forked from mirrors/linux
		
	 7fc342d2e6
			
		
	
	
		7fc342d2e6
		
	
	
	
	
		
			
			vio_device_id are not supposed to change at runtime. All functions working with vio_device_id provided by <asm/vio.h> work with const vio_device_id. So mark the non-const structs as const. Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			858 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			858 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * Routines supporting the Power 7+ Nest Accelerators driver
 | |
|  *
 | |
|  * Copyright (C) 2011-2012 International Business Machines Inc.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; version 2 only.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  *
 | |
|  * Author: Kent Yoder <yoder1@us.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <crypto/internal/aead.h>
 | |
| #include <crypto/internal/hash.h>
 | |
| #include <crypto/aes.h>
 | |
| #include <crypto/sha.h>
 | |
| #include <crypto/algapi.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/of.h>
 | |
| #include <asm/hvcall.h>
 | |
| #include <asm/vio.h>
 | |
| 
 | |
| #include "nx_csbcpb.h"
 | |
| #include "nx.h"
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
 | |
|  *
 | |
|  * @nx_ctx: the crypto context handle
 | |
|  * @op: PFO operation struct to pass in
 | |
|  * @may_sleep: flag indicating the request can sleep
 | |
|  *
 | |
|  * Make the hcall, retrying while the hardware is busy. If we cannot yield
 | |
|  * the thread, limit the number of retries to 10 here.
 | |
|  */
 | |
| int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
 | |
| 		  struct vio_pfo_op    *op,
 | |
| 		  u32                   may_sleep)
 | |
| {
 | |
| 	int rc, retries = 10;
 | |
| 	struct vio_dev *viodev = nx_driver.viodev;
 | |
| 
 | |
| 	atomic_inc(&(nx_ctx->stats->sync_ops));
 | |
| 
 | |
| 	do {
 | |
| 		rc = vio_h_cop_sync(viodev, op);
 | |
| 	} while (rc == -EBUSY && !may_sleep && retries--);
 | |
| 
 | |
| 	if (rc) {
 | |
| 		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
 | |
| 			"hcall rc: %ld\n", rc, op->hcall_err);
 | |
| 		atomic_inc(&(nx_ctx->stats->errors));
 | |
| 		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
 | |
| 		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nx_build_sg_list - build an NX scatter list describing a single  buffer
 | |
|  *
 | |
|  * @sg_head: pointer to the first scatter list element to build
 | |
|  * @start_addr: pointer to the linear buffer
 | |
|  * @len: length of the data at @start_addr
 | |
|  * @sgmax: the largest number of scatter list elements we're allowed to create
 | |
|  *
 | |
|  * This function will start writing nx_sg elements at @sg_head and keep
 | |
|  * writing them until all of the data from @start_addr is described or
 | |
|  * until sgmax elements have been written. Scatter list elements will be
 | |
|  * created such that none of the elements describes a buffer that crosses a 4K
 | |
|  * boundary.
 | |
|  */
 | |
| struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
 | |
| 			       u8           *start_addr,
 | |
| 			       unsigned int *len,
 | |
| 			       u32           sgmax)
 | |
| {
 | |
| 	unsigned int sg_len = 0;
 | |
| 	struct nx_sg *sg;
 | |
| 	u64 sg_addr = (u64)start_addr;
 | |
| 	u64 end_addr;
 | |
| 
 | |
| 	/* determine the start and end for this address range - slightly
 | |
| 	 * different if this is in VMALLOC_REGION */
 | |
| 	if (is_vmalloc_addr(start_addr))
 | |
| 		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
 | |
| 			  + offset_in_page(sg_addr);
 | |
| 	else
 | |
| 		sg_addr = __pa(sg_addr);
 | |
| 
 | |
| 	end_addr = sg_addr + *len;
 | |
| 
 | |
| 	/* each iteration will write one struct nx_sg element and add the
 | |
| 	 * length of data described by that element to sg_len. Once @len bytes
 | |
| 	 * have been described (or @sgmax elements have been written), the
 | |
| 	 * loop ends. min_t is used to ensure @end_addr falls on the same page
 | |
| 	 * as sg_addr, if not, we need to create another nx_sg element for the
 | |
| 	 * data on the next page.
