forked from mirrors/linux
		
	 64a48099b3
			
		
	
	
		64a48099b3
		
	
	
	
	
		
			
			Pull x86 syscall entry code changes for PTI from Ingo Molnar: "The main changes here are Andy Lutomirski's changes to switch the x86-64 entry code to use the 'per CPU entry trampoline stack'. This, besides helping fix KASLR leaks (the pending Page Table Isolation (PTI) work), also robustifies the x86 entry code" * 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits) x86/cpufeatures: Make CPU bugs sticky x86/paravirt: Provide a way to check for hypervisors x86/paravirt: Dont patch flush_tlb_single x86/entry/64: Make cpu_entry_area.tss read-only x86/entry: Clean up the SYSENTER_stack code x86/entry/64: Remove the SYSENTER stack canary x86/entry/64: Move the IST stacks into struct cpu_entry_area x86/entry/64: Create a per-CPU SYSCALL entry trampoline x86/entry/64: Return to userspace from the trampoline stack x86/entry/64: Use a per-CPU trampoline stack for IDT entries x86/espfix/64: Stop assuming that pt_regs is on the entry stack x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0 x86/entry: Remap the TSS into the CPU entry area x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct x86/dumpstack: Handle stack overflow on all stacks x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss x86/kasan/64: Teach KASAN about the cpu_entry_area x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area x86/entry/gdt: Put per-CPU GDT remaps in ascending order x86/dumpstack: Add get_stack_info() support for the SYSENTER stack ...
		
			
				
	
	
