forked from mirrors/linux
		
	 fa5cd1c72e
			
		
	
	
		fa5cd1c72e
		
	
	
	
	
		
			
			Correct copyright dates for files that have had code added to them in 2018. Signed-off-by: Gary R Hook <gary.hook@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			2473 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2473 lines
		
	
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AMD Cryptographic Coprocessor (CCP) driver
 | |
|  *
 | |
|  * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
 | |
|  *
 | |
|  * Author: Tom Lendacky <thomas.lendacky@amd.com>
 | |
|  * Author: Gary R Hook <gary.hook@amd.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <crypto/des.h>
 | |
| #include <linux/ccp.h>
 | |
| 
 | |
| #include "ccp-dev.h"
 | |
| 
 | |
| /* SHA initial context values */
 | |
| static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
 | |
| 	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
 | |
| 	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
 | |
| 	cpu_to_be32(SHA1_H4),
 | |
| };
 | |
| 
 | |
| static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
 | |
| 	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
 | |
| 	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
 | |
| 	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
 | |
| 	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
 | |
| };
 | |
| 
 | |
| static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
 | |
| 	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
 | |
| 	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
 | |
| 	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
 | |
| 	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
 | |
| };
 | |
| 
 | |
| static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
 | |
| 	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
 | |
| 	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
 | |
| 	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
 | |
| 	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
 | |
| };
 | |
| 
 | |
| static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
 | |
| 	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
 | |
| 	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
 | |
| 	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
 | |
| 	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
 | |
| };
 | |
| 
 | |
| #define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
 | |
| 					ccp_gen_jobid(ccp) : 0)
 | |
| 
 | |
| static u32 ccp_gen_jobid(struct ccp_device *ccp)
 | |
| {
 | |
| 	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
 | |
| }
 | |
| 
 | |
| static void ccp_sg_free(struct ccp_sg_workarea *wa)
 | |
| {
 | |
| 	if (wa->dma_count)
 | |
| 		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
 | |
| 
 | |
| 	wa->dma_count = 0;
 | |
| }
 | |
| 
 | |
| static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
 | |
| 				struct scatterlist *sg, u64 len,
 | |
| 				enum dma_data_direction dma_dir)
 | |
| {
 | |
| 	memset(wa, 0, sizeof(*wa));
 | |
| 
 | |
| 	wa->sg = sg;
 | |
| 	if (!sg)
 | |
| 		return 0;
 | |
| 
 | |
| 	wa->nents = sg_nents_for_len(sg, len);
 | |
| 	if (wa->nents < 0)
 | |
| 		return wa->nents;
 | |
| 
 | |
| 	wa->bytes_left = len;
 | |
| 	wa->sg_used = 0;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (dma_dir == DMA_NONE)
 | |
| 		return 0;
 | |
| 
 | |
| 	wa->dma_sg = sg;
 | |
| 	wa->dma_dev = dev;
 | |
| 	wa->dma_dir = dma_dir;
 | |
| 	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
 | |
| 	if (!wa->dma_count)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 | |
| {
 | |
| 	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 | |
| 
 | |
| 	if (!wa->sg)
 | |
| 		return;
 | |
| 
 | |
| 	wa->sg_used += nbytes;
 | |
| 	wa->bytes_left -= nbytes;
 | |
| 	if (wa->sg_used == wa->sg->length) {
 | |
| 		wa->sg = sg_next(wa->sg);
 | |
| 		wa->sg_used = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ccp_dm_free(struct ccp_dm_workarea *wa)
 | |
| {
 | |
| 	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 | |
| 		if (wa->address)
 | |
| 			dma_pool_free(wa->dma_pool, wa->address,
 | |
| 				      wa->dma.address);
 | |
| 	} else {
 | |
| 		if (wa->dma.address)
 | |
| 			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 | |
| 					 wa->dma.dir);
 | |
| 		kfree(wa->address);
 | |
| 	}
 | |
| 
 | |
| 	wa->address = NULL;
 | |
| 	wa->dma.address = 0;
 | |
| }
 | |
| 
 | |
| static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 | |
| 				struct ccp_cmd_queue *cmd_q,
 | |
| 				unsigned int len,
 | |
| 				enum dma_data_direction dir)
 | |
| {
 | |
| 	memset(wa, 0, sizeof(*wa));
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	wa->dev = cmd_q->ccp->dev;
 | |
| 	wa->length = len;
 | |
| 
 | |
| 	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 | |
| 		wa->dma_pool = cmd_q->dma_pool;
 | |
| 
 | |
| 		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
 | |
| 					     &wa->dma.address);
 | |
| 		if (!wa->address)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 | |
| 
 | |
| 		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
 | |
| 	} else {
 | |
| 		wa->address = kzalloc(len, GFP_KERNEL);
 | |
| 		if (!wa->address)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 | |
| 						 dir);
 | |
| 		if (dma_mapping_error(wa->dev, wa->dma.address))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		wa->dma.length = len;
 | |
| 	}
 | |
| 	wa->dma.dir = dir;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 | |
| 			   struct scatterlist *sg, unsigned int sg_offset,
 | |
| 			   unsigned int len)
 | |
| {
 | |
| 	WARN_ON(!wa->address);
 | |
| 
 | |
| 	if (len > (wa->length - wa_offset))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 | |
| 				 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 | |
| 			    struct scatterlist *sg, unsigned int sg_offset,
 | |
| 			    unsigned int len)
 | |
| {
 | |
| 	WARN_ON(!wa->address);
 | |
| 
 | |
| 	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 | |
| 				 1);
 | |
| }
 | |
| 
 | |
| static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 | |
| 				   unsigned int wa_offset,
 | |
| 				   struct scatterlist *sg,
 | |
| 				   unsigned int sg_offset,
 | |
| 				   unsigned int len)
 | |
| {
 | |
| 	u8 *p, *q;
 | |
| 	int	rc;
 | |
| 
 | |
| 	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	p = wa->address + wa_offset;
 | |
| 	q = p + len - 1;
 | |
| 	while (p < q) {
 | |
| 		*p = *p ^ *q;
 | |
| 		*q = *p ^ *q;
 | |
| 		*p = *p ^ *q;
 | |
| 		p++;
 | |
| 		q--;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 | |
| 				    unsigned int wa_offset,
 | |
| 				    struct scatterlist *sg,
 | |
| 				    unsigned int sg_offset,
 | |
| 				    unsigned int len)
 | |
| {
 | |
| 	u8 *p, *q;
 | |
| 
 | |
| 	p = wa->address + wa_offset;
 | |
| 	q = p + len - 1;
 | |
| 	while (p < q) {
 | |
| 		*p = *p ^ *q;
 | |
| 		*q = *p ^ *q;
 | |
| 		*p = *p ^ *q;
 | |
| 		p++;
 | |
| 		q--;
 | |
| 	}
 | |
| 
 | |
| 	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
 | |
| }
 | |
| 
 | |
| static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 | |
| {
 | |
| 	ccp_dm_free(&data->dm_wa);
 | |
| 	ccp_sg_free(&data->sg_wa);
 | |
| }
 | |
| 
 | |
| static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 | |
| 			 struct scatterlist *sg, u64 sg_len,
 | |
| 			 unsigned int dm_len,
 | |
| 			 enum dma_data_direction dir)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(data, 0, sizeof(*data));
 | |
| 
 | |
| 	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 | |
| 				   dir);
 | |
| 	if (ret)
 | |
| 		goto e_err;
 | |
| 
 | |
| 	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 | |
| 	if (ret)
 | |
| 		goto e_err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| e_err:
 | |
| 	ccp_free_data(data, cmd_q);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 | |
| {
 | |
| 	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 | |
| 	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 | |
| 	unsigned int buf_count, nbytes;
 | |
| 
 | |
| 	/* Clear the buffer if setting it */
 | |
| 	if (!from)
 | |
| 		memset(dm_wa->address, 0, dm_wa->length);
 | |
| 
 | |
| 	if (!sg_wa->sg)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Perform the copy operation
 | |
| 	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 | |
| 	 *   an unsigned int
 | |
| 	 */
 | |
| 	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 | |
| 	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 | |
| 				 nbytes, from);
 | |
| 
 | |
| 	/* Update the structures and generate the count */
 | |
| 	buf_count = 0;
 | |
| 	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 | |
| 		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
 | |
| 			     dm_wa->length - buf_count);
 | |
| 		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 | |
| 
 | |
| 		buf_count += nbytes;
 | |
| 		ccp_update_sg_workarea(sg_wa, nbytes);
 | |
| 	}
 | |
| 
 | |
| 	return buf_count;
 | |
| }
 | |
| 
 | |
| static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 | |
| {
 | |
| 	return ccp_queue_buf(data, 0);
 | |
| }
 | |
| 
 | |
| static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 | |
| {
 | |
| 	return ccp_queue_buf(data, 1);
 | |
| }
 | |
| 
 | |
| static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 | |
| 			     struct ccp_op *op, unsigned int block_size,
 | |
| 			     bool blocksize_op)
 | |
| {
 | |
| 	unsigned int sg_src_len, sg_dst_len, op_len;
 | |
| 
 | |
| 	/* The CCP can only DMA from/to one address each per operation. This
 | |
| 	 * requires that we find the smallest DMA area between the source
 | |
| 	 * and destination. The resulting len values will always be <= UINT_MAX
 | |
| 	 * because the dma length is an unsigned int.
