | |
| * code (minus the P bit) and the page table's U bit form an index into the
 | |
| * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
 | |
| * with the two bits of the PKRU register corresponding to the protection key.
 | |
| * For the first three conditions above the bits will be 00, thus masking
 | |
| * away both AD and WD.  For all reads or if the last condition holds, WD
 | |
| * only will be masked away.
 | |
| */
 | |
| static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 				bool ept)
 | |
| {
 | |
| 	unsigned bit;
 | |
| 	bool wp;
 | |
| 
 | |
| 	if (ept) {
 | |
| 		mmu->pkru_mask = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
 | |
| 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
 | |
| 		mmu->pkru_mask = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	wp = is_write_protection(vcpu);
 | |
| 
 | |
| 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
 | |
| 		unsigned pfec, pkey_bits;
 | |
| 		bool check_pkey, check_write, ff, uf, wf, pte_user;
 | |
| 
 | |
| 		pfec = bit << 1;
 | |
| 		ff = pfec & PFERR_FETCH_MASK;
 | |
| 		uf = pfec & PFERR_USER_MASK;
 | |
| 		wf = pfec & PFERR_WRITE_MASK;
 | |
| 
 | |
| 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
 | |
| 		pte_user = pfec & PFERR_RSVD_MASK;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only need to check the access which is not an
 | |
| 		 * instruction fetch and is to a user page.
 | |
| 		 */
 | |
| 		check_pkey = (!ff && pte_user);
 | |
| 		/*
 | |
| 		 * write access is controlled by PKRU if it is a
 | |
| 		 * user access or CR0.WP = 1.
 | |
| 		 */
 | |
| 		check_write = check_pkey && wf && (uf || wp);
 | |
| 
 | |
| 		/* PKRU.AD stops both read and write access. */
 | |
| 		pkey_bits = !!check_pkey;
 | |
| 		/* PKRU.WD stops write access. */
 | |
| 		pkey_bits |= (!!check_write) << 1;
 | |
| 
 | |
| 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
 | |
| {
 | |
| 	unsigned root_level = mmu->root_level;
 | |
| 
 | |
| 	mmu->last_nonleaf_level = root_level;
 | |
| 	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
 | |
| 		mmu->last_nonleaf_level++;
 | |
| }
 | |
| 
 | |
| static void paging64_init_context_common(struct kvm_vcpu *vcpu,
 | |
| 					 struct kvm_mmu *context,
 | |
| 					 int level)
 | |
| {
 | |
| 	context->nx = is_nx(vcpu);
 | |
| 	context->root_level = level;
 | |
| 
 | |
| 	reset_rsvds_bits_mask(vcpu, context);
 | |
| 	update_permission_bitmask(vcpu, context, false);
 | |
| 	update_pkru_bitmask(vcpu, context, false);
 | |
| 	update_last_nonleaf_level(vcpu, context);
 | |
| 
 | |
| 	MMU_WARN_ON(!is_pae(vcpu));
 | |
| 	context->page_fault = paging64_page_fault;
 | |
| 	context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	context->sync_page = paging64_sync_page;
 | |
| 	context->invlpg = paging64_invlpg;
 | |
| 	context->update_pte = paging64_update_pte;
 | |
| 	context->shadow_root_level = level;
 | |
| 	context->direct_map = false;
 | |
| }
 | |
| 
 | |
| static void paging64_init_context(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu *context)
 | |
| {
 | |
| 	int root_level = is_la57_mode(vcpu) ?
 | |
| 			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
 | |
| 
 | |
| 	paging64_init_context_common(vcpu, context, root_level);
 | |
| }
 | |
| 
 | |
| static void paging32_init_context(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu *context)
 | |
| {
 | |
| 	context->nx = false;
 | |
| 	context->root_level = PT32_ROOT_LEVEL;
 | |
| 
 | |
| 	reset_rsvds_bits_mask(vcpu, context);
 | |
| 	update_permission_bitmask(vcpu, context, false);
 | |
| 	update_pkru_bitmask(vcpu, context, false);
 | |
| 	update_last_nonleaf_level(vcpu, context);
 | |
| 
 | |
| 	context->page_fault = paging32_page_fault;
 | |
| 	context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 	context->sync_page = paging32_sync_page;
 | |
| 	context->invlpg = paging32_invlpg;
 | |
| 	context->update_pte = paging32_update_pte;
 | |
| 	context->shadow_root_level = PT32E_ROOT_LEVEL;
 | |
| 	context->direct_map = false;
 | |
| }
 | |
| 
 | |
| static void paging32E_init_context(struct kvm_vcpu *vcpu,
 | |
| 				   struct kvm_mmu *context)
 | |
| {
 | |
| 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	union kvm_mmu_extended_role ext = {0};
 | |
| 
 | |
| 	ext.cr0_pg = !!is_paging(vcpu);
 | |
| 	ext.cr4_pae = !!is_pae(vcpu);
 | |
| 	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
 | |
| 	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
 | |
| 	ext.cr4_pse = !!is_pse(vcpu);
 | |
| 	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
 | |
| 	ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
 | |
| 	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
 | |
| 
 | |
| 	ext.valid = 1;
 | |
| 
 | |
| 	return ext;