		
			455 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			455 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Suspend support specific for i386/x86-64.
 | |
|  *
 | |
|  * Distribute under GPLv2
 | |
|  *
 | |
|  * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
 | |
|  * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
 | |
|  * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
 | |
|  */
 | |
| 
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/tboot.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/mtrr.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/suspend.h>
 | |
| #include <asm/fpu/internal.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <linux/dmi.h>
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| __visible unsigned long saved_context_ebx;
 | |
| __visible unsigned long saved_context_esp, saved_context_ebp;
 | |
| __visible unsigned long saved_context_esi, saved_context_edi;
 | |
| __visible unsigned long saved_context_eflags;
 | |
| #endif
 | |
| struct saved_context saved_context;
 | |
| 
 | |
| static void msr_save_context(struct saved_context *ctxt)
 | |
| {
 | |
| 	struct saved_msr *msr = ctxt->saved_msrs.array;
 | |
| 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 | |
| 
 | |
| 	while (msr < end) {
 | |
| 		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
 | |
| 		msr++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void msr_restore_context(struct saved_context *ctxt)
 | |
| {
 | |
| 	struct saved_msr *msr = ctxt->saved_msrs.array;
 | |
| 	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 | |
| 
 | |
| 	while (msr < end) {
 | |
| 		if (msr->valid)
 | |
| 			wrmsrl(msr->info.msr_no, msr->info.reg.q);
 | |
| 		msr++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	__save_processor_state - save CPU registers before creating a
 | |
|  *		hibernation image and before restoring the memory state from it
 | |
|  *	@ctxt - structure to store the registers contents in
 | |
|  *
 | |
|  *	NOTE: If there is a CPU register the modification of which by the
 | |
|  *	boot kernel (ie. the kernel used for loading the hibernation image)
 | |
|  *	might affect the operations of the restored target kernel (ie. the one
 | |
|  *	saved in the hibernation image), then its contents must be saved by this
 | |
|  *	function.  In other words, if kernel A is hibernated and different
 | |
|  *	kernel B is used for loading the hibernation image into memory, the
 | |
|  *	kernel A's __save_processor_state() function must save all registers
 | |
|  *	needed by kernel A, so that it can operate correctly after the resume
 | |
|  *	regardless of what kernel B does in the meantime.
 | |
|  */
 | |
| static void __save_processor_state(struct saved_context *ctxt)
 | |
| {
 | |
| #ifdef CONFIG_X86_32
 | |
| 	mtrr_save_fixed_ranges(NULL);
 | |
| #endif
 | |
| 	kernel_fpu_begin();
 | |
| 
 | |
| 	/*
 | |
| 	 * descriptor tables
 | |
| 	 */
 | |
| 	store_idt(&ctxt->idt);
 | |
| 
 | |
| 	/*
 | |
| 	 * We save it here, but restore it only in the hibernate case.
 | |
| 	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
 | |
| 	 * mode in "secondary_startup_64". In 32-bit mode it is done via
 | |
| 	 * 'pmode_gdt' in wakeup_start.
 | |
| 	 */
 | |
| 	ctxt->gdt_desc.size = GDT_SIZE - 1;
 | |
| 	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
 | |
| 
 | |
| 	store_tr(ctxt->tr);
 | |
| 
 | |
| 	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
 | |
| 	/*
 | |
| 	 * segment registers
 | |
| 	 */
 | |
| #ifdef CONFIG_X86_32_LAZY_GS
 | |
| 	savesegment(gs, ctxt->gs);
 | |
| #endif
 | |
| #ifdef CONFIG_X86_64
 | |
| 	savesegment(gs, ctxt->gs);
 | |
| 	savesegment(fs, ctxt->fs);
 | |
| 	savesegment(ds, ctxt->ds);
 | |
| 	savesegment(es, ctxt->es);
 | |
| 
 | |
| 	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
 | |
| 	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
 | |
| 	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
 | |
| 	mtrr_save_fixed_ranges(NULL);
 | |
| 
 | |
| 	rdmsrl(MSR_EFER, ctxt->efer);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * control registers
 | |
| 	 */
 | |
| 	ctxt->cr0 = read_cr0();
 | |
| 	ctxt->cr2 = read_cr2();
 | |
| 	ctxt->cr3 = __read_cr3();
 | |
| 	ctxt->cr4 = __read_cr4();
 | |
| #ifdef CONFIG_X86_64
 | |
| 	ctxt->cr8 = read_cr8();
 | |
| #endif
 | |
| 	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
 | |
| 					       &ctxt->misc_enable);
 | |
| 	msr_save_context(ctxt);
 | |
| }
 | |
| 
 | |
| /* Needed by apm.c */
 | |
| void save_processor_state(void)
 | |
| {
 | |
| 	__save_processor_state(&saved_context);
 | |
| 	x86_platform.save_sched_clock_state();
 | |
| }
 | |
| #ifdef CONFIG_X86_32
 | |
| EXPORT_SYMBOL(save_processor_state);
 | |
| #endif
 | |
| 
 | |
| static void do_fpu_end(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Restore FPU regs if necessary.
 | |
| 	 */
 | |
| 	kernel_fpu_end();
 | |
| }
 | |
| 
 | |
