forked from mirrors/linux
		
	 eccd906484
			
		
	
	
		eccd906484
		
	
	
	
	
		
			
			The commit0a9fe8ca84("x86/mm: Validate kernel_physical_mapping_init() PTE population") triggers this warning in SEV guests: WARNING: CPU: 0 PID: 0 at arch/x86/include/asm/pgalloc.h:87 phys_pmd_init+0x30d/0x386 Call Trace: kernel_physical_mapping_init+0xce/0x259 early_set_memory_enc_dec+0x10f/0x160 kvm_smp_prepare_boot_cpu+0x71/0x9d start_kernel+0x1c9/0x50b secondary_startup_64+0xa4/0xb0 A SEV guest calls kernel_physical_mapping_init() to clear the encryption mask from an existing mapping. While doing so, it also splits large pages into smaller. To split a page, kernel_physical_mapping_init() allocates a new page and updates the existing entry. The set_{pud,pmd}_safe() helpers trigger a warning when updating an entry with a page in the present state. Add a new kernel_physical_mapping_change() helper which uses the non-safe variants of set_{pmd,pud,p4d}() and {pmd,pud,p4d}_populate() routines when updating the entry. Since kernel_physical_mapping_change() may replace an existing entry with a new entry, the caller is responsible to flush the TLB at the end. Change early_set_memory_enc_dec() to use kernel_physical_mapping_change() when it wants to clear the memory encryption mask from the page table entry. [ bp: - massage commit message. - flesh out comment according to dhansen's request. - align function arguments at opening brace. ] Fixes:0a9fe8ca84("x86/mm: Validate kernel_physical_mapping_init() PTE population") Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Lendacky <Thomas.Lendacky@amd.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190417154102.22613-1-brijesh.singh@amd.com
		
			
				
	
	