 | |
| 	 *
 | |
| 	 * Also when using vmalloc'ed data, every time that a system page
 | |
| 	 * boundary is crossed the physical address needs to be re-calculated.
 | |
| 	 */
 | |
| 	for (sg = sg_head; sg_len < *len; sg++) {
 | |
| 		u64 next_page;
 | |
| 
 | |
| 		sg->addr = sg_addr;
 | |
| 		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
 | |
| 				end_addr);
 | |
| 
 | |
| 		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
 | |
| 		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
 | |
| 		sg_len += sg->len;
 | |
| 
 | |
| 		if (sg_addr >= next_page &&
 | |
| 				is_vmalloc_addr(start_addr + sg_len)) {
 | |
| 			sg_addr = page_to_phys(vmalloc_to_page(
 | |
| 						start_addr + sg_len));
 | |
| 			end_addr = sg_addr + *len - sg_len;
 | |
| 		}
 | |
| 
 | |
| 		if ((sg - sg_head) == sgmax) {
 | |
| 			pr_err("nx: scatter/gather list overflow, pid: %d\n",
 | |
| 			       current->pid);
 | |
| 			sg++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	*len = sg_len;
 | |
| 
 | |
| 	/* return the moved sg_head pointer */
 | |
| 	return sg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
 | |
|  *
 | |
|  * @nx_dst: pointer to the first nx_sg element to write
 | |
|  * @sglen: max number of nx_sg entries we're allowed to write
 | |
|  * @sg_src: pointer to the source linux scatterlist to walk
 | |
|  * @start: number of bytes to fast-forward past at the beginning of @sg_src
 | |
|  * @src_len: number of bytes to walk in @sg_src
 | |
|  */
 | |
| struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
 | |
| 				unsigned int        sglen,
 | |
| 				struct scatterlist *sg_src,
 | |
| 				unsigned int        start,
 | |
| 				unsigned int       *src_len)
 | |
| {
 | |
| 	struct scatter_walk walk;
 | |
| 	struct nx_sg *nx_sg = nx_dst;
 | |
| 	unsigned int n, offset = 0, len = *src_len;
 | |
| 	char *dst;
 | |
| 
 | |
| 	/* we need to fast forward through @start bytes first */
 | |
| 	for (;;) {
 | |
| 		scatterwalk_start(&walk, sg_src);
 | |
| 
 | |
| 		if (start < offset + sg_src->length)
 | |
| 			break;
 | |
| 
 | |
| 		offset += sg_src->length;
 | |
| 		sg_src = sg_next(sg_src);
 | |
| 	}
 | |
| 
 | |
| 	/* start - offset is the number of bytes to advance in the scatterlist
 | |
| 	 * element we're currently looking at */
 | |
| 	scatterwalk_advance(&walk, start - offset);
 | |
| 
 | |
| 	while (len && (nx_sg - nx_dst) < sglen) {
 | |
| 		n = scatterwalk_clamp(&walk, len);
 | |
| 		if (!n) {
 | |
| 			/* In cases where we have scatterlist chain sg_next
 | |
| 			 * handles with it properly */
 | |
| 			scatterwalk_start(&walk, sg_next(walk.sg));
 | |
| 			n = scatterwalk_clamp(&walk, len);
 | |
| 		}
 | |
| 		dst = scatterwalk_map(&walk);
 | |
| 
 | |
| 		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
 | |
| 		len -= n;
 | |
| 
 | |
| 		scatterwalk_unmap(dst);
 | |
| 		scatterwalk_advance(&walk, n);
 | |
| 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
 | |
| 	}
 | |
| 	/* update to_process */
 | |
| 	*src_len -= len;
 | |
| 
 | |
| 	/* return the moved destination pointer */
 | |
| 	return nx_sg;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * trim_sg_list - ensures the bound in sg list.
 | |
|  * @sg: sg list head
 | |
|  * @end: sg lisg end
 | |
|  * @delta:  is the amount we need to crop in order to bound the list.
