forked from mirrors/linux
		
	 58be0106c5
			
		
	
	
		58be0106c5
		
	
	
	
	
		
			
			Fixes: eb9d1bf079: "random: only read from /dev/random after its pool has received 128 bits"
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
		
	
			
		
			
				
	
	
		
			2447 lines
		
	
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2447 lines
		
	
	
	
		
			71 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * random.c -- A strong random number generator
 | |
|  *
 | |
|  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
 | |
|  * Rights Reserved.
 | |
|  *
 | |
|  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
 | |
|  *
 | |
|  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 | |
|  * rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, and the entire permission notice in its entirety,
 | |
|  *    including the disclaimer of warranties.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. The name of the author may not be used to endorse or promote
 | |
|  *    products derived from this software without specific prior
 | |
|  *    written permission.
 | |
|  *
 | |
|  * ALTERNATIVELY, this product may be distributed under the terms of
 | |
|  * the GNU General Public License, in which case the provisions of the GPL are
 | |
|  * required INSTEAD OF the above restrictions.  (This clause is
 | |
|  * necessary due to a potential bad interaction between the GPL and
 | |
|  * the restrictions contained in a BSD-style copyright.)
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 | |
|  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 | |
|  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 | |
|  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 | |
|  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 | |
|  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 | |
|  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
|  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 | |
|  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 | |
|  * DAMAGE.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * (now, with legal B.S. out of the way.....)
 | |
|  *
 | |
|  * This routine gathers environmental noise from device drivers, etc.,
 | |
|  * and returns good random numbers, suitable for cryptographic use.
 | |
|  * Besides the obvious cryptographic uses, these numbers are also good
 | |
|  * for seeding TCP sequence numbers, and other places where it is
 | |
|  * desirable to have numbers which are not only random, but hard to
 | |
|  * predict by an attacker.
 | |
|  *
 | |
|  * Theory of operation
 | |
|  * ===================
 | |
|  *
 | |
|  * Computers are very predictable devices.  Hence it is extremely hard
 | |
|  * to produce truly random numbers on a computer --- as opposed to
 | |
|  * pseudo-random numbers, which can easily generated by using a
 | |
|  * algorithm.  Unfortunately, it is very easy for attackers to guess
 | |
|  * the sequence of pseudo-random number generators, and for some
 | |
|  * applications this is not acceptable.  So instead, we must try to
 | |
|  * gather "environmental noise" from the computer's environment, which
 | |
|  * must be hard for outside attackers to observe, and use that to
 | |
|  * generate random numbers.  In a Unix environment, this is best done
 | |
|  * from inside the kernel.
 | |
|  *
 | |
|  * Sources of randomness from the environment include inter-keyboard
 | |
|  * timings, inter-interrupt timings from some interrupts, and other
 | |
|  * events which are both (a) non-deterministic and (b) hard for an
 | |
|  * outside observer to measure.  Randomness from these sources are
 | |
|  * added to an "entropy pool", which is mixed using a CRC-like function.
 | |
|  * This is not cryptographically strong, but it is adequate assuming
 | |
|  * the randomness is not chosen maliciously, and it is fast enough that
 | |
|  * the overhead of doing it on every interrupt is very reasonable.
 | |
|  * As random bytes are mixed into the entropy pool, the routines keep
 | |
|  * an *estimate* of how many bits of randomness have been stored into
 | |
|  * the random number generator's internal state.
 | |
|  *
 | |
|  * When random bytes are desired, they are obtained by taking the SHA
 | |
|  * hash of the contents of the "entropy pool".  The SHA hash avoids
 | |
|  * exposing the internal state of the entropy pool.  It is believed to
 | |
|  * be computationally infeasible to derive any useful information
 | |
|  * about the input of SHA from its output.  Even if it is possible to
 | |
|  * analyze SHA in some clever way, as long as the amount of data
 | |
|  * returned from the generator is less than the inherent entropy in
 | |
|  * the pool, the output data is totally unpredictable.  For this
 | |
|  * reason, the routine decreases its internal estimate of how many
 | |
|  * bits of "true randomness" are contained in the entropy pool as it
 | |
|  * outputs random numbers.
 | |
|  *
 | |
|  * If this estimate goes to zero, the routine can still generate
 | |
|  * random numbers; however, an attacker may (at least in theory) be
 | |
|  * able to infer the future output of the generator from prior
 | |
|  * outputs.  This requires successful cryptanalysis of SHA, which is
 | |
|  * not believed to be feasible, but there is a remote possibility.
 | |
|  * Nonetheless, these numbers should be useful for the vast majority
 | |
|  * of purposes.
 | |
|  *
 | |
|  * Exported interfaces ---- output
 | |
|  * ===============================
 | |
|  *
 | |
|  * There are four exported interfaces; two for use within the kernel,
 | |
|  * and two or use from userspace.
 | |
|  *
 | |
|  * Exported interfaces ---- userspace output
 | |
|  * -----------------------------------------
 | |
|  *
 | |
|  * The userspace interfaces are two character devices /dev/random and
 | |
|  * /dev/urandom.  /dev/random is suitable for use when very high
 | |
|  * quality randomness is desired (for example, for key generation or
 | |
|  * one-time pads), as it will only return a maximum of the number of
 | |
|  * bits of randomness (as estimated by the random number generator)
 | |
|  * contained in the entropy pool.
 | |
|  *
 | |
|  * The /dev/urandom device does not have this limit, and will return
 | |
|  * as many bytes as are requested.  As more and more random bytes are
 | |
|  * requested without giving time for the entropy pool to recharge,
 | |
|  * this will result in random numbers that are merely cryptographically
 | |
|  * strong.  For many applications, however, this is acceptable.
 | |
|  *
 | |
|  * Exported interfaces ---- kernel output
 | |
|  * --------------------------------------
 | |
|  *
 | |
|  * The primary kernel interface is
 | |
|  *
 | |
|  * 	void get_random_bytes(void *buf, int nbytes);
 | |
|  *
 | |
|  * This interface will return the requested number of random bytes,
 | |
|  * and place it in the requested buffer.  This is equivalent to a
 | |
|  * read from /dev/urandom.
 | |
|  *
 | |
|  * For less critical applications, there are the functions:
 | |
|  *
 | |
|  * 	u32 get_random_u32()
 | |
|  * 	u64 get_random_u64()
 | |
|  * 	unsigned int get_random_int()
 | |
|  * 	unsigned long get_random_long()
 | |
|  *
 | |
|  * These are produced by a cryptographic RNG seeded from get_random_bytes,
 | |
|  * and so do not deplete the entropy pool as much.  These are recommended
 | |
|  * for most in-kernel operations *if the result is going to be stored in
 | |
|  * the kernel*.
 | |
|  *
 | |
|  * Specifically, the get_random_int() family do not attempt to do
 | |
|  * "anti-backtracking".  If you capture the state of the kernel (e.g.
 | |
|  * by snapshotting the VM), you can figure out previous get_random_int()
 | |
|  * return values.  But if the value is stored in the kernel anyway,
 | |
|  * this is not a problem.
 | |
|  *
 | |
|  * It *is* safe to expose get_random_int() output to attackers (e.g. as
 | |
|  * network cookies); given outputs 1..n, it's not feasible to predict
 | |
|  * outputs 0 or n+1.  The only concern is an attacker who breaks into
 | |
|  * the kernel later; the get_random_int() engine is not reseeded as
 | |
|  * often as the get_random_bytes() one.
 | |
|  *
 | |
|  * get_random_bytes() is needed for keys that need to stay secret after
 | |
|  * they are erased from the kernel.  For example, any key that will
 | |
|  * be wrapped and stored encrypted.  And session encryption keys: we'd
 | |
|  * like to know that after the session is closed and the keys erased,
 | |
|  * the plaintext is unrecoverable to someone who recorded the ciphertext.
 | |
|  *
 | |
|  * But for network ports/cookies, stack canaries, PRNG seeds, address
 | |
|  * space layout randomization, session *authentication* keys, or other
 | |
|  * applications where the sensitive data is stored in the kernel in
 | |
|  * plaintext for as long as it's sensitive, the get_random_int() family
 | |
|  * is just fine.
 | |
|  *
 | |
|  * Consider ASLR.  We want to keep the address space secret from an
 | |
|  * outside attacker while the process is running, but once the address
 | |
|  * space is torn down, it's of no use to an attacker any more.  And it's
 | |
|  * stored in kernel data structures as long as it's alive, so worrying
 | |
|  * about an attacker's ability to extrapolate it from the get_random_int()
 | |
|  * CRNG is silly.
 | |
|  *
 | |
|  * Even some cryptographic keys are safe to generate with get_random_int().
 | |
|  * In particular, keys for SipHash are generally fine.  Here, knowledge
 | |
|  * of the key authorizes you to do something to a kernel object (inject
 | |
|  * packets to a network connection, or flood a hash table), and the
 | |
|  * key is stored with the object being protected.  Once it goes away,
 | |
|  * we no longer care if anyone knows the key.
 | |
|  *
 | |
|  * prandom_u32()
 | |
|  * -------------
 | |
|  *
 | |
|  * For even weaker applications, see the pseudorandom generator
 | |
|  * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 | |
|  * numbers aren't security-critical at all, these are *far* cheaper.
 | |
|  * Useful for self-tests, random error simulation, randomized backoffs,
 | |
|  * and any other application where you trust that nobody is trying to
 | |
|  * maliciously mess with you by guessing the "random" numbers.
 | |
|  *
 | |
|  * Exported interfaces ---- input
 | |
|  * ==============================
 | |
|  *
 | |
|  * The current exported interfaces for gathering environmental noise
 | |
|  * from the devices are:
 | |
|  *
 | |
|  *	void add_device_randomness(const void *buf, unsigned int size);
 | |
|  * 	void add_input_randomness(unsigned int type, unsigned int code,
 | |
|  *                                unsigned int value);
 | |
|  *	void add_interrupt_randomness(int irq, int irq_flags);
 | |
|  * 	void add_disk_randomness(struct gendisk *disk);
