forked from mirrors/linux
		
	 26fb3dae0a
			
		
	
	
		26fb3dae0a
		
	
	
	
	
		
			
			As all the memblock allocation functions return NULL in case of error rather than panic(), the duplicates with _nopanic suffix can be removed. Link: http://lkml.kernel.org/r/1548057848-15136-22-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Petr Mladek <pmladek@suse.com> [printk] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Guo Ren <ren_guo@c-sky.com> [c-sky] Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Juergen Gross <jgross@suse.com> [Xen] Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Paul Burton <paul.burton@mips.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			396 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			396 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #define DISABLE_BRANCH_PROFILING
 | |
| #define pr_fmt(fmt) "kasan: " fmt
 | |
| 
 | |
| /* cpu_feature_enabled() cannot be used this early */
 | |
| #define USE_EARLY_PGTABLE_L5
 | |
| 
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/task.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include <asm/e820/types.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/cpu_entry_area.h>
 | |
| 
 | |
| extern struct range pfn_mapped[E820_MAX_ENTRIES];
 | |
| 
 | |
| static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
 | |
| 
 | |
| static __init void *early_alloc(size_t size, int nid, bool should_panic)
 | |
| {
 | |
| 	void *ptr = memblock_alloc_try_nid(size, size,
 | |
| 			__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 | |
| 
 | |
| 	if (!ptr && should_panic)
 | |
| 		panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
 | |
| 		      (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
 | |
| 				      unsigned long end, int nid)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		void *p;
 | |
| 
 | |
| 		if (boot_cpu_has(X86_FEATURE_PSE) &&
 | |
| 		    ((end - addr) == PMD_SIZE) &&
 | |
| 		    IS_ALIGNED(addr, PMD_SIZE)) {
 | |
| 			p = early_alloc(PMD_SIZE, nid, false);
 | |
| 			if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
 | |
| 				return;
 | |
| 			else if (p)
 | |
| 				memblock_free(__pa(p), PMD_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		p = early_alloc(PAGE_SIZE, nid, true);
 | |
| 		pmd_populate_kernel(&init_mm, pmd, p);
 | |
| 	}
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	do {
 | |
| 		pte_t entry;
 | |
| 		void *p;
 | |
| 
 | |
| 		if (!pte_none(*pte))
 | |
| 			continue;
 | |
| 
 | |
| 		p = early_alloc(PAGE_SIZE, nid, true);
 | |
| 		entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
 | |
| 		set_pte_at(&init_mm, addr, pte, entry);
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| }
 | |
| 
 | |
| static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
 | |
| 				      unsigned long end, int nid)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	if (pud_none(*pud)) {
 | |
| 		void *p;
 | |
| 
 | |
| 		if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
 | |
| 		    ((end - addr) == PUD_SIZE) &&
 | |
| 		    IS_ALIGNED(addr, PUD_SIZE)) {
 | |
| 			p = early_alloc(PUD_SIZE, nid, false);
 | |
| 			if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
 | |
| 				return;
 | |
| 			else if (p)
 | |
| 				memblock_free(__pa(p), PUD_SIZE);
 | |
| 		}
 | |
| 
 | |
| 		p = early_alloc(PAGE_SIZE, nid, true);
 | |
| 		pud_populate(&init_mm, pud, p);
 | |
| 	}
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (!pmd_large(*pmd))
 | |
| 			kasan_populate_pmd(pmd, addr, next, nid);
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
 | |
| 				      unsigned long end, int nid)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	if (p4d_none(*p4d)) {
 | |
| 		void *p = early_alloc(PAGE_SIZE, nid, true);
 | |
| 
 | |
| 		p4d_populate(&init_mm, p4d, p);
 | |
| 	}
 | |
| 
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (!pud_large(*pud))
 | |
| 			kasan_populate_pud(pud, addr, next, nid);
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
 | |
| 				      unsigned long end, int nid)
 | |
| {
 | |
| 	void *p;
 | |
| 	p4d_t *p4d;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		p = early_alloc(PAGE_SIZE, nid, true);
 | |
| 		pgd_populate(&init_mm, pgd, p);
 | |
| 	}