 | |
|  *
 | |
|  */
 | |
| static long int trim_sg_list(struct nx_sg *sg,
 | |
| 			     struct nx_sg *end,
 | |
| 			     unsigned int delta,
 | |
| 			     unsigned int *nbytes)
 | |
| {
 | |
| 	long int oplen;
 | |
| 	long int data_back;
 | |
| 	unsigned int is_delta = delta;
 | |
| 
 | |
| 	while (delta && end > sg) {
 | |
| 		struct nx_sg *last = end - 1;
 | |
| 
 | |
| 		if (last->len > delta) {
 | |
| 			last->len -= delta;
 | |
| 			delta = 0;
 | |
| 		} else {
 | |
| 			end--;
 | |
| 			delta -= last->len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* There are cases where we need to crop list in order to make it
 | |
| 	 * a block size multiple, but we also need to align data. In order to
 | |
| 	 * that we need to calculate how much we need to put back to be
 | |
| 	 * processed
 | |
| 	 */
 | |
| 	oplen = (sg - end) * sizeof(struct nx_sg);
 | |
| 	if (is_delta) {
 | |
| 		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
 | |
| 		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
 | |
| 		*nbytes -= data_back;
 | |
| 	}
 | |
| 
 | |
| 	return oplen;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
 | |
|  *                     scatterlists based on them.
 | |
|  *
 | |
|  * @nx_ctx: NX crypto context for the lists we're building
 | |
|  * @desc: the block cipher descriptor for the operation
 | |
|  * @dst: destination scatterlist
 | |
|  * @src: source scatterlist
 | |
|  * @nbytes: length of data described in the scatterlists
 | |
|  * @offset: number of bytes to fast-forward past at the beginning of
 | |
|  *          scatterlists.
 | |
|  * @iv: destination for the iv data, if the algorithm requires it
 | |
|  *
 | |
|  * This is common code shared by all the AES algorithms. It uses the block
 | |
|  * cipher walk routines to traverse input and output scatterlists, building
 | |
|  * corresponding NX scatterlists
 | |
|  */
 | |
| int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
 | |
| 		      struct blkcipher_desc *desc,
 | |
| 		      struct scatterlist    *dst,
 | |
| 		      struct scatterlist    *src,
 | |
| 		      unsigned int          *nbytes,
 | |
| 		      unsigned int           offset,
 | |
| 		      u8                    *iv)
 | |
| {
 | |
| 	unsigned int delta = 0;
 | |
| 	unsigned int total = *nbytes;
 | |
| 	struct nx_sg *nx_insg = nx_ctx->in_sg;
 | |
| 	struct nx_sg *nx_outsg = nx_ctx->out_sg;
 | |
| 	unsigned int max_sg_len;
 | |
| 
 | |
| 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
 | |
| 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
 | |
| 	max_sg_len = min_t(u64, max_sg_len,
 | |
| 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
 | |
| 
 | |
| 	if (iv)
 | |
| 		memcpy(iv, desc->info, AES_BLOCK_SIZE);
 | |
| 
 | |
| 	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
 | |
| 
 | |
| 	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
 | |
| 					offset, nbytes);
 | |
| 	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
 | |
| 					offset, nbytes);
 | |
| 
 | |
| 	if (*nbytes < total)
 | |
| 		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
 | |
| 
 | |
| 	/* these lengths should be negative, which will indicate to phyp that
 | |
| 	 * the input and output parameters are scatterlists, not linear
 | |
| 	 * buffers */
 | |
| 	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
 | |
| 	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
 | |
|  *
 | |
|  * @nx_ctx: the nx context to initialize
 | |
|  * @function: the function code for the op
 | |
|  */
 | |
| void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
 | |
| {
 | |
| 	spin_lock_init(&nx_ctx->lock);
 | |
| 	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
 | |
| 	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
 | |
| 
 | |
| 	nx_ctx->op.flags = function;
 | |