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
 | |
| 						   bool base_only)
 | |
| {
 | |
| 	union kvm_mmu_role role = {0};
 | |
| 
 | |
| 	role.base.access = ACC_ALL;
 | |
| 	role.base.nxe = !!is_nx(vcpu);
 | |
| 	role.base.cr0_wp = is_write_protection(vcpu);
 | |
| 	role.base.smm = is_smm(vcpu);
 | |
| 	role.base.guest_mode = is_guest_mode(vcpu);
 | |
| 
 | |
| 	if (base_only)
 | |
| 		return role;
 | |
| 
 | |
| 	role.ext = kvm_calc_mmu_role_ext(vcpu);
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
 | |
| {
 | |
| 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
 | |
| 
 | |
| 	role.base.ad_disabled = (shadow_accessed_mask == 0);
 | |
| 	role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
 | |
| 	role.base.direct = true;
 | |
| 	role.base.gpte_is_8_bytes = true;
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = vcpu->arch.mmu;
 | |
| 	union kvm_mmu_role new_role =
 | |
| 		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
 | |
| 
 | |
| 	new_role.base.word &= mmu_base_role_mask.word;
 | |
| 	if (new_role.as_u64 == context->mmu_role.as_u64)
 | |
| 		return;
 | |
| 
 | |
| 	context->mmu_role.as_u64 = new_role.as_u64;
 | |
| 	context->page_fault = tdp_page_fault;
 | |
| 	context->sync_page = nonpaging_sync_page;
 | |
| 	context->invlpg = nonpaging_invlpg;
 | |
| 	context->update_pte = nonpaging_update_pte;
 | |
| 	context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
 | |
| 	context->direct_map = true;
 | |
| 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
 | |
| 	context->get_cr3 = get_cr3;
 | |
| 	context->get_pdptr = kvm_pdptr_read;
 | |
| 	context->inject_page_fault = kvm_inject_page_fault;
 | |
| 
 | |
| 	if (!is_paging(vcpu)) {
 | |
| 		context->nx = false;
 | |
| 		context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 		context->root_level = 0;
 | |
| 	} else if (is_long_mode(vcpu)) {
 | |
| 		context->nx = is_nx(vcpu);
 | |
| 		context->root_level = is_la57_mode(vcpu) ?
 | |
| 				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, context);
 | |
| 		context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	} else if (is_pae(vcpu)) {
 | |
| 		context->nx = is_nx(vcpu);
 | |
| 		context->root_level = PT32E_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, context);
 | |
| 		context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	} else {
 | |
| 		context->nx = false;
 | |
| 		context->root_level = PT32_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, context);
 | |
| 		context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 	}
 | |
| 
 | |
| 	update_permission_bitmask(vcpu, context, false);
 | |
| 	update_pkru_bitmask(vcpu, context, false);
 | |
| 	update_last_nonleaf_level(vcpu, context);
 | |
| 	reset_tdp_shadow_zero_bits_mask(vcpu, context);
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
 | |
| {
 | |
| 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
 | |
| 
 | |
| 	role.base.smep_andnot_wp = role.ext.cr4_smep &&
 | |
| 		!is_write_protection(vcpu);
 | |
| 	role.base.smap_andnot_wp = role.ext.cr4_smap &&
 | |
| 		!is_write_protection(vcpu);
 | |
| 	role.base.direct = !is_paging(vcpu);
 | |
| 	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
 | |
| 
 | |
| 	if (!is_long_mode(vcpu))
 | |
| 		role.base.level = PT32E_ROOT_LEVEL;
 | |
| 	else if (is_la57_mode(vcpu))
 | |
| 		role.base.level = PT64_ROOT_5LEVEL;
 | |
| 	else
 | |
| 		role.base.level = PT64_ROOT_4LEVEL;
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = vcpu->arch.mmu;
 | |
| 	union kvm_mmu_role new_role =
 | |
| 		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
 | |
| 
 | |
| 	new_role.base.word &= mmu_base_role_mask.word;
 | |
| 	if (new_role.as_u64 == context->mmu_role.as_u64)
 | |
| 		return;
 | |
| 
 | |
| 	if (!is_paging(vcpu))
 | |
| 		nonpaging_init_context(vcpu, context);
 | |
| 	else if (is_long_mode(vcpu))
 | |
| 		paging64_init_context(vcpu, context);
 | |
| 	else if (is_pae(vcpu))
 | |
| 		paging32E_init_context(vcpu, context);
 | |
| 	else
 | |
| 		paging32_init_context(vcpu, context);
 | |
| 
 | |
| 	context->mmu_role.as_u64 = new_role.as_u64;
 | |
| 	reset_shadow_zero_bits_mask(vcpu, context);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
 | |
| 				   bool execonly)
 | |
| {
 | |
| 	union kvm_mmu_role role = {0};
 | |
| 
 | |
| 	/* SMM flag is inherited from root_mmu */
 | |
| 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
 | |
| 
 | |
| 	role.base.level = PT64_ROOT_4LEVEL;
 | |
| 	role.base.gpte_is_8_bytes = true;
 | |
| 	role.base.direct = false;
 | |
| 	role.base.ad_disabled = !accessed_dirty;
 | |
| 	role.base.guest_mode = true;
 | |
| 	role.base.access = ACC_ALL;
 | |
| 
 | |
| 	/*
 | |
| 	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
 | |
| 	 * SMAP variation to denote shadow EPT entries.