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 		kasan_populate_p4d(p4d, addr, next, nid);
 | |
| 	} while (p4d++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
 | |
| 					 int nid)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	addr = addr & PAGE_MASK;
 | |
| 	end = round_up(end, PAGE_SIZE);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		kasan_populate_pgd(pgd, addr, next, nid);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| static void __init map_range(struct range *range)
 | |
| {
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 
 | |
| 	start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
 | |
| 	end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
 | |
| 
 | |
| 	kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
 | |
| }
 | |
| 
 | |
| static void __init clear_pgds(unsigned long start,
 | |
| 			unsigned long end)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	/* See comment in kasan_init() */
 | |
| 	unsigned long pgd_end = end & PGDIR_MASK;
 | |
| 
 | |
| 	for (; start < pgd_end; start += PGDIR_SIZE) {
 | |
| 		pgd = pgd_offset_k(start);
 | |
| 		/*
 | |
| 		 * With folded p4d, pgd_clear() is nop, use p4d_clear()
 | |
| 		 * instead.
 | |
| 		 */
 | |
| 		if (pgtable_l5_enabled())
 | |
| 			pgd_clear(pgd);
 | |
| 		else
 | |
| 			p4d_clear(p4d_offset(pgd, start));
 | |
| 	}
 | |
| 
 | |
| 	pgd = pgd_offset_k(start);
 | |
| 	for (; start < end; start += P4D_SIZE)
 | |
| 		p4d_clear(p4d_offset(pgd, start));
 | |
| }
 | |
| 
 | |
| static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
 | |
| {
 | |
| 	unsigned long p4d;
 | |
| 
 | |
| 	if (!pgtable_l5_enabled())
 | |
| 		return (p4d_t *)pgd;
 | |
| 
 | |
| 	p4d = __pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK;
 | |
| 	p4d += __START_KERNEL_map - phys_base;
 | |
| 	return (p4d_t *)p4d + p4d_index(addr);
 | |
| }
 | |
| 
 | |
| static void __init kasan_early_p4d_populate(pgd_t *pgd,
 | |
| 		unsigned long addr,
 | |
| 		unsigned long end)
 | |
| {
 | |
| 	pgd_t pgd_entry;
 | |
| 	p4d_t *p4d, p4d_entry;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		pgd_entry = __pgd(_KERNPG_TABLE |
 | |
| 					__pa_nodebug(kasan_early_shadow_p4d));
 | |
| 		set_pgd(pgd, pgd_entry);
 | |
| 	}
 | |
| 
 | |
| 	p4d = early_p4d_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 
 | |
| 		if (!p4d_none(*p4d))
 | |
| 			continue;
 | |
| 
 | |
| 		p4d_entry = __p4d(_KERNPG_TABLE |
 | |
| 					__pa_nodebug(kasan_early_shadow_pud));
 | |
| 		set_p4d(p4d, p4d_entry);
 | |
| 	} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
 | |
| }
 | |
| 
 | |
| static void __init kasan_map_early_shadow(pgd_t *pgd)
 | |
| {
 | |
| 	/* See comment in kasan_init() */
 | |
| 	unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
 | |
| 	unsigned long end = KASAN_SHADOW_END;
 | |
| 	unsigned long next;
 | |
| 
 | |
| 	pgd += pgd_index(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		kasan_early_p4d_populate(pgd, addr, next);
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KASAN_INLINE
 | |
| static int kasan_die_handler(struct notifier_block *self,
 | |
| 			     unsigned long val,
 | |
| 			     void *data)
 | |
| {
 | |
| 	if (val == DIE_GPF) {
 | |
| 		pr_emerg("CONFIG_KASAN_INLINE enabled\n");
 | |
| 		pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
 | |
| 	}
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block kasan_die_notifier = {
 | |
| 	.notifier_call = kasan_die_handler,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| void __init kasan_early_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
 | |
| 				__PAGE_KERNEL | _PAGE_ENC;
 | |
| 	pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
 | |
| 	pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
 | |
| 	p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
 | |
| 
 | |
| 	/* Mask out unsupported __PAGE_KERNEL bits: */
 | |
| 	pte_val &= __default_kernel_pte_mask;
 | |
| 	pmd_val &= __default_kernel_pte_mask;
 | |
| 	pud_val &= __default_kernel_pte_mask;
 | |
| 	p4d_val &= __default_kernel_pte_mask;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++)
 | |
| 		kasan_early_shadow_pte[i] = __pte(pte_val);
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PMD; i++)
 | |
| 		kasan_early_shadow_pmd[i] = __pmd(pmd_val);