 | |
|  *
 | |
|  * add_device_randomness() is for adding data to the random pool that
 | |
|  * is likely to differ between two devices (or possibly even per boot).
 | |
|  * This would be things like MAC addresses or serial numbers, or the
 | |
|  * read-out of the RTC. This does *not* add any actual entropy to the
 | |
|  * pool, but it initializes the pool to different values for devices
 | |
|  * that might otherwise be identical and have very little entropy
 | |
|  * available to them (particularly common in the embedded world).
 | |
|  *
 | |
|  * add_input_randomness() uses the input layer interrupt timing, as well as
 | |
|  * the event type information from the hardware.
 | |
|  *
 | |
|  * add_interrupt_randomness() uses the interrupt timing as random
 | |
|  * inputs to the entropy pool. Using the cycle counters and the irq source
 | |
|  * as inputs, it feeds the randomness roughly once a second.
 | |
|  *
 | |
|  * add_disk_randomness() uses what amounts to the seek time of block
 | |
|  * layer request events, on a per-disk_devt basis, as input to the
 | |
|  * entropy pool. Note that high-speed solid state drives with very low
 | |
|  * seek times do not make for good sources of entropy, as their seek
 | |
|  * times are usually fairly consistent.
 | |
|  *
 | |
|  * All of these routines try to estimate how many bits of randomness a
 | |
|  * particular randomness source.  They do this by keeping track of the
 | |
|  * first and second order deltas of the event timings.
 | |
|  *
 | |
|  * Ensuring unpredictability at system startup
 | |
|  * ============================================
 | |
|  *
 | |
|  * When any operating system starts up, it will go through a sequence
 | |
|  * of actions that are fairly predictable by an adversary, especially
 | |
|  * if the start-up does not involve interaction with a human operator.
 | |
|  * This reduces the actual number of bits of unpredictability in the
 | |
|  * entropy pool below the value in entropy_count.  In order to
 | |
|  * counteract this effect, it helps to carry information in the
 | |
|  * entropy pool across shut-downs and start-ups.  To do this, put the
 | |
|  * following lines an appropriate script which is run during the boot
 | |
|  * sequence:
 | |
|  *
 | |
|  *	echo "Initializing random number generator..."
 | |
|  *	random_seed=/var/run/random-seed
 | |
|  *	# Carry a random seed from start-up to start-up
 | |
|  *	# Load and then save the whole entropy pool
 | |
|  *	if [ -f $random_seed ]; then
 | |
|  *		cat $random_seed >/dev/urandom
 | |
|  *	else
 | |
|  *		touch $random_seed
 | |
|  *	fi
 | |
|  *	chmod 600 $random_seed
 | |
|  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 | |
|  *
 | |
|  * and the following lines in an appropriate script which is run as
 | |
|  * the system is shutdown:
 | |
|  *
 | |
|  *	# Carry a random seed from shut-down to start-up
 | |
|  *	# Save the whole entropy pool
 | |
|  *	echo "Saving random seed..."
 | |
|  *	random_seed=/var/run/random-seed
 | |
|  *	touch $random_seed
 | |
|  *	chmod 600 $random_seed
 | |
|  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 | |
|  *
 | |
|  * For example, on most modern systems using the System V init
 | |
|  * scripts, such code fragments would be found in
 | |
|  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 | |
|  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 | |
|  *
 | |
|  * Effectively, these commands cause the contents of the entropy pool
 | |
|  * to be saved at shut-down time and reloaded into the entropy pool at
 | |
|  * start-up.  (The 'dd' in the addition to the bootup script is to
 | |
|  * make sure that /etc/random-seed is different for every start-up,
 | |
|  * even if the system crashes without executing rc.0.)  Even with
 | |
|  * complete knowledge of the start-up activities, predicting the state
 | |
|  * of the entropy pool requires knowledge of the previous history of
 | |
|  * the system.
 | |
|  *
 | |
|  * Configuring the /dev/random driver under Linux
 | |
|  * ==============================================
 | |
|  *
 | |
|  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 | |
|  * the /dev/mem major number (#1).  So if your system does not have
 | |
|  * /dev/random and /dev/urandom created already, they can be created
 | |
|  * by using the commands:
 | |
|  *
 | |
|  * 	mknod /dev/random c 1 8
 | |
|  * 	mknod /dev/urandom c 1 9
 | |
|  *
 | |
|  * Acknowledgements:
 | |
|  * =================
 | |
|  *
 | |
|  * Ideas for constructing this random number generator were derived
 | |
|  * from Pretty Good Privacy's random number generator, and from private
 | |
|  * discussions with Phil Karn.  Colin Plumb provided a faster random
 | |
|  * number generator, which speed up the mixing function of the entropy
 | |
|  * pool, taken from PGPfone.  Dale Worley has also contributed many
 | |
|  * useful ideas and suggestions to improve this driver.
 | |
|  *
 | |
|  * Any flaws in the design are solely my responsibility, and should
 | |
|  * not be attributed to the Phil, Colin, or any of authors of PGP.
 | |
|  *
 | |
|  * Further background information on this topic may be obtained from
 | |
|  * RFC 1750, "Randomness Recommendations for Security", by Donald
 | |
|  * Eastlake, Steve Crocker, and Jeff Schiller.
 | |
|  */
 | |
| 
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/major.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/fcntl.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/poll.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/genhd.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/cryptohash.h>
 | |
| #include <linux/fips.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/uuid.h>
 | |
| #include <crypto/chacha.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/irq_regs.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/random.h>
 | |
| 
 | |
| /* #define ADD_INTERRUPT_BENCH */
 | |
| 
 | |
| /*
 | |
|  * Configuration information
 | |
|  */
 | |
| #define INPUT_POOL_SHIFT	12
 | |
| #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 | |
| #define OUTPUT_POOL_SHIFT	10
 | |
| #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 | |
| #define SEC_XFER_SIZE		512
 | |
| #define EXTRACT_SIZE		10
 | |
| 
 | |
| 
 | |
| #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 | |
| 
 | |
| /*
 | |
|  * To allow fractional bits to be tracked, the entropy_count field is
 | |
|  * denominated in units of 1/8th bits.
 | |
|  *
 | |
|  * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
 | |
|  * credit_entropy_bits() needs to be 64 bits wide.
 | |
|  */
 | |
| #define ENTROPY_SHIFT 3
 | |
| #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * The minimum number of bits of entropy before we wake up a read on
 | |
|  * /dev/random.  Should be enough to do a significant reseed.
 | |
|  */
 | |
| static int random_read_wakeup_bits = 64;
 | |
| 
 | |
| /*
 | |
|  * If the entropy count falls under this number of bits, then we
 | |
|  * should wake up processes which are selecting or polling on write
 | |
|  * access to /dev/random.
 | |
|  */
 | |
| static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 | |
| 
 | |
| /*
 | |
|  * Originally, we used a primitive polynomial of degree .poolwords
 | |
|  * over GF(2).  The taps for various sizes are defined below.  They
 | |
|  * were chosen to be evenly spaced except for the last tap, which is 1
 | |
|  * to get the twisting happening as fast as possible.
 | |
|  *
 | |
|  * For the purposes of better mixing, we use the CRC-32 polynomial as
 | |
|  * well to make a (modified) twisted Generalized Feedback Shift
 | |
|  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 | |
|  * generators.  ACM Transactions on Modeling and Computer Simulation
 | |
|  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 | |
|  * GFSR generators II.  ACM Transactions on Modeling and Computer
 | |
|  * Simulation 4:254-266)
 | |
|  *
 | |
|  * Thanks to Colin Plumb for suggesting this.
 | |
|  *
 | |
|  * The mixing operation is much less sensitive than the output hash,
 | |
|  * where we use SHA-1.  All that we want of mixing operation is that
 | |
|  * it be a good non-cryptographic hash; i.e. it not produce collisions
 | |
|  * when fed "random" data of the sort we expect to see.  As long as
 | |
|  * the pool state differs for different inputs, we have preserved the
 | |
|  * input entropy and done a good job.  The fact that an intelligent
 | |
|  * attacker can construct inputs that will produce controlled
 | |
|  * alterations to the pool's state is not important because we don't
 | |
|  * consider such inputs to contribute any randomness.  The only
 | |
|  * property we need with respect to them is that the attacker can't
 | |
|  * increase his/her knowledge of the pool's state.  Since all
 | |
|  * additions are reversible (knowing the final state and the input,
 | |
|  * you can reconstruct the initial state), if an attacker has any
 | |
|  * uncertainty about the initial state, he/she can only shuffle that
 | |
|  * uncertainty about, but never cause any collisions (which would
 | |
|  * decrease the uncertainty).
 | |
|  *
 | |
|  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 | |
|  * Videau in their paper, "The Linux Pseudorandom Number Generator
 | |
|  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 | |
|  * paper, they point out that we are not using a true Twisted GFSR,
 | |
|  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 | |
|  * is, with only three taps, instead of the six that we are using).
 | |
|  * As a result, the resulting polynomial is neither primitive nor
 | |
|  * irreducible, and hence does not have a maximal period over
 | |
|  * GF(2**32).  They suggest a slight change to the generator
 | |
|  * polynomial which improves the resulting TGFSR polynomial to be
 | |
|  * irreducible, which we have made here.
 | |
|  */
 | |
| static const struct poolinfo {
 | |
| 	int poolbitshift, poolwords, poolbytes, poolfracbits;
 | |
| #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
 | |
| 	int tap1, tap2, tap3, tap4, tap5;
 | |
| } poolinfo_table[] = {
 | |
| 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 | |
| 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 | |
| 	{ S(128),	104,	76,	51,	25,	1 },
 | |
| 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 | |
| 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 | |
| 	{ S(32),	26,	19,	14,	7,	1 },
 | |
| #if 0
 | |
| 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 | |
| 	{ S(2048),	1638,	1231,	819,	411,	1 },
 | |
| 
 | |
| 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 | |
| 	{ S(1024),	817,	615,	412,	204,	1 },
 | |
| 
 | |
| 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 | |
| 	{ S(1024),	819,	616,	410,	207,	2 },
 | |
| 
 | |
| 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 | |