 | |
| 	 */
 | |
| 	role.base.cr0_wp = true;
 | |
| 	role.base.smap_andnot_wp = true;
 | |
| 
 | |
| 	role.ext = kvm_calc_mmu_role_ext(vcpu);
 | |
| 	role.ext.execonly = execonly;
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 | |
| 			     bool accessed_dirty, gpa_t new_eptp)
 | |
| {
 | |
| 	struct kvm_mmu *context = vcpu->arch.mmu;
 | |
| 	union kvm_mmu_role new_role =
 | |
| 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
 | |
| 						   execonly);
 | |
| 
 | |
| 	__kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
 | |
| 
 | |
| 	new_role.base.word &= mmu_base_role_mask.word;
 | |
| 	if (new_role.as_u64 == context->mmu_role.as_u64)
 | |
| 		return;
 | |
| 
 | |
| 	context->shadow_root_level = PT64_ROOT_4LEVEL;
 | |
| 
 | |
| 	context->nx = true;
 | |
| 	context->ept_ad = accessed_dirty;
 | |
| 	context->page_fault = ept_page_fault;
 | |
| 	context->gva_to_gpa = ept_gva_to_gpa;
 | |
| 	context->sync_page = ept_sync_page;
 | |
| 	context->invlpg = ept_invlpg;
 | |
| 	context->update_pte = ept_update_pte;
 | |
| 	context->root_level = PT64_ROOT_4LEVEL;
 | |
| 	context->direct_map = false;
 | |
| 	context->mmu_role.as_u64 = new_role.as_u64;
 | |
| 
 | |
| 	update_permission_bitmask(vcpu, context, true);
 | |
| 	update_pkru_bitmask(vcpu, context, true);
 | |
| 	update_last_nonleaf_level(vcpu, context);
 | |
| 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
 | |
| 	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
 | |
| 
 | |
| static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = vcpu->arch.mmu;
 | |
| 
 | |
| 	kvm_init_shadow_mmu(vcpu);
 | |
| 	context->set_cr3           = kvm_x86_ops->set_cr3;
 | |
| 	context->get_cr3           = get_cr3;
 | |
| 	context->get_pdptr         = kvm_pdptr_read;
 | |
| 	context->inject_page_fault = kvm_inject_page_fault;
 | |
| }
 | |
| 
 | |
| static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
 | |
| 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
 | |
| 
 | |
| 	new_role.base.word &= mmu_base_role_mask.word;
 | |
| 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
 | |
| 		return;
 | |
| 
 | |
| 	g_context->mmu_role.as_u64 = new_role.as_u64;
 | |
| 	g_context->get_cr3           = get_cr3;
 | |
| 	g_context->get_pdptr         = kvm_pdptr_read;
 | |
| 	g_context->inject_page_fault = kvm_inject_page_fault;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
 | |
| 	 * L1's nested page tables (e.g. EPT12). The nested translation
 | |
| 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
 | |
| 	 * L2's page tables as the first level of translation and L1's
 | |
| 	 * nested page tables as the second level of translation. Basically
 | |
| 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
 | |
| 	 */
 | |
| 	if (!is_paging(vcpu)) {
 | |
| 		g_context->nx = false;
 | |
| 		g_context->root_level = 0;
 | |
| 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
 | |
| 	} else if (is_long_mode(vcpu)) {
 | |
| 		g_context->nx = is_nx(vcpu);
 | |
| 		g_context->root_level = is_la57_mode(vcpu) ?
 | |
| 					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, g_context);
 | |
| 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
 | |
| 	} else if (is_pae(vcpu)) {
 | |
| 		g_context->nx = is_nx(vcpu);
 | |
| 		g_context->root_level = PT32E_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, g_context);
 | |
| 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
 | |
| 	} else {
 | |
| 		g_context->nx = false;
 | |
| 		g_context->root_level = PT32_ROOT_LEVEL;
 | |
| 		reset_rsvds_bits_mask(vcpu, g_context);
 | |
| 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
 | |
| 	}
 | |
| 
 | |
| 	update_permission_bitmask(vcpu, g_context, false);
 | |
| 	update_pkru_bitmask(vcpu, g_context, false);
 | |
| 	update_last_nonleaf_level(vcpu, g_context);
 | |
| }
 | |
| 
 | |
| void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
 | |
| {
 | |
| 	if (reset_roots) {
 | |
| 		uint i;
 | |
| 
 | |
| 		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
 | |
| 
 | |
| 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
 | |
| 	}
 | |
| 
 | |
| 	if (mmu_is_nested(vcpu))
 | |
| 		init_kvm_nested_mmu(vcpu);
 | |
| 	else if (tdp_enabled)
 | |
| 		init_kvm_tdp_mmu(vcpu);
 | |
| 	else
 | |
| 		init_kvm_softmmu(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_init_mmu);
 | |
| 
 | |
| static union kvm_mmu_page_role
 | |
| kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	union kvm_mmu_role role;
 | |
| 
 | |
| 	if (tdp_enabled)
 | |
| 		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
 | |
| 	else
 | |
| 		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
 | |
| 
 | |
| 	return role.base;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	kvm_init_mmu(vcpu, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
 | |
| 
 | |
| int kvm_mmu_load(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_alloc_roots(vcpu);
 | |
| 	kvm_mmu_sync_roots(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	kvm_mmu_load_cr3(vcpu);
 | |
| 	kvm_x86_ops->tlb_flush(vcpu, true);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_load);
 | |
| 
 | |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
 | |
| 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
 | |
| 	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 | |
| 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_unload);
 | |
| 
 | |
| static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp, u64 *spte,
 | |
| 				  const void *new)
 | |
| {
 | |
| 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
 | |
| 		++vcpu->kvm->stat.mmu_pde_zapped;
 | |
| 		return;
 | |
|         }
 | |
| 
 | |
| 	++vcpu->kvm->stat.mmu_pte_updated;
 | |
| 	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
 | |
| }
 | |
| 
 | |
| static bool need_remote_flush(u64 old, u64 new)
 | |
| {
 | |
| 	if (!is_shadow_present_pte(old))
 | |
| 		return false;
 | |
| 	if (!is_shadow_present_pte(new))
 | |
| 		return true;
 | |
| 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
 | |
| 		return true;
 | |
| 	old ^= shadow_nx_mask;
 | |
| 	new ^= shadow_nx_mask;
 | |
| 	return (old & ~new & PT64_PERM_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
 | |
| 				    int *bytes)
 | |
| {
 | |
| 	u64 gentry = 0;
 | |
| 	int r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume that the pte write on a page table of the same type
 | |
| 	 * as the current vcpu paging mode since we update the sptes only
 | |
| 	 * when they have the same mode.