| 	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
 | |
| 	nx_ctx->op.in = __pa(nx_ctx->in_sg);
 | |
| 	nx_ctx->op.out = __pa(nx_ctx->out_sg);
 | |
| 
 | |
| 	if (nx_ctx->csbcpb_aead) {
 | |
| 		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
 | |
| 
 | |
| 		nx_ctx->op_aead.flags = function;
 | |
| 		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
 | |
| 		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
 | |
| 		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nx_of_update_status(struct device   *dev,
 | |
| 			       struct property *p,
 | |
| 			       struct nx_of    *props)
 | |
| {
 | |
| 	if (!strncmp(p->value, "okay", p->length)) {
 | |
| 		props->status = NX_WAITING;
 | |
| 		props->flags |= NX_OF_FLAG_STATUS_SET;
 | |
| 	} else {
 | |
| 		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
 | |
| 			 (char *)p->value);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nx_of_update_sglen(struct device   *dev,
 | |
| 			       struct property *p,
 | |
| 			       struct nx_of    *props)
 | |
| {
 | |
| 	if (p->length != sizeof(props->max_sg_len)) {
 | |
| 		dev_err(dev, "%s: unexpected format for "
 | |
| 			"ibm,max-sg-len property\n", __func__);
 | |
| 		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
 | |
| 			"long, expected %zd bytes\n", __func__,
 | |
| 			p->length, sizeof(props->max_sg_len));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	props->max_sg_len = *(u32 *)p->value;
 | |
| 	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
 | |
| }
 | |
| 
 | |
| static void nx_of_update_msc(struct device   *dev,
 | |
| 			     struct property *p,
 | |
| 			     struct nx_of    *props)
 | |
| {
 | |
| 	struct msc_triplet *trip;
 | |
| 	struct max_sync_cop *msc;
 | |
| 	unsigned int bytes_so_far, i, lenp;
 | |
| 
 | |
| 	msc = (struct max_sync_cop *)p->value;
 | |
| 	lenp = p->length;
 | |
| 
 | |
| 	/* You can't tell if the data read in for this property is sane by its
 | |
| 	 * size alone. This is because there are sizes embedded in the data
 | |
| 	 * structure. The best we can do is check lengths as we parse and bail
 | |
| 	 * as soon as a length error is detected. */
 | |
| 	bytes_so_far = 0;
 | |
| 
 | |
| 	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
 | |
| 		bytes_so_far += sizeof(struct max_sync_cop);
 | |
| 
 | |
| 		trip = msc->trip;
 | |
| 
 | |
| 		for (i = 0;
 | |
| 		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
 | |
| 		     i < msc->triplets;
 | |
| 		     i++) {
 | |
| 			if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
 | |
| 				dev_err(dev, "unknown function code/mode "
 | |
| 					"combo: %d/%d (ignored)\n", msc->fc,
 | |
| 					msc->mode);
 | |
| 				goto next_loop;
 | |
| 			}
 | |
| 
 | |
| 			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
 | |
| 				dev_warn(dev, "bogus sglen/databytelen: "
 | |
| 					 "%u/%u (ignored)\n", trip->sglen,
 | |
| 					 trip->databytelen);
 | |
| 				goto next_loop;
 | |
| 			}
 | |
| 
 | |
| 			switch (trip->keybitlen) {
 | |
| 			case 128:
 | |
| 			case 160:
 | |
| 				props->ap[msc->fc][msc->mode][0].databytelen =
 | |
| 					trip->databytelen;
 | |
| 				props->ap[msc->fc][msc->mode][0].sglen =
 | |
| 					trip->sglen;
 | |
| 				break;
 | |
| 			case 192:
 | |
| 				props->ap[msc->fc][msc->mode][1].databytelen =
 | |
| 					trip->databytelen;
 | |
| 				props->ap[msc->fc][msc->mode][1].sglen =
 | |
| 					trip->sglen;
 | |
| 				break;
 | |
| 			case 256:
 | |
| 				if (msc->fc == NX_FC_AES) {
 | |
| 					props->ap[msc->fc][msc->mode][2].
 | |
| 						databytelen = trip->databytelen;
 | |
| 					props->ap[msc->fc][msc->mode][2].sglen =
 | |
| 						trip->sglen;
 | |
| 				} else if (msc->fc == NX_FC_AES_HMAC ||
 | |
| 					   msc->fc == NX_FC_SHA) {
 | |
| 					props->ap[msc->fc][msc->mode][1].