| 	{ S(512),	411,	308,	208,	104,	1 },
 | |
| 
 | |
| 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 | |
| 	{ S(512),	409,	307,	206,	102,	2 },
 | |
| 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 | |
| 	{ S(512),	409,	309,	205,	103,	2 },
 | |
| 
 | |
| 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 | |
| 	{ S(256),	205,	155,	101,	52,	1 },
 | |
| 
 | |
| 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 | |
| 	{ S(128),	103,	78,	51,	27,	2 },
 | |
| 
 | |
| 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 | |
| 	{ S(64),	52,	39,	26,	14,	1 },
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Static global variables
 | |
|  */
 | |
| static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 | |
| static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 | |
| static struct fasync_struct *fasync;
 | |
| 
 | |
| static DEFINE_SPINLOCK(random_ready_list_lock);
 | |
| static LIST_HEAD(random_ready_list);
 | |
| 
 | |
| struct crng_state {
 | |
| 	__u32		state[16];
 | |
| 	unsigned long	init_time;
 | |
| 	spinlock_t	lock;
 | |
| };
 | |
| 
 | |
| static struct crng_state primary_crng = {
 | |
| 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * crng_init =  0 --> Uninitialized
 | |
|  *		1 --> Initialized
 | |
|  *		2 --> Initialized from input_pool
 | |
|  *
 | |
|  * crng_init is protected by primary_crng->lock, and only increases
 | |
|  * its value (from 0->1->2).
 | |
|  */
 | |
| static int crng_init = 0;
 | |
| #define crng_ready() (likely(crng_init > 1))
 | |
| static int crng_init_cnt = 0;
 | |
| static unsigned long crng_global_init_time = 0;
 | |
| #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
 | |
| static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
 | |
| static void _crng_backtrack_protect(struct crng_state *crng,
 | |
| 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
 | |
| static void process_random_ready_list(void);
 | |
| static void _get_random_bytes(void *buf, int nbytes);
 | |
| 
 | |
| static struct ratelimit_state unseeded_warning =
 | |
| 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 | |
| static struct ratelimit_state urandom_warning =
 | |
| 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 | |
| 
 | |
| static int ratelimit_disable __read_mostly;
 | |
| 
 | |
| module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 | |
| MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 | |
| 
 | |
| /**********************************************************************
 | |
|  *
 | |
|  * OS independent entropy store.   Here are the functions which handle
 | |
|  * storing entropy in an entropy pool.
 | |
|  *
 | |
|  **********************************************************************/
 | |
| 
 | |
| struct entropy_store;
 | |
| struct entropy_store {
 | |
| 	/* read-only data: */
 | |
| 	const struct poolinfo *poolinfo;
 | |
| 	__u32 *pool;
 | |
| 	const char *name;
 | |
| 	struct entropy_store *pull;
 | |
| 	struct work_struct push_work;
 | |
| 
 | |
| 	/* read-write data: */
 | |
| 	unsigned long last_pulled;
 | |
| 	spinlock_t lock;
 | |
| 	unsigned short add_ptr;
 | |
| 	unsigned short input_rotate;
 | |
| 	int entropy_count;
 | |
| 	unsigned int initialized:1;
 | |
| 	unsigned int last_data_init:1;
 | |
| 	__u8 last_data[EXTRACT_SIZE];
 | |
| };
 | |
| 
 | |
| static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 | |
| 			       size_t nbytes, int min, int rsvd);
 | |
| static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 | |
| 				size_t nbytes, int fips);
 | |
| 
 | |
| static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 | |
| static void push_to_pool(struct work_struct *work);
 | |
| static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 | |
| static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
 | |
| 
 | |
| static struct entropy_store input_pool = {
 | |
| 	.poolinfo = &poolinfo_table[0],
 | |
| 	.name = "input",
 | |
| 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 | |
| 	.pool = input_pool_data
 | |
| };
 | |
| 
 | |
| static struct entropy_store blocking_pool = {
 | |
| 	.poolinfo = &poolinfo_table[1],
 | |
| 	.name = "blocking",
 | |
| 	.pull = &input_pool,
 | |
| 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 | |
| 	.pool = blocking_pool_data,
 | |
| 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 | |
| 					push_to_pool),
 | |
| };
 | |
| 
 | |
| static __u32 const twist_table[8] = {
 | |
| 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 | |
| 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 | |
| 
 | |
| /*
 | |
|  * This function adds bytes into the entropy "pool".  It does not
 | |
|  * update the entropy estimate.  The caller should call
 | |
|  * credit_entropy_bits if this is appropriate.
 | |
|  *
 | |
|  * The pool is stirred with a primitive polynomial of the appropriate
 | |
|  * degree, and then twisted.  We twist by three bits at a time because
 | |
|  * it's cheap to do so and helps slightly in the expected case where
 | |
|  * the entropy is concentrated in the low-order bits.
 | |
|  */
 | |
| static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 | |
| 			    int nbytes)
 | |
| {
 | |
| 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 | |
| 	int input_rotate;
 | |
| 	int wordmask = r->poolinfo->poolwords - 1;
 | |
| 	const char *bytes = in;
 | |
| 	__u32 w;
 | |
| 
 | |
| 	tap1 = r->poolinfo->tap1;
 | |
| 	tap2 = r->poolinfo->tap2;
 | |
| 	tap3 = r->poolinfo->tap3;
 | |
| 	tap4 = r->poolinfo->tap4;
 | |
| 	tap5 = r->poolinfo->tap5;
 | |
| 
 | |
| 	input_rotate = r->input_rotate;
 | |
| 	i = r->add_ptr;
 | |
| 
 | |
| 	/* mix one byte at a time to simplify size handling and churn faster */
 | |
| 	while (nbytes--) {
 | |
| 		w = rol32(*bytes++, input_rotate);
 | |
| 		i = (i - 1) & wordmask;
 | |
| 
 | |
| 		/* XOR in the various taps */
 | |
| 		w ^= r->pool[i];
 | |
| 		w ^= r->pool[(i + tap1) & wordmask];
 | |
| 		w ^= r->pool[(i + tap2) & wordmask];
 | |
| 		w ^= r->pool[(i + tap3) & wordmask];
 | |
| 		w ^= r->pool[(i + tap4) & wordmask];
 | |
| 		w ^= r->pool[(i + tap5) & wordmask];
 | |
| 
 | |
| 		/* Mix the result back in with a twist */
 | |
| 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 | |
| 
 | |
| 		/*
 | |
| 		 * Normally, we add 7 bits of rotation to the pool.
 | |
| 		 * At the beginning of the pool, add an extra 7 bits
 | |
| 		 * rotation, so that successive passes spread the
 | |
| 		 * input bits across the pool evenly.
 | |
| 		 */
 | |
| 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 | |
| 	}
 | |
| 
 | |
| 	r->input_rotate = input_rotate;
 | |
| 	r->add_ptr = i;
 | |
| }
 | |
| 
 | |
| static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 | |
| 			     int nbytes)
 | |
| {
 | |
| 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 | |
| 	_mix_pool_bytes(r, in, nbytes);
 | |
| }
 | |
| 
 | |
| static void mix_pool_bytes(struct entropy_store *r, const void *in,
 | |
| 			   int nbytes)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 | |
| 	spin_lock_irqsave(&r->lock, flags);
 | |
| 	_mix_pool_bytes(r, in, nbytes);
 | |
| 	spin_unlock_irqrestore(&r->lock, flags);
 | |
| }
 | |
| 
 | |
| struct fast_pool {
 | |
| 	__u32		pool[4];
 | |
| 	unsigned long	last;
 | |
| 	unsigned short	reg_idx;
 | |
| 	unsigned char	count;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This is a fast mixing routine used by the interrupt randomness
 | |
|  * collector.  It's hardcoded for an 128 bit pool and assumes that any
 | |
|  * locks that might be needed are taken by the caller.
 | |
|  */
 | |
| static void fast_mix(struct fast_pool *f)
 | |
| {
 | |
| 	__u32 a = f->pool[0],	b = f->pool[1];
 | |
| 	__u32 c = f->pool[2],	d = f->pool[3];
 | |
| 
 | |
| 	a += b;			c += d;
 | |
| 	b = rol32(b, 6);	d = rol32(d, 27);
 | |
| 	d ^= a;			b ^= c;
 | |
| 
 | |
| 	a += b;			c += d;
 | |
| 	b = rol32(b, 16);	d = rol32(d, 14);
 | |
| 	d ^= a;			b ^= c;
 | |
| 
 | |
| 	a += b;			c += d;
 | |
| 	b = rol32(b, 6);	d = rol32(d, 27);
 | |
| 	d ^= a;			b ^= c;
 | |
| 
 | |
| 	a += b;			c += d;
 | |
| 	b = rol32(b, 16);	d = rol32(d, 14);
 | |
| 	d ^= a;			b ^= c;
 | |
| 
 | |
| 	f->pool[0] = a;  f->pool[1] = b;
 | |
| 	f->pool[2] = c;  f->pool[3] = d;
 | |
| 	f->count++;
 | |
| }
 | |
| 
 | |
| static void process_random_ready_list(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct random_ready_callback *rdy, *tmp;
 | |
| 
 | |
| 	spin_lock_irqsave(&random_ready_list_lock, flags);
 | |
| 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 | |
| 		struct module *owner = rdy->owner;
 | |
| 
 | |
| 		list_del_init(&rdy->list);
 | |
| 		rdy->func(rdy);
 | |
| 		module_put(owner);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Credit (or debit) the entropy store with n bits of entropy.
 | |
|  * Use credit_entropy_bits_safe() if the value comes from userspace
 | |
|  * or otherwise should be checked for extreme values.
 | |
|  */
 | |
| static void credit_entropy_bits(struct entropy_store *r, int nbits)
 | |
| {
 | |
| 	int entropy_count, orig, has_initialized = 0;
 | |
| 	const int pool_size = r->poolinfo->poolfracbits;
 | |
| 	int nfrac = nbits << ENTROPY_SHIFT;
 | |
| 
 | |
| 	if (!nbits)
 | |
| 		return;
 | |
| 
 | |
| retry:
 | |
| 	entropy_count = orig = READ_ONCE(r->entropy_count);
 | |
| 	if (nfrac < 0) {
 | |
| 		/* Debit */
 | |
| 		entropy_count += nfrac;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Credit: we have to account for the possibility of
 | |
| 		 * overwriting already present entropy.	 Even in the
 | |
| 		 * ideal case of pure Shannon entropy, new contributions
 | |
| 		 * approach the full value asymptotically:
 | |
| 		 *
 | |
| 		 * entropy <- entropy + (pool_size - entropy) *
 | |
| 		 *	(1 - exp(-add_entropy/pool_size))
 | |
| 		 *
 | |
| 		 * For add_entropy <= pool_size/2 then
 | |
| 		 * (1 - exp(-add_entropy/pool_size)) >=
 | |
| 		 *    (add_entropy/pool_size)*0.7869...
 | |
| 		 * so we can approximate the exponential with
 | |
| 		 * 3/4*add_entropy/pool_size and still be on the
 | |
| 		 * safe side by adding at most pool_size/2 at a time.
 | |
| 		 *
 | |
| 		 * The use of pool_size-2 in the while statement is to
 | |
| 		 * prevent rounding artifacts from making the loop
 | |
| 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 | |
| 		 * turns no matter how large nbits is.
 | |
| 		 */
 | |
| 		int pnfrac = nfrac;
 | |
| 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 | |
| 		/* The +2 corresponds to the /4 in the denominator */
 | |
| 
 | |
| 		do {
 | |
| 			unsigned int anfrac = min(pnfrac, pool_size/2);
 | |
| 			unsigned int add =
 | |
| 				((pool_size - entropy_count)*anfrac*3) >> s;
 | |
| 
 | |
| 			entropy_count += add;
 | |
| 			pnfrac -= anfrac;
 | |
| 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(entropy_count < 0)) {
 | |
| 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 | |