 | |
| 	 */
 | |
| 	if (is_pae(vcpu) && *bytes == 4) {
 | |
| 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
 | |
| 		*gpa &= ~(gpa_t)7;
 | |
| 		*bytes = 8;
 | |
| 	}
 | |
| 
 | |
| 	if (*bytes == 4 || *bytes == 8) {
 | |
| 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
 | |
| 		if (r)
 | |
| 			gentry = 0;
 | |
| 	}
 | |
| 
 | |
| 	return gentry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we're seeing too many writes to a page, it may no longer be a page table,
 | |
|  * or we may be forking, in which case it is better to unmap the page.
 | |
|  */
 | |
| static bool detect_write_flooding(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Skip write-flooding detected for the sp whose level is 1, because
 | |
| 	 * it can become unsync, then the guest page is not write-protected.
 | |
| 	 */
 | |
| 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return false;
 | |
| 
 | |
| 	atomic_inc(&sp->write_flooding_count);
 | |
| 	return atomic_read(&sp->write_flooding_count) >= 3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Misaligned accesses are too much trouble to fix up; also, they usually
 | |
|  * indicate a page is not used as a page table.
 | |
|  */
 | |
| static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
 | |
| 				    int bytes)
 | |
| {
 | |
| 	unsigned offset, pte_size, misaligned;
 | |
| 
 | |
| 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
 | |
| 		 gpa, bytes, sp->role.word);
 | |
| 
 | |
| 	offset = offset_in_page(gpa);
 | |
| 	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sometimes, the OS only writes the last one bytes to update status
 | |
| 	 * bits, for example, in linux, andb instruction is used in clear_bit().
 | |
| 	 */
 | |
| 	if (!(offset & (pte_size - 1)) && bytes == 1)
 | |
| 		return false;
 | |
| 
 | |
| 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
 | |
| 	misaligned |= bytes < 4;
 | |
| 
 | |
| 	return misaligned;
 | |
| }
 | |
| 
 | |
| static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
 | |
| {
 | |
| 	unsigned page_offset, quadrant;
 | |
| 	u64 *spte;
 | |
| 	int level;
 | |
| 
 | |
| 	page_offset = offset_in_page(gpa);
 | |
| 	level = sp->role.level;
 | |
| 	*nspte = 1;
 | |
| 	if (!sp->role.gpte_is_8_bytes) {
 | |
| 		page_offset <<= 1;	/* 32->64 */
 | |
| 		/*
 | |
| 		 * A 32-bit pde maps 4MB while the shadow pdes map
 | |
| 		 * only 2MB.  So we need to double the offset again
 | |
| 		 * and zap two pdes instead of one.
 | |
| 		 */
 | |
| 		if (level == PT32_ROOT_LEVEL) {
 | |
| 			page_offset &= ~7; /* kill rounding error */
 | |
| 			page_offset <<= 1;
 | |
| 			*nspte = 2;
 | |
| 		}
 | |
| 		quadrant = page_offset >> PAGE_SHIFT;
 | |
| 		page_offset &= ~PAGE_MASK;
 | |
| 		if (quadrant != sp->role.quadrant)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	spte = &sp->spt[page_offset / sizeof(*spte)];
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			      const u8 *new, int bytes,
 | |
| 			      struct kvm_page_track_notifier_node *node)
 | |
| {
 | |
| 	gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	u64 entry, gentry, *spte;
 | |
| 	int npte;
 | |
| 	bool remote_flush, local_flush;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't have indirect shadow pages, it means no page is
 | |
| 	 * write-protected, so we can exit simply.
 | |
| 	 */
 | |
| 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
 | |
| 		return;
 | |
| 
 | |
| 	remote_flush = local_flush = false;
 | |
| 
 | |
| 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to care whether allocation memory is successful
 | |
| 	 * or not since pte prefetch is skiped if it does not have
 | |
| 	 * enough objects in the cache.