 | |
| 						databytelen = trip->databytelen;
 | |
| 					props->ap[msc->fc][msc->mode][1].sglen =
 | |
| 						trip->sglen;
 | |
| 				} else {
 | |
| 					dev_warn(dev, "unknown function "
 | |
| 						"code/key bit len combo"
 | |
| 						": (%u/256)\n", msc->fc);
 | |
| 				}
 | |
| 				break;
 | |
| 			case 512:
 | |
| 				props->ap[msc->fc][msc->mode][2].databytelen =
 | |
| 					trip->databytelen;
 | |
| 				props->ap[msc->fc][msc->mode][2].sglen =
 | |
| 					trip->sglen;
 | |
| 				break;
 | |
| 			default:
 | |
| 				dev_warn(dev, "unknown function code/key bit "
 | |
| 					 "len combo: (%u/%u)\n", msc->fc,
 | |
| 					 trip->keybitlen);
 | |
| 				break;
 | |
| 			}
 | |
| next_loop:
 | |
| 			bytes_so_far += sizeof(struct msc_triplet);
 | |
| 			trip++;
 | |
| 		}
 | |
| 
 | |
| 		msc = (struct max_sync_cop *)trip;
 | |
| 	}
 | |
| 
 | |
| 	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nx_of_init - read openFirmware values from the device tree
 | |
|  *
 | |
|  * @dev: device handle
 | |
|  * @props: pointer to struct to hold the properties values
 | |
|  *
 | |
|  * Called once at driver probe time, this function will read out the
 | |
|  * openFirmware properties we use at runtime. If all the OF properties are
 | |
|  * acceptable, when we exit this function props->flags will indicate that
 | |
|  * we're ready to register our crypto algorithms.
 | |
|  */
 | |
| static void nx_of_init(struct device *dev, struct nx_of *props)
 | |
| {
 | |
| 	struct device_node *base_node = dev->of_node;
 | |
| 	struct property *p;
 | |
| 
 | |
| 	p = of_find_property(base_node, "status", NULL);
 | |
| 	if (!p)
 | |
| 		dev_info(dev, "%s: property 'status' not found\n", __func__);
 | |
| 	else
 | |
| 		nx_of_update_status(dev, p, props);
 | |
| 
 | |
| 	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
 | |
| 	if (!p)
 | |
| 		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
 | |
| 			 __func__);
 | |
| 	else
 | |
| 		nx_of_update_sglen(dev, p, props);
 | |
| 
 | |
| 	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
 | |
| 	if (!p)
 | |
| 		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
 | |
| 			 __func__);
 | |
| 	else
 | |
| 		nx_of_update_msc(dev, p, props);
 | |
| }
 | |
| 
 | |
| static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
 | |
| {
 | |
| 	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
 | |
| 
 | |
| 	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
 | |
| 		if (dev)
 | |
| 			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
 | |
| 				 "%u/%u (ignored)\n", fc, mode, slot,
 | |
| 				 props->sglen, props->databytelen);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 3; i++)
 | |
| 		if (!nx_check_prop(dev, fc, mode, i))
 | |
| 			return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode)
 | |
| {
 | |
| 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
 | |
| 	       crypto_register_alg(alg) : 0;
 | |
| }
 | |
| 
 | |
| static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
 | |
| {
 | |
| 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
 | |
| 	       crypto_register_aead(alg) : 0;
 | |
| }
 | |
| 
 | |
| static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
 | |
| {
 | |
| 	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
 | |
| 					  fc, mode, slot) :
 | |
| 			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
 | |
| 	       crypto_register_shash(alg) : 0;
 | |
| }
 | |
| 
 | |
| static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode)
 | |
| {
 | |
| 	if (nx_check_props(NULL, fc, mode))
 | |
| 		crypto_unregister_alg(alg);
 | |
| }
 | |
| 
 | |
| static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
 | |
| {
 | |
| 	if (nx_check_props(NULL, fc, mode))
 | |
| 		crypto_unregister_aead(alg);
 | |
| }
 | |
| 
 | |
| static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
 | |
| 				int slot)
 | |
| {
 | |
| 	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
 | |
| 			nx_check_props(NULL, fc, mode))
 | |
| 		crypto_unregister_shash(alg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nx_register_algs - register algorithms with the crypto API
 | |
|  *
 | |
|  * Called from nx_probe()
 | |
|  *
 | |
|  * If all OF properties are in an acceptable state, the driver flags will
 | |
|  * indicate that we're ready and we'll create our debugfs files and register
 | |
|  * out crypto algorithms.