| 			r->name, entropy_count);
 | |
| 		WARN_ON(1);
 | |
| 		entropy_count = 0;
 | |
| 	} else if (entropy_count > pool_size)
 | |
| 		entropy_count = pool_size;
 | |
| 	if ((r == &blocking_pool) && !r->initialized &&
 | |
| 	    (entropy_count >> ENTROPY_SHIFT) > 128)
 | |
| 		has_initialized = 1;
 | |
| 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 | |
| 		goto retry;
 | |
| 
 | |
| 	if (has_initialized) {
 | |
| 		r->initialized = 1;
 | |
| 		wake_up_interruptible(&random_read_wait);
 | |
| 		kill_fasync(&fasync, SIGIO, POLL_IN);
 | |
| 	}
 | |
| 
 | |
| 	trace_credit_entropy_bits(r->name, nbits,
 | |
| 				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
 | |
| 
 | |
| 	if (r == &input_pool) {
 | |
| 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 | |
| 		struct entropy_store *other = &blocking_pool;
 | |
| 
 | |
| 		if (crng_init < 2) {
 | |
| 			if (entropy_bits < 128)
 | |
| 				return;
 | |
| 			crng_reseed(&primary_crng, r);
 | |
| 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		/* initialize the blocking pool if necessary */
 | |
| 		if (entropy_bits >= random_read_wakeup_bits &&
 | |
| 		    !other->initialized) {
 | |
| 			schedule_work(&other->push_work);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* should we wake readers? */
 | |
| 		if (entropy_bits >= random_read_wakeup_bits &&
 | |
| 		    wq_has_sleeper(&random_read_wait)) {
 | |
| 			wake_up_interruptible(&random_read_wait);
 | |
| 			kill_fasync(&fasync, SIGIO, POLL_IN);
 | |
| 		}
 | |
| 		/* If the input pool is getting full, and the blocking
 | |
| 		 * pool has room, send some entropy to the blocking
 | |
| 		 * pool.
 | |
| 		 */
 | |
| 		if (!work_pending(&other->push_work) &&
 | |
| 		    (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) &&
 | |
| 		    (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes))
 | |
| 			schedule_work(&other->push_work);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 | |
| {
 | |
| 	const int nbits_max = r->poolinfo->poolwords * 32;
 | |
| 
 | |
| 	if (nbits < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Cap the value to avoid overflows */
 | |
| 	nbits = min(nbits,  nbits_max);
 | |
| 
 | |
| 	credit_entropy_bits(r, nbits);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*********************************************************************
 | |
|  *
 | |
|  * CRNG using CHACHA20
 | |
|  *
 | |
|  *********************************************************************/
 | |
| 
 | |
| #define CRNG_RESEED_INTERVAL (300*HZ)
 | |
| 
 | |
| static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| /*
 | |
|  * Hack to deal with crazy userspace progams when they are all trying
 | |
|  * to access /dev/urandom in parallel.  The programs are almost
 | |
|  * certainly doing something terribly wrong, but we'll work around
 | |
|  * their brain damage.
 | |
|  */
 | |
| static struct crng_state **crng_node_pool __read_mostly;
 | |
| #endif
 | |
| 
 | |
| static void invalidate_batched_entropy(void);
 | |
| static void numa_crng_init(void);
 | |
| 
 | |
| static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
 | |
| static int __init parse_trust_cpu(char *arg)
 | |
| {
 | |
| 	return kstrtobool(arg, &trust_cpu);
 | |
| }
 | |
| early_param("random.trust_cpu", parse_trust_cpu);
 | |
| 
 | |
| static void crng_initialize(struct crng_state *crng)
 | |
| {
 | |
| 	int		i;
 | |
| 	int		arch_init = 1;
 | |
| 	unsigned long	rv;
 | |
| 
 | |
| 	memcpy(&crng->state[0], "expand 32-byte k", 16);
 | |
| 	if (crng == &primary_crng)
 | |
| 		_extract_entropy(&input_pool, &crng->state[4],
 | |
| 				 sizeof(__u32) * 12, 0);
 | |
| 	else
 | |
| 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 | |
| 	for (i = 4; i < 16; i++) {
 | |
| 		if (!arch_get_random_seed_long(&rv) &&
 | |
| 		    !arch_get_random_long(&rv)) {
 | |
| 			rv = random_get_entropy();
 | |
| 			arch_init = 0;
 | |
| 		}
 | |
| 		crng->state[i] ^= rv;
 | |
| 	}
 | |
| 	if (trust_cpu && arch_init && crng == &primary_crng) {
 | |
| 		invalidate_batched_entropy();
 | |
| 		numa_crng_init();
 | |
| 		crng_init = 2;
 | |
| 		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
 | |
| 	}
 | |
| 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static void do_numa_crng_init(struct work_struct *work)
 | |
| {
 | |
| 	int i;
 | |
| 	struct crng_state *crng;
 | |
| 	struct crng_state **pool;
 | |
| 
 | |
| 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 | |
| 	for_each_online_node(i) {
 | |
| 		crng = kmalloc_node(sizeof(struct crng_state),
 | |
| 				    GFP_KERNEL | __GFP_NOFAIL, i);
 | |
| 		spin_lock_init(&crng->lock);
 | |
| 		crng_initialize(crng);
 | |
| 		pool[i] = crng;
 | |
| 	}
 | |
| 	mb();
 | |
| 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
 | |
| 		for_each_node(i)
 | |
| 			kfree(pool[i]);
 | |
| 		kfree(pool);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 | |
| 
 | |
| static void numa_crng_init(void)
 | |
| {
 | |
| 	schedule_work(&numa_crng_init_work);
 | |
| }
 | |
| #else
 | |
| static void numa_crng_init(void) {}
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * crng_fast_load() can be called by code in the interrupt service
 | |
|  * path.  So we can't afford to dilly-dally.
 | |
|  */
 | |
| static int crng_fast_load(const char *cp, size_t len)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	char *p;
 | |
| 
 | |
| 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 | |
| 		return 0;
 | |
| 	if (crng_init != 0) {
 | |
| 		spin_unlock_irqrestore(&primary_crng.lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	p = (unsigned char *) &primary_crng.state[4];
 | |
| 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 | |
| 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
 | |
| 		cp++; crng_init_cnt++; len--;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&primary_crng.lock, flags);
 | |
| 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 | |
| 		invalidate_batched_entropy();
 | |
| 		crng_init = 1;
 | |
| 		wake_up_interruptible(&crng_init_wait);
 | |
| 		pr_notice("random: fast init done\n");
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * crng_slow_load() is called by add_device_randomness, which has two
 | |
|  * attributes.  (1) We can't trust the buffer passed to it is
 | |
|  * guaranteed to be unpredictable (so it might not have any entropy at
 | |
|  * all), and (2) it doesn't have the performance constraints of
 | |
|  * crng_fast_load().
 | |
|  *
 | |
|  * So we do something more comprehensive which is guaranteed to touch
 | |
|  * all of the primary_crng's state, and which uses a LFSR with a
 | |
|  * period of 255 as part of the mixing algorithm.  Finally, we do
 | |
|  * *not* advance crng_init_cnt since buffer we may get may be something
 | |
|  * like a fixed DMI table (for example), which might very well be
 | |
|  * unique to the machine, but is otherwise unvarying.
 | |
|  */
 | |
| static int crng_slow_load(const char *cp, size_t len)
 | |
| {
 | |
| 	unsigned long		flags;
 | |
| 	static unsigned char	lfsr = 1;
 | |
| 	unsigned char		tmp;
 | |
| 	unsigned		i, max = CHACHA_KEY_SIZE;
 | |
| 	const char *		src_buf = cp;
 | |
| 	char *			dest_buf = (char *) &primary_crng.state[4];
 | |
| 
 | |
| 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 | |
| 		return 0;
 | |
| 	if (crng_init != 0) {
 | |
| 		spin_unlock_irqrestore(&primary_crng.lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (len > max)
 | |
| 		max = len;
 | |
| 
 | |
| 	for (i = 0; i < max ; i++) {
 | |
| 		tmp = lfsr;
 | |
| 		lfsr >>= 1;
 | |
| 		if (tmp & 1)
 | |
| 			lfsr ^= 0xE1;
 | |
| 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
 | |
| 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 | |
| 		lfsr += (tmp << 3) | (tmp >> 5);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&primary_crng.lock, flags);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
 | |
| {
 | |
| 	unsigned long	flags;
 | |
| 	int		i, num;
 | |
| 	union {
 | |
| 		__u8	block[CHACHA_BLOCK_SIZE];
 | |
| 		__u32	key[8];
 | |
| 	} buf;
 | |
| 
 | |
| 	if (r) {
 | |
| 		num = extract_entropy(r, &buf, 32, 16, 0);
 | |
| 		if (num == 0)
 | |
| 			return;
 | |
| 	} else {
 | |
| 		_extract_crng(&primary_crng, buf.block);
 | |
| 		_crng_backtrack_protect(&primary_crng, buf.block,
 | |
| 					CHACHA_KEY_SIZE);
 | |
| 	}
 | |
| 	spin_lock_irqsave(&crng->lock, flags);
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		unsigned long	rv;
 | |
| 		if (!arch_get_random_seed_long(&rv) &&
 | |
| 		    !arch_get_random_long(&rv))
 | |
| 			rv = random_get_entropy();
 | |
| 		crng->state[i+4] ^= buf.key[i] ^ rv;
 | |
| 	}
 | |
| 	memzero_explicit(&buf, sizeof(buf));
 | |
| 	crng->init_time = jiffies;
 | |
| 	spin_unlock_irqrestore(&crng->lock, flags);
 | |
| 	if (crng == &primary_crng && crng_init < 2) {
 | |
| 		invalidate_batched_entropy();
 | |
| 		numa_crng_init();
 | |
| 		crng_init = 2;
 | |
| 		process_random_ready_list();
 | |
| 		wake_up_interruptible(&crng_init_wait);
 | |
| 		pr_notice("random: crng init done\n");
 | |
| 		if (unseeded_warning.missed) {
 | |
| 			pr_notice("random: %d get_random_xx warning(s) missed "
 | |
| 				  "due to ratelimiting\n",
 | |
| 				  unseeded_warning.missed);
 | |
| 			unseeded_warning.missed = 0;
 | |
| 		}
 | |
| 		if (urandom_warning.missed) {
 | |
| 			pr_notice("random: %d urandom warning(s) missed "
 | |
| 				  "due to ratelimiting\n",
 | |
| 				  urandom_warning.missed);
 | |
| 			urandom_warning.missed = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void _extract_crng(struct crng_state *crng,
 | |
| 			  __u8 out[CHACHA_BLOCK_SIZE])
 | |
| {
 | |
| 	unsigned long v, flags;
 | |
| 
 | |
| 	if (crng_ready() &&
 | |
| 	    (time_after(crng_global_init_time, crng->init_time) ||
 | |
| 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
 | |
| 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
 | |
| 	spin_lock_irqsave(&crng->lock, flags);
 | |
| 	if (arch_get_random_long(&v))
 | |
| 		crng->state[14] ^= v;
 | |
| 	chacha20_block(&crng->state[0], out);
 | |
| 	if (crng->state[12] == 0)
 | |
| 		crng->state[13]++;
 | |
| 	spin_unlock_irqrestore(&crng->lock, flags);
 | |
| }
 | |
| 
 | |
| static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
 | |
| {
 | |
| 	struct crng_state *crng = NULL;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (crng_node_pool)
 | |
| 		crng = crng_node_pool[numa_node_id()];
 | |
| 	if (crng == NULL)
 | |
| #endif
 | |
| 		crng = &primary_crng;
 | |
| 	_extract_crng(crng, out);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the leftover bytes from the CRNG block output (if there is
 | |
|  * enough) to mutate the CRNG key to provide backtracking protection.
 | |
|  */
 | |
| static void _crng_backtrack_protect(struct crng_state *crng,
 | |
| 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
 | |
| {
 | |
| 	unsigned long	flags;