		
			397 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			397 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AMD Memory Encryption Support
 | |
|  *
 | |
|  * Copyright (C) 2016 Advanced Micro Devices, Inc.
 | |
|  *
 | |
|  * Author: Tom Lendacky <thomas.lendacky@amd.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #define DISABLE_BRANCH_PROFILING
 | |
| 
 | |
| #include <linux/linkage.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/dma-direct.h>
 | |
| #include <linux/swiotlb.h>
 | |
| #include <linux/mem_encrypt.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/bootparam.h>
 | |
| #include <asm/set_memory.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/processor-flags.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/cmdline.h>
 | |
| 
 | |
| #include "mm_internal.h"
 | |
| 
 | |
| /*
 | |
|  * Since SME related variables are set early in the boot process they must
 | |
|  * reside in the .data section so as not to be zeroed out when the .bss
 | |
|  * section is later cleared.
 | |
|  */
 | |
| u64 sme_me_mask __section(.data) = 0;
 | |
| EXPORT_SYMBOL(sme_me_mask);
 | |
| DEFINE_STATIC_KEY_FALSE(sev_enable_key);
 | |
| EXPORT_SYMBOL_GPL(sev_enable_key);
 | |
| 
 | |
| bool sev_enabled __section(.data);
 | |
| 
 | |
| /* Buffer used for early in-place encryption by BSP, no locking needed */
 | |
| static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
 | |
| 
 | |
| /*
 | |
|  * This routine does not change the underlying encryption setting of the
 | |
|  * page(s) that map this memory. It assumes that eventually the memory is
 | |
|  * meant to be accessed as either encrypted or decrypted but the contents
 | |
|  * are currently not in the desired state.
 | |
|  *
 | |
|  * This routine follows the steps outlined in the AMD64 Architecture
 | |
|  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
 | |
|  */
 | |
| static void __init __sme_early_enc_dec(resource_size_t paddr,
 | |
| 				       unsigned long size, bool enc)
 | |
| {
 | |
| 	void *src, *dst;
 | |
| 	size_t len;
 | |
| 
 | |
| 	if (!sme_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	wbinvd();
 | |
| 
 | |
| 	/*
 | |
| 	 * There are limited number of early mapping slots, so map (at most)
 | |
| 	 * one page at time.
 | |
| 	 */
 | |
| 	while (size) {
 | |
| 		len = min_t(size_t, sizeof(sme_early_buffer), size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Create mappings for the current and desired format of
 | |
| 		 * the memory. Use a write-protected mapping for the source.
 | |
| 		 */
 | |
| 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
 | |
| 			    early_memremap_encrypted_wp(paddr, len);
 | |
| 
 | |
| 		dst = enc ? early_memremap_encrypted(paddr, len) :
 | |
| 			    early_memremap_decrypted(paddr, len);
 | |
| 
 | |
| 		/*
 | |
| 		 * If a mapping can't be obtained to perform the operation,
 | |
| 		 * then eventual access of that area in the desired mode
 | |
| 		 * will cause a crash.
 | |
| 		 */
 | |
| 		BUG_ON(!src || !dst);
 | |
| 
 | |
| 		/*
 | |
| 		 * Use a temporary buffer, of cache-line multiple size, to
 | |
| 		 * avoid data corruption as documented in the APM.
 | |
| 		 */
 | |
| 		memcpy(sme_early_buffer, src, len);
 | |
| 		memcpy(dst, sme_early_buffer, len);
 | |
| 
 | |
| 		early_memunmap(dst, len);
 | |
| 		early_memunmap(src, len);
 | |
| 
 | |
| 		paddr += len;
 | |
| 		size -= len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
 | |
| {
 | |
| 	__sme_early_enc_dec(paddr, size, true);
 | |
| }
 | |
| 
 | |
| void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
 | |
| {
 | |
| 	__sme_early_enc_dec(paddr, size, false);
 | |
| }
 | |
| 
 | |
| static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
 | |
| 					     bool map)
 | |
| {
 | |
| 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
 | |
| 	pmdval_t pmd_flags, pmd;
 | |
| 
 | |
| 	/* Use early_pmd_flags but remove the encryption mask */
 | |
| 	pmd_flags = __sme_clr(early_pmd_flags);
 | |
| 
 | |
| 	do {
 | |
| 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
 | |
| 		__early_make_pgtable((unsigned long)vaddr, pmd);
 | |
| 
 | |
| 		vaddr += PMD_SIZE;