 | |
| 	 */
 | |
| 	mmu_topup_memory_caches(vcpu);
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
 | |
| 
 | |
| 	++vcpu->kvm->stat.mmu_pte_write;
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
 | |
| 
 | |
| 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
 | |
| 		if (detect_write_misaligned(sp, gpa, bytes) ||
 | |
| 		      detect_write_flooding(sp)) {
 | |
| 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
 | |
| 			++vcpu->kvm->stat.mmu_flooded;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spte = get_written_sptes(sp, gpa, &npte);
 | |
| 		if (!spte)
 | |
| 			continue;
 | |
| 
 | |
| 		local_flush = true;
 | |
| 		while (npte--) {
 | |
| 			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
 | |
| 
 | |
| 			entry = *spte;
 | |
| 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
 | |
| 			if (gentry &&
 | |
| 			      !((sp->role.word ^ base_role)
 | |
| 			      & mmu_base_role_mask.word) && rmap_can_add(vcpu))
 | |
| 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
 | |
| 			if (need_remote_flush(entry, *spte))
 | |
| 				remote_flush = true;
 | |
| 			++spte;
 | |
| 		}
 | |
| 	}
 | |
| 	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
 | |
| 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 	int r;
 | |
| 
 | |
| 	if (vcpu->arch.mmu->direct_map)
 | |
| 		return 0;
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
 | |
| 
 | |
| 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
 | |
| 
 | |
| static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 
 | |
| 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
 | |
| 		return 0;
 | |
| 
 | |
| 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
 | |
| 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
 | |
| 			break;
 | |
| 
 | |
| 		++vcpu->kvm->stat.mmu_recycled;
 | |
| 	}
 | |
| 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 
 | |
| 	if (!kvm_mmu_available_pages(vcpu->kvm))
 | |
| 		return -ENOSPC;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
 | |
| 		       void *insn, int insn_len)
 | |
| {
 | |
| 	int r, emulation_type = 0;
 | |
| 	enum emulation_result er;
 | |
| 	bool direct = vcpu->arch.mmu->direct_map;
 | |
| 
 | |
| 	/* With shadow page tables, fault_address contains a GVA or nGPA.  */
 | |
| 	if (vcpu->arch.mmu->direct_map) {
 | |
| 		vcpu->arch.gpa_available = true;
 | |
| 		vcpu->arch.gpa_val = cr2;
 | |
| 	}
 | |
| 
 | |
| 	r = RET_PF_INVALID;
 | |
| 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
 | |
| 		r = handle_mmio_page_fault(vcpu, cr2, direct);
 | |
| 		if (r == RET_PF_EMULATE)
 | |
| 			goto emulate;
 | |
| 	}
 | |
| 
 | |
| 	if (r == RET_PF_INVALID) {
 | |
| 		r = vcpu->arch.mmu->page_fault(vcpu, cr2,
 | |
| 					       lower_32_bits(error_code),
 | |
| 					       false);
 | |
| 		WARN_ON(r == RET_PF_INVALID);
 | |
| 	}
 | |
| 
 | |
| 	if (r == RET_PF_RETRY)
 | |
| 		return 1;
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Before emulating the instruction, check if the error code
 | |
| 	 * was due to a RO violation while translating the guest page.
 | |
| 	 * This can occur when using nested virtualization with nested
 | |
| 	 * paging in both guests. If true, we simply unprotect the page
 | |
| 	 * and resume the guest.
 | |
| 	 */
 | |
| 	if (vcpu->arch.mmu->direct_map &&
 | |
| 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
 | |
| 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
 | |
| 	 * optimistically try to just unprotect the page and let the processor
 | |
| 	 * re-execute the instruction that caused the page fault.  Do not allow
 | |
| 	 * retrying MMIO emulation, as it's not only pointless but could also
 | |
| 	 * cause us to enter an infinite loop because the processor will keep
 | |
| 	 * faulting on the non-existent MMIO address.  Retrying an instruction
 | |
| 	 * from a nested guest is also pointless and dangerous as we are only
 | |
| 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
 | |
| 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
 | |
| 	 */
 | |
| 	if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
 | |
| 		emulation_type = EMULTYPE_ALLOW_RETRY;
 | |
| emulate:
 | |
| 	/*
 | |
| 	 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
 | |
| 	 * This can happen if a guest gets a page-fault on data access but the HW
 | |
| 	 * table walker is not able to read the instruction page (e.g instruction
 | |
| 	 * page is not present in memory). In those cases we simply restart the
 | |
| 	 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
 | |
| 	 */
 | |
| 	if (unlikely(insn && !insn_len)) {
 | |
| 		if (!kvm_x86_ops->need_emulation_on_page_fault(vcpu))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
 | |
| 
 | |
| 	switch (er) {
 | |
| 	case EMULATE_DONE:
 | |
| 		return 1;
 | |
| 	case EMULATE_USER_EXIT:
 | |
| 		++vcpu->stat.mmio_exits;
 | |
| 		/* fall through */
 | |
| 	case EMULATE_FAIL:
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
 | |
| 
 | |
| void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	int i;
 | |
| 
 | |
| 	/* INVLPG on a * non-canonical address is a NOP according to the SDM.  */
 | |
| 	if (is_noncanonical_address(gva, vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	mmu->invlpg(vcpu, gva, mmu->root_hpa);
 | |
| 
 | |
| 	/*
 | |
| 	 * INVLPG is required to invalidate any global mappings for the VA,
 | |
| 	 * irrespective of PCID. Since it would take us roughly similar amount
 | |
| 	 * of work to determine whether any of the prev_root mappings of the VA
 | |
| 	 * is marked global, or to just sync it blindly, so we might as well
 | |
| 	 * just always sync it.