 | |
| 	__u32		*s, *d;
 | |
| 	int		i;
 | |
| 
 | |
| 	used = round_up(used, sizeof(__u32));
 | |
| 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
 | |
| 		extract_crng(tmp);
 | |
| 		used = 0;
 | |
| 	}
 | |
| 	spin_lock_irqsave(&crng->lock, flags);
 | |
| 	s = (__u32 *) &tmp[used];
 | |
| 	d = &crng->state[4];
 | |
| 	for (i=0; i < 8; i++)
 | |
| 		*d++ ^= *s++;
 | |
| 	spin_unlock_irqrestore(&crng->lock, flags);
 | |
| }
 | |
| 
 | |
| static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
 | |
| {
 | |
| 	struct crng_state *crng = NULL;
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| 	if (crng_node_pool)
 | |
| 		crng = crng_node_pool[numa_node_id()];
 | |
| 	if (crng == NULL)
 | |
| #endif
 | |
| 		crng = &primary_crng;
 | |
| 	_crng_backtrack_protect(crng, tmp, used);
 | |
| }
 | |
| 
 | |
| static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
 | |
| {
 | |
| 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
 | |
| 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
 | |
| 	int large_request = (nbytes > 256);
 | |
| 
 | |
| 	while (nbytes) {
 | |
| 		if (large_request && need_resched()) {
 | |
| 			if (signal_pending(current)) {
 | |
| 				if (ret == 0)
 | |
| 					ret = -ERESTARTSYS;
 | |
| 				break;
 | |
| 			}
 | |
| 			schedule();
 | |
| 		}
 | |
| 
 | |
| 		extract_crng(tmp);
 | |
| 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
 | |
| 		if (copy_to_user(buf, tmp, i)) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		nbytes -= i;
 | |
| 		buf += i;
 | |
| 		ret += i;
 | |
| 	}
 | |
| 	crng_backtrack_protect(tmp, i);
 | |
| 
 | |
| 	/* Wipe data just written to memory */
 | |
| 	memzero_explicit(tmp, sizeof(tmp));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*********************************************************************
 | |
|  *
 | |
|  * Entropy input management
 | |
|  *
 | |
|  *********************************************************************/
 | |
| 
 | |
| /* There is one of these per entropy source */
 | |
| struct timer_rand_state {
 | |
| 	cycles_t last_time;
 | |
| 	long last_delta, last_delta2;
 | |
| };
 | |
| 
 | |
| #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 | |
| 
 | |
| /*
 | |
|  * Add device- or boot-specific data to the input pool to help
 | |
|  * initialize it.
 | |
|  *
 | |
|  * None of this adds any entropy; it is meant to avoid the problem of
 | |
|  * the entropy pool having similar initial state across largely
 | |
|  * identical devices.
 | |
|  */
 | |
| void add_device_randomness(const void *buf, unsigned int size)
 | |
| {
 | |
| 	unsigned long time = random_get_entropy() ^ jiffies;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!crng_ready() && size)
 | |
| 		crng_slow_load(buf, size);
 | |
| 
 | |
| 	trace_add_device_randomness(size, _RET_IP_);
 | |
| 	spin_lock_irqsave(&input_pool.lock, flags);
 | |
| 	_mix_pool_bytes(&input_pool, buf, size);
 | |
| 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
 | |
| 	spin_unlock_irqrestore(&input_pool.lock, flags);
 | |
| }
 | |
| EXPORT_SYMBOL(add_device_randomness);
 | |
| 
 | |
| static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
 | |
| 
 | |
| /*
 | |
|  * This function adds entropy to the entropy "pool" by using timing
 | |
|  * delays.  It uses the timer_rand_state structure to make an estimate
 | |
|  * of how many bits of entropy this call has added to the pool.
 | |
|  *
 | |
|  * The number "num" is also added to the pool - it should somehow describe
 | |
|  * the type of event which just happened.  This is currently 0-255 for
 | |
|  * keyboard scan codes, and 256 upwards for interrupts.
 | |
|  *
 | |
|  */
 | |
| static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 | |
| {
 | |
| 	struct entropy_store	*r;
 | |
| 	struct {
 | |
| 		long jiffies;
 | |
| 		unsigned cycles;
 | |
| 		unsigned num;
 | |
| 	} sample;
 | |
| 	long delta, delta2, delta3;
 | |
| 
 | |
| 	sample.jiffies = jiffies;
 | |
| 	sample.cycles = random_get_entropy();
 | |
| 	sample.num = num;
 | |
| 	r = &input_pool;
 | |
| 	mix_pool_bytes(r, &sample, sizeof(sample));
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate number of bits of randomness we probably added.
 | |
| 	 * We take into account the first, second and third-order deltas
 | |
| 	 * in order to make our estimate.
 | |
| 	 */
 | |
| 	delta = sample.jiffies - state->last_time;
 | |
| 	state->last_time = sample.jiffies;
 | |
| 
 | |
| 	delta2 = delta - state->last_delta;
 | |
| 	state->last_delta = delta;
 | |
| 
 | |
| 	delta3 = delta2 - state->last_delta2;
 | |
| 	state->last_delta2 = delta2;
 | |
| 
 | |
| 	if (delta < 0)
 | |
| 		delta = -delta;
 | |
| 	if (delta2 < 0)
 | |
| 		delta2 = -delta2;
 | |
| 	if (delta3 < 0)
 | |
| 		delta3 = -delta3;
 | |
| 	if (delta > delta2)
 | |
| 		delta = delta2;
 | |
| 	if (delta > delta3)
 | |
| 		delta = delta3;
 | |
| 
 | |
| 	/*
 | |
| 	 * delta is now minimum absolute delta.
 | |
| 	 * Round down by 1 bit on general principles,
 | |
| 	 * and limit entropy entimate to 12 bits.
 | |
| 	 */
 | |
| 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
 | |
| }
 | |
| 
 | |
| void add_input_randomness(unsigned int type, unsigned int code,
 | |
| 				 unsigned int value)
 | |
| {
 | |
| 	static unsigned char last_value;
 | |
| 
 | |
| 	/* ignore autorepeat and the like */
 | |
| 	if (value == last_value)
 | |
| 		return;
 | |
| 
 | |
| 	last_value = value;
 | |
| 	add_timer_randomness(&input_timer_state,
 | |
| 			     (type << 4) ^ code ^ (code >> 4) ^ value);
 | |
| 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_input_randomness);
 | |
| 
 | |
| static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 | |
| 
 | |
| #ifdef ADD_INTERRUPT_BENCH
 | |
| static unsigned long avg_cycles, avg_deviation;
 | |
| 
 | |
| #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
 | |
| #define FIXED_1_2 (1 << (AVG_SHIFT-1))
 | |
| 
 | |
| static void add_interrupt_bench(cycles_t start)
 | |
| {
 | |
|         long delta = random_get_entropy() - start;
 | |
| 
 | |
|         /* Use a weighted moving average */
 | |
|         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
 | |
|         avg_cycles += delta;
 | |
|         /* And average deviation */
 | |
|         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
 | |
|         avg_deviation += delta;
 | |
| }
 | |
| #else
 | |
| #define add_interrupt_bench(x)
 | |
| #endif
 | |
| 
 | |
| static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
 | |
| {
 | |
| 	__u32 *ptr = (__u32 *) regs;
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	if (regs == NULL)
 | |
| 		return 0;
 | |
| 	idx = READ_ONCE(f->reg_idx);
 | |
| 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
 | |
| 		idx = 0;
 | |
| 	ptr += idx++;
 | |
| 	WRITE_ONCE(f->reg_idx, idx);
 | |
| 	return *ptr;
 | |
| }
 | |
| 
 | |
| void add_interrupt_randomness(int irq, int irq_flags)
 | |
| {
 | |
| 	struct entropy_store	*r;
 | |
| 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
 | |
| 	struct pt_regs		*regs = get_irq_regs();
 | |
| 	unsigned long		now = jiffies;
 | |
| 	cycles_t		cycles = random_get_entropy();
 | |
| 	__u32			c_high, j_high;
 | |
| 	__u64			ip;
 | |
| 	unsigned long		seed;
 | |
| 	int			credit = 0;
 | |
| 
 | |
| 	if (cycles == 0)
 | |
| 		cycles = get_reg(fast_pool, regs);
 | |
| 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
 | |
| 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
 | |
| 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
 | |
| 	fast_pool->pool[1] ^= now ^ c_high;
 | |
| 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
 | |
| 	fast_pool->pool[2] ^= ip;
 | |
| 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
 | |
| 		get_reg(fast_pool, regs);
 | |
| 
 | |
| 	fast_mix(fast_pool);
 | |
| 	add_interrupt_bench(cycles);
 | |
| 
 | |
| 	if (unlikely(crng_init == 0)) {
 | |
| 		if ((fast_pool->count >= 64) &&
 | |
| 		    crng_fast_load((char *) fast_pool->pool,
 | |
| 				   sizeof(fast_pool->pool))) {
 | |
| 			fast_pool->count = 0;
 | |
| 			fast_pool->last = now;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((fast_pool->count < 64) &&
 | |
| 	    !time_after(now, fast_pool->last + HZ))
 | |
| 		return;
 | |
| 
 | |
| 	r = &input_pool;
 | |
| 	if (!spin_trylock(&r->lock))
 | |
| 		return;
 | |
| 
 | |
| 	fast_pool->last = now;
 | |
| 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have architectural seed generator, produce a seed and
 | |
| 	 * add it to the pool.  For the sake of paranoia don't let the
 | |
| 	 * architectural seed generator dominate the input from the
 | |
| 	 * interrupt noise.
 | |
| 	 */
 | |
| 	if (arch_get_random_seed_long(&seed)) {
 | |
| 		__mix_pool_bytes(r, &seed, sizeof(seed));
 | |
| 		credit = 1;
 | |
| 	}
 | |
| 	spin_unlock(&r->lock);
 | |
| 
 | |
| 	fast_pool->count = 0;
 | |
| 
 | |
| 	/* award one bit for the contents of the fast pool */
 | |
| 	credit_entropy_bits(r, credit + 1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_interrupt_randomness);
 | |
| 
 | |
| #ifdef CONFIG_BLOCK
 | |
| void add_disk_randomness(struct gendisk *disk)
 | |
| {
 | |
| 	if (!disk || !disk->random)
 | |
| 		return;
 | |
| 	/* first major is 1, so we get >= 0x200 here */
 | |
| 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 | |
| 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_disk_randomness);
 | |
| #endif
 | |
| 
 | |
| /*********************************************************************
 | |
|  *
 | |
|  * Entropy extraction routines
 | |
|  *
 | |
|  *********************************************************************/
 | |
| 
 | |
| /*
 | |
|  * This utility inline function is responsible for transferring entropy
 | |
|  * from the primary pool to the secondary extraction pool. We make
 | |
|  * sure we pull enough for a 'catastrophic reseed'.
 | |
|  */
 | |
| static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
 | |
| static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 | |
| {
 | |
| 	if (!r->pull ||
 | |
| 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
 | |
| 	    r->entropy_count > r->poolinfo->poolfracbits)
 | |
| 		return;
 | |
| 
 | |
| 	_xfer_secondary_pool(r, nbytes);
 | |
| }
 | |
| 
 | |
| static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 | |
| {
 | |
| 	__u32	tmp[OUTPUT_POOL_WORDS];
 | |
| 
 | |
| 	int bytes = nbytes;
 | |
| 
 | |
| 	/* pull at least as much as a wakeup */
 | |
| 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
 | |
| 	/* but never more than the buffer size */
 | |
| 	bytes = min_t(int, bytes, sizeof(tmp));
 | |
| 
 | |
| 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
 | |
| 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
 | |
| 	bytes = extract_entropy(r->pull, tmp, bytes,
 | |
| 				random_read_wakeup_bits / 8, 0);
 | |
| 	mix_pool_bytes(r, tmp, bytes);
 | |