 | |
| 	 */
 | |
| 	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
 | |
| 	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 | |
| 
 | |
| 	if (dst) {
 | |
| 		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
 | |
| 		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 | |
| 		op_len = min(sg_src_len, sg_dst_len);
 | |
| 	} else {
 | |
| 		op_len = sg_src_len;
 | |
| 	}
 | |
| 
 | |
| 	/* The data operation length will be at least block_size in length
 | |
| 	 * or the smaller of available sg room remaining for the source or
 | |
| 	 * the destination
 | |
| 	 */
 | |
| 	op_len = max(op_len, block_size);
 | |
| 
 | |
| 	/* Unless we have to buffer data, there's no reason to wait */
 | |
| 	op->soc = 0;
 | |
| 
 | |
| 	if (sg_src_len < block_size) {
 | |
| 		/* Not enough data in the sg element, so it
 | |
| 		 * needs to be buffered into a blocksize chunk
 | |
| 		 */
 | |
| 		int cp_len = ccp_fill_queue_buf(src);
 | |
| 
 | |
| 		op->soc = 1;
 | |
| 		op->src.u.dma.address = src->dm_wa.dma.address;
 | |
| 		op->src.u.dma.offset = 0;
 | |
| 		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 | |
| 	} else {
 | |
| 		/* Enough data in the sg element, but we need to
 | |
| 		 * adjust for any previously copied data
 | |
| 		 */
 | |
| 		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
 | |
| 		op->src.u.dma.offset = src->sg_wa.sg_used;
 | |
| 		op->src.u.dma.length = op_len & ~(block_size - 1);
 | |
| 
 | |
| 		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 | |
| 	}
 | |
| 
 | |
| 	if (dst) {
 | |
| 		if (sg_dst_len < block_size) {
 | |
| 			/* Not enough room in the sg element or we're on the
 | |
| 			 * last piece of data (when using padding), so the
 | |
| 			 * output needs to be buffered into a blocksize chunk
 | |
| 			 */
 | |
| 			op->soc = 1;
 | |
| 			op->dst.u.dma.address = dst->dm_wa.dma.address;
 | |
| 			op->dst.u.dma.offset = 0;
 | |
| 			op->dst.u.dma.length = op->src.u.dma.length;
 | |
| 		} else {
 | |
| 			/* Enough room in the sg element, but we need to
 | |
| 			 * adjust for any previously used area
 | |
| 			 */
 | |
| 			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
 | |
| 			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 | |
| 			op->dst.u.dma.length = op->src.u.dma.length;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 | |
| 			     struct ccp_op *op)
 | |
| {
 | |
| 	op->init = 0;
 | |
| 
 | |
| 	if (dst) {
 | |
| 		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 | |
| 			ccp_empty_queue_buf(dst);
 | |
| 		else
 | |
| 			ccp_update_sg_workarea(&dst->sg_wa,
 | |
| 					       op->dst.u.dma.length);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
 | |
| 			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 | |
| 			       u32 byte_swap, bool from)
 | |
| {
 | |
| 	struct ccp_op op;
 | |
| 
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = jobid;
 | |
| 	op.eom = 1;
 | |
| 
 | |
| 	if (from) {
 | |
| 		op.soc = 1;
 | |
| 		op.src.type = CCP_MEMTYPE_SB;
 | |
| 		op.src.u.sb = sb;
 | |
| 		op.dst.type = CCP_MEMTYPE_SYSTEM;
 | |
| 		op.dst.u.dma.address = wa->dma.address;
 | |
| 		op.dst.u.dma.length = wa->length;
 | |
| 	} else {
 | |
| 		op.src.type = CCP_MEMTYPE_SYSTEM;
 | |
| 		op.src.u.dma.address = wa->dma.address;
 | |
| 		op.src.u.dma.length = wa->length;
 | |
| 		op.dst.type = CCP_MEMTYPE_SB;
 | |
| 		op.dst.u.sb = sb;
 | |
| 	}
 | |
| 
 | |
| 	op.u.passthru.byte_swap = byte_swap;
 | |
| 
 | |
| 	return cmd_q->ccp->vdata->perform->passthru(&op);
 | |
| }
 | |
| 
 | |
| static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
 | |
| 			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 | |
| 			  u32 byte_swap)
 | |
| {
 | |
| 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
 | |
| }
 | |
| 
 | |
| static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
 | |
| 			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 | |
| 			    u32 byte_swap)
 | |
| {
 | |
| 	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
 | |
| }
 | |
| 
 | |
| static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
 | |
| 				struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_aes_engine *aes = &cmd->u.aes;
 | |
| 	struct ccp_dm_workarea key, ctx;
 | |
| 	struct ccp_data src;
 | |
| 	struct ccp_op op;
 | |
| 	unsigned int dm_offset;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!((aes->key_len == AES_KEYSIZE_128) ||
 | |
| 	      (aes->key_len == AES_KEYSIZE_192) ||
 | |
| 	      (aes->key_len == AES_KEYSIZE_256)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (aes->iv_len != AES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!aes->key || !aes->iv || !aes->src)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (aes->cmac_final) {
 | |
| 		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!aes->cmac_key)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 | |
| 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 | |
| 
 | |
| 	ret = -EIO;
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 	op.sb_key = cmd_q->sb_key;
 | |
| 	op.sb_ctx = cmd_q->sb_ctx;
 | |
| 	op.init = 1;
 | |
| 	op.u.aes.type = aes->type;
 | |
| 	op.u.aes.mode = aes->mode;
 | |
| 	op.u.aes.action = aes->action;
 | |
| 
 | |
| 	/* All supported key sizes fit in a single (32-byte) SB entry
 | |
| 	 * and must be in little endian format. Use the 256-bit byte
 | |
| 	 * swap passthru option to convert from big endian to little
 | |
| 	 * endian.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&key, cmd_q,
 | |
| 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 | |
| 				   DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	dm_offset = CCP_SB_BYTES - aes->key_len;
 | |
| 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_key;
 | |
| 	}
 | |
| 
 | |
| 	/* The AES context fits in a single (32-byte) SB entry and
 | |
| 	 * must be in little endian format. Use the 256-bit byte swap
 | |
| 	 * passthru option to convert from big endian to little endian.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 | |
| 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 | |
| 				   DMA_BIDIRECTIONAL);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 
 | |
| 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 | |
| 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 | |
| 	if (ret)
 | |
| 		goto e_ctx;
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_ctx;
 | |
| 	}
 | |
| 
 | |
| 	/* Send data to the CCP AES engine */
 | |
| 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 | |
| 			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_ctx;
 | |
| 
 | |
| 	while (src.sg_wa.bytes_left) {
 | |
| 		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 | |
| 		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 | |
| 			op.eom = 1;
 | |
| 
 | |
| 			/* Push the K1/K2 key to the CCP now */
 | |
| 			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
 | |
| 					       op.sb_ctx,
 | |
| 					       CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 			if (ret) {
 | |
| 				cmd->engine_error = cmd_q->cmd_error;
 | |
| 				goto e_src;
 | |
| 			}
 | |
| 
 | |
| 			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 | |
| 					      aes->cmac_key_len);
 | |
| 			if (ret)
 | |
| 				goto e_src;
 | |
| 			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 					     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 			if (ret) {
 | |
| 				cmd->engine_error = cmd_q->cmd_error;
 | |
| 				goto e_src;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = cmd_q->ccp->vdata->perform->aes(&op);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_src;
 | |
| 		}
 | |
| 
 | |
| 		ccp_process_data(&src, NULL, &op);
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve the AES context - convert from LE to BE using
 | |
| 	 * 32-byte (256-bit) byteswapping
 | |
| 	 */
 | |
| 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			       CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_src;
 | |
| 	}
 | |
| 
 | |
| 	/* ...but we only need AES_BLOCK_SIZE bytes */
 | |
| 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 | |
| 	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 | |
| 
 | |
| e_src:
 | |
| 	ccp_free_data(&src, cmd_q);
 | |
| 
 | |
| e_ctx:
 | |
| 	ccp_dm_free(&ctx);
 | |
| 
 | |
| e_key:
 | |
| 	ccp_dm_free(&key);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
 | |
| 			       struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_aes_engine *aes = &cmd->u.aes;
 | |
| 	struct ccp_dm_workarea key, ctx, final_wa, tag;
 | |
| 	struct ccp_data src, dst;
 | |
| 	struct ccp_data aad;
 | |
| 	struct ccp_op op;
 | |
| 
 | |
| 	unsigned long long *final;
 | |
| 	unsigned int dm_offset;
 | |
| 	unsigned int ilen;
 | |
| 	bool in_place = true; /* Default value */
 | |
| 	int ret;
 | |
| 
 | |
| 	struct scatterlist *p_inp, sg_inp[2];
 | |
| 	struct scatterlist *p_tag, sg_tag[2];
 | |
| 	struct scatterlist *p_outp, sg_outp[2];
 | |
| 	struct scatterlist *p_aad;
 | |
| 
 | |
| 	if (!aes->iv)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!((aes->key_len == AES_KEYSIZE_128) ||
 | |
| 		(aes->key_len == AES_KEYSIZE_192) ||
 | |
| 		(aes->key_len == AES_KEYSIZE_256)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!aes->key) /* Gotta have a key SGL */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* First, decompose the source buffer into AAD & PT,
 | |
| 	 * and the destination buffer into AAD, CT & tag, or
 | |
| 	 * the input into CT & tag.
 | |
| 	 * It is expected that the input and output SGs will
 | |
| 	 * be valid, even if the AAD and input lengths are 0.
