forked from mirrors/linux
		
	 877b5691f2
			
		
	
	
		877b5691f2
		
	
	
	
	
		
			
			The flags field in 'struct shash_desc' never actually does anything. The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP. However, no shash algorithm ever sleeps, making this flag a no-op. With this being the case, inevitably some users who can't sleep wrongly pass MAY_SLEEP. These would all need to be fixed if any shash algorithm actually started sleeping. For example, the shash_ahash_*() functions, which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP from the ahash API to the shash API. However, the shash functions are called under kmap_atomic(), so actually they're assumed to never sleep. Even if it turns out that some users do need preemption points while hashing large buffers, we could easily provide a helper function crypto_shash_update_large() which divides the data into smaller chunks and calls crypto_shash_update() and cond_resched() for each chunk. It's not necessary to have a flag in 'struct shash_desc', nor is it necessary to make individual shash algorithms aware of this at all. Therefore, remove shash_desc::flags, and document that the crypto_shash_*() functions can be called from any context. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			539 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			539 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2016 Broadcom
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License, version 2, as
 | |
|  * published by the Free Software Foundation (the "GPL").
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License version 2 (GPLv2) for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * version 2 (GPLv2) along with this source code.
 | |
|  */
 | |
| 
 | |
| #include <linux/debugfs.h>
 | |
| 
 | |
| #include "cipher.h"
 | |
| #include "util.h"
 | |
| 
 | |
| /* offset of SPU_OFIFO_CTRL register */
 | |
| #define SPU_OFIFO_CTRL      0x40
 | |
| #define SPU_FIFO_WATERMARK  0x1FF
 | |
| 
 | |
| /**
 | |
|  * spu_sg_at_offset() - Find the scatterlist entry at a given distance from the
 | |
|  * start of a scatterlist.
 | |
|  * @sg:         [in]  Start of a scatterlist
 | |
|  * @skip:       [in]  Distance from the start of the scatterlist, in bytes
 | |
|  * @sge:        [out] Scatterlist entry at skip bytes from start
 | |
|  * @sge_offset: [out] Number of bytes from start of sge buffer to get to
 | |
|  *                    requested distance.
 | |
|  *
 | |
|  * Return: 0 if entry found at requested distance
 | |
|  *         < 0 otherwise
 | |
|  */
 | |
| int spu_sg_at_offset(struct scatterlist *sg, unsigned int skip,
 | |
| 		     struct scatterlist **sge, unsigned int *sge_offset)
 | |
| {
 | |
| 	/* byte index from start of sg to the end of the previous entry */
 | |
| 	unsigned int index = 0;
 | |
| 	/* byte index from start of sg to the end of the current entry */
 | |
| 	unsigned int next_index;
 | |
| 
 | |
| 	next_index = sg->length;
 | |
| 	while (next_index <= skip) {
 | |
| 		sg = sg_next(sg);
 | |
| 		index = next_index;
 | |
| 		if (!sg)
 | |
| 			return -EINVAL;
 | |
| 		next_index += sg->length;
 | |
| 	}
 | |
| 
 | |
| 	*sge_offset = skip - index;
 | |
| 	*sge = sg;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Copy len bytes of sg data, starting at offset skip, to a dest buffer */
 | |
| void sg_copy_part_to_buf(struct scatterlist *src, u8 *dest,
 | |
| 			 unsigned int len, unsigned int skip)
 | |
| {
 | |
| 	size_t copied;
 | |
| 	unsigned int nents = sg_nents(src);
 | |
| 
 | |
| 	copied = sg_pcopy_to_buffer(src, nents, dest, len, skip);
 | |
| 	if (copied != len) {
 | |
| 		flow_log("%s copied %u bytes of %u requested. ",
 | |
| 			 __func__, (u32)copied, len);
 | |
| 		flow_log("sg with %u entries and skip %u\n", nents, skip);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy data into a scatterlist starting at a specified offset in the
 | |
|  * scatterlist. Specifically, copy len bytes of data in the buffer src
 | |
|  * into the scatterlist dest, starting skip bytes into the scatterlist.