 | |
| 		paddr += PMD_SIZE;
 | |
| 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
 | |
| 	} while (size);
 | |
| 
 | |
| 	__native_flush_tlb();
 | |
| }
 | |
| 
 | |
| void __init sme_unmap_bootdata(char *real_mode_data)
 | |
| {
 | |
| 	struct boot_params *boot_data;
 | |
| 	unsigned long cmdline_paddr;
 | |
| 
 | |
| 	if (!sme_active())
 | |
| 		return;
 | |
| 
 | |
| 	/* Get the command line address before unmapping the real_mode_data */
 | |
| 	boot_data = (struct boot_params *)real_mode_data;
 | |
| 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
 | |
| 
 | |
| 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
 | |
| 
 | |
| 	if (!cmdline_paddr)
 | |
| 		return;
 | |
| 
 | |
| 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
 | |
| }
 | |
| 
 | |
| void __init sme_map_bootdata(char *real_mode_data)
 | |
| {
 | |
| 	struct boot_params *boot_data;
 | |
| 	unsigned long cmdline_paddr;
 | |
| 
 | |
| 	if (!sme_active())
 | |
| 		return;
 | |
| 
 | |
| 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
 | |
| 
 | |
| 	/* Get the command line address after mapping the real_mode_data */
 | |
| 	boot_data = (struct boot_params *)real_mode_data;
 | |
| 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
 | |
| 
 | |
| 	if (!cmdline_paddr)
 | |
| 		return;
 | |
| 
 | |
| 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
 | |
| }
 | |
| 
 | |
| void __init sme_early_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!sme_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	early_pmd_flags = __sme_set(early_pmd_flags);
 | |
| 
 | |
| 	__supported_pte_mask = __sme_set(__supported_pte_mask);
 | |
| 
 | |
| 	/* Update the protection map with memory encryption mask */
 | |
| 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
 | |
| 		protection_map[i] = pgprot_encrypted(protection_map[i]);
 | |
| 
 | |
| 	if (sev_active())
 | |
| 		swiotlb_force = SWIOTLB_FORCE;
 | |
| }
 | |
| 
 | |
| static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
 | |
| {
 | |
| 	pgprot_t old_prot, new_prot;
 | |
| 	unsigned long pfn, pa, size;
 | |
| 	pte_t new_pte;
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_4K:
 | |
| 		pfn = pte_pfn(*kpte);
 | |
| 		old_prot = pte_pgprot(*kpte);
 | |
| 		break;
 | |
| 	case PG_LEVEL_2M:
 | |
| 		pfn = pmd_pfn(*(pmd_t *)kpte);
 | |
| 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
 | |
| 		break;
 | |
| 	case PG_LEVEL_1G:
 | |
| 		pfn = pud_pfn(*(pud_t *)kpte);
 | |
| 		old_prot = pud_pgprot(*(pud_t *)kpte);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	new_prot = old_prot;
 | |
| 	if (enc)
 | |
| 		pgprot_val(new_prot) |= _PAGE_ENC;
 | |
| 	else
 | |
| 		pgprot_val(new_prot) &= ~_PAGE_ENC;
 | |
| 
 | |
| 	/* If prot is same then do nothing. */
 | |
| 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
 | |
| 		return;
 | |
| 
 | |
| 	pa = pfn << page_level_shift(level);
 | |
| 	size = page_level_size(level);
 | |
| 
 | |
| 	/*
 | |
| 	 * We are going to perform in-place en-/decryption and change the
 | |
| 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
 | |
| 	 * caches to ensure that data gets accessed with the correct C-bit.
 | |
| 	 */
 | |
| 	clflush_cache_range(__va(pa), size);
 | |
| 
 | |
| 	/* Encrypt/decrypt the contents in-place */
 | |
| 	if (enc)
 | |
| 		sme_early_encrypt(pa, size);
 | |
| 	else
 | |
| 		sme_early_decrypt(pa, size);
 | |
| 
 | |
| 	/* Change the page encryption mask. */
 | |
| 	new_pte = pfn_pte(pfn, new_prot);
 | |
| 	set_pte_atomic(kpte, new_pte);
 | |
| }
 | |
| 
 | |
| static int __init early_set_memory_enc_dec(unsigned long vaddr,
 | |
| 					   unsigned long size, bool enc)
 | |
| {
 | |
| 	unsigned long vaddr_end, vaddr_next;
 | |
| 	unsigned long psize, pmask;
 | |
| 	int split_page_size_mask;
 | |
| 	int level, ret;
 | |
| 	pte_t *kpte;
 | |
| 
 | |
| 	vaddr_next = vaddr;
 | |
| 	vaddr_end = vaddr + size;
 | |
| 
 | |
| 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 | |
| 		kpte = lookup_address(vaddr, &level);
 | |
| 		if (!kpte || pte_none(*kpte)) {
 | |
| 			ret = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (level == PG_LEVEL_4K) {
 | |