 | |
|  */
 | |
| static int nx_register_algs(void)
 | |
| {
 | |
| 	int rc = -1;
 | |
| 
 | |
| 	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
 | |
| 		goto out;
 | |
| 
 | |
| 	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
 | |
| 
 | |
| 	rc = NX_DEBUGFS_INIT(&nx_driver);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	nx_driver.of.status = NX_OKAY;
 | |
| 
 | |
| 	rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| 	rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_ecb;
 | |
| 
 | |
| 	rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_cbc;
 | |
| 
 | |
| 	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_ctr3686;
 | |
| 
 | |
| 	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_gcm;
 | |
| 
 | |
| 	rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_gcm4106;
 | |
| 
 | |
| 	rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_ccm;
 | |
| 
 | |
| 	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
 | |
| 			       NX_PROPS_SHA256);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_ccm4309;
 | |
| 
 | |
| 	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
 | |
| 			       NX_PROPS_SHA512);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_s256;
 | |
| 
 | |
| 	rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
 | |
| 			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
 | |
| 	if (rc)
 | |
| 		goto out_unreg_s512;
 | |
| 
 | |
| 	goto out;
 | |
| 
 | |
| out_unreg_s512:
 | |
| 	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
 | |
| 			    NX_PROPS_SHA512);
 | |
| out_unreg_s256:
 | |
| 	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
 | |
| 			    NX_PROPS_SHA256);
 | |
| out_unreg_ccm4309:
 | |
| 	nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 | |
| out_unreg_ccm:
 | |
| 	nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 | |
| out_unreg_gcm4106:
 | |
| 	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
 | |
| out_unreg_gcm:
 | |
| 	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
 | |
| out_unreg_ctr3686:
 | |
| 	nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
 | |
| out_unreg_cbc:
 | |
| 	nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
 | |
| out_unreg_ecb:
 | |
| 	nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
 | |
| out:
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nx_crypto_ctx_init - create and initialize a crypto api context
 | |
|  *
 | |
|  * @nx_ctx: the crypto api context
 | |
|  * @fc: function code for the context
 | |
|  * @mode: the function code specific mode for this context
 | |
|  */
 | |
| static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
 | |
| {
 | |
| 	if (nx_driver.of.status != NX_OKAY) {
 | |
| 		pr_err("Attempt to initialize NX crypto context while device "
 | |
| 		       "is not available!\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* we need an extra page for csbcpb_aead for these modes */
 | |
| 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
 | |
| 		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
 | |
| 				   sizeof(struct nx_csbcpb);
 | |
| 	else
 | |
| 		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
 | |
| 				   sizeof(struct nx_csbcpb);
 | |
| 
 | |
| 	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
 | |
| 	if (!nx_ctx->kmem)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* the csbcpb and scatterlists must be 4K aligned pages */
 | |
| 	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
 | |
| 						       (u64)NX_PAGE_SIZE));
 | |
| 	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
 | |
| 	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
 | |
| 
 | |
| 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
 | |
| 		nx_ctx->csbcpb_aead =
 | |
| 			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
 | |
| 					     NX_PAGE_SIZE);
 | |
| 
 | |
| 	/* give each context a pointer to global stats and their OF
 | |
| 	 * properties */
 | |
| 	nx_ctx->stats = &nx_driver.stats;
 | |
| 	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
 | |
| 	       sizeof(struct alg_props) * 3);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* entry points from the crypto tfm initializers */
 | |
| int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
 | |
| {
 | |
| 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
 | |
| 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
 | |
| 				  NX_MODE_AES_CCM);
 | |
| }
 | |
| 
 | |
| int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
 | |
| {
 | |
| 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
 | |
| 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
 | |
| 				  NX_MODE_AES_GCM);
 | |
| }
 | |
| 
 | |
| int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
 | |
| 				  NX_MODE_AES_CTR);
 | |
| }
 | |
| 
 | |
| int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
 | |
| 				  NX_MODE_AES_CBC);
 | |
| }
 | |
| 
 | |
| int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
 | |
| 				  NX_MODE_AES_ECB);
 | |
| }
 | |
| 
 | |
| int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
 | |
| }
 | |
| 
 | |
| int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
 | |
| 				  NX_MODE_AES_XCBC_MAC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nx_crypto_ctx_exit - destroy a crypto api context
 | |
|  *
 | |
|  * @tfm: the crypto transform pointer for the context
 | |
|  *
 | |
|  * As crypto API contexts are destroyed, this exit hook is called to free the
 | |
|  * memory associated with it.