 | |
| 	 */
 | |
| 	p_aad = aes->src;
 | |
| 	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
 | |
| 	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
 | |
| 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 | |
| 		ilen = aes->src_len;
 | |
| 		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
 | |
| 	} else {
 | |
| 		/* Input length for decryption includes tag */
 | |
| 		ilen = aes->src_len - AES_BLOCK_SIZE;
 | |
| 		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
 | |
| 	}
 | |
| 
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 | |
| 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 | |
| 	op.init = 1;
 | |
| 	op.u.aes.type = aes->type;
 | |
| 
 | |
| 	/* Copy the key to the LSB */
 | |
| 	ret = ccp_init_dm_workarea(&key, cmd_q,
 | |
| 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 | |
| 				   DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	dm_offset = CCP_SB_BYTES - aes->key_len;
 | |
| 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_key;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the context (IV) to the LSB.
 | |
| 	 * There is an assumption here that the IV is 96 bits in length, plus
 | |
| 	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 | |
| 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 | |
| 				   DMA_BIDIRECTIONAL);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 
 | |
| 	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
 | |
| 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 | |
| 	if (ret)
 | |
| 		goto e_ctx;
 | |
| 
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_ctx;
 | |
| 	}
 | |
| 
 | |
| 	op.init = 1;
 | |
| 	if (aes->aad_len > 0) {
 | |
| 		/* Step 1: Run a GHASH over the Additional Authenticated Data */
 | |
| 		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
 | |
| 				    AES_BLOCK_SIZE,
 | |
| 				    DMA_TO_DEVICE);
 | |
| 		if (ret)
 | |
| 			goto e_ctx;
 | |
| 
 | |
| 		op.u.aes.mode = CCP_AES_MODE_GHASH;
 | |
| 		op.u.aes.action = CCP_AES_GHASHAAD;
 | |
| 
 | |
| 		while (aad.sg_wa.bytes_left) {
 | |
| 			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
 | |
| 
 | |
| 			ret = cmd_q->ccp->vdata->perform->aes(&op);
 | |
| 			if (ret) {
 | |
| 				cmd->engine_error = cmd_q->cmd_error;
 | |
| 				goto e_aad;
 | |
| 			}
 | |
| 
 | |
| 			ccp_process_data(&aad, NULL, &op);
 | |
| 			op.init = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	op.u.aes.mode = CCP_AES_MODE_GCTR;
 | |
| 	op.u.aes.action = aes->action;
 | |
| 
 | |
| 	if (ilen > 0) {
 | |
| 		/* Step 2: Run a GCTR over the plaintext */
 | |
| 		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
 | |
| 
 | |
| 		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
 | |
| 				    AES_BLOCK_SIZE,
 | |
| 				    in_place ? DMA_BIDIRECTIONAL
 | |
| 					     : DMA_TO_DEVICE);
 | |
| 		if (ret)
 | |
| 			goto e_ctx;
 | |
| 
 | |
| 		if (in_place) {
 | |
| 			dst = src;
 | |
| 		} else {
 | |
| 			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
 | |
| 					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 | |
| 			if (ret)
 | |
| 				goto e_src;
 | |
| 		}
 | |
| 
 | |
| 		op.soc = 0;
 | |
| 		op.eom = 0;
 | |
| 		op.init = 1;
 | |
| 		while (src.sg_wa.bytes_left) {
 | |
| 			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 | |
| 			if (!src.sg_wa.bytes_left) {
 | |
| 				unsigned int nbytes = aes->src_len
 | |
| 						      % AES_BLOCK_SIZE;
 | |
| 
 | |
| 				if (nbytes) {
 | |
| 					op.eom = 1;
 | |
| 					op.u.aes.size = (nbytes * 8) - 1;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			ret = cmd_q->ccp->vdata->perform->aes(&op);
 | |
| 			if (ret) {
 | |
| 				cmd->engine_error = cmd_q->cmd_error;
 | |
| 				goto e_dst;
 | |
| 			}
 | |
| 
 | |
| 			ccp_process_data(&src, &dst, &op);
 | |
| 			op.init = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Step 3: Update the IV portion of the context with the original IV */
 | |
| 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			       CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_dst;
 | |
| 	}
 | |
| 
 | |
| 	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 | |
| 	if (ret)
 | |
| 		goto e_dst;
 | |
| 
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_dst;
 | |
| 	}
 | |
| 
 | |
| 	/* Step 4: Concatenate the lengths of the AAD and source, and
 | |
| 	 * hash that 16 byte buffer.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
 | |
| 				   DMA_BIDIRECTIONAL);
 | |
| 	if (ret)
 | |
| 		goto e_dst;
 | |
| 	final = (unsigned long long *) final_wa.address;
 | |
| 	final[0] = cpu_to_be64(aes->aad_len * 8);
 | |
| 	final[1] = cpu_to_be64(ilen * 8);
 | |
| 
 | |
| 	op.u.aes.mode = CCP_AES_MODE_GHASH;
 | |
| 	op.u.aes.action = CCP_AES_GHASHFINAL;
 | |
| 	op.src.type = CCP_MEMTYPE_SYSTEM;
 | |
| 	op.src.u.dma.address = final_wa.dma.address;
 | |
| 	op.src.u.dma.length = AES_BLOCK_SIZE;
 | |
| 	op.dst.type = CCP_MEMTYPE_SYSTEM;
 | |
| 	op.dst.u.dma.address = final_wa.dma.address;
 | |
| 	op.dst.u.dma.length = AES_BLOCK_SIZE;
 | |
| 	op.eom = 1;
 | |
| 	op.u.aes.size = 0;
 | |
| 	ret = cmd_q->ccp->vdata->perform->aes(&op);
 | |
| 	if (ret)
 | |
| 		goto e_dst;
 | |
| 
 | |
| 	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 | |
| 		/* Put the ciphered tag after the ciphertext. */
 | |
| 		ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
 | |
| 	} else {
 | |
| 		/* Does this ciphered tag match the input? */
 | |
| 		ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
 | |
| 					   DMA_BIDIRECTIONAL);
 | |
| 		if (ret)
 | |
| 			goto e_tag;
 | |
| 		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
 | |
| 		if (ret)
 | |
| 			goto e_tag;
 | |
| 
 | |
| 		ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
 | |
| 		ccp_dm_free(&tag);
 | |
| 	}
 | |
| 
 | |
| e_tag:
 | |
| 	ccp_dm_free(&final_wa);
 | |
| 
 | |
| e_dst:
 | |
| 	if (aes->src_len && !in_place)
 | |
| 		ccp_free_data(&dst, cmd_q);
 | |
| 
 | |
| e_src:
 | |
| 	if (aes->src_len)
 | |
| 		ccp_free_data(&src, cmd_q);
 | |
| 
 | |
| e_aad:
 | |
| 	if (aes->aad_len)
 | |
| 		ccp_free_data(&aad, cmd_q);
 | |
| 
 | |
| e_ctx:
 | |
| 	ccp_dm_free(&ctx);
 | |
| 
 | |
| e_key:
 | |
| 	ccp_dm_free(&key);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_aes_engine *aes = &cmd->u.aes;
 | |
| 	struct ccp_dm_workarea key, ctx;
 | |
| 	struct ccp_data src, dst;
 | |
| 	struct ccp_op op;
 | |
| 	unsigned int dm_offset;
 | |
| 	bool in_place = false;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (aes->mode == CCP_AES_MODE_CMAC)
 | |
| 		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
 | |
| 
 | |
| 	if (aes->mode == CCP_AES_MODE_GCM)
 | |
| 		return ccp_run_aes_gcm_cmd(cmd_q, cmd);
 | |
| 
 | |
| 	if (!((aes->key_len == AES_KEYSIZE_128) ||
 | |
| 	      (aes->key_len == AES_KEYSIZE_192) ||
 | |
| 	      (aes->key_len == AES_KEYSIZE_256)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (((aes->mode == CCP_AES_MODE_ECB) ||
 | |
| 	     (aes->mode == CCP_AES_MODE_CBC) ||
 | |
| 	     (aes->mode == CCP_AES_MODE_CFB)) &&
 | |
| 	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!aes->key || !aes->src || !aes->dst)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (aes->mode != CCP_AES_MODE_ECB) {
 | |
| 		if (aes->iv_len != AES_BLOCK_SIZE)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!aes->iv)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 | |
| 	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 | |
| 
 | |
| 	ret = -EIO;
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 	op.sb_key = cmd_q->sb_key;
 | |
| 	op.sb_ctx = cmd_q->sb_ctx;
 | |
| 	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 | |
| 	op.u.aes.type = aes->type;
 | |
| 	op.u.aes.mode = aes->mode;
 | |
| 	op.u.aes.action = aes->action;
 | |
| 
 | |
| 	/* All supported key sizes fit in a single (32-byte) SB entry
 | |
| 	 * and must be in little endian format. Use the 256-bit byte
 | |
| 	 * swap passthru option to convert from big endian to little
 | |
| 	 * endian.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&key, cmd_q,
 | |
| 				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 | |
| 				   DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	dm_offset = CCP_SB_BYTES - aes->key_len;
 | |
| 	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_key;
 | |
| 	}
 | |
| 
 | |
| 	/* The AES context fits in a single (32-byte) SB entry and
 | |
| 	 * must be in little endian format. Use the 256-bit byte swap
 | |
| 	 * passthru option to convert from big endian to little endian.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 | |
| 				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 | |
| 				   DMA_BIDIRECTIONAL);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 
 | |
| 	if (aes->mode != CCP_AES_MODE_ECB) {
 | |
| 		/* Load the AES context - convert to LE */
 | |
| 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 | |
| 		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 | |
| 		if (ret)
 | |
| 			goto e_ctx;
 | |
| 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 				     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_ctx;
 | |
| 		}
 | |
| 	}
 | |
| 	switch (aes->mode) {
 | |
| 	case CCP_AES_MODE_CFB: /* CFB128 only */
 | |
| 	case CCP_AES_MODE_CTR:
 | |
| 		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		op.u.aes.size = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the input and output data workareas. For in-place
 | |
| 	 * operations we need to set the dma direction to BIDIRECTIONAL
 | |
| 	 * and copy the src workarea to the dst workarea.