 | |
|  */
 | |
| void sg_copy_part_from_buf(struct scatterlist *dest, u8 *src,
 | |
| 			   unsigned int len, unsigned int skip)
 | |
| {
 | |
| 	size_t copied;
 | |
| 	unsigned int nents = sg_nents(dest);
 | |
| 
 | |
| 	copied = sg_pcopy_from_buffer(dest, nents, src, len, skip);
 | |
| 	if (copied != len) {
 | |
| 		flow_log("%s copied %u bytes of %u requested. ",
 | |
| 			 __func__, (u32)copied, len);
 | |
| 		flow_log("sg with %u entries and skip %u\n", nents, skip);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_sg_count() - Determine number of elements in scatterlist to provide a
 | |
|  * specified number of bytes.
 | |
|  * @sg_list:  scatterlist to examine
 | |
|  * @skip:     index of starting point
 | |
|  * @nbytes:   consider elements of scatterlist until reaching this number of
 | |
|  *	      bytes
 | |
|  *
 | |
|  * Return: the number of sg entries contributing to nbytes of data
 | |
|  */
 | |
| int spu_sg_count(struct scatterlist *sg_list, unsigned int skip, int nbytes)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int sg_nents = 0;
 | |
| 	unsigned int offset;
 | |
| 
 | |
| 	if (!sg_list)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (spu_sg_at_offset(sg_list, skip, &sg, &offset) < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (sg && (nbytes > 0)) {
 | |
| 		sg_nents++;
 | |
| 		nbytes -= (sg->length - offset);
 | |
| 		offset = 0;
 | |
| 		sg = sg_next(sg);
 | |
| 	}
 | |
| 	return sg_nents;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spu_msg_sg_add() - Copy scatterlist entries from one sg to another, up to a
 | |
|  * given length.
 | |
|  * @to_sg:       scatterlist to copy to
 | |
|  * @from_sg:     scatterlist to copy from
 | |
|  * @from_skip:   number of bytes to skip in from_sg. Non-zero when previous
 | |
|  *		 request included part of the buffer in entry in from_sg.
 | |
|  *		 Assumes from_skip < from_sg->length.
 | |
|  * @from_nents   number of entries in from_sg
 | |
|  * @length       number of bytes to copy. may reach this limit before exhausting
 | |
|  *		 from_sg.
 | |
|  *
 | |
|  * Copies the entries themselves, not the data in the entries. Assumes to_sg has
 | |
|  * enough entries. Does not limit the size of an individual buffer in to_sg.
 | |
|  *
 | |
|  * to_sg, from_sg, skip are all updated to end of copy
 | |
|  *
 | |
|  * Return: Number of bytes copied
 | |
|  */
 | |
| u32 spu_msg_sg_add(struct scatterlist **to_sg,
 | |
| 		   struct scatterlist **from_sg, u32 *from_skip,
 | |
| 		   u8 from_nents, u32 length)
 | |
| {
 | |
| 	struct scatterlist *sg;	/* an entry in from_sg */
 | |
| 	struct scatterlist *to = *to_sg;
 | |
| 	struct scatterlist *from = *from_sg;
 | |
| 	u32 skip = *from_skip;
 | |
| 	u32 offset;
 | |
| 	int i;
 | |
| 	u32 entry_len = 0;
 | |
| 	u32 frag_len = 0;	/* length of entry added to to_sg */
 | |
| 	u32 copied = 0;		/* number of bytes copied so far */
 | |
| 
 | |
| 	if (length == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_sg(from, sg, from_nents, i) {
 | |
| 		/* number of bytes in this from entry not yet used */
 | |
| 		entry_len = sg->length - skip;
 | |
| 		frag_len = min(entry_len, length - copied);
