forked from mirrors/linux
		
	 457c899653
			
		
	
	
		457c899653
		
	
	
	
	
		
			
			Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
			
				
	
	
		
			1130 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1130 lines
		
	
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #include <linux/types.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/random.h>
 | |
| #include <asm/dmi.h>
 | |
| #include <asm/unaligned.h>
 | |
| 
 | |
| struct kobject *dmi_kobj;
 | |
| EXPORT_SYMBOL_GPL(dmi_kobj);
 | |
| 
 | |
| /*
 | |
|  * DMI stands for "Desktop Management Interface".  It is part
 | |
|  * of and an antecedent to, SMBIOS, which stands for System
 | |
|  * Management BIOS.  See further: http://www.dmtf.org/standards
 | |
|  */
 | |
| static const char dmi_empty_string[] = "";
 | |
| 
 | |
| static u32 dmi_ver __initdata;
 | |
| static u32 dmi_len;
 | |
| static u16 dmi_num;
 | |
| static u8 smbios_entry_point[32];
 | |
| static int smbios_entry_point_size;
 | |
| 
 | |
| /* DMI system identification string used during boot */
 | |
| static char dmi_ids_string[128] __initdata;
 | |
| 
 | |
| static struct dmi_memdev_info {
 | |
| 	const char *device;
 | |
| 	const char *bank;
 | |
| 	u64 size;		/* bytes */
 | |
| 	u16 handle;
 | |
| } *dmi_memdev;
 | |
| static int dmi_memdev_nr;
 | |
| 
 | |
| static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
 | |
| {
 | |
| 	const u8 *bp = ((u8 *) dm) + dm->length;
 | |
| 	const u8 *nsp;
 | |
| 
 | |
| 	if (s) {
 | |
| 		while (--s > 0 && *bp)
 | |
| 			bp += strlen(bp) + 1;
 | |
| 
 | |
| 		/* Strings containing only spaces are considered empty */
 | |
| 		nsp = bp;
 | |
| 		while (*nsp == ' ')
 | |
| 			nsp++;
 | |
| 		if (*nsp != '\0')
 | |
| 			return bp;
 | |
| 	}
 | |
| 
 | |
| 	return dmi_empty_string;
 | |
| }
 | |
| 
 | |
| static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
 | |
| {
 | |
| 	const char *bp = dmi_string_nosave(dm, s);
 | |
| 	char *str;
 | |
| 	size_t len;
 | |
| 
 | |
| 	if (bp == dmi_empty_string)
 | |
| 		return dmi_empty_string;
 | |
| 
 | |
| 	len = strlen(bp) + 1;
 | |
| 	str = dmi_alloc(len);
 | |
| 	if (str != NULL)
 | |
| 		strcpy(str, bp);
 | |
| 
 | |
| 	return str;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	We have to be cautious here. We have seen BIOSes with DMI pointers
 | |
|  *	pointing to completely the wrong place for example
 | |
|  */
 | |
| static void dmi_decode_table(u8 *buf,
 | |
| 			     void (*decode)(const struct dmi_header *, void *),
 | |
| 			     void *private_data)
 | |
| {
 | |
| 	u8 *data = buf;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop when we have seen all the items the table claimed to have
 | |
| 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
 | |
| 	 * >= 3.0 only) OR we run off the end of the table (should never
 | |
| 	 * happen but sometimes does on bogus implementations.)
 | |
| 	 */
 | |
| 	while ((!dmi_num || i < dmi_num) &&
 | |
| 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
 | |
| 		const struct dmi_header *dm = (const struct dmi_header *)data;
 | |
| 
 | |
| 		/*
 | |
| 		 *  We want to know the total length (formatted area and
 | |
| 		 *  strings) before decoding to make sure we won't run off the
 | |
| 		 *  table in dmi_decode or dmi_string
 | |
| 		 */
 | |
| 		data += dm->length;
 | |
| 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
 | |
| 			data++;
 | |
| 		if (data - buf < dmi_len - 1)
 | |
| 			decode(dm, private_data);
 | |
| 
 | |
| 		data += 2;
 | |
| 		i++;
 | |
| 
 | |
| 		/*
 | |
| 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