 | |
| 	 *
 | |
| 	 * Mappings not reachable via the current cr3 or the prev_roots will be
 | |
| 	 * synced when switching to that cr3, so nothing needs to be done here
 | |
| 	 * for them.
 | |
| 	 */
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		if (VALID_PAGE(mmu->prev_roots[i].hpa))
 | |
| 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
 | |
| 
 | |
| 	kvm_x86_ops->tlb_flush_gva(vcpu, gva);
 | |
| 	++vcpu->stat.invlpg;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
 | |
| 
 | |
| void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	bool tlb_flush = false;
 | |
| 	uint i;
 | |
| 
 | |
| 	if (pcid == kvm_get_active_pcid(vcpu)) {
 | |
| 		mmu->invlpg(vcpu, gva, mmu->root_hpa);
 | |
| 		tlb_flush = true;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 | |
| 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
 | |
| 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
 | |
| 			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
 | |
| 			tlb_flush = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tlb_flush)
 | |
| 		kvm_x86_ops->tlb_flush_gva(vcpu, gva);
 | |
| 
 | |
| 	++vcpu->stat.invlpg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mappings not reachable via the current cr3 or the prev_roots will be
 | |
| 	 * synced when switching to that cr3, so nothing needs to be done here
 | |
| 	 * for them.
 | |
| 	 */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
 | |
| 
 | |
| void kvm_enable_tdp(void)
 | |
| {
 | |
| 	tdp_enabled = true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_enable_tdp);
 | |
| 
 | |
| void kvm_disable_tdp(void)
 | |
| {
 | |
| 	tdp_enabled = false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_disable_tdp);
 | |
| 
 | |
| 
 | |
| /* The return value indicates if tlb flush on all vcpus is needed. */
 | |
| typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
 | |
| 
 | |
| /* The caller should hold mmu-lock before calling this function. */
 | |
| static __always_inline bool
 | |
| slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
 | |
| 			slot_level_handler fn, int start_level, int end_level,
 | |
| 			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
 | |
| {
 | |
| 	struct slot_rmap_walk_iterator iterator;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
 | |
| 			end_gfn, &iterator) {
 | |
| 		if (iterator.rmap)
 | |
| 			flush |= fn(kvm, iterator.rmap);
 | |
| 
 | |
| 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
 | |
| 			if (flush && lock_flush_tlb) {
 | |
| 				kvm_flush_remote_tlbs_with_address(kvm,
 | |
| 						start_gfn,
 | |
| 						iterator.gfn - start_gfn + 1);
 | |
| 				flush = false;
 | |
| 			}
 | |
| 			cond_resched_lock(&kvm->mmu_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (flush && lock_flush_tlb) {
 | |
| 		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
 | |
| 						   end_gfn - start_gfn + 1);
 | |
| 		flush = false;
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
 | |
| 		  slot_level_handler fn, int start_level, int end_level,
 | |
| 		  bool lock_flush_tlb)
 | |
| {
 | |
| 	return slot_handle_level_range(kvm, memslot, fn, start_level,
 | |
| 			end_level, memslot->base_gfn,
 | |
| 			memslot->base_gfn + memslot->npages - 1,
 | |
| 			lock_flush_tlb);
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
 | |
| 		      slot_level_handler fn, bool lock_flush_tlb)
 | |
| {
 | |
| 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
 | |
| 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
 | |
| 			slot_level_handler fn, bool lock_flush_tlb)
 | |
| {
 | |
| 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
 | |
| 				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
 | |
| 		 slot_level_handler fn, bool lock_flush_tlb)
 | |
| {
 | |
| 	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
 | |
| 				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
 | |
| }
 | |
| 
 | |
| static void free_mmu_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	free_page((unsigned long)vcpu->arch.mmu->pae_root);
 | |
| 	free_page((unsigned long)vcpu->arch.mmu->lm_root);
 | |
| }
 | |
| 
 | |
| static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int i;
 | |
| 
 | |
| 	if (tdp_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
 | |
| 	 * Therefore we need to allocate shadow page tables in the first
 | |
| 	 * 4GB of memory, which happens to fit the DMA32 zone.