| static void fix_processor_context(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| #ifdef CONFIG_X86_64
 | |
| 	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
 | |
| 	tss_desc tss;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to reload TR, which requires that we change the
 | |
| 	 * GDT entry to indicate "available" first.
 | |
| 	 *
 | |
| 	 * XXX: This could probably all be replaced by a call to
 | |
| 	 * force_reload_TR().
 | |
| 	 */
 | |
| 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
 | |
| 	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
 | |
| 	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
 | |
| 
 | |
| 	syscall_init();				/* This sets MSR_*STAR and related */
 | |
| #else
 | |
| 	if (boot_cpu_has(X86_FEATURE_SEP))
 | |
| 		enable_sep_cpu();
 | |
| #endif
 | |
| 	load_TR_desc();				/* This does ltr */
 | |
| 	load_mm_ldt(current->active_mm);	/* This does lldt */
 | |
| 	initialize_tlbstate_and_flush();
 | |
| 
 | |
| 	fpu__resume_cpu();
 | |
| 
 | |
| 	/* The processor is back on the direct GDT, load back the fixmap */
 | |
| 	load_fixmap_gdt(cpu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __restore_processor_state - restore the contents of CPU registers saved
 | |
|  *                             by __save_processor_state()
 | |
|  * @ctxt - structure to load the registers contents from
 | |
|  *
 | |
|  * The asm code that gets us here will have restored a usable GDT, although
 | |
|  * it will be pointing to the wrong alias.
 | |
|  */
 | |
| static void notrace __restore_processor_state(struct saved_context *ctxt)
 | |
| {
 | |
| 	if (ctxt->misc_enable_saved)
 | |
| 		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
 | |
| 	/*
 | |
| 	 * control registers
 | |
| 	 */
 | |
| 	/* cr4 was introduced in the Pentium CPU */
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (ctxt->cr4)
 | |
| 		__write_cr4(ctxt->cr4);
 | |
| #else
 | |
| /* CONFIG X86_64 */
 | |
| 	wrmsrl(MSR_EFER, ctxt->efer);
 | |
| 	write_cr8(ctxt->cr8);
 | |
| 	__write_cr4(ctxt->cr4);
 | |
| #endif
 | |
| 	write_cr3(ctxt->cr3);
 | |
| 	write_cr2(ctxt->cr2);
 | |
| 	write_cr0(ctxt->cr0);
 | |
| 
 | |
| 	/* Restore the IDT. */
 | |
| 	load_idt(&ctxt->idt);
 | |
| 
 | |
| 	/*
 | |
| 	 * Just in case the asm code got us here with the SS, DS, or ES
 | |
| 	 * out of sync with the GDT, update them.
 | |
| 	 */
 | |
| 	loadsegment(ss, __KERNEL_DS);
 | |
| 	loadsegment(ds, __USER_DS);
 | |
| 	loadsegment(es, __USER_DS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore percpu access.  Percpu access can happen in exception
 | |
| 	 * handlers or in complicated helpers like load_gs_index().
 | |
| 	 */
 | |
| #ifdef CONFIG_X86_64
 | |
| 	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
 | |
| #else
 | |
| 	loadsegment(fs, __KERNEL_PERCPU);
 | |
| 	loadsegment(gs, __KERNEL_STACK_CANARY);
 | |
| #endif
 | |
| 
 | |
| 	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
 | |
| 	fix_processor_context();
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we have descriptor tables fully restored and working
 | |
| 	 * exception handling, restore the usermode segments.
 | |
| 	 */
 | |
| #ifdef CONFIG_X86_64
 | |
| 	loadsegment(ds, ctxt->es);
 | |
| 	loadsegment(es, ctxt->es);
 | |
| 	loadsegment(fs, ctxt->fs);
 | |
| 	load_gs_index(ctxt->gs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore FSBASE and GSBASE after restoring the selectors, since
 | |
| 	 * restoring the selectors clobbers the bases.  Keep in mind
 | |
| 	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
 | |
| 	 */
 | |
| 	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
 | |
| 	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
 | |
| #elif defined(CONFIG_X86_32_LAZY_GS)
 | |
| 	loadsegment(gs, ctxt->gs);
 | |
| #endif
 | |
| 
 | |
| 	do_fpu_end();
 | |
| 	tsc_verify_tsc_adjust(true);
 | |
| 	x86_platform.restore_sched_clock_state();
 | |
| 	mtrr_bp_restore();
 | |
| 	perf_restore_debug_store();
 | |
| 	msr_restore_context(ctxt);
 | |
| }
 | |
| 
 | |
| /* Needed by apm.c */
 | |
| void notrace restore_processor_state(void)
 | |
| {
 | |
| 	__restore_processor_state(&saved_context);
 | |
| }
 | |
| #ifdef CONFIG_X86_32
 | |
| EXPORT_SYMBOL(restore_processor_state);
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
 | |
| static void resume_play_dead(void)
 | |
| {
 | |
| 	play_dead_common();
 | |
| 	tboot_shutdown(TB_SHUTDOWN_WFS);
 | |
| 	hlt_play_dead();
 | |
| }
 | |
| 
 | |
| int hibernate_resume_nonboot_cpu_disable(void)
 | |
| {
 | |
| 	void (*play_dead)(void) = smp_ops.play_dead;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
 | |
| 	 * during hibernate image restoration, because it is likely that the
 | |
| 	 * monitored address will be actually written to at that time and then
 | |
| 	 * the "dead" CPU will attempt to execute instructions again, but the
 | |
| 	 * address in its instruction pointer may not be possible to resolve
 | |
| 	 * any more at that point (the page tables used by it previously may
 | |