| 	credit_entropy_bits(r, bytes*8);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used as a workqueue function so that when the input pool is getting
 | |
|  * full, we can "spill over" some entropy to the output pools.  That
 | |
|  * way the output pools can store some of the excess entropy instead
 | |
|  * of letting it go to waste.
 | |
|  */
 | |
| static void push_to_pool(struct work_struct *work)
 | |
| {
 | |
| 	struct entropy_store *r = container_of(work, struct entropy_store,
 | |
| 					      push_work);
 | |
| 	BUG_ON(!r);
 | |
| 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
 | |
| 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
 | |
| 			   r->pull->entropy_count >> ENTROPY_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function decides how many bytes to actually take from the
 | |
|  * given pool, and also debits the entropy count accordingly.
 | |
|  */
 | |
| static size_t account(struct entropy_store *r, size_t nbytes, int min,
 | |
| 		      int reserved)
 | |
| {
 | |
| 	int entropy_count, orig, have_bytes;
 | |
| 	size_t ibytes, nfrac;
 | |
| 
 | |
| 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
 | |
| 
 | |
| 	/* Can we pull enough? */
 | |
| retry:
 | |
| 	entropy_count = orig = READ_ONCE(r->entropy_count);
 | |
| 	ibytes = nbytes;
 | |
| 	/* never pull more than available */
 | |
| 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
 | |
| 
 | |
| 	if ((have_bytes -= reserved) < 0)
 | |
| 		have_bytes = 0;
 | |
| 	ibytes = min_t(size_t, ibytes, have_bytes);
 | |
| 	if (ibytes < min)
 | |
| 		ibytes = 0;
 | |
| 
 | |
| 	if (unlikely(entropy_count < 0)) {
 | |
| 		pr_warn("random: negative entropy count: pool %s count %d\n",
 | |
| 			r->name, entropy_count);
 | |
| 		WARN_ON(1);
 | |
| 		entropy_count = 0;
 | |
| 	}
 | |
| 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
 | |
| 	if ((size_t) entropy_count > nfrac)
 | |
| 		entropy_count -= nfrac;
 | |
| 	else
 | |
| 		entropy_count = 0;
 | |
| 
 | |
| 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 | |
| 		goto retry;
 | |
| 
 | |
| 	trace_debit_entropy(r->name, 8 * ibytes);
 | |
| 	if (ibytes &&
 | |
| 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
 | |
| 		wake_up_interruptible(&random_write_wait);
 | |
| 		kill_fasync(&fasync, SIGIO, POLL_OUT);
 | |
| 	}
 | |
| 
 | |
| 	return ibytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function does the actual extraction for extract_entropy and
 | |
|  * extract_entropy_user.
 | |
|  *
 | |
|  * Note: we assume that .poolwords is a multiple of 16 words.
 | |
|  */
 | |
| static void extract_buf(struct entropy_store *r, __u8 *out)
 | |
| {
 | |
| 	int i;
 | |
| 	union {
 | |
| 		__u32 w[5];
 | |
| 		unsigned long l[LONGS(20)];
 | |
| 	} hash;
 | |
| 	__u32 workspace[SHA_WORKSPACE_WORDS];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have an architectural hardware random number
 | |
| 	 * generator, use it for SHA's initial vector
 | |
| 	 */
 | |
| 	sha_init(hash.w);
 | |
| 	for (i = 0; i < LONGS(20); i++) {
 | |
| 		unsigned long v;
 | |
| 		if (!arch_get_random_long(&v))
 | |
| 			break;
 | |
| 		hash.l[i] = v;
 | |
| 	}
 | |
| 
 | |
| 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
 | |
| 	spin_lock_irqsave(&r->lock, flags);
 | |
| 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
 | |
| 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
 | |
| 
 | |
| 	/*
 | |
| 	 * We mix the hash back into the pool to prevent backtracking
 | |
| 	 * attacks (where the attacker knows the state of the pool
 | |
| 	 * plus the current outputs, and attempts to find previous
 | |
| 	 * ouputs), unless the hash function can be inverted. By
 | |
| 	 * mixing at least a SHA1 worth of hash data back, we make
 | |
| 	 * brute-forcing the feedback as hard as brute-forcing the
 | |
| 	 * hash.
 | |
| 	 */
 | |
| 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
 | |
| 	spin_unlock_irqrestore(&r->lock, flags);
 | |
| 
 | |
| 	memzero_explicit(workspace, sizeof(workspace));
 | |
| 
 | |
| 	/*
 | |
| 	 * In case the hash function has some recognizable output
 | |
| 	 * pattern, we fold it in half. Thus, we always feed back
 | |
| 	 * twice as much data as we output.
 | |
| 	 */
 | |
| 	hash.w[0] ^= hash.w[3];
 | |
| 	hash.w[1] ^= hash.w[4];
 | |
| 	hash.w[2] ^= rol32(hash.w[2], 16);
 | |
| 
 | |
| 	memcpy(out, &hash, EXTRACT_SIZE);
 | |
| 	memzero_explicit(&hash, sizeof(hash));
 | |
| }
 | |
| 
 | |
| static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 | |
| 				size_t nbytes, int fips)
 | |
| {
 | |
| 	ssize_t ret = 0, i;
 | |
| 	__u8 tmp[EXTRACT_SIZE];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	while (nbytes) {
 | |
| 		extract_buf(r, tmp);
 | |
| 
 | |
| 		if (fips) {
 | |
| 			spin_lock_irqsave(&r->lock, flags);
 | |
| 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
 | |
| 				panic("Hardware RNG duplicated output!\n");
 | |
| 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
 | |
| 			spin_unlock_irqrestore(&r->lock, flags);
 | |
| 		}
 | |
| 		i = min_t(int, nbytes, EXTRACT_SIZE);
 | |
| 		memcpy(buf, tmp, i);
 | |
| 		nbytes -= i;
 | |
| 		buf += i;
 | |
| 		ret += i;
 | |
| 	}
 | |
| 
 | |
| 	/* Wipe data just returned from memory */
 | |
| 	memzero_explicit(tmp, sizeof(tmp));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function extracts randomness from the "entropy pool", and
 | |
|  * returns it in a buffer.
 | |
|  *
 | |
|  * The min parameter specifies the minimum amount we can pull before
 | |
|  * failing to avoid races that defeat catastrophic reseeding while the
 | |
|  * reserved parameter indicates how much entropy we must leave in the
 | |
|  * pool after each pull to avoid starving other readers.
 | |
|  */
 | |
| static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 | |
| 				 size_t nbytes, int min, int reserved)
 | |
| {
 | |
| 	__u8 tmp[EXTRACT_SIZE];
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
 | |
| 	if (fips_enabled) {
 | |
| 		spin_lock_irqsave(&r->lock, flags);
 | |
| 		if (!r->last_data_init) {
 | |
| 			r->last_data_init = 1;
 | |
| 			spin_unlock_irqrestore(&r->lock, flags);
 | |
| 			trace_extract_entropy(r->name, EXTRACT_SIZE,
 | |
| 					      ENTROPY_BITS(r), _RET_IP_);
 | |
| 			xfer_secondary_pool(r, EXTRACT_SIZE);
 | |
| 			extract_buf(r, tmp);
 | |
| 			spin_lock_irqsave(&r->lock, flags);
 | |
| 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&r->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
 | |
| 	xfer_secondary_pool(r, nbytes);
 | |
| 	nbytes = account(r, nbytes, min, reserved);
 | |
| 
 | |
| 	return _extract_entropy(r, buf, nbytes, fips_enabled);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function extracts randomness from the "entropy pool", and
 | |
|  * returns it in a userspace buffer.
 | |
|  */
 | |
| static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
 | |
| 				    size_t nbytes)
 | |
| {
 | |
| 	ssize_t ret = 0, i;
 | |
| 	__u8 tmp[EXTRACT_SIZE];
 | |
| 	int large_request = (nbytes > 256);
 | |
| 
 | |
| 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
 | |
| 	if (!r->initialized && r->pull) {
 | |
| 		xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8);
 | |
| 		if (!r->initialized)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	xfer_secondary_pool(r, nbytes);
 | |
| 	nbytes = account(r, nbytes, 0, 0);
 | |
| 
 | |
| 	while (nbytes) {
 | |
| 		if (large_request && need_resched()) {
 | |
| 			if (signal_pending(current)) {
 | |
| 				if (ret == 0)
 | |
| 					ret = -ERESTARTSYS;
 | |
| 				break;
 | |
| 			}
 | |
| 			schedule();
 | |
| 		}
 | |
| 
 | |
| 		extract_buf(r, tmp);
 | |
| 		i = min_t(int, nbytes, EXTRACT_SIZE);
 | |
| 		if (copy_to_user(buf, tmp, i)) {
 | |
| 			ret = -EFAULT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		nbytes -= i;
 | |
| 		buf += i;
 | |
| 		ret += i;
 | |
| 	}
 | |
| 
 | |
| 	/* Wipe data just returned from memory */
 | |
| 	memzero_explicit(tmp, sizeof(tmp));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define warn_unseeded_randomness(previous) \
 | |
| 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
 | |
| 
 | |
| static void _warn_unseeded_randomness(const char *func_name, void *caller,
 | |
| 				      void **previous)
 | |
| {
 | |
| #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
 | |
| 	const bool print_once = false;
 | |
| #else
 | |
| 	static bool print_once __read_mostly;
 | |
| #endif
 | |
| 
 | |
| 	if (print_once ||
 | |
| 	    crng_ready() ||
 | |
| 	    (previous && (caller == READ_ONCE(*previous))))
 | |
| 		return;
 | |
| 	WRITE_ONCE(*previous, caller);
 | |
| #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
 | |
| 	print_once = true;
 | |
| #endif
 | |
| 	if (__ratelimit(&unseeded_warning))
 | |
| 		pr_notice("random: %s called from %pS with crng_init=%d\n",
 | |
| 			  func_name, caller, crng_init);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is the exported kernel interface.  It returns some
 | |
|  * number of good random numbers, suitable for key generation, seeding
 | |
|  * TCP sequence numbers, etc.  It does not rely on the hardware random
 | |
|  * number generator.  For random bytes direct from the hardware RNG
 | |
|  * (when available), use get_random_bytes_arch(). In order to ensure
 | |
|  * that the randomness provided by this function is okay, the function
 | |
|  * wait_for_random_bytes() should be called and return 0 at least once
 | |
|  * at any point prior.
 | |
|  */
 | |
| static void _get_random_bytes(void *buf, int nbytes)
 | |
| {
 | |
| 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
 | |
| 
 | |
| 	trace_get_random_bytes(nbytes, _RET_IP_);
 | |
| 
 | |
| 	while (nbytes >= CHACHA_BLOCK_SIZE) {
 | |
| 		extract_crng(buf);
 | |
| 		buf += CHACHA_BLOCK_SIZE;
 | |
| 		nbytes -= CHACHA_BLOCK_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (nbytes > 0) {
 | |
| 		extract_crng(tmp);
 | |
| 		memcpy(buf, tmp, nbytes);
 | |
| 		crng_backtrack_protect(tmp, nbytes);
 | |
| 	} else
 | |
| 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
 | |
| 	memzero_explicit(tmp, sizeof(tmp));
 | |
| }
 | |
| 
 | |
| void get_random_bytes(void *buf, int nbytes)
 | |
| {
 | |
| 	static void *previous;
 | |
| 
 | |
| 	warn_unseeded_randomness(&previous);
 | |
| 	_get_random_bytes(buf, nbytes);
 | |
| }
 | |
| EXPORT_SYMBOL(get_random_bytes);
 | |
| 
 | |
| /*
 | |
|  * Wait for the urandom pool to be seeded and thus guaranteed to supply
 | |
|  * cryptographically secure random numbers. This applies to: the /dev/urandom
 | |
|  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 | |
|  * family of functions. Using any of these functions without first calling
 | |
|  * this function forfeits the guarantee of security.
 | |
|  *
 | |
|  * Returns: 0 if the urandom pool has been seeded.
 | |
|  *          -ERESTARTSYS if the function was interrupted by a signal.
 | |
|  */
 | |
| int wait_for_random_bytes(void)
 | |