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PUD; i++)
 | |
| 		kasan_early_shadow_pud[i] = __pud(pud_val);
 | |
| 
 | |
| 	for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
 | |
| 		kasan_early_shadow_p4d[i] = __p4d(p4d_val);
 | |
| 
 | |
| 	kasan_map_early_shadow(early_top_pgt);
 | |
| 	kasan_map_early_shadow(init_top_pgt);
 | |
| }
 | |
| 
 | |
| void __init kasan_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 	void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
 | |
| 
 | |
| #ifdef CONFIG_KASAN_INLINE
 | |
| 	register_die_notifier(&kasan_die_notifier);
 | |
| #endif
 | |
| 
 | |
| 	memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
 | |
| 
 | |
| 	/*
 | |
| 	 * We use the same shadow offset for 4- and 5-level paging to
 | |
| 	 * facilitate boot-time switching between paging modes.
 | |
| 	 * As result in 5-level paging mode KASAN_SHADOW_START and
 | |
| 	 * KASAN_SHADOW_END are not aligned to PGD boundary.
 | |
| 	 *
 | |
| 	 * KASAN_SHADOW_START doesn't share PGD with anything else.
 | |
| 	 * We claim whole PGD entry to make things easier.
 | |
| 	 *
 | |
| 	 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
 | |
| 	 * bunch of things like kernel code, modules, EFI mapping, etc.
 | |
| 	 * We need to take extra steps to not overwrite them.
 | |
| 	 */
 | |
| 	if (pgtable_l5_enabled()) {
 | |
| 		void *ptr;
 | |
| 
 | |
| 		ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
 | |
| 		memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
 | |
| 		set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
 | |
| 				__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
 | |
| 	}
 | |
| 
 | |
| 	load_cr3(early_top_pgt);
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
 | |
| 
 | |
| 	kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
 | |
| 			kasan_mem_to_shadow((void *)PAGE_OFFSET));
 | |
| 
 | |
| 	for (i = 0; i < E820_MAX_ENTRIES; i++) {
 | |
| 		if (pfn_mapped[i].end == 0)
 | |
| 			break;
 | |
| 
 | |
| 		map_range(&pfn_mapped[i]);
 | |
| 	}
 | |
| 
 | |
| 	shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
 | |
| 	shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
 | |
| 	shadow_cpu_entry_begin = (void *)round_down(
 | |
| 			(unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
 | |
| 
 | |
| 	shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
 | |
| 					CPU_ENTRY_AREA_MAP_SIZE);
 | |
| 	shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
 | |
| 	shadow_cpu_entry_end = (void *)round_up(
 | |
| 			(unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
 | |
| 
 | |
| 	kasan_populate_early_shadow(
 | |
| 		kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
 | |
| 		shadow_cpu_entry_begin);
 | |
| 
 | |
| 	kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
 | |
| 			      (unsigned long)shadow_cpu_entry_end, 0);
 | |
| 
 | |
| 	kasan_populate_early_shadow(shadow_cpu_entry_end,
 | |
| 			kasan_mem_to_shadow((void *)__START_KERNEL_map));
 | |
| 
 | |
| 	kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
 | |
| 			      (unsigned long)kasan_mem_to_shadow(_end),
 | |
| 			      early_pfn_to_nid(__pa(_stext)));
 | |
| 
 | |
| 	kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
 | |
| 					(void *)KASAN_SHADOW_END);
 | |
| 
 | |
| 	load_cr3(init_top_pgt);
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	/*
 | |
| 	 * kasan_early_shadow_page has been used as early shadow memory, thus
 | |
| 	 * it may contain some garbage. Now we can clear and write protect it,
 | |
| 	 * since after the TLB flush no one should write to it.
 | |
| 	 */
 | |
| 	memset(kasan_early_shadow_page, 0, PAGE_SIZE);
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++) {
 | |
| 		pte_t pte;
 | |
| 		pgprot_t prot;
 | |
| 
 | |
| 		prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
 | |
| 		pgprot_val(prot) &= __default_kernel_pte_mask;
 | |
| 
 | |
| 		pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
 | |
| 		set_pte(&kasan_early_shadow_pte[i], pte);
 | |
| 	}
 | |
| 	/* Flush TLBs again to be sure that write protection applied. */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	init_task.kasan_depth = 0;
 | |
| 	pr_info("KernelAddressSanitizer initialized\n");
 | |
| }
 |