 | |
| 	 */
 | |
| 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	vcpu->arch.mmu->pae_root = page_address(page);
 | |
| 	for (i = 0; i < 4; ++i)
 | |
| 		vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_create(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	uint i;
 | |
| 
 | |
| 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
 | |
| 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 | |
| 
 | |
| 	vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
 | |
| 	vcpu->arch.root_mmu.root_cr3 = 0;
 | |
| 	vcpu->arch.root_mmu.translate_gpa = translate_gpa;
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
 | |
| 
 | |
| 	vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
 | |
| 	vcpu->arch.guest_mmu.root_cr3 = 0;
 | |
| 	vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
 | |
| 
 | |
| 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
 | |
| 	return alloc_mmu_pages(vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
 | |
| 			struct kvm_memory_slot *slot,
 | |
| 			struct kvm_page_track_notifier_node *node)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	unsigned long i;
 | |
| 	bool flush;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	if (list_empty(&kvm->arch.active_mmu_pages))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	flush = slot_handle_all_level(kvm, slot, kvm_zap_rmapp, false);
 | |
| 
 | |
| 	for (i = 0; i < slot->npages; i++) {
 | |
| 		gfn = slot->base_gfn + i;
 | |
| 
 | |
| 		for_each_valid_sp(kvm, sp, gfn) {
 | |
| 			if (sp->gfn != gfn)
 | |
| 				continue;
 | |
| 
 | |
| 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
 | |
| 		}
 | |
| 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
 | |
| 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
 | |
| 			flush = false;
 | |
| 			cond_resched_lock(&kvm->mmu_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_init_vm(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
 | |
| 
 | |
| 	node->track_write = kvm_mmu_pte_write;
 | |
| 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
 | |
| 	kvm_page_track_register_notifier(kvm, node);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_uninit_vm(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
 | |
| 
 | |
| 	kvm_page_track_unregister_notifier(kvm, node);
 | |
| }
 | |
| 
 | |
| void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 | |
| 		slots = __kvm_memslots(kvm, i);
 | |
| 		kvm_for_each_memslot(memslot, slots) {
 | |
| 			gfn_t start, end;
 | |
| 
 | |
| 			start = max(gfn_start, memslot->base_gfn);
 | |
| 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
 | |
| 			if (start >= end)
 | |
| 				continue;
 | |
| 
 | |
| 			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
 | |
| 						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
 | |
| 						start, end - 1, true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| static bool slot_rmap_write_protect(struct kvm *kvm,
 | |
| 				    struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	return __rmap_write_protect(kvm, rmap_head, false);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
 | |
| 				      struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	bool flush;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
 | |
| 				      false);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
 | |
| 	 * which do tlb flush out of mmu-lock should be serialized by
 | |
| 	 * kvm->slots_lock otherwise tlb flush would be missed.
 | |
| 	 */
 | |
| 	lockdep_assert_held(&kvm->slots_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can flush all the TLBs out of the mmu lock without TLB
 | |
| 	 * corruption since we just change the spte from writable to
 | |
| 	 * readonly so that we only need to care the case of changing
 | |
| 	 * spte from present to present (changing the spte from present
 | |
| 	 * to nonpresent will flush all the TLBs immediately), in other
 | |
| 	 * words, the only case we care is mmu_spte_update() where we
 | |
| 	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
 | |
| 	 * instead of PT_WRITABLE_MASK, that means it does not depend
 | |
| 	 * on PT_WRITABLE_MASK anymore.
 | |
| 	 */
 | |
| 	if (flush)
 | |
| 		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
 | |
| 			memslot->npages);
 | |
| }
 | |
| 
 | |
| static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
 | |
| 					 struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	int need_tlb_flush = 0;
 | |
| 	kvm_pfn_t pfn;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| restart:
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep) {
 | |
| 		sp = page_header(__pa(sptep));
 | |
| 		pfn = spte_to_pfn(*sptep);
 | |
| 
 | |
| 		/*
 | |
| 		 * We cannot do huge page mapping for indirect shadow pages,
 | |
| 		 * which are found on the last rmap (level = 1) when not using
 | |
| 		 * tdp; such shadow pages are synced with the page table in
 | |
| 		 * the guest, and the guest page table is using 4K page size
 | |
| 		 * mapping if the indirect sp has level = 1.
 | |
| 		 */
 | |
| 		if (sp->role.direct &&
 | |
| 			!kvm_is_reserved_pfn(pfn) &&
 | |
| 			PageTransCompoundMap(pfn_to_page(pfn))) {
 | |
| 			pte_list_remove(rmap_head, sptep);
 | |
| 
 | |
| 			if (kvm_available_flush_tlb_with_range())
 | |
| 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
 | |
| 					KVM_PAGES_PER_HPAGE(sp->role.level));
 | |
| 			else
 | |
| 				need_tlb_flush = 1;
 | |
| 
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return need_tlb_flush;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
 | |
| 				   const struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
 | |
| 			 kvm_mmu_zap_collapsible_spte, true);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
 | |
| 				   struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	bool flush;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	lockdep_assert_held(&kvm->slots_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's also safe to flush TLBs out of mmu lock here as currently this
 | |
| 	 * function is only used for dirty logging, in which case flushing TLB
 | |
| 	 * out of mmu lock also guarantees no dirty pages will be lost in
 | |
| 	 * dirty_bitmap.
 | |
| 	 */
 | |
| 	if (flush)
 | |
| 		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
 | |
| 				memslot->npages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
 | |
| 
 | |
| void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
 | |
| 					struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	bool flush;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
 | |
| 					false);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	/* see kvm_mmu_slot_remove_write_access */
 | |
| 	lockdep_assert_held(&kvm->slots_lock);
 | |
| 
 | |
| 	if (flush)
 | |
| 		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
 | |
| 				memslot->npages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
 | |
| 
 | |
| void kvm_mmu_slot_set_dirty(struct kvm *kvm,
 | |
| 			    struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	bool flush;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	lockdep_assert_held(&kvm->slots_lock);
 | |
| 
 | |
| 	/* see kvm_mmu_slot_leaf_clear_dirty */
 | |
| 	if (flush)
 | |
| 		kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
 | |
| 				memslot->npages);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
 | |
| 
 | |
| static void __kvm_mmu_zap_all(struct kvm *kvm, bool mmio_only)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *node;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	int ign;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| restart:
 | |
| 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
 | |
| 		if (mmio_only && !sp->mmio_cached)
 | |
| 			continue;
 | |
| 		if (sp->role.invalid && sp->root_count)
 | |
| 			continue;
 | |
| 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign)) {
 | |
| 			WARN_ON_ONCE(mmio_only);
 | |
| 			goto restart;
 | |
| 		}
 | |
| 		if (cond_resched_lock(&kvm->mmu_lock))
 | |
| 			goto restart;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_zap_all(struct kvm *kvm)
 | |
| {
 | |
| 	return __kvm_mmu_zap_all(kvm, false);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
 | |
| {
 | |
| 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
 | |
| 
 | |
| 	gen &= MMIO_SPTE_GEN_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Generation numbers are incremented in multiples of the number of
 | |
| 	 * address spaces in order to provide unique generations across all
 | |
| 	 * address spaces.  Strip what is effectively the address space
 | |
| 	 * modifier prior to checking for a wrap of the MMIO generation so
 | |
| 	 * that a wrap in any address space is detected.