 | |
| 	 */
 | |
| 	if (sg_virt(aes->src) == sg_virt(aes->dst))
 | |
| 		in_place = true;
 | |
| 
 | |
| 	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 | |
| 			    AES_BLOCK_SIZE,
 | |
| 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_ctx;
 | |
| 
 | |
| 	if (in_place) {
 | |
| 		dst = src;
 | |
| 	} else {
 | |
| 		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
 | |
| 				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 | |
| 		if (ret)
 | |
| 			goto e_src;
 | |
| 	}
 | |
| 
 | |
| 	/* Send data to the CCP AES engine */
 | |
| 	while (src.sg_wa.bytes_left) {
 | |
| 		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 | |
| 		if (!src.sg_wa.bytes_left) {
 | |
| 			op.eom = 1;
 | |
| 
 | |
| 			/* Since we don't retrieve the AES context in ECB
 | |
| 			 * mode we have to wait for the operation to complete
 | |
| 			 * on the last piece of data
 | |
| 			 */
 | |
| 			if (aes->mode == CCP_AES_MODE_ECB)
 | |
| 				op.soc = 1;
 | |
| 		}
 | |
| 
 | |
| 		ret = cmd_q->ccp->vdata->perform->aes(&op);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_dst;
 | |
| 		}
 | |
| 
 | |
| 		ccp_process_data(&src, &dst, &op);
 | |
| 	}
 | |
| 
 | |
| 	if (aes->mode != CCP_AES_MODE_ECB) {
 | |
| 		/* Retrieve the AES context - convert from LE to BE using
 | |
| 		 * 32-byte (256-bit) byteswapping
 | |
| 		 */
 | |
| 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 				       CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_dst;
 | |
| 		}
 | |
| 
 | |
| 		/* ...but we only need AES_BLOCK_SIZE bytes */
 | |
| 		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 | |
| 		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 | |
| 	}
 | |
| 
 | |
| e_dst:
 | |
| 	if (!in_place)
 | |
| 		ccp_free_data(&dst, cmd_q);
 | |
| 
 | |
| e_src:
 | |
| 	ccp_free_data(&src, cmd_q);
 | |
| 
 | |
| e_ctx:
 | |
| 	ccp_dm_free(&ctx);
 | |
| 
 | |
| e_key:
 | |
| 	ccp_dm_free(&key);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
 | |
| 			       struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
 | |
| 	struct ccp_dm_workarea key, ctx;
 | |
| 	struct ccp_data src, dst;
 | |
| 	struct ccp_op op;
 | |
| 	unsigned int unit_size, dm_offset;
 | |
| 	bool in_place = false;
 | |
| 	unsigned int sb_count;
 | |
| 	enum ccp_aes_type aestype;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (xts->unit_size) {
 | |
| 	case CCP_XTS_AES_UNIT_SIZE_16:
 | |
| 		unit_size = 16;
 | |
| 		break;
 | |
| 	case CCP_XTS_AES_UNIT_SIZE_512:
 | |
| 		unit_size = 512;
 | |
| 		break;
 | |
| 	case CCP_XTS_AES_UNIT_SIZE_1024:
 | |
| 		unit_size = 1024;
 | |
| 		break;
 | |
| 	case CCP_XTS_AES_UNIT_SIZE_2048:
 | |
| 		unit_size = 2048;
 | |
| 		break;
 | |
| 	case CCP_XTS_AES_UNIT_SIZE_4096:
 | |
| 		unit_size = 4096;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (xts->key_len == AES_KEYSIZE_128)
 | |
| 		aestype = CCP_AES_TYPE_128;
 | |
| 	else if (xts->key_len == AES_KEYSIZE_256)
 | |
| 		aestype = CCP_AES_TYPE_256;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (xts->iv_len != AES_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
 | |
| 	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
 | |
| 
 | |
| 	ret = -EIO;
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 	op.sb_key = cmd_q->sb_key;
 | |
| 	op.sb_ctx = cmd_q->sb_ctx;
 | |
| 	op.init = 1;
 | |
| 	op.u.xts.type = aestype;
 | |
| 	op.u.xts.action = xts->action;
 | |
| 	op.u.xts.unit_size = xts->unit_size;
 | |
| 
 | |
| 	/* A version 3 device only supports 128-bit keys, which fits into a
 | |
| 	 * single SB entry. A version 5 device uses a 512-bit vector, so two
 | |
| 	 * SB entries.
 | |
| 	 */
 | |
| 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
 | |
| 		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
 | |
| 	else
 | |
| 		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
 | |
| 	ret = ccp_init_dm_workarea(&key, cmd_q,
 | |
| 				   sb_count * CCP_SB_BYTES,
 | |
| 				   DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
 | |
| 		/* All supported key sizes must be in little endian format.
 | |
| 		 * Use the 256-bit byte swap passthru option to convert from
 | |
| 		 * big endian to little endian.
 | |
| 		 */
 | |
| 		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
 | |
| 		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
 | |
| 		if (ret)
 | |
| 			goto e_key;
 | |
| 		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
 | |
| 		if (ret)
 | |
| 			goto e_key;
 | |
| 	} else {
 | |
| 		/* Version 5 CCPs use a 512-bit space for the key: each portion
 | |
| 		 * occupies 256 bits, or one entire slot, and is zero-padded.
 | |
| 		 */
 | |
| 		unsigned int pad;
 | |
| 
 | |
| 		dm_offset = CCP_SB_BYTES;
 | |
| 		pad = dm_offset - xts->key_len;
 | |
| 		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
 | |
| 		if (ret)
 | |
| 			goto e_key;
 | |
| 		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
 | |
| 				      xts->key_len, xts->key_len);
 | |
| 		if (ret)
 | |
| 			goto e_key;
 | |
| 	}
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_key;
 | |
| 	}
 | |
| 
 | |
| 	/* The AES context fits in a single (32-byte) SB entry and
 | |
| 	 * for XTS is already in little endian format so no byte swapping
 | |
| 	 * is needed.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 | |
| 				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 | |
| 				   DMA_BIDIRECTIONAL);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 
 | |
| 	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
 | |
| 	if (ret)
 | |
| 		goto e_ctx;
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_NOOP);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_ctx;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the input and output data workareas. For in-place
 | |
| 	 * operations we need to set the dma direction to BIDIRECTIONAL
 | |
| 	 * and copy the src workarea to the dst workarea.
 | |
| 	 */
 | |
| 	if (sg_virt(xts->src) == sg_virt(xts->dst))
 | |
| 		in_place = true;
 | |
| 
 | |
| 	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
 | |
| 			    unit_size,
 | |
| 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_ctx;
 | |
| 
 | |
| 	if (in_place) {
 | |
| 		dst = src;
 | |
| 	} else {
 | |
| 		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
 | |
| 				    unit_size, DMA_FROM_DEVICE);
 | |
| 		if (ret)
 | |
| 			goto e_src;
 | |
| 	}
 | |
| 
 | |
| 	/* Send data to the CCP AES engine */
 | |
| 	while (src.sg_wa.bytes_left) {
 | |
| 		ccp_prepare_data(&src, &dst, &op, unit_size, true);
 | |
| 		if (!src.sg_wa.bytes_left)
 | |
| 			op.eom = 1;
 | |
| 
 | |
| 		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_dst;
 | |
| 		}
 | |
| 
 | |
| 		ccp_process_data(&src, &dst, &op);
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve the AES context - convert from LE to BE using
 | |
| 	 * 32-byte (256-bit) byteswapping
 | |
| 	 */
 | |
| 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			       CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_dst;
 | |
| 	}
 | |
| 
 | |
| 	/* ...but we only need AES_BLOCK_SIZE bytes */
 | |
| 	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 | |
| 	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
 | |
| 
 | |
| e_dst:
 | |
| 	if (!in_place)
 | |
| 		ccp_free_data(&dst, cmd_q);
 | |
| 
 | |
| e_src:
 | |
| 	ccp_free_data(&src, cmd_q);
 | |
| 
 | |
| e_ctx:
 | |
| 	ccp_dm_free(&ctx);
 | |
| 
 | |
| e_key:
 | |
| 	ccp_dm_free(&key);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_des3_engine *des3 = &cmd->u.des3;
 | |
| 
 | |
| 	struct ccp_dm_workarea key, ctx;
 | |
| 	struct ccp_data src, dst;
 | |
| 	struct ccp_op op;
 | |
| 	unsigned int dm_offset;
 | |
| 	unsigned int len_singlekey;
 | |
| 	bool in_place = false;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Error checks */
 | |
| 	if (!cmd_q->ccp->vdata->perform->des3)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (des3->key_len != DES3_EDE_KEY_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (((des3->mode == CCP_DES3_MODE_ECB) ||
 | |
| 		(des3->mode == CCP_DES3_MODE_CBC)) &&
 | |
| 		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!des3->key || !des3->src || !des3->dst)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (des3->mode != CCP_DES3_MODE_ECB) {
 | |
| 		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!des3->iv)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ret = -EIO;
 | |
| 	/* Zero out all the fields of the command desc */
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 
 | |
| 	/* Set up the Function field */
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 	op.sb_key = cmd_q->sb_key;
 | |
| 
 | |
| 	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
 | |
| 	op.u.des3.type = des3->type;
 | |
| 	op.u.des3.mode = des3->mode;
 | |
| 	op.u.des3.action = des3->action;
 | |
| 
 | |
| 	/*
 | |
| 	 * All supported key sizes fit in a single (32-byte) KSB entry and
 | |
| 	 * (like AES) must be in little endian format. Use the 256-bit byte
 | |
| 	 * swap passthru option to convert from big endian to little endian.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&key, cmd_q,
 | |
| 				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
 | |
| 				   DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * The contents of the key triplet are in the reverse order of what
 | |
| 	 * is required by the engine. Copy the 3 pieces individually to put
 | |
| 	 * them where they belong.