| 	 * have been overwritten by hibernate image data).
 | |
| 	 */
 | |
| 	smp_ops.play_dead = resume_play_dead;
 | |
| 	ret = disable_nonboot_cpus();
 | |
| 	smp_ops.play_dead = play_dead;
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When bsp_check() is called in hibernate and suspend, cpu hotplug
 | |
|  * is disabled already. So it's unnessary to handle race condition between
 | |
|  * cpumask query and cpu hotplug.
 | |
|  */
 | |
| static int bsp_check(void)
 | |
| {
 | |
| 	if (cpumask_first(cpu_online_mask) != 0) {
 | |
| 		pr_warn("CPU0 is offline.\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
 | |
| 			   void *ptr)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case PM_SUSPEND_PREPARE:
 | |
| 	case PM_HIBERNATION_PREPARE:
 | |
| 		ret = bsp_check();
 | |
| 		break;
 | |
| #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
 | |
| 	case PM_RESTORE_PREPARE:
 | |
| 		/*
 | |
| 		 * When system resumes from hibernation, online CPU0 because
 | |
| 		 * 1. it's required for resume and
 | |
| 		 * 2. the CPU was online before hibernation
 | |
| 		 */
 | |
| 		if (!cpu_online(0))
 | |
| 			_debug_hotplug_cpu(0, 1);
 | |
| 		break;
 | |
| 	case PM_POST_RESTORE:
 | |
| 		/*
 | |
| 		 * When a resume really happens, this code won't be called.
 | |
| 		 *
 | |
| 		 * This code is called only when user space hibernation software
 | |
| 		 * prepares for snapshot device during boot time. So we just
 | |
| 		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
 | |
| 		 * preparing the snapshot device.
 | |
| 		 *
 | |
| 		 * This works for normal boot case in our CPU0 hotplug debug
 | |
| 		 * mode, i.e. CPU0 is offline and user mode hibernation
 | |
| 		 * software initializes during boot time.
 | |
| 		 *
 | |
| 		 * If CPU0 is online and user application accesses snapshot
 | |
| 		 * device after boot time, this will offline CPU0 and user may
 | |
| 		 * see different CPU0 state before and after accessing
 | |
| 		 * the snapshot device. But hopefully this is not a case when
 | |
| 		 * user debugging CPU0 hotplug. Even if users hit this case,
 | |
| 		 * they can easily online CPU0 back.
 | |
| 		 *
 | |
| 		 * To simplify this debug code, we only consider normal boot
 | |
| 		 * case. Otherwise we need to remember CPU0's state and restore
 | |
| 		 * to that state and resolve racy conditions etc.
 | |
| 		 */
 | |
| 		_debug_hotplug_cpu(0, 0);
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return notifier_from_errno(ret);
 | |
| }
 | |
| 
 | |
| static int __init bsp_pm_check_init(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Set this bsp_pm_callback as lower priority than
 | |
| 	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
 | |
| 	 * earlier to disable cpu hotplug before bsp online check.
 | |
| 	 */
 | |
| 	pm_notifier(bsp_pm_callback, -INT_MAX);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| core_initcall(bsp_pm_check_init);
 | |
| 
 | |
| static int msr_init_context(const u32 *msr_id, const int total_num)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct saved_msr *msr_array;
 | |
| 
 | |
| 	if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
 | |
| 		pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
 | |
| 	if (!msr_array) {
 | |
| 		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < total_num; i++) {
 | |
| 		msr_array[i].info.msr_no	= msr_id[i];
 | |
| 		msr_array[i].valid		= false;
 | |
| 		msr_array[i].info.reg.q		= 0;
 | |
| 	}
 | |
| 	saved_context.saved_msrs.num	= total_num;
 | |
| 	saved_context.saved_msrs.array	= msr_array;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following section is a quirk framework for problematic BIOSen:
 | |
|  * Sometimes MSRs are modified by the BIOSen after suspended to
 | |
|  * RAM, this might cause unexpected behavior after wakeup.
 | |
|  * Thus we save/restore these specified MSRs across suspend/resume
 | |
|  * in order to work around it.
 | |
|  *
 | |
|  * For any further problematic BIOSen/platforms,
 | |
|  * please add your own function similar to msr_initialize_bdw.
 | |
|  */
 | |
| static int msr_initialize_bdw(const struct dmi_system_id *d)
 | |
| {
 | |
| 	/* Add any extra MSR ids into this array. */
 | |
| 	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
 | |
| 
 | |
| 	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
 | |
| 	return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
 | |
| }
 | |
| 
 | |
| static const struct dmi_system_id msr_save_dmi_table[] = {
 | |
| 	{
 | |
| 	 .callback = msr_initialize_bdw,
 | |
| 	 .ident = "BROADWELL BDX_EP",
 | |
| 	 .matches = {
 | |
| 		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
 | |
| 		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
 | |
| 		},
 | |
| 	},
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static int pm_check_save_msr(void)
 | |
| {
 | |
| 	dmi_check_system(msr_save_dmi_table);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| device_initcall(pm_check_save_msr);
 |