 | |
| 		offset = sg->offset + skip;
 | |
| 		if (frag_len)
 | |
| 			sg_set_page(to++, sg_page(sg), frag_len, offset);
 | |
| 		copied += frag_len;
 | |
| 		if (copied == entry_len) {
 | |
| 			/* used up all of from entry */
 | |
| 			skip = 0;	/* start at beginning of next entry */
 | |
| 		}
 | |
| 		if (copied == length)
 | |
| 			break;
 | |
| 	}
 | |
| 	*to_sg = to;
 | |
| 	*from_sg = sg;
 | |
| 	if (frag_len < entry_len)
 | |
| 		*from_skip = skip + frag_len;
 | |
| 	else
 | |
| 		*from_skip = 0;
 | |
| 
 | |
| 	return copied;
 | |
| }
 | |
| 
 | |
| void add_to_ctr(u8 *ctr_pos, unsigned int increment)
 | |
| {
 | |
| 	__be64 *high_be = (__be64 *)ctr_pos;
 | |
| 	__be64 *low_be = high_be + 1;
 | |
| 	u64 orig_low = __be64_to_cpu(*low_be);
 | |
| 	u64 new_low = orig_low + (u64)increment;
 | |
| 
 | |
| 	*low_be = __cpu_to_be64(new_low);
 | |
| 	if (new_low < orig_low)
 | |
| 		/* there was a carry from the low 8 bytes */
 | |
| 		*high_be = __cpu_to_be64(__be64_to_cpu(*high_be) + 1);
 | |
| }
 | |
| 
 | |
| struct sdesc {
 | |
| 	struct shash_desc shash;
 | |
| 	char ctx[];
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * do_shash() - Do a synchronous hash operation in software
 | |
|  * @name:       The name of the hash algorithm
 | |
|  * @result:     Buffer where digest is to be written
 | |
|  * @data1:      First part of data to hash. May be NULL.
 | |
|  * @data1_len:  Length of data1, in bytes
 | |
|  * @data2:      Second part of data to hash. May be NULL.
 | |
|  * @data2_len:  Length of data2, in bytes
 | |
|  * @key:	Key (if keyed hash)
 | |
|  * @key_len:	Length of key, in bytes (or 0 if non-keyed hash)
 | |
|  *
 | |
|  * Note that the crypto API will not select this driver's own transform because
 | |
|  * this driver only registers asynchronous algos.
 | |
|  *
 | |
|  * Return: 0 if hash successfully stored in result
 | |
|  *         < 0 otherwise
 | |
|  */
 | |
| int do_shash(unsigned char *name, unsigned char *result,
 | |
| 	     const u8 *data1, unsigned int data1_len,
 | |
| 	     const u8 *data2, unsigned int data2_len,
 | |
| 	     const u8 *key, unsigned int key_len)
 | |
| {
 | |
| 	int rc;
 | |
| 	unsigned int size;
 | |
| 	struct crypto_shash *hash;
 | |
| 	struct sdesc *sdesc;
 | |
| 
 | |
| 	hash = crypto_alloc_shash(name, 0, 0);
 | |
| 	if (IS_ERR(hash)) {
 | |
| 		rc = PTR_ERR(hash);
 | |
| 		pr_err("%s: Crypto %s allocation error %d\n", __func__, name, rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
 | |
| 	sdesc = kmalloc(size, GFP_KERNEL);
 | |
| 	if (!sdesc) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto do_shash_err;
 | |
| 	}
 | |
| 	sdesc->shash.tfm = hash;
 | |
| 
 | |
| 	if (key_len > 0) {
 | |
| 		rc = crypto_shash_setkey(hash, key, key_len);
 | |
| 		if (rc) {
 | |
| 			pr_err("%s: Could not setkey %s shash\n", __func__, name);
 | |
| 			goto do_shash_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rc = crypto_shash_init(&sdesc->shash);
 | |
| 	if (rc) {
 | |
| 		pr_err("%s: Could not init %s shash\n", __func__, name);
 | |
| 		goto do_shash_err;
 | |
| 	}
 | |
| 	rc = crypto_shash_update(&sdesc->shash, data1, data1_len);