| {
 | |
| 	if (likely(crng_ready()))
 | |
| 		return 0;
 | |
| 	return wait_event_interruptible(crng_init_wait, crng_ready());
 | |
| }
 | |
| EXPORT_SYMBOL(wait_for_random_bytes);
 | |
| 
 | |
| /*
 | |
|  * Returns whether or not the urandom pool has been seeded and thus guaranteed
 | |
|  * to supply cryptographically secure random numbers. This applies to: the
 | |
|  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 | |
|  * ,u64,int,long} family of functions.
 | |
|  *
 | |
|  * Returns: true if the urandom pool has been seeded.
 | |
|  *          false if the urandom pool has not been seeded.
 | |
|  */
 | |
| bool rng_is_initialized(void)
 | |
| {
 | |
| 	return crng_ready();
 | |
| }
 | |
| EXPORT_SYMBOL(rng_is_initialized);
 | |
| 
 | |
| /*
 | |
|  * Add a callback function that will be invoked when the nonblocking
 | |
|  * pool is initialised.
 | |
|  *
 | |
|  * returns: 0 if callback is successfully added
 | |
|  *	    -EALREADY if pool is already initialised (callback not called)
 | |
|  *	    -ENOENT if module for callback is not alive
 | |
|  */
 | |
| int add_random_ready_callback(struct random_ready_callback *rdy)
 | |
| {
 | |
| 	struct module *owner;
 | |
| 	unsigned long flags;
 | |
| 	int err = -EALREADY;
 | |
| 
 | |
| 	if (crng_ready())
 | |
| 		return err;
 | |
| 
 | |
| 	owner = rdy->owner;
 | |
| 	if (!try_module_get(owner))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	spin_lock_irqsave(&random_ready_list_lock, flags);
 | |
| 	if (crng_ready())
 | |
| 		goto out;
 | |
| 
 | |
| 	owner = NULL;
 | |
| 
 | |
| 	list_add(&rdy->list, &random_ready_list);
 | |
| 	err = 0;
 | |
| 
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 | |
| 
 | |
| 	module_put(owner);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(add_random_ready_callback);
 | |
| 
 | |
| /*
 | |
|  * Delete a previously registered readiness callback function.
 | |
|  */
 | |
| void del_random_ready_callback(struct random_ready_callback *rdy)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct module *owner = NULL;
 | |
| 
 | |
| 	spin_lock_irqsave(&random_ready_list_lock, flags);
 | |
| 	if (!list_empty(&rdy->list)) {
 | |
| 		list_del_init(&rdy->list);
 | |
| 		owner = rdy->owner;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 | |
| 
 | |
| 	module_put(owner);
 | |
| }
 | |
| EXPORT_SYMBOL(del_random_ready_callback);
 | |
| 
 | |
| /*
 | |
|  * This function will use the architecture-specific hardware random
 | |
|  * number generator if it is available.  The arch-specific hw RNG will
 | |
|  * almost certainly be faster than what we can do in software, but it
 | |
|  * is impossible to verify that it is implemented securely (as
 | |
|  * opposed, to, say, the AES encryption of a sequence number using a
 | |
|  * key known by the NSA).  So it's useful if we need the speed, but
 | |
|  * only if we're willing to trust the hardware manufacturer not to
 | |
|  * have put in a back door.
 | |
|  *
 | |
|  * Return number of bytes filled in.
 | |
|  */
 | |
| int __must_check get_random_bytes_arch(void *buf, int nbytes)
 | |
| {
 | |
| 	int left = nbytes;
 | |
| 	char *p = buf;
 | |
| 
 | |
| 	trace_get_random_bytes_arch(left, _RET_IP_);
 | |
| 	while (left) {
 | |
| 		unsigned long v;
 | |
| 		int chunk = min_t(int, left, sizeof(unsigned long));
 | |
| 
 | |
| 		if (!arch_get_random_long(&v))
 | |
| 			break;
 | |
| 
 | |
| 		memcpy(p, &v, chunk);
 | |
| 		p += chunk;
 | |
| 		left -= chunk;
 | |
| 	}
 | |
| 
 | |
| 	return nbytes - left;
 | |
| }
 | |
| EXPORT_SYMBOL(get_random_bytes_arch);
 | |
| 
 | |
| /*
 | |
|  * init_std_data - initialize pool with system data
 | |
|  *
 | |
|  * @r: pool to initialize
 | |
|  *
 | |
|  * This function clears the pool's entropy count and mixes some system
 | |
|  * data into the pool to prepare it for use. The pool is not cleared
 | |
|  * as that can only decrease the entropy in the pool.
 | |
|  */
 | |
| static void __init init_std_data(struct entropy_store *r)
 | |
| {
 | |
| 	int i;
 | |
| 	ktime_t now = ktime_get_real();
 | |
| 	unsigned long rv;
 | |
| 
 | |
| 	r->last_pulled = jiffies;
 | |
| 	mix_pool_bytes(r, &now, sizeof(now));
 | |
| 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
 | |
| 		if (!arch_get_random_seed_long(&rv) &&
 | |
| 		    !arch_get_random_long(&rv))
 | |
| 			rv = random_get_entropy();
 | |
| 		mix_pool_bytes(r, &rv, sizeof(rv));
 | |
| 	}
 | |
| 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that setup_arch() may call add_device_randomness()
 | |
|  * long before we get here. This allows seeding of the pools
 | |
|  * with some platform dependent data very early in the boot
 | |
|  * process. But it limits our options here. We must use
 | |
|  * statically allocated structures that already have all
 | |
|  * initializations complete at compile time. We should also
 | |
|  * take care not to overwrite the precious per platform data
 | |
|  * we were given.
 | |
|  */
 | |
| int __init rand_initialize(void)
 | |
| {
 | |
| 	init_std_data(&input_pool);
 | |
| 	init_std_data(&blocking_pool);
 | |
| 	crng_initialize(&primary_crng);
 | |
| 	crng_global_init_time = jiffies;
 | |
| 	if (ratelimit_disable) {
 | |
| 		urandom_warning.interval = 0;
 | |
| 		unseeded_warning.interval = 0;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLOCK
 | |
| void rand_initialize_disk(struct gendisk *disk)
 | |
| {
 | |
| 	struct timer_rand_state *state;
 | |
| 
 | |
| 	/*
 | |
| 	 * If kzalloc returns null, we just won't use that entropy
 | |
| 	 * source.
 | |
| 	 */
 | |
| 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 | |
| 	if (state) {
 | |
| 		state->last_time = INITIAL_JIFFIES;
 | |
| 		disk->random = state;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static ssize_t
 | |
| _random_read(int nonblock, char __user *buf, size_t nbytes)
 | |
| {
 | |
| 	ssize_t n;
 | |
| 
 | |
| 	if (nbytes == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
 | |
| 	while (1) {
 | |
| 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
 | |
| 		if (n < 0)
 | |
| 			return n;
 | |
| 		trace_random_read(n*8, (nbytes-n)*8,
 | |
| 				  ENTROPY_BITS(&blocking_pool),
 | |
| 				  ENTROPY_BITS(&input_pool));
 | |
| 		if (n > 0)
 | |
| 			return n;
 | |
| 
 | |
| 		/* Pool is (near) empty.  Maybe wait and retry. */
 | |
| 		if (nonblock)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		wait_event_interruptible(random_read_wait,
 | |
| 		    blocking_pool.initialized &&
 | |
| 		    (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits));
 | |
| 		if (signal_pending(current))
 | |
| 			return -ERESTARTSYS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
 | |
| {
 | |
| 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	static int maxwarn = 10;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!crng_ready() && maxwarn > 0) {
 | |
| 		maxwarn--;
 | |
| 		if (__ratelimit(&urandom_warning))
 | |
| 			printk(KERN_NOTICE "random: %s: uninitialized "
 | |
| 			       "urandom read (%zd bytes read)\n",
 | |
| 			       current->comm, nbytes);
 | |
| 		spin_lock_irqsave(&primary_crng.lock, flags);
 | |
| 		crng_init_cnt = 0;
 | |
| 		spin_unlock_irqrestore(&primary_crng.lock, flags);
 | |
| 	}
 | |
| 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
 | |
| 	ret = extract_crng_user(buf, nbytes);
 | |
| 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static __poll_t
 | |
| random_poll(struct file *file, poll_table * wait)
 | |
| {
 | |
| 	__poll_t mask;
 | |
| 
 | |
| 	poll_wait(file, &random_read_wait, wait);
 | |
| 	poll_wait(file, &random_write_wait, wait);
 | |
| 	mask = 0;
 | |
| 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
 | |
| 		mask |= EPOLLIN | EPOLLRDNORM;
 | |
| 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
 | |
| 		mask |= EPOLLOUT | EPOLLWRNORM;
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| static int
 | |
| write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 	__u32 t, buf[16];
 | |
| 	const char __user *p = buffer;
 | |
| 
 | |
| 	while (count > 0) {
 | |
| 		int b, i = 0;
 | |
| 
 | |
| 		bytes = min(count, sizeof(buf));
 | |
| 		if (copy_from_user(&buf, p, bytes))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
 | |
| 			if (!arch_get_random_int(&t))
 | |
| 				break;
 | |
| 			buf[i] ^= t;
 | |
| 		}
 | |
| 
 | |
| 		count -= bytes;
 | |
| 		p += bytes;
 | |
| 
 | |
| 		mix_pool_bytes(r, buf, bytes);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t random_write(struct file *file, const char __user *buffer,
 | |
| 			    size_t count, loff_t *ppos)
 | |
| {
 | |
| 	size_t ret;
 | |
| 
 | |
| 	ret = write_pool(&input_pool, buffer, count);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return (ssize_t)count;
 | |
| }
 | |
| 
 | |
| static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	int size, ent_count;
 | |
| 	int __user *p = (int __user *)arg;
 | |
| 	int retval;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case RNDGETENTCNT:
 | |
| 		/* inherently racy, no point locking */
 | |
| 		ent_count = ENTROPY_BITS(&input_pool);
 | |
| 		if (put_user(ent_count, p))
 | |
| 			return -EFAULT;
 | |
| 		return 0;
 | |
| 	case RNDADDTOENTCNT:
 | |
| 		if (!capable(CAP_SYS_ADMIN))
 | |
| 			return -EPERM;
 | |
| 		if (get_user(ent_count, p))
 | |
| 			return -EFAULT;
 | |
| 		return credit_entropy_bits_safe(&input_pool, ent_count);
 | |
| 	case RNDADDENTROPY:
 | |
| 		if (!capable(CAP_SYS_ADMIN))
 | |
| 			return -EPERM;
 | |
| 		if (get_user(ent_count, p++))
 | |
| 			return -EFAULT;
 | |
| 		if (ent_count < 0)
 | |
| 			return -EINVAL;
 | |
| 		if (get_user(size, p++))
 | |
| 			return -EFAULT;
 | |
| 		retval = write_pool(&input_pool, (const char __user *)p,
 | |
| 				    size);
 | |
| 		if (retval < 0)
 | |
| 			return retval;
 | |
| 		return credit_entropy_bits_safe(&input_pool, ent_count);
 | |
| 	case RNDZAPENTCNT:
 | |
| 	case RNDCLEARPOOL:
 | |
| 		/*
 | |
| 		 * Clear the entropy pool counters. We no longer clear
 | |
| 		 * the entropy pool, as that's silly.
 | |
| 		 */
 | |
| 		if (!capable(CAP_SYS_ADMIN))
 | |
| 			return -EPERM;
 | |
| 		input_pool.entropy_count = 0;
 | |
| 		blocking_pool.entropy_count = 0;
 | |
| 		return 0;
 | |
| 	case RNDRESEEDCRNG:
 | |
| 		if (!capable(CAP_SYS_ADMIN))
 | |
| 			return -EPERM;
 | |
| 		if (crng_init < 2)
 | |
| 			return -ENODATA;
 | |
| 		crng_reseed(&primary_crng, NULL);
 | |
| 		crng_global_init_time = jiffies - 1;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int random_fasync(int fd, struct file *filp, int on)
 | |
| {
 | |
| 	return fasync_helper(fd, filp, on, &fasync);
 | |
| }
 | |
| 
 | |
| const struct file_operations random_fops = {
 | |
| 	.read  = random_read,
 | |
| 	.write = random_write,
 | |
| 	.poll  = random_poll,
 | |
| 	.unlocked_ioctl = random_ioctl,
 | |
| 	.fasync = random_fasync,
 | |
| 	.llseek = noop_llseek,
 | |
| };
 | |
| 
 | |