 | |
| 	 */
 | |
| 	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
 | |
| 
 | |
| 	len_singlekey = des3->key_len / 3;
 | |
| 	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
 | |
| 			      des3->key, 0, len_singlekey);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
 | |
| 			      des3->key, len_singlekey, len_singlekey);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 	ret = ccp_set_dm_area(&key, dm_offset,
 | |
| 			      des3->key, 2 * len_singlekey, len_singlekey);
 | |
| 	if (ret)
 | |
| 		goto e_key;
 | |
| 
 | |
| 	/* Copy the key to the SB */
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_key;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The DES3 context fits in a single (32-byte) KSB entry and
 | |
| 	 * must be in little endian format. Use the 256-bit byte swap
 | |
| 	 * passthru option to convert from big endian to little endian.
 | |
| 	 */
 | |
| 	if (des3->mode != CCP_DES3_MODE_ECB) {
 | |
| 		u32 load_mode;
 | |
| 
 | |
| 		op.sb_ctx = cmd_q->sb_ctx;
 | |
| 
 | |
| 		ret = ccp_init_dm_workarea(&ctx, cmd_q,
 | |
| 					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
 | |
| 					   DMA_BIDIRECTIONAL);
 | |
| 		if (ret)
 | |
| 			goto e_key;
 | |
| 
 | |
| 		/* Load the context into the LSB */
 | |
| 		dm_offset = CCP_SB_BYTES - des3->iv_len;
 | |
| 		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
 | |
| 				      des3->iv_len);
 | |
| 		if (ret)
 | |
| 			goto e_ctx;
 | |
| 
 | |
| 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
 | |
| 			load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
 | |
| 		else
 | |
| 			load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
 | |
| 		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 				     load_mode);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_ctx;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare the input and output data workareas. For in-place
 | |
| 	 * operations we need to set the dma direction to BIDIRECTIONAL
 | |
| 	 * and copy the src workarea to the dst workarea.
 | |
| 	 */
 | |
| 	if (sg_virt(des3->src) == sg_virt(des3->dst))
 | |
| 		in_place = true;
 | |
| 
 | |
| 	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
 | |
| 			DES3_EDE_BLOCK_SIZE,
 | |
| 			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_ctx;
 | |
| 
 | |
| 	if (in_place)
 | |
| 		dst = src;
 | |
| 	else {
 | |
| 		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
 | |
| 				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
 | |
| 		if (ret)
 | |
| 			goto e_src;
 | |
| 	}
 | |
| 
 | |
| 	/* Send data to the CCP DES3 engine */
 | |
| 	while (src.sg_wa.bytes_left) {
 | |
| 		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
 | |
| 		if (!src.sg_wa.bytes_left) {
 | |
| 			op.eom = 1;
 | |
| 
 | |
| 			/* Since we don't retrieve the context in ECB mode
 | |
| 			 * we have to wait for the operation to complete
 | |
| 			 * on the last piece of data
 | |
| 			 */
 | |
| 			op.soc = 0;
 | |
| 		}
 | |
| 
 | |
| 		ret = cmd_q->ccp->vdata->perform->des3(&op);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_dst;
 | |
| 		}
 | |
| 
 | |
| 		ccp_process_data(&src, &dst, &op);
 | |
| 	}
 | |
| 
 | |
| 	if (des3->mode != CCP_DES3_MODE_ECB) {
 | |
| 		/* Retrieve the context and make BE */
 | |
| 		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 				       CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_dst;
 | |
| 		}
 | |
| 
 | |
| 		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
 | |
| 		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
 | |
| 			dm_offset = CCP_SB_BYTES - des3->iv_len;
 | |
| 		else
 | |
| 			dm_offset = 0;
 | |
| 		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
 | |
| 				DES3_EDE_BLOCK_SIZE);
 | |
| 	}
 | |
| e_dst:
 | |
| 	if (!in_place)
 | |
| 		ccp_free_data(&dst, cmd_q);
 | |
| 
 | |
| e_src:
 | |
| 	ccp_free_data(&src, cmd_q);
 | |
| 
 | |
| e_ctx:
 | |
| 	if (des3->mode != CCP_DES3_MODE_ECB)
 | |
| 		ccp_dm_free(&ctx);
 | |
| 
 | |
| e_key:
 | |
| 	ccp_dm_free(&key);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_sha_engine *sha = &cmd->u.sha;
 | |
| 	struct ccp_dm_workarea ctx;
 | |
| 	struct ccp_data src;
 | |
| 	struct ccp_op op;
 | |
| 	unsigned int ioffset, ooffset;
 | |
| 	unsigned int digest_size;
 | |
| 	int sb_count;
 | |
| 	const void *init;
 | |
| 	u64 block_size;
 | |
| 	int ctx_size;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (sha->type) {
 | |
| 	case CCP_SHA_TYPE_1:
 | |
| 		if (sha->ctx_len < SHA1_DIGEST_SIZE)
 | |
| 			return -EINVAL;
 | |
| 		block_size = SHA1_BLOCK_SIZE;
 | |
| 		break;
 | |
| 	case CCP_SHA_TYPE_224:
 | |
| 		if (sha->ctx_len < SHA224_DIGEST_SIZE)
 | |
| 			return -EINVAL;
 | |
| 		block_size = SHA224_BLOCK_SIZE;
 | |
| 		break;
 | |
| 	case CCP_SHA_TYPE_256:
 | |
| 		if (sha->ctx_len < SHA256_DIGEST_SIZE)
 | |
| 			return -EINVAL;
 | |
| 		block_size = SHA256_BLOCK_SIZE;
 | |
| 		break;
 | |
| 	case CCP_SHA_TYPE_384:
 | |
| 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
 | |
| 		    || sha->ctx_len < SHA384_DIGEST_SIZE)
 | |
| 			return -EINVAL;
 | |
| 		block_size = SHA384_BLOCK_SIZE;
 | |
| 		break;
 | |
| 	case CCP_SHA_TYPE_512:
 | |
| 		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
 | |
| 		    || sha->ctx_len < SHA512_DIGEST_SIZE)
 | |
| 			return -EINVAL;
 | |
| 		block_size = SHA512_BLOCK_SIZE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!sha->ctx)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!sha->final && (sha->src_len & (block_size - 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* The version 3 device can't handle zero-length input */
 | |
| 	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
 | |
| 
 | |
| 		if (!sha->src_len) {
 | |
| 			unsigned int digest_len;
 | |
| 			const u8 *sha_zero;
 | |
| 
 | |
| 			/* Not final, just return */
 | |
| 			if (!sha->final)
 | |
| 				return 0;
 | |
| 
 | |
| 			/* CCP can't do a zero length sha operation so the
 | |
| 			 * caller must buffer the data.
 | |
| 			 */
 | |
| 			if (sha->msg_bits)
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			/* The CCP cannot perform zero-length sha operations
 | |
| 			 * so the caller is required to buffer data for the
 | |
| 			 * final operation. However, a sha operation for a
 | |
| 			 * message with a total length of zero is valid so
 | |
| 			 * known values are required to supply the result.