 | |
| 	if (rc) {
 | |
| 		pr_err("%s: Could not update1\n", __func__);
 | |
| 		goto do_shash_err;
 | |
| 	}
 | |
| 	if (data2 && data2_len) {
 | |
| 		rc = crypto_shash_update(&sdesc->shash, data2, data2_len);
 | |
| 		if (rc) {
 | |
| 			pr_err("%s: Could not update2\n", __func__);
 | |
| 			goto do_shash_err;
 | |
| 		}
 | |
| 	}
 | |
| 	rc = crypto_shash_final(&sdesc->shash, result);
 | |
| 	if (rc)
 | |
| 		pr_err("%s: Could not generate %s hash\n", __func__, name);
 | |
| 
 | |
| do_shash_err:
 | |
| 	crypto_free_shash(hash);
 | |
| 	kfree(sdesc);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* Dump len bytes of a scatterlist starting at skip bytes into the sg */
 | |
| void __dump_sg(struct scatterlist *sg, unsigned int skip, unsigned int len)
 | |
| {
 | |
| 	u8 dbuf[16];
 | |
| 	unsigned int idx = skip;
 | |
| 	unsigned int num_out = 0;	/* number of bytes dumped so far */
 | |
| 	unsigned int count;
 | |
| 
 | |
| 	if (packet_debug_logging) {
 | |
| 		while (num_out < len) {
 | |
| 			count = (len - num_out > 16) ? 16 : len - num_out;
 | |
| 			sg_copy_part_to_buf(sg, dbuf, count, idx);
 | |
| 			num_out += count;
 | |
| 			print_hex_dump(KERN_ALERT, "  sg: ", DUMP_PREFIX_NONE,
 | |
| 				       4, 1, dbuf, count, false);
 | |
| 			idx += 16;
 | |
| 		}
 | |
| 	}
 | |
| 	if (debug_logging_sleep)
 | |
| 		msleep(debug_logging_sleep);
 | |
| }
 | |
| 
 | |
| /* Returns the name for a given cipher alg/mode */
 | |
| char *spu_alg_name(enum spu_cipher_alg alg, enum spu_cipher_mode mode)
 | |
| {
 | |
| 	switch (alg) {
 | |
| 	case CIPHER_ALG_RC4:
 | |
| 		return "rc4";
 | |
| 	case CIPHER_ALG_AES:
 | |
| 		switch (mode) {
 | |
| 		case CIPHER_MODE_CBC:
 | |
| 			return "cbc(aes)";
 | |
| 		case CIPHER_MODE_ECB:
 | |
| 			return "ecb(aes)";
 | |
| 		case CIPHER_MODE_OFB:
 | |
| 			return "ofb(aes)";
 | |
| 		case CIPHER_MODE_CFB:
 | |
| 			return "cfb(aes)";
 | |
| 		case CIPHER_MODE_CTR:
 | |
| 			return "ctr(aes)";
 | |
| 		case CIPHER_MODE_XTS:
 | |
| 			return "xts(aes)";
 | |
| 		case CIPHER_MODE_GCM:
 | |
| 			return "gcm(aes)";
 | |
| 		default:
 | |
| 			return "aes";
 | |
| 		}
 | |
| 		break;
 | |
| 	case CIPHER_ALG_DES:
 | |
| 		switch (mode) {
 | |
| 		case CIPHER_MODE_CBC:
 | |
| 			return "cbc(des)";
 | |
| 		case CIPHER_MODE_ECB:
 | |
| 			return "ecb(des)";
 | |
| 		case CIPHER_MODE_CTR:
 | |
| 			return "ctr(des)";
 | |
| 		default:
 | |
| 			return "des";
 | |
| 		}
 | |
| 		break;
 | |
| 	case CIPHER_ALG_3DES:
 | |
| 		switch (mode) {
 | |
| 		case CIPHER_MODE_CBC:
 | |
| 			return "cbc(des3_ede)";
 | |
| 		case CIPHER_MODE_ECB:
 | |
| 			return "ecb(des3_ede)";
 | |
| 		case CIPHER_MODE_CTR:
 | |
| 			return "ctr(des3_ede)";
 | |
| 		default:
 | |
| 			return "3des";
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		return "other";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static ssize_t spu_debugfs_read(struct file *filp, char __user *ubuf,
 | |
| 				size_t count, loff_t *offp)
 | |
| {
 | |
| 	struct device_private *ipriv;
 | |
| 	char *buf;
 | |
| 	ssize_t ret, out_offset, out_count;
 | |
| 	int i;
 | |
| 	u32 fifo_len;
 | |
| 	u32 spu_ofifo_ctrl;