 | |
| 	 */
 | |
| 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * The very rare case: if the MMIO generation number has wrapped,
 | |
| 	 * zap all shadow pages.
 | |
| 	 */
 | |
| 	if (unlikely(gen == 0)) {
 | |
| 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
 | |
| 		__kvm_mmu_zap_all(kvm, true);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	int nr_to_scan = sc->nr_to_scan;
 | |
| 	unsigned long freed = 0;
 | |
| 
 | |
| 	spin_lock(&kvm_lock);
 | |
| 
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		int idx;
 | |
| 		LIST_HEAD(invalid_list);
 | |
| 
 | |
| 		/*
 | |
| 		 * Never scan more than sc->nr_to_scan VM instances.
 | |
| 		 * Will not hit this condition practically since we do not try
 | |
| 		 * to shrink more than one VM and it is very unlikely to see
 | |
| 		 * !n_used_mmu_pages so many times.
 | |
| 		 */
 | |
| 		if (!nr_to_scan--)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
 | |
| 		 * here. We may skip a VM instance errorneosly, but we do not
 | |
| 		 * want to shrink a VM that only started to populate its MMU
 | |
| 		 * anyway.
 | |
| 		 */
 | |
| 		if (!kvm->arch.n_used_mmu_pages)
 | |
| 			continue;
 | |
| 
 | |
| 		idx = srcu_read_lock(&kvm->srcu);
 | |
| 		spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
 | |
| 			freed++;
 | |
| 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 
 | |
| 		spin_unlock(&kvm->mmu_lock);
 | |
| 		srcu_read_unlock(&kvm->srcu, idx);
 | |
| 
 | |
| 		/*
 | |
| 		 * unfair on small ones
 | |
| 		 * per-vm shrinkers cry out
 | |
| 		 * sadness comes quickly
 | |
| 		 */
 | |
| 		list_move_tail(&kvm->vm_list, &vm_list);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&kvm_lock);
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
 | |
| }
 | |
| 
 | |
| static struct shrinker mmu_shrinker = {
 | |
| 	.count_objects = mmu_shrink_count,
 | |
| 	.scan_objects = mmu_shrink_scan,
 | |
| 	.seeks = DEFAULT_SEEKS * 10,
 | |
| };
 | |
| 
 | |
| static void mmu_destroy_caches(void)
 | |
| {
 | |
| 	kmem_cache_destroy(pte_list_desc_cache);
 | |
| 	kmem_cache_destroy(mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_module_init(void)
 | |
| {
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * MMU roles use union aliasing which is, generally speaking, an
 | |
| 	 * undefined behavior. However, we supposedly know how compilers behave
 | |
| 	 * and the current status quo is unlikely to change. Guardians below are
 | |
| 	 * supposed to let us know if the assumption becomes false.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
 | |
| 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
 | |
| 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
 | |
| 
 | |
| 	kvm_mmu_reset_all_pte_masks();
 | |
| 
 | |
| 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
 | |
| 					    sizeof(struct pte_list_desc),
 | |
| 					    0, SLAB_ACCOUNT, NULL);
 | |
| 	if (!pte_list_desc_cache)
 | |
| 		goto out;
 | |
| 
 | |
| 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
 | |
| 						  sizeof(struct kvm_mmu_page),
 | |
| 						  0, SLAB_ACCOUNT, NULL);
 | |
| 	if (!mmu_page_header_cache)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = register_shrinker(&mmu_shrinker);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	mmu_destroy_caches();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate mmu pages needed for kvm.
 | |
|  */
 | |
| unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
 | |
| {
 | |
| 	unsigned long nr_mmu_pages;
 | |
| 	unsigned long nr_pages = 0;
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 | |
| 		slots = __kvm_memslots(kvm, i);
 | |
| 
 | |
| 		kvm_for_each_memslot(memslot, slots)
 | |
| 			nr_pages += memslot->npages;
 | |
| 	}
 | |
| 
 | |
| 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
 | |
| 	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
 | |
| 
 | |
| 	return nr_mmu_pages;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	free_mmu_pages(vcpu);
 | |
| 	mmu_free_memory_caches(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_module_exit(void)
 | |
| {
 | |
| 	mmu_destroy_caches();
 | |
| 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
 | |
| 	unregister_shrinker(&mmu_shrinker);
 | |
| 	mmu_audit_disable();
 | |
| }
 |