 | |
| 			 */
 | |
| 			switch (sha->type) {
 | |
| 			case CCP_SHA_TYPE_1:
 | |
| 				sha_zero = sha1_zero_message_hash;
 | |
| 				digest_len = SHA1_DIGEST_SIZE;
 | |
| 				break;
 | |
| 			case CCP_SHA_TYPE_224:
 | |
| 				sha_zero = sha224_zero_message_hash;
 | |
| 				digest_len = SHA224_DIGEST_SIZE;
 | |
| 				break;
 | |
| 			case CCP_SHA_TYPE_256:
 | |
| 				sha_zero = sha256_zero_message_hash;
 | |
| 				digest_len = SHA256_DIGEST_SIZE;
 | |
| 				break;
 | |
| 			default:
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
 | |
| 						 digest_len, 1);
 | |
| 
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set variables used throughout */
 | |
| 	switch (sha->type) {
 | |
| 	case CCP_SHA_TYPE_1:
 | |
| 		digest_size = SHA1_DIGEST_SIZE;
 | |
| 		init = (void *) ccp_sha1_init;
 | |
| 		ctx_size = SHA1_DIGEST_SIZE;
 | |
| 		sb_count = 1;
 | |
| 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
 | |
| 			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
 | |
| 		else
 | |
| 			ooffset = ioffset = 0;
 | |
| 		break;
 | |
| 	case CCP_SHA_TYPE_224:
 | |
| 		digest_size = SHA224_DIGEST_SIZE;
 | |
| 		init = (void *) ccp_sha224_init;
 | |
| 		ctx_size = SHA256_DIGEST_SIZE;
 | |
| 		sb_count = 1;
 | |
| 		ioffset = 0;
 | |
| 		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
 | |
| 			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
 | |
| 		else
 | |
| 			ooffset = 0;
 | |
| 		break;
 | |
| 	case CCP_SHA_TYPE_256:
 | |
| 		digest_size = SHA256_DIGEST_SIZE;
 | |
| 		init = (void *) ccp_sha256_init;
 | |
| 		ctx_size = SHA256_DIGEST_SIZE;
 | |
| 		sb_count = 1;
 | |
| 		ooffset = ioffset = 0;
 | |
| 		break;
 | |
| 	case CCP_SHA_TYPE_384:
 | |
| 		digest_size = SHA384_DIGEST_SIZE;
 | |
| 		init = (void *) ccp_sha384_init;
 | |
| 		ctx_size = SHA512_DIGEST_SIZE;
 | |
| 		sb_count = 2;
 | |
| 		ioffset = 0;
 | |
| 		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
 | |
| 		break;
 | |
| 	case CCP_SHA_TYPE_512:
 | |
| 		digest_size = SHA512_DIGEST_SIZE;
 | |
| 		init = (void *) ccp_sha512_init;
 | |
| 		ctx_size = SHA512_DIGEST_SIZE;
 | |
| 		sb_count = 2;
 | |
| 		ooffset = ioffset = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 		goto e_data;
 | |
| 	}
 | |
| 
 | |
| 	/* For zero-length plaintext the src pointer is ignored;
 | |
| 	 * otherwise both parts must be valid
 | |
| 	 */
 | |
| 	if (sha->src_len && !sha->src)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 | |
| 	op.u.sha.type = sha->type;
 | |
| 	op.u.sha.msg_bits = sha->msg_bits;
 | |
| 
 | |
| 	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
 | |
| 	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
 | |
| 	 * first slot, and the left half in the second. Each portion must then
 | |
| 	 * be in little endian format: use the 256-bit byte swap option.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
 | |
| 				   DMA_BIDIRECTIONAL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	if (sha->first) {
 | |
| 		switch (sha->type) {
 | |
| 		case CCP_SHA_TYPE_1:
 | |
| 		case CCP_SHA_TYPE_224:
 | |
| 		case CCP_SHA_TYPE_256:
 | |
| 			memcpy(ctx.address + ioffset, init, ctx_size);
 | |
| 			break;
 | |
| 		case CCP_SHA_TYPE_384:
 | |
| 		case CCP_SHA_TYPE_512:
 | |
| 			memcpy(ctx.address + ctx_size / 2, init,
 | |
| 			       ctx_size / 2);
 | |
| 			memcpy(ctx.address, init + ctx_size / 2,
 | |
| 			       ctx_size / 2);
 | |
| 			break;
 | |
| 		default:
 | |
| 			ret = -EINVAL;
 | |
| 			goto e_ctx;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Restore the context */
 | |
| 		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
 | |
| 				      sb_count * CCP_SB_BYTES);
 | |
| 		if (ret)
 | |
| 			goto e_ctx;
 | |
| 	}
 | |
| 
 | |
| 	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			     CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_ctx;
 | |
| 	}
 | |
| 
 | |
| 	if (sha->src) {
 | |
| 		/* Send data to the CCP SHA engine; block_size is set above */
 | |
| 		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
 | |
| 				    block_size, DMA_TO_DEVICE);
 | |
| 		if (ret)
 | |
| 			goto e_ctx;
 | |
| 
 | |
| 		while (src.sg_wa.bytes_left) {
 | |
| 			ccp_prepare_data(&src, NULL, &op, block_size, false);
 | |
| 			if (sha->final && !src.sg_wa.bytes_left)
 | |
| 				op.eom = 1;
 | |
| 
 | |
| 			ret = cmd_q->ccp->vdata->perform->sha(&op);
 | |
| 			if (ret) {
 | |
| 				cmd->engine_error = cmd_q->cmd_error;
 | |
| 				goto e_data;
 | |
| 			}
 | |
| 
 | |
| 			ccp_process_data(&src, NULL, &op);
 | |
| 		}
 | |
| 	} else {
 | |
| 		op.eom = 1;
 | |
| 		ret = cmd_q->ccp->vdata->perform->sha(&op);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_data;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve the SHA context - convert from LE to BE using
 | |
| 	 * 32-byte (256-bit) byteswapping to BE
 | |
| 	 */
 | |
| 	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 | |
| 			       CCP_PASSTHRU_BYTESWAP_256BIT);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_data;
 | |
| 	}
 | |
| 
 | |
| 	if (sha->final) {
 | |
| 		/* Finishing up, so get the digest */
 | |
| 		switch (sha->type) {
 | |
| 		case CCP_SHA_TYPE_1:
 | |
| 		case CCP_SHA_TYPE_224:
 | |
| 		case CCP_SHA_TYPE_256:
 | |
| 			ccp_get_dm_area(&ctx, ooffset,
 | |
| 					sha->ctx, 0,
 | |
| 					digest_size);
 | |
| 			break;
 | |
| 		case CCP_SHA_TYPE_384:
 | |
| 		case CCP_SHA_TYPE_512:
 | |
| 			ccp_get_dm_area(&ctx, 0,
 | |
| 					sha->ctx, LSB_ITEM_SIZE - ooffset,
 | |
| 					LSB_ITEM_SIZE);
 | |
| 			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
 | |
| 					sha->ctx, 0,
 | |
| 					LSB_ITEM_SIZE - ooffset);
 | |
| 			break;
 | |
| 		default:
 | |
| 			ret = -EINVAL;
 | |
| 			goto e_ctx;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Stash the context */
 | |
| 		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
 | |
| 				sb_count * CCP_SB_BYTES);
 | |
| 	}
 | |
| 
 | |
| 	if (sha->final && sha->opad) {
 | |
| 		/* HMAC operation, recursively perform final SHA */
 | |
| 		struct ccp_cmd hmac_cmd;
 | |
| 		struct scatterlist sg;
 | |
| 		u8 *hmac_buf;
 | |
| 
 | |
| 		if (sha->opad_len != block_size) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto e_data;
 | |
| 		}
 | |
| 
 | |
| 		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
 | |
| 		if (!hmac_buf) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto e_data;
 | |
| 		}
 | |
| 		sg_init_one(&sg, hmac_buf, block_size + digest_size);
 | |
| 
 | |
| 		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
 | |
| 		switch (sha->type) {
 | |
| 		case CCP_SHA_TYPE_1:
 | |
| 		case CCP_SHA_TYPE_224:
 | |
| 		case CCP_SHA_TYPE_256:
 | |
| 			memcpy(hmac_buf + block_size,
 | |
| 			       ctx.address + ooffset,
 | |
| 			       digest_size);
 | |
| 			break;
 | |
| 		case CCP_SHA_TYPE_384:
 | |
| 		case CCP_SHA_TYPE_512:
 | |
| 			memcpy(hmac_buf + block_size,
 | |
| 			       ctx.address + LSB_ITEM_SIZE + ooffset,
 | |
| 			       LSB_ITEM_SIZE);
 | |
| 			memcpy(hmac_buf + block_size +
 | |
| 			       (LSB_ITEM_SIZE - ooffset),
 | |
| 			       ctx.address,
 | |
| 			       LSB_ITEM_SIZE);
 | |
| 			break;
 | |
| 		default:
 | |
| 			ret = -EINVAL;
 | |
| 			goto e_ctx;
 | |
| 		}
 | |
| 
 | |
| 		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
 | |
| 		hmac_cmd.engine = CCP_ENGINE_SHA;
 | |
| 		hmac_cmd.u.sha.type = sha->type;
 | |
| 		hmac_cmd.u.sha.ctx = sha->ctx;
 | |
| 		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
 | |
| 		hmac_cmd.u.sha.src = &sg;
 | |
| 		hmac_cmd.u.sha.src_len = block_size + digest_size;
 | |
| 		hmac_cmd.u.sha.opad = NULL;
 | |
| 		hmac_cmd.u.sha.opad_len = 0;
 | |
| 		hmac_cmd.u.sha.first = 1;
 | |
| 		hmac_cmd.u.sha.final = 1;
 | |
| 		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
 | |
| 
 | |
| 		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
 | |
| 		if (ret)
 | |
| 			cmd->engine_error = hmac_cmd.engine_error;
 | |
| 
 | |
| 		kfree(hmac_buf);
 | |
| 	}
 | |
| 
 | |
| e_data:
 | |
| 	if (sha->src)
 | |
| 		ccp_free_data(&src, cmd_q);
 | |
| 
 | |
| e_ctx:
 | |
| 	ccp_dm_free(&ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
 | |
| 	struct ccp_dm_workarea exp, src, dst;
 | |
| 	struct ccp_op op;
 | |
| 	unsigned int sb_count, i_len, o_len;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Check against the maximum allowable size, in bits */
 | |
| 	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 
 | |
| 	/* The RSA modulus must precede the message being acted upon, so
 | |
| 	 * it must be copied to a DMA area where the message and the
 | |
| 	 * modulus can be concatenated.  Therefore the input buffer
 | |
| 	 * length required is twice the output buffer length (which
 | |
| 	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
 | |
| 	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
 | |
| 	 * required.