 | |
| 	u32 alg;
 | |
| 	u32 mode;
 | |
| 	u32 op_cnt;
 | |
| 
 | |
| 	out_count = 2048;
 | |
| 
 | |
| 	buf = kmalloc(out_count, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ipriv = filp->private_data;
 | |
| 	out_offset = 0;
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Number of SPUs.........%u\n",
 | |
| 			       ipriv->spu.num_spu);
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Current sessions.......%u\n",
 | |
| 			       atomic_read(&ipriv->session_count));
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Session count..........%u\n",
 | |
| 			       atomic_read(&ipriv->stream_count));
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Cipher setkey..........%u\n",
 | |
| 			       atomic_read(&ipriv->setkey_cnt[SPU_OP_CIPHER]));
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Cipher Ops.............%u\n",
 | |
| 			       atomic_read(&ipriv->op_counts[SPU_OP_CIPHER]));
 | |
| 	for (alg = 0; alg < CIPHER_ALG_LAST; alg++) {
 | |
| 		for (mode = 0; mode < CIPHER_MODE_LAST; mode++) {
 | |
| 			op_cnt = atomic_read(&ipriv->cipher_cnt[alg][mode]);
 | |
| 			if (op_cnt) {
 | |
| 				out_offset += snprintf(buf + out_offset,
 | |
| 						       out_count - out_offset,
 | |
| 			       "  %-13s%11u\n",
 | |
| 			       spu_alg_name(alg, mode), op_cnt);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Hash Ops...............%u\n",
 | |
| 			       atomic_read(&ipriv->op_counts[SPU_OP_HASH]));
 | |
| 	for (alg = 0; alg < HASH_ALG_LAST; alg++) {
 | |
| 		op_cnt = atomic_read(&ipriv->hash_cnt[alg]);
 | |
| 		if (op_cnt) {
 | |
| 			out_offset += snprintf(buf + out_offset,
 | |
| 					       out_count - out_offset,
 | |
| 		       "  %-13s%11u\n",
 | |
| 		       hash_alg_name[alg], op_cnt);
 | |
| 		}
 | |
| 	}
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "HMAC setkey............%u\n",
 | |
| 			       atomic_read(&ipriv->setkey_cnt[SPU_OP_HMAC]));
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "HMAC Ops...............%u\n",
 | |
| 			       atomic_read(&ipriv->op_counts[SPU_OP_HMAC]));
 | |
| 	for (alg = 0; alg < HASH_ALG_LAST; alg++) {
 | |
| 		op_cnt = atomic_read(&ipriv->hmac_cnt[alg]);
 | |
| 		if (op_cnt) {
 | |
| 			out_offset += snprintf(buf + out_offset,
 | |
| 					       out_count - out_offset,
 | |
| 		       "  %-13s%11u\n",
 | |
| 		       hash_alg_name[alg], op_cnt);
 | |
| 		}
 | |
| 	}
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "AEAD setkey............%u\n",
 | |
| 			       atomic_read(&ipriv->setkey_cnt[SPU_OP_AEAD]));
 | |
| 
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "AEAD Ops...............%u\n",
 | |
| 			       atomic_read(&ipriv->op_counts[SPU_OP_AEAD]));
 | |
| 	for (alg = 0; alg < AEAD_TYPE_LAST; alg++) {
 | |
| 		op_cnt = atomic_read(&ipriv->aead_cnt[alg]);
 | |
| 		if (op_cnt) {
 | |
| 			out_offset += snprintf(buf + out_offset,
 | |
| 					       out_count - out_offset,
 | |
| 		       "  %-13s%11u\n",
 | |
| 		       aead_alg_name[alg], op_cnt);
 | |
| 		}
 | |
| 	}
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Bytes of req data......%llu\n",
 | |
| 			       (u64)atomic64_read(&ipriv->bytes_out));