 | |
| 		 * For tables behind a 64-bit entry point, we have no item
 | |
| 		 * count and no exact table length, so stop on end-of-table
 | |
| 		 * marker. For tables behind a 32-bit entry point, we have
 | |
| 		 * seen OEM structures behind the end-of-table marker on
 | |
| 		 * some systems, so don't trust it.
 | |
| 		 */
 | |
| 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Trim DMI table length if needed */
 | |
| 	if (dmi_len > data - buf)
 | |
| 		dmi_len = data - buf;
 | |
| }
 | |
| 
 | |
| static phys_addr_t dmi_base;
 | |
| 
 | |
| static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
 | |
| 		void *))
 | |
| {
 | |
| 	u8 *buf;
 | |
| 	u32 orig_dmi_len = dmi_len;
 | |
| 
 | |
| 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
 | |
| 	if (buf == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dmi_decode_table(buf, decode, NULL);
 | |
| 
 | |
| 	add_device_randomness(buf, dmi_len);
 | |
| 
 | |
| 	dmi_early_unmap(buf, orig_dmi_len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init dmi_checksum(const u8 *buf, u8 len)
 | |
| {
 | |
| 	u8 sum = 0;
 | |
| 	int a;
 | |
| 
 | |
| 	for (a = 0; a < len; a++)
 | |
| 		sum += buf[a];
 | |
| 
 | |
| 	return sum == 0;
 | |
| }
 | |
| 
 | |
| static const char *dmi_ident[DMI_STRING_MAX];
 | |
| static LIST_HEAD(dmi_devices);
 | |
| int dmi_available;
 | |
| 
 | |
| /*
 | |
|  *	Save a DMI string
 | |
|  */
 | |
| static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
 | |
| 		int string)
 | |
| {
 | |
| 	const char *d = (const char *) dm;
 | |
| 	const char *p;
 | |
| 
 | |
| 	if (dmi_ident[slot] || dm->length <= string)
 | |
| 		return;
 | |
| 
 | |
| 	p = dmi_string(dm, d[string]);
 | |
| 	if (p == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	dmi_ident[slot] = p;
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
 | |
| 		int index)
 | |
| {
 | |
| 	const u8 *d;
 | |
| 	char *s;
 | |
| 	int is_ff = 1, is_00 = 1, i;
 | |
| 
 | |
| 	if (dmi_ident[slot] || dm->length < index + 16)
 | |
| 		return;
 | |
| 
 | |
| 	d = (u8 *) dm + index;
 | |
| 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
 | |
| 		if (d[i] != 0x00)
 | |
| 			is_00 = 0;
 | |
| 		if (d[i] != 0xFF)
 | |
| 			is_ff = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_ff || is_00)
 | |
| 		return;
 | |
| 
 | |
| 	s = dmi_alloc(16*2+4+1);
 | |
| 	if (!s)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
 | |
| 	 * the UUID are supposed to be little-endian encoded.  The specification
 | |
| 	 * says that this is the defacto standard.
 | |
| 	 */
 | |
| 	if (dmi_ver >= 0x020600)
 | |
| 		sprintf(s, "%pUl", d);
 | |
| 	else
 | |
| 		sprintf(s, "%pUb", d);
 | |
| 
 | |
| 	dmi_ident[slot] = s;
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_type(const struct dmi_header *dm, int slot,
 | |
| 		int index)
 | |
| {
 | |
| 	const u8 *d;
 | |
| 	char *s;
 | |
| 
 | |
| 	if (dmi_ident[slot] || dm->length <= index)
 | |
| 		return;
 | |
| 
 | |
| 	s = dmi_alloc(4);
 | |
| 	if (!s)
 | |
| 		return;
 | |
| 
 | |
| 	d = (u8 *) dm + index;
 | |
| 	sprintf(s, "%u", *d & 0x7F);
 | |
| 	dmi_ident[slot] = s;
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_one_device(int type, const char *name)
 | |
| {
 | |
| 	struct dmi_device *dev;
 | |
| 
 | |
| 	/* No duplicate device */
 | |
| 	if (dmi_find_device(type, name, NULL))
 | |
| 		return;
 | |
| 
 | |
| 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 | |
| 	if (!dev)
 | |
| 		return;
 | |
| 
 | |
| 	dev->type = type;
 | |
| 	strcpy((char *)(dev + 1), name);
 | |
| 	dev->name = (char *)(dev + 1);