 | |
| 	 */
 | |
| 	o_len = 32 * ((rsa->key_size + 255) / 256);
 | |
| 	i_len = o_len * 2;
 | |
| 
 | |
| 	sb_count = 0;
 | |
| 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
 | |
| 		/* sb_count is the number of storage block slots required
 | |
| 		 * for the modulus.
 | |
| 		 */
 | |
| 		sb_count = o_len / CCP_SB_BYTES;
 | |
| 		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
 | |
| 								sb_count);
 | |
| 		if (!op.sb_key)
 | |
| 			return -EIO;
 | |
| 	} else {
 | |
| 		/* A version 5 device allows a modulus size that will not fit
 | |
| 		 * in the LSB, so the command will transfer it from memory.
 | |
| 		 * Set the sb key to the default, even though it's not used.
 | |
| 		 */
 | |
| 		op.sb_key = cmd_q->sb_key;
 | |
| 	}
 | |
| 
 | |
| 	/* The RSA exponent must be in little endian format. Reverse its
 | |
| 	 * byte order.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_sb;
 | |
| 
 | |
| 	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
 | |
| 	if (ret)
 | |
| 		goto e_exp;
 | |
| 
 | |
| 	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
 | |
| 		/* Copy the exponent to the local storage block, using
 | |
| 		 * as many 32-byte blocks as were allocated above. It's
 | |
| 		 * already little endian, so no further change is required.
 | |
| 		 */
 | |
| 		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
 | |
| 				     CCP_PASSTHRU_BYTESWAP_NOOP);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_exp;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* The exponent can be retrieved from memory via DMA. */
 | |
| 		op.exp.u.dma.address = exp.dma.address;
 | |
| 		op.exp.u.dma.offset = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Concatenate the modulus and the message. Both the modulus and
 | |
| 	 * the operands must be in little endian format.  Since the input
 | |
| 	 * is in big endian format it must be converted.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_exp;
 | |
| 
 | |
| 	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 
 | |
| 	/* Prepare the output area for the operation */
 | |
| 	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 
 | |
| 	op.soc = 1;
 | |
| 	op.src.u.dma.address = src.dma.address;
 | |
| 	op.src.u.dma.offset = 0;
 | |
| 	op.src.u.dma.length = i_len;
 | |
| 	op.dst.u.dma.address = dst.dma.address;
 | |
| 	op.dst.u.dma.offset = 0;
 | |
| 	op.dst.u.dma.length = o_len;
 | |
| 
 | |
| 	op.u.rsa.mod_size = rsa->key_size;
 | |
| 	op.u.rsa.input_len = i_len;
 | |
| 
 | |
| 	ret = cmd_q->ccp->vdata->perform->rsa(&op);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_dst;
 | |
| 	}
 | |
| 
 | |
| 	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
 | |
| 
 | |
| e_dst:
 | |
| 	ccp_dm_free(&dst);
 | |
| 
 | |
| e_src:
 | |
| 	ccp_dm_free(&src);
 | |
| 
 | |
| e_exp:
 | |
| 	ccp_dm_free(&exp);
 | |
| 
 | |
| e_sb:
 | |
| 	if (sb_count)
 | |
| 		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
 | |
| 				struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_passthru_engine *pt = &cmd->u.passthru;
 | |
| 	struct ccp_dm_workarea mask;
 | |
| 	struct ccp_data src, dst;
 | |
| 	struct ccp_op op;
 | |
| 	bool in_place = false;
 | |
| 	unsigned int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!pt->src || !pt->dst)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
 | |
| 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
 | |
| 			return -EINVAL;
 | |
| 		if (!pt->mask)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
 | |
| 
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 
 | |
| 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
 | |
| 		/* Load the mask */
 | |
| 		op.sb_key = cmd_q->sb_key;
 | |
| 
 | |
| 		ret = ccp_init_dm_workarea(&mask, cmd_q,
 | |
| 					   CCP_PASSTHRU_SB_COUNT *
 | |
| 					   CCP_SB_BYTES,
 | |
| 					   DMA_TO_DEVICE);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
 | |
| 		if (ret)
 | |
| 			goto e_mask;
 | |
| 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
 | |
| 				     CCP_PASSTHRU_BYTESWAP_NOOP);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_mask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the input and output data workareas. For in-place
 | |
| 	 * operations we need to set the dma direction to BIDIRECTIONAL
 | |
| 	 * and copy the src workarea to the dst workarea.
 | |
| 	 */
 | |
| 	if (sg_virt(pt->src) == sg_virt(pt->dst))
 | |
| 		in_place = true;
 | |
| 
 | |
| 	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
 | |
| 			    CCP_PASSTHRU_MASKSIZE,
 | |
| 			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_mask;
 | |
| 
 | |
| 	if (in_place) {
 | |
| 		dst = src;
 | |
| 	} else {
 | |
| 		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
 | |
| 				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
 | |
| 		if (ret)
 | |
| 			goto e_src;
 | |
| 	}
 | |
| 
 | |
| 	/* Send data to the CCP Passthru engine
 | |
| 	 *   Because the CCP engine works on a single source and destination
 | |
| 	 *   dma address at a time, each entry in the source scatterlist
 | |
| 	 *   (after the dma_map_sg call) must be less than or equal to the
 | |
| 	 *   (remaining) length in the destination scatterlist entry and the
 | |
| 	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
 | |
| 	 */
 | |
| 	dst.sg_wa.sg_used = 0;
 | |
| 	for (i = 1; i <= src.sg_wa.dma_count; i++) {
 | |
| 		if (!dst.sg_wa.sg ||
 | |
| 		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
 | |
| 			ret = -EINVAL;
 | |
| 			goto e_dst;
 | |
| 		}
 | |
| 
 | |
| 		if (i == src.sg_wa.dma_count) {
 | |
| 			op.eom = 1;
 | |
| 			op.soc = 1;
 | |
| 		}
 | |
| 
 | |
| 		op.src.type = CCP_MEMTYPE_SYSTEM;
 | |
| 		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
 | |
| 		op.src.u.dma.offset = 0;
 | |
| 		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
 | |
| 
 | |
| 		op.dst.type = CCP_MEMTYPE_SYSTEM;
 | |
| 		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
 | |
| 		op.dst.u.dma.offset = dst.sg_wa.sg_used;
 | |
| 		op.dst.u.dma.length = op.src.u.dma.length;
 | |
| 
 | |
| 		ret = cmd_q->ccp->vdata->perform->passthru(&op);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			goto e_dst;
 | |
| 		}
 | |
| 
 | |
| 		dst.sg_wa.sg_used += src.sg_wa.sg->length;
 | |
| 		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
 | |
| 			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
 | |
| 			dst.sg_wa.sg_used = 0;
 | |
| 		}
 | |
| 		src.sg_wa.sg = sg_next(src.sg_wa.sg);
 | |
| 	}
 | |
| 
 | |
| e_dst:
 | |
| 	if (!in_place)
 | |
| 		ccp_free_data(&dst, cmd_q);
 | |
| 
 | |
| e_src:
 | |
| 	ccp_free_data(&src, cmd_q);
 | |
| 
 | |
| e_mask:
 | |
| 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
 | |
| 		ccp_dm_free(&mask);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
 | |
| 				      struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
 | |
| 	struct ccp_dm_workarea mask;
 | |
| 	struct ccp_op op;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!pt->src_dma || !pt->dst_dma)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
 | |
| 		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
 | |
| 			return -EINVAL;
 | |
| 		if (!pt->mask)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
 | |
| 
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 
 | |
| 	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
 | |
| 		/* Load the mask */
 | |
| 		op.sb_key = cmd_q->sb_key;
 | |
| 
 | |
| 		mask.length = pt->mask_len;
 | |
| 		mask.dma.address = pt->mask;
 | |
| 		mask.dma.length = pt->mask_len;
 | |
| 
 | |
| 		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
 | |
| 				     CCP_PASSTHRU_BYTESWAP_NOOP);
 | |
| 		if (ret) {
 | |
| 			cmd->engine_error = cmd_q->cmd_error;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Send data to the CCP Passthru engine */
 | |
| 	op.eom = 1;
 | |
| 	op.soc = 1;
 | |
| 
 | |
| 	op.src.type = CCP_MEMTYPE_SYSTEM;
 | |
| 	op.src.u.dma.address = pt->src_dma;
 | |
| 	op.src.u.dma.offset = 0;
 | |
| 	op.src.u.dma.length = pt->src_len;
 | |
| 
 | |
| 	op.dst.type = CCP_MEMTYPE_SYSTEM;
 | |
| 	op.dst.u.dma.address = pt->dst_dma;
 | |
| 	op.dst.u.dma.offset = 0;
 | |
| 	op.dst.u.dma.length = pt->src_len;
 | |
| 
 | |
| 	ret = cmd_q->ccp->vdata->perform->passthru(&op);
 | |
| 	if (ret)
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
 | |
| 	struct ccp_dm_workarea src, dst;
 | |
| 	struct ccp_op op;
 | |
| 	int ret;
 | |
| 	u8 *save;
 | |
| 
 | |
| 	if (!ecc->u.mm.operand_1 ||
 | |
| 	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
 | |
| 		if (!ecc->u.mm.operand_2 ||
 | |
| 		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	if (!ecc->u.mm.result ||
 | |
| 	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 
 | |
| 	/* Concatenate the modulus and the operands. Both the modulus and
 | |
| 	 * the operands must be in little endian format.  Since the input
 | |
| 	 * is in big endian format it must be converted and placed in a
 | |
| 	 * fixed length buffer.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
 | |