| const struct file_operations urandom_fops = {
 | |
| 	.read  = urandom_read,
 | |
| 	.write = random_write,
 | |
| 	.unlocked_ioctl = random_ioctl,
 | |
| 	.fasync = random_fasync,
 | |
| 	.llseek = noop_llseek,
 | |
| };
 | |
| 
 | |
| SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
 | |
| 		unsigned int, flags)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (count > INT_MAX)
 | |
| 		count = INT_MAX;
 | |
| 
 | |
| 	if (flags & GRND_RANDOM)
 | |
| 		return _random_read(flags & GRND_NONBLOCK, buf, count);
 | |
| 
 | |
| 	if (!crng_ready()) {
 | |
| 		if (flags & GRND_NONBLOCK)
 | |
| 			return -EAGAIN;
 | |
| 		ret = wait_for_random_bytes();
 | |
| 		if (unlikely(ret))
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return urandom_read(NULL, buf, count, NULL);
 | |
| }
 | |
| 
 | |
| /********************************************************************
 | |
|  *
 | |
|  * Sysctl interface
 | |
|  *
 | |
|  ********************************************************************/
 | |
| 
 | |
| #ifdef CONFIG_SYSCTL
 | |
| 
 | |
| #include <linux/sysctl.h>
 | |
| 
 | |
| static int min_read_thresh = 8, min_write_thresh;
 | |
| static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
 | |
| static int max_write_thresh = INPUT_POOL_WORDS * 32;
 | |
| static int random_min_urandom_seed = 60;
 | |
| static char sysctl_bootid[16];
 | |
| 
 | |
| /*
 | |
|  * This function is used to return both the bootid UUID, and random
 | |
|  * UUID.  The difference is in whether table->data is NULL; if it is,
 | |
|  * then a new UUID is generated and returned to the user.
 | |
|  *
 | |
|  * If the user accesses this via the proc interface, the UUID will be
 | |
|  * returned as an ASCII string in the standard UUID format; if via the
 | |
|  * sysctl system call, as 16 bytes of binary data.
 | |
|  */
 | |
| static int proc_do_uuid(struct ctl_table *table, int write,
 | |
| 			void __user *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	struct ctl_table fake_table;
 | |
| 	unsigned char buf[64], tmp_uuid[16], *uuid;
 | |
| 
 | |
| 	uuid = table->data;
 | |
| 	if (!uuid) {
 | |
| 		uuid = tmp_uuid;
 | |
| 		generate_random_uuid(uuid);
 | |
| 	} else {
 | |
| 		static DEFINE_SPINLOCK(bootid_spinlock);
 | |
| 
 | |
| 		spin_lock(&bootid_spinlock);
 | |
| 		if (!uuid[8])
 | |
| 			generate_random_uuid(uuid);
 | |
| 		spin_unlock(&bootid_spinlock);
 | |
| 	}
 | |
| 
 | |
| 	sprintf(buf, "%pU", uuid);
 | |
| 
 | |
| 	fake_table.data = buf;
 | |
| 	fake_table.maxlen = sizeof(buf);
 | |
| 
 | |
| 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return entropy available scaled to integral bits
 | |
|  */
 | |
| static int proc_do_entropy(struct ctl_table *table, int write,
 | |
| 			   void __user *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	struct ctl_table fake_table;
 | |
| 	int entropy_count;
 | |
| 
 | |
| 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
 | |
| 
 | |
| 	fake_table.data = &entropy_count;
 | |
| 	fake_table.maxlen = sizeof(entropy_count);
 | |
| 
 | |
| 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
 | |
| }
 | |
| 
 | |
| static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
 | |
| extern struct ctl_table random_table[];
 | |
| struct ctl_table random_table[] = {
 | |
| 	{
 | |
| 		.procname	= "poolsize",
 | |
| 		.data		= &sysctl_poolsize,
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0444,
 | |
| 		.proc_handler	= proc_dointvec,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "entropy_avail",
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0444,
 | |
| 		.proc_handler	= proc_do_entropy,
 | |
| 		.data		= &input_pool.entropy_count,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "read_wakeup_threshold",
 | |
| 		.data		= &random_read_wakeup_bits,
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= &min_read_thresh,
 | |
| 		.extra2		= &max_read_thresh,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "write_wakeup_threshold",
 | |
| 		.data		= &random_write_wakeup_bits,
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec_minmax,
 | |
| 		.extra1		= &min_write_thresh,
 | |
| 		.extra2		= &max_write_thresh,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "urandom_min_reseed_secs",
 | |
| 		.data		= &random_min_urandom_seed,
 | |
| 		.maxlen		= sizeof(int),
 | |
| 		.mode		= 0644,
 | |
| 		.proc_handler	= proc_dointvec,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "boot_id",
 | |
| 		.data		= &sysctl_bootid,
 | |
| 		.maxlen		= 16,
 | |
| 		.mode		= 0444,
 | |
| 		.proc_handler	= proc_do_uuid,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "uuid",
 | |
| 		.maxlen		= 16,
 | |
| 		.mode		= 0444,
 | |
| 		.proc_handler	= proc_do_uuid,
 | |
| 	},
 | |
| #ifdef ADD_INTERRUPT_BENCH
 | |
| 	{
 | |
| 		.procname	= "add_interrupt_avg_cycles",
 | |
| 		.data		= &avg_cycles,
 | |
| 		.maxlen		= sizeof(avg_cycles),
 | |
| 		.mode		= 0444,
 | |
| 		.proc_handler	= proc_doulongvec_minmax,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "add_interrupt_avg_deviation",
 | |
| 		.data		= &avg_deviation,
 | |
| 		.maxlen		= sizeof(avg_deviation),
 | |
| 		.mode		= 0444,
 | |
| 		.proc_handler	= proc_doulongvec_minmax,
 | |
| 	},
 | |
| #endif
 | |
| 	{ }
 | |
| };
 | |
| #endif 	/* CONFIG_SYSCTL */
 | |
| 
 | |
| struct batched_entropy {
 | |
| 	union {
 | |
| 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
 | |
| 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
 | |
| 	};
 | |
| 	unsigned int position;
 | |
| 	spinlock_t batch_lock;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Get a random word for internal kernel use only. The quality of the random
 | |
|  * number is either as good as RDRAND or as good as /dev/urandom, with the
 | |
|  * goal of being quite fast and not depleting entropy. In order to ensure
 | |
|  * that the randomness provided by this function is okay, the function
 | |
|  * wait_for_random_bytes() should be called and return 0 at least once
 | |
|  * at any point prior.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
 | |
| 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
 | |
| };
 | |
| 
 | |
| u64 get_random_u64(void)
 | |
| {
 | |
| 	u64 ret;
 | |
| 	unsigned long flags;
 | |
| 	struct batched_entropy *batch;
 | |
| 	static void *previous;
 | |
| 
 | |
| #if BITS_PER_LONG == 64
 | |
| 	if (arch_get_random_long((unsigned long *)&ret))
 | |
| 		return ret;
 | |
| #else
 | |
| 	if (arch_get_random_long((unsigned long *)&ret) &&
 | |
| 	    arch_get_random_long((unsigned long *)&ret + 1))
 | |
| 	    return ret;
 | |
| #endif
 | |
| 
 | |
| 	warn_unseeded_randomness(&previous);
 | |
| 
 | |
| 	batch = raw_cpu_ptr(&batched_entropy_u64);
 | |
| 	spin_lock_irqsave(&batch->batch_lock, flags);
 | |
| 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
 | |
| 		extract_crng((u8 *)batch->entropy_u64);
 | |
| 		batch->position = 0;
 | |
| 	}
 | |
| 	ret = batch->entropy_u64[batch->position++];
 | |
| 	spin_unlock_irqrestore(&batch->batch_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(get_random_u64);
 | |
| 
 | |
| static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
 | |
| 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
 | |
| };
 | |
| u32 get_random_u32(void)
 | |
| {
 | |
| 	u32 ret;
 | |
| 	unsigned long flags;
 | |
| 	struct batched_entropy *batch;
 | |
| 	static void *previous;
 | |
| 
 | |
| 	if (arch_get_random_int(&ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	warn_unseeded_randomness(&previous);
 | |
| 
 | |
| 	batch = raw_cpu_ptr(&batched_entropy_u32);
 | |
| 	spin_lock_irqsave(&batch->batch_lock, flags);
 | |
| 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
 | |
| 		extract_crng((u8 *)batch->entropy_u32);
 | |
| 		batch->position = 0;
 | |
| 	}
 | |
| 	ret = batch->entropy_u32[batch->position++];
 | |
| 	spin_unlock_irqrestore(&batch->batch_lock, flags);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(get_random_u32);
 | |
| 
 | |
| /* It's important to invalidate all potential batched entropy that might
 | |
|  * be stored before the crng is initialized, which we can do lazily by
 | |
|  * simply resetting the counter to zero so that it's re-extracted on the
 | |
|  * next usage. */
 | |
| static void invalidate_batched_entropy(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	for_each_possible_cpu (cpu) {
 | |
| 		struct batched_entropy *batched_entropy;
 | |
| 
 | |
| 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
 | |
| 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
 | |
| 		batched_entropy->position = 0;
 | |
| 		spin_unlock(&batched_entropy->batch_lock);
 | |
| 
 | |
| 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
 | |
| 		spin_lock(&batched_entropy->batch_lock);
 | |
| 		batched_entropy->position = 0;
 | |
| 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * randomize_page - Generate a random, page aligned address
 | |
|  * @start:	The smallest acceptable address the caller will take.
 | |
|  * @range:	The size of the area, starting at @start, within which the
 | |
|  *		random address must fall.
 | |
|  *
 | |
|  * If @start + @range would overflow, @range is capped.
 | |
|  *
 | |
|  * NOTE: Historical use of randomize_range, which this replaces, presumed that
 | |
|  * @start was already page aligned.  We now align it regardless.
 | |
|  *
 | |
|  * Return: A page aligned address within [start, start + range).  On error,
 | |
|  * @start is returned.
 | |
|  */
 | |
| unsigned long
 | |
| randomize_page(unsigned long start, unsigned long range)
 | |
| {
 | |
| 	if (!PAGE_ALIGNED(start)) {
 | |
| 		range -= PAGE_ALIGN(start) - start;
 | |
| 		start = PAGE_ALIGN(start);
 | |
| 	}
 | |
| 
 | |
| 	if (start > ULONG_MAX - range)
 | |
| 		range = ULONG_MAX - start;
 | |
| 
 | |
| 	range >>= PAGE_SHIFT;
 | |
| 
 | |
| 	if (range == 0)
 | |
| 		return start;
 | |
| 
 | |
| 	return start + (get_random_long() % range << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /* Interface for in-kernel drivers of true hardware RNGs.
 | |
|  * Those devices may produce endless random bits and will be throttled
 | |
|  * when our pool is full.
 | |
|  */
 | |
| void add_hwgenerator_randomness(const char *buffer, size_t count,
 | |
| 				size_t entropy)
 | |
| {
 | |
| 	struct entropy_store *poolp = &input_pool;
 | |
| 
 | |
| 	if (unlikely(crng_init == 0)) {
 | |
| 		crng_fast_load(buffer, count);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Suspend writing if we're above the trickle threshold.
 | |
| 	 * We'll be woken up again once below random_write_wakeup_thresh,
 | |
| 	 * or when the calling thread is about to terminate.
 | |
| 	 */
 | |
| 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
 | |
| 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
 | |
| 	mix_pool_bytes(poolp, buffer, count);
 | |
| 	credit_entropy_bits(poolp, entropy);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
 |