 | |
| 	dev->device_data = NULL;
 | |
| 	list_add(&dev->list, &dmi_devices);
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_devices(const struct dmi_header *dm)
 | |
| {
 | |
| 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		const char *d = (char *)(dm + 1) + (i * 2);
 | |
| 
 | |
| 		/* Skip disabled device */
 | |
| 		if ((*d & 0x80) == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
 | |
| {
 | |
| 	int i, count;
 | |
| 	struct dmi_device *dev;
 | |
| 
 | |
| 	if (dm->length < 0x05)
 | |
| 		return;
 | |
| 
 | |
| 	count = *(u8 *)(dm + 1);
 | |
| 	for (i = 1; i <= count; i++) {
 | |
| 		const char *devname = dmi_string(dm, i);
 | |
| 
 | |
| 		if (devname == dmi_empty_string)
 | |
| 			continue;
 | |
| 
 | |
| 		dev = dmi_alloc(sizeof(*dev));
 | |
| 		if (!dev)
 | |
| 			break;
 | |
| 
 | |
| 		dev->type = DMI_DEV_TYPE_OEM_STRING;
 | |
| 		dev->name = devname;
 | |
| 		dev->device_data = NULL;
 | |
| 
 | |
| 		list_add(&dev->list, &dmi_devices);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
 | |
| {
 | |
| 	struct dmi_device *dev;
 | |
| 	void *data;
 | |
| 
 | |
| 	data = dmi_alloc(dm->length);
 | |
| 	if (data == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	memcpy(data, dm, dm->length);
 | |
| 
 | |
| 	dev = dmi_alloc(sizeof(*dev));
 | |
| 	if (!dev)
 | |
| 		return;
 | |
| 
 | |
| 	dev->type = DMI_DEV_TYPE_IPMI;
 | |
| 	dev->name = "IPMI controller";
 | |
| 	dev->device_data = data;
 | |
| 
 | |
| 	list_add_tail(&dev->list, &dmi_devices);
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
 | |
| 					int devfn, const char *name, int type)
 | |
| {
 | |
| 	struct dmi_dev_onboard *dev;
 | |
| 
 | |
| 	/* Ignore invalid values */
 | |
| 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
 | |
| 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
 | |
| 		return;
 | |
| 
 | |
| 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
 | |
| 	if (!dev)
 | |
| 		return;
 | |
| 
 | |
| 	dev->instance = instance;
 | |
| 	dev->segment = segment;
 | |
| 	dev->bus = bus;
 | |
| 	dev->devfn = devfn;
 | |
| 
 | |
| 	strcpy((char *)&dev[1], name);
 | |
| 	dev->dev.type = type;
 | |
| 	dev->dev.name = (char *)&dev[1];
 | |
| 	dev->dev.device_data = dev;
 | |
| 
 | |
| 	list_add(&dev->dev.list, &dmi_devices);
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_extended_devices(const struct dmi_header *dm)
 | |
| {
 | |
| 	const char *name;
 | |
| 	const u8 *d = (u8 *)dm;
 | |
| 
 | |
| 	if (dm->length < 0x0B)
 | |
| 		return;
 | |
| 
 | |
| 	/* Skip disabled device */
 | |
| 	if ((d[0x5] & 0x80) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	name = dmi_string_nosave(dm, d[0x4]);
 | |
| 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
 | |
| 			     DMI_DEV_TYPE_DEV_ONBOARD);
 | |
| 	dmi_save_one_device(d[0x5] & 0x7f, name);
 | |
| }
 | |
| 
 | |
| static void __init dmi_save_system_slot(const struct dmi_header *dm)
 | |
| {
 | |
| 	const u8 *d = (u8 *)dm;
 | |
| 
 | |
| 	/* Need SMBIOS 2.6+ structure */
 | |
| 	if (dm->length < 0x11)
 | |
| 		return;
 | |
| 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
 | |
| 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
 | |
| 			     DMI_DEV_TYPE_DEV_SLOT);
 | |
| }
 | |
| 
 | |
| static void __init count_mem_devices(const struct dmi_header *dm, void *v)
 | |
| {
 | |
| 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
 | |
| 		return;
 | |
| 	dmi_memdev_nr++;
 | |
| }
 | |
| 
 | |
| static void __init save_mem_devices(const struct dmi_header *dm, void *v)
 | |
| {
 | |
| 	const char *d = (const char *)dm;
 | |