| 				   DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Save the workarea address since it is updated in order to perform
 | |
| 	 * the concatenation
 | |
| 	 */
 | |
| 	save = src.address;
 | |
| 
 | |
| 	/* Copy the ECC modulus */
 | |
| 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 	src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 
 | |
| 	/* Copy the first operand */
 | |
| 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
 | |
| 				      ecc->u.mm.operand_1_len);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 	src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 
 | |
| 	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
 | |
| 		/* Copy the second operand */
 | |
| 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
 | |
| 					      ecc->u.mm.operand_2_len);
 | |
| 		if (ret)
 | |
| 			goto e_src;
 | |
| 		src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* Restore the workarea address */
 | |
| 	src.address = save;
 | |
| 
 | |
| 	/* Prepare the output area for the operation */
 | |
| 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
 | |
| 				   DMA_FROM_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 
 | |
| 	op.soc = 1;
 | |
| 	op.src.u.dma.address = src.dma.address;
 | |
| 	op.src.u.dma.offset = 0;
 | |
| 	op.src.u.dma.length = src.length;
 | |
| 	op.dst.u.dma.address = dst.dma.address;
 | |
| 	op.dst.u.dma.offset = 0;
 | |
| 	op.dst.u.dma.length = dst.length;
 | |
| 
 | |
| 	op.u.ecc.function = cmd->u.ecc.function;
 | |
| 
 | |
| 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_dst;
 | |
| 	}
 | |
| 
 | |
| 	ecc->ecc_result = le16_to_cpup(
 | |
| 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
 | |
| 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
 | |
| 		ret = -EIO;
 | |
| 		goto e_dst;
 | |
| 	}
 | |
| 
 | |
| 	/* Save the ECC result */
 | |
| 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
 | |
| 				CCP_ECC_MODULUS_BYTES);
 | |
| 
 | |
| e_dst:
 | |
| 	ccp_dm_free(&dst);
 | |
| 
 | |
| e_src:
 | |
| 	ccp_dm_free(&src);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
 | |
| 	struct ccp_dm_workarea src, dst;
 | |
| 	struct ccp_op op;
 | |
| 	int ret;
 | |
| 	u8 *save;
 | |
| 
 | |
| 	if (!ecc->u.pm.point_1.x ||
 | |
| 	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
 | |
| 	    !ecc->u.pm.point_1.y ||
 | |
| 	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
 | |
| 		if (!ecc->u.pm.point_2.x ||
 | |
| 		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
 | |
| 		    !ecc->u.pm.point_2.y ||
 | |
| 		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		if (!ecc->u.pm.domain_a ||
 | |
| 		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
 | |
| 			if (!ecc->u.pm.scalar ||
 | |
| 			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
 | |
| 				return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!ecc->u.pm.result.x ||
 | |
| 	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
 | |
| 	    !ecc->u.pm.result.y ||
 | |
| 	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(&op, 0, sizeof(op));
 | |
| 	op.cmd_q = cmd_q;
 | |
| 	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 | |
| 
 | |
| 	/* Concatenate the modulus and the operands. Both the modulus and
 | |
| 	 * the operands must be in little endian format.  Since the input
 | |
| 	 * is in big endian format it must be converted and placed in a
 | |
| 	 * fixed length buffer.
 | |
| 	 */
 | |
| 	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
 | |
| 				   DMA_TO_DEVICE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Save the workarea address since it is updated in order to perform
 | |
| 	 * the concatenation
 | |
| 	 */
 | |
| 	save = src.address;
 | |
| 
 | |
| 	/* Copy the ECC modulus */
 | |
| 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 	src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 
 | |
| 	/* Copy the first point X and Y coordinate */
 | |
| 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
 | |
| 				      ecc->u.pm.point_1.x_len);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 	src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
 | |
| 				      ecc->u.pm.point_1.y_len);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 	src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 
 | |
| 	/* Set the first point Z coordinate to 1 */
 | |
| 	*src.address = 0x01;
 | |
| 	src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 
 | |
| 	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
 | |
| 		/* Copy the second point X and Y coordinate */
 | |
| 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
 | |
| 					      ecc->u.pm.point_2.x_len);
 | |
| 		if (ret)
 | |
| 			goto e_src;
 | |
| 		src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
 | |
| 					      ecc->u.pm.point_2.y_len);
 | |
| 		if (ret)
 | |
| 			goto e_src;
 | |
| 		src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 
 | |
| 		/* Set the second point Z coordinate to 1 */
 | |
| 		*src.address = 0x01;
 | |
| 		src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 	} else {
 | |
| 		/* Copy the Domain "a" parameter */
 | |
| 		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
 | |
| 					      ecc->u.pm.domain_a_len);
 | |
| 		if (ret)
 | |
| 			goto e_src;
 | |
| 		src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 
 | |
| 		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
 | |
| 			/* Copy the scalar value */
 | |
| 			ret = ccp_reverse_set_dm_area(&src, 0,
 | |
| 						      ecc->u.pm.scalar, 0,
 | |
| 						      ecc->u.pm.scalar_len);
 | |
| 			if (ret)
 | |
| 				goto e_src;
 | |
| 			src.address += CCP_ECC_OPERAND_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Restore the workarea address */
 | |
| 	src.address = save;
 | |
| 
 | |
| 	/* Prepare the output area for the operation */
 | |
| 	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
 | |
| 				   DMA_FROM_DEVICE);
 | |
| 	if (ret)
 | |
| 		goto e_src;
 | |
| 
 | |
| 	op.soc = 1;
 | |
| 	op.src.u.dma.address = src.dma.address;
 | |
| 	op.src.u.dma.offset = 0;
 | |
| 	op.src.u.dma.length = src.length;
 | |
| 	op.dst.u.dma.address = dst.dma.address;
 | |
| 	op.dst.u.dma.offset = 0;
 | |
| 	op.dst.u.dma.length = dst.length;
 | |
| 
 | |
| 	op.u.ecc.function = cmd->u.ecc.function;
 | |
| 
 | |
| 	ret = cmd_q->ccp->vdata->perform->ecc(&op);
 | |
| 	if (ret) {
 | |
| 		cmd->engine_error = cmd_q->cmd_error;
 | |
| 		goto e_dst;
 | |
| 	}
 | |
| 
 | |
| 	ecc->ecc_result = le16_to_cpup(
 | |
| 		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
 | |
| 	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
 | |
| 		ret = -EIO;
 | |
| 		goto e_dst;
 | |
| 	}
 | |
| 
 | |
| 	/* Save the workarea address since it is updated as we walk through
 | |
| 	 * to copy the point math result
 | |
| 	 */
 | |
| 	save = dst.address;
 | |
| 
 | |
| 	/* Save the ECC result X and Y coordinates */
 | |
| 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
 | |
| 				CCP_ECC_MODULUS_BYTES);
 | |
| 	dst.address += CCP_ECC_OUTPUT_SIZE;
 | |
| 	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
 | |
| 				CCP_ECC_MODULUS_BYTES);
 | |
| 	dst.address += CCP_ECC_OUTPUT_SIZE;
 | |
| 
 | |
| 	/* Restore the workarea address */
 | |
| 	dst.address = save;
 | |
| 
 | |
| e_dst:
 | |
| 	ccp_dm_free(&dst);
 | |
| 
 | |
| e_src:
 | |
| 	ccp_dm_free(&src);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 | |
| {
 | |
| 	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
 | |
| 
 | |
| 	ecc->ecc_result = 0;
 | |
| 
 | |
| 	if (!ecc->mod ||
 | |
| 	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (ecc->function) {
 | |
| 	case CCP_ECC_FUNCTION_MMUL_384BIT:
 | |
| 	case CCP_ECC_FUNCTION_MADD_384BIT:
 | |
| 	case CCP_ECC_FUNCTION_MINV_384BIT:
 | |
| 		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
 | |
| 
 | |
| 	case CCP_ECC_FUNCTION_PADD_384BIT:
 | |
| 	case CCP_ECC_FUNCTION_PMUL_384BIT:
 | |
| 	case CCP_ECC_FUNCTION_PDBL_384BIT:
 | |
| 		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
 | |
| 
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	cmd->engine_error = 0;
 | |
| 	cmd_q->cmd_error = 0;
 | |
| 	cmd_q->int_rcvd = 0;
 | |
| 	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
 | |
| 
 | |
| 	switch (cmd->engine) {
 | |
| 	case CCP_ENGINE_AES:
 | |
| 		ret = ccp_run_aes_cmd(cmd_q, cmd);
 | |
| 		break;
 | |
| 	case CCP_ENGINE_XTS_AES_128:
 | |
| 		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
 | |
| 		break;
 | |
| 	case CCP_ENGINE_DES3:
 | |
| 		ret = ccp_run_des3_cmd(cmd_q, cmd);
 | |
| 		break;
 | |
| 	case CCP_ENGINE_SHA:
 | |
| 		ret = ccp_run_sha_cmd(cmd_q, cmd);
 | |
| 		break;
 | |
| 	case CCP_ENGINE_RSA:
 | |
| 		ret = ccp_run_rsa_cmd(cmd_q, cmd);
 | |
| 		break;
 | |
| 	case CCP_ENGINE_PASSTHRU:
 | |
| 		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
 | |
| 			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
 | |
| 		else
 | |
| 			ret = ccp_run_passthru_cmd(cmd_q, cmd);
 | |
| 		break;
 | |
| 	case CCP_ENGINE_ECC:
 | |
| 		ret = ccp_run_ecc_cmd(cmd_q, cmd);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 |