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Bytes of resp data.....%llu\n",
 | |
| 			       (u64)atomic64_read(&ipriv->bytes_in));
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Mailbox full...........%u\n",
 | |
| 			       atomic_read(&ipriv->mb_no_spc));
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Mailbox send failures..%u\n",
 | |
| 			       atomic_read(&ipriv->mb_send_fail));
 | |
| 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
 | |
| 			       "Check ICV errors.......%u\n",
 | |
| 			       atomic_read(&ipriv->bad_icv));
 | |
| 	if (ipriv->spu.spu_type == SPU_TYPE_SPUM)
 | |
| 		for (i = 0; i < ipriv->spu.num_spu; i++) {
 | |
| 			spu_ofifo_ctrl = ioread32(ipriv->spu.reg_vbase[i] +
 | |
| 						  SPU_OFIFO_CTRL);
 | |
| 			fifo_len = spu_ofifo_ctrl & SPU_FIFO_WATERMARK;
 | |
| 			out_offset += snprintf(buf + out_offset,
 | |
| 					       out_count - out_offset,
 | |
| 				       "SPU %d output FIFO high water.....%u\n",
 | |
| 				       i, fifo_len);
 | |
| 		}
 | |
| 
 | |
| 	if (out_offset > out_count)
 | |
| 		out_offset = out_count;
 | |
| 
 | |
| 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
 | |
| 	kfree(buf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct file_operations spu_debugfs_stats = {
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.open = simple_open,
 | |
| 	.read = spu_debugfs_read,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Create the debug FS directories. If the top-level directory has not yet
 | |
|  * been created, create it now. Create a stats file in this directory for
 | |
|  * a SPU.
 | |
|  */
 | |
| void spu_setup_debugfs(void)
 | |
| {
 | |
| 	if (!debugfs_initialized())
 | |
| 		return;
 | |
| 
 | |
| 	if (!iproc_priv.debugfs_dir)
 | |
| 		iproc_priv.debugfs_dir = debugfs_create_dir(KBUILD_MODNAME,
 | |
| 							    NULL);
 | |
| 
 | |
| 	if (!iproc_priv.debugfs_stats)
 | |
| 		/* Create file with permissions S_IRUSR */
 | |
| 		debugfs_create_file("stats", 0400, iproc_priv.debugfs_dir,
 | |
| 				    &iproc_priv, &spu_debugfs_stats);
 | |
| }
 | |
| 
 | |
| void spu_free_debugfs(void)
 | |
| {
 | |
| 	debugfs_remove_recursive(iproc_priv.debugfs_dir);
 | |
| 	iproc_priv.debugfs_dir = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * format_value_ccm() - Format a value into a buffer, using a specified number
 | |
|  *			of bytes (i.e. maybe writing value X into a 4 byte
 | |
|  *			buffer, or maybe into a 12 byte buffer), as per the
 | |
|  *			SPU CCM spec.
 | |
|  *
 | |
|  * @val:		value to write (up to max of unsigned int)
 | |
|  * @buf:		(pointer to) buffer to write the value
 | |
|  * @len:		number of bytes to use (0 to 255)
 | |
|  *
 | |
|  */
 | |
| void format_value_ccm(unsigned int val, u8 *buf, u8 len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* First clear full output buffer */
 | |
| 	memset(buf, 0, len);
 | |
| 
 | |
| 	/* Then, starting from right side, fill in with data */
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		buf[len - i - 1] = (val >> (8 * i)) & 0xff;
 | |
| 		if (i >= 3)
 | |
| 			break;  /* Only handle up to 32 bits of 'val' */
 | |
| 	}
 | |
| }
 |