 | |
|  */
 | |
| void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
 | |
| 
 | |
| 	kzfree(nx_ctx->kmem);
 | |
| 	nx_ctx->csbcpb = NULL;
 | |
| 	nx_ctx->csbcpb_aead = NULL;
 | |
| 	nx_ctx->in_sg = NULL;
 | |
| 	nx_ctx->out_sg = NULL;
 | |
| }
 | |
| 
 | |
| void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
 | |
| {
 | |
| 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
 | |
| 
 | |
| 	kzfree(nx_ctx->kmem);
 | |
| }
 | |
| 
 | |
| static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
 | |
| {
 | |
| 	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
 | |
| 		viodev->name, viodev->resource_id);
 | |
| 
 | |
| 	if (nx_driver.viodev) {
 | |
| 		dev_err(&viodev->dev, "%s: Attempt to register more than one "
 | |
| 			"instance of the hardware\n", __func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	nx_driver.viodev = viodev;
 | |
| 
 | |
| 	nx_of_init(&viodev->dev, &nx_driver.of);
 | |
| 
 | |
| 	return nx_register_algs();
 | |
| }
 | |
| 
 | |
| static int nx_remove(struct vio_dev *viodev)
 | |
| {
 | |
| 	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
 | |
| 		viodev->unit_address);
 | |
| 
 | |
| 	if (nx_driver.of.status == NX_OKAY) {
 | |
| 		NX_DEBUGFS_FINI(&nx_driver);
 | |
| 
 | |
| 		nx_unregister_shash(&nx_shash_aes_xcbc_alg,
 | |
| 				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
 | |
| 		nx_unregister_shash(&nx_shash_sha512_alg,
 | |
| 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
 | |
| 		nx_unregister_shash(&nx_shash_sha256_alg,
 | |
| 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
 | |
| 		nx_unregister_aead(&nx_ccm4309_aes_alg,
 | |
| 				   NX_FC_AES, NX_MODE_AES_CCM);
 | |
| 		nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
 | |
| 		nx_unregister_aead(&nx_gcm4106_aes_alg,
 | |
| 				   NX_FC_AES, NX_MODE_AES_GCM);
 | |
| 		nx_unregister_aead(&nx_gcm_aes_alg,
 | |
| 				   NX_FC_AES, NX_MODE_AES_GCM);
 | |
| 		nx_unregister_alg(&nx_ctr3686_aes_alg,
 | |
| 				  NX_FC_AES, NX_MODE_AES_CTR);
 | |
| 		nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
 | |
| 		nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* module wide initialization/cleanup */
 | |
| static int __init nx_init(void)
 | |
| {
 | |
| 	return vio_register_driver(&nx_driver.viodriver);
 | |
| }
 | |
| 
 | |
| static void __exit nx_fini(void)
 | |
| {
 | |
| 	vio_unregister_driver(&nx_driver.viodriver);
 | |
| }
 | |
| 
 | |
| static const struct vio_device_id nx_crypto_driver_ids[] = {
 | |
| 	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
 | |
| 	{ "", "" }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
 | |
| 
 | |
| /* driver state structure */
 | |
| struct nx_crypto_driver nx_driver = {
 | |
| 	.viodriver = {
 | |
| 		.id_table = nx_crypto_driver_ids,
 | |
| 		.probe = nx_probe,
 | |
| 		.remove = nx_remove,
 | |
| 		.name  = NX_NAME,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| module_init(nx_init);
 | |
| module_exit(nx_fini);
 | |
| 
 | |
| MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
 | |
| MODULE_DESCRIPTION(NX_STRING);
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(NX_VERSION);
 |