| 			__set_clr_pte_enc(kpte, level, enc);
 | |
| 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		psize = page_level_size(level);
 | |
| 		pmask = page_level_mask(level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check whether we can change the large page in one go.
 | |
| 		 * We request a split when the address is not aligned and
 | |
| 		 * the number of pages to set/clear encryption bit is smaller
 | |
| 		 * than the number of pages in the large page.
 | |
| 		 */
 | |
| 		if (vaddr == (vaddr & pmask) &&
 | |
| 		    ((vaddr_end - vaddr) >= psize)) {
 | |
| 			__set_clr_pte_enc(kpte, level, enc);
 | |
| 			vaddr_next = (vaddr & pmask) + psize;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The virtual address is part of a larger page, create the next
 | |
| 		 * level page table mapping (4K or 2M). If it is part of a 2M
 | |
| 		 * page then we request a split of the large page into 4K
 | |
| 		 * chunks. A 1GB large page is split into 2M pages, resp.
 | |
| 		 */
 | |
| 		if (level == PG_LEVEL_2M)
 | |
| 			split_page_size_mask = 0;
 | |
| 		else
 | |
| 			split_page_size_mask = 1 << PG_LEVEL_2M;
 | |
| 
 | |
| 		/*
 | |
| 		 * kernel_physical_mapping_change() does not flush the TLBs, so
 | |
| 		 * a TLB flush is required after we exit from the for loop.
 | |
| 		 */
 | |
| 		kernel_physical_mapping_change(__pa(vaddr & pmask),
 | |
| 					       __pa((vaddr_end & pmask) + psize),
 | |
| 					       split_page_size_mask);
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| out:
 | |
| 	__flush_tlb_all();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
 | |
| {
 | |
| 	return early_set_memory_enc_dec(vaddr, size, false);
 | |
| }
 | |
| 
 | |
| int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
 | |
| {
 | |
| 	return early_set_memory_enc_dec(vaddr, size, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SME and SEV are very similar but they are not the same, so there are
 | |
|  * times that the kernel will need to distinguish between SME and SEV. The
 | |
|  * sme_active() and sev_active() functions are used for this.  When a
 | |
|  * distinction isn't needed, the mem_encrypt_active() function can be used.
 | |
|  *
 | |
|  * The trampoline code is a good example for this requirement.  Before
 | |
|  * paging is activated, SME will access all memory as decrypted, but SEV
 | |
|  * will access all memory as encrypted.  So, when APs are being brought
 | |
|  * up under SME the trampoline area cannot be encrypted, whereas under SEV
 | |
|  * the trampoline area must be encrypted.
 | |
|  */
 | |
| bool sme_active(void)
 | |
| {
 | |
| 	return sme_me_mask && !sev_enabled;
 | |
| }
 | |
| EXPORT_SYMBOL(sme_active);
 | |
| 
 | |
| bool sev_active(void)
 | |
| {
 | |
| 	return sme_me_mask && sev_enabled;
 | |
| }
 | |
| EXPORT_SYMBOL(sev_active);
 | |
| 
 | |
| /* Architecture __weak replacement functions */
 | |
| void __init mem_encrypt_free_decrypted_mem(void)
 | |
| {
 | |
| 	unsigned long vaddr, vaddr_end, npages;
 | |
| 	int r;
 | |
| 
 | |
| 	vaddr = (unsigned long)__start_bss_decrypted_unused;
 | |
| 	vaddr_end = (unsigned long)__end_bss_decrypted;
 | |
| 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * The unused memory range was mapped decrypted, change the encryption
 | |
| 	 * attribute from decrypted to encrypted before freeing it.
 | |
| 	 */
 | |
| 	if (mem_encrypt_active()) {
 | |
| 		r = set_memory_encrypted(vaddr, npages);
 | |
| 		if (r) {
 | |
| 			pr_warn("failed to free unused decrypted pages\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_init_pages("unused decrypted", vaddr, vaddr_end);
 | |
| }
 | |
| 
 | |
| void __init mem_encrypt_init(void)
 | |
| {
 | |
| 	if (!sme_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
 | |
| 	swiotlb_update_mem_attributes();
 | |
| 
 | |
| 	/*
 | |
| 	 * With SEV, we need to unroll the rep string I/O instructions.
 | |
| 	 */
 | |
| 	if (sev_active())
 | |
| 		static_branch_enable(&sev_enable_key);
 | |
| 
 | |
| 	pr_info("AMD %s active\n",
 | |
| 		sev_active() ? "Secure Encrypted Virtualization (SEV)"
 | |
| 			     : "Secure Memory Encryption (SME)");
 | |
| }
 | |
| 
 |