| 	static int nr;
 | |
| 	u64 bytes;
 | |
| 	u16 size;
 | |
| 
 | |
| 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
 | |
| 		return;
 | |
| 	if (nr >= dmi_memdev_nr) {
 | |
| 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
 | |
| 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
 | |
| 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
 | |
| 
 | |
| 	size = get_unaligned((u16 *)&d[0xC]);
 | |
| 	if (size == 0)
 | |
| 		bytes = 0;
 | |
| 	else if (size == 0xffff)
 | |
| 		bytes = ~0ull;
 | |
| 	else if (size & 0x8000)
 | |
| 		bytes = (u64)(size & 0x7fff) << 10;
 | |
| 	else if (size != 0x7fff)
 | |
| 		bytes = (u64)size << 20;
 | |
| 	else
 | |
| 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
 | |
| 
 | |
| 	dmi_memdev[nr].size = bytes;
 | |
| 	nr++;
 | |
| }
 | |
| 
 | |
| static void __init dmi_memdev_walk(void)
 | |
| {
 | |
| 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
 | |
| 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
 | |
| 		if (dmi_memdev)
 | |
| 			dmi_walk_early(save_mem_devices);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Process a DMI table entry. Right now all we care about are the BIOS
 | |
|  *	and machine entries. For 2.5 we should pull the smbus controller info
 | |
|  *	out of here.
 | |
|  */
 | |
| static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
 | |
| {
 | |
| 	switch (dm->type) {
 | |
| 	case 0:		/* BIOS Information */
 | |
| 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
 | |
| 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
 | |
| 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
 | |
| 		break;
 | |
| 	case 1:		/* System Information */
 | |
| 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
 | |
| 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
 | |
| 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
 | |
| 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
 | |
| 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
 | |
| 		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
 | |
| 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
 | |
| 		break;
 | |
| 	case 2:		/* Base Board Information */
 | |
| 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
 | |
| 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
 | |
| 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
 | |
| 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
 | |
| 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
 | |
| 		break;
 | |
| 	case 3:		/* Chassis Information */
 | |
| 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
 | |
| 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
 | |
| 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
 | |
| 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
 | |
| 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
 | |
| 		break;
 | |
| 	case 9:		/* System Slots */
 | |
| 		dmi_save_system_slot(dm);
 | |
| 		break;
 | |
| 	case 10:	/* Onboard Devices Information */
 | |
| 		dmi_save_devices(dm);
 | |
| 		break;
 | |
| 	case 11:	/* OEM Strings */
 | |
| 		dmi_save_oem_strings_devices(dm);
 | |
| 		break;
 | |
| 	case 38:	/* IPMI Device Information */
 | |
| 		dmi_save_ipmi_device(dm);
 | |
| 		break;
 | |
| 	case 41:	/* Onboard Devices Extended Information */
 | |
| 		dmi_save_extended_devices(dm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init print_filtered(char *buf, size_t len, const char *info)
 | |
| {
 | |
| 	int c = 0;
 | |
| 	const char *p;
 | |
| 
 | |
| 	if (!info)
 | |
| 		return c;
 | |
| 
 | |
| 	for (p = info; *p; p++)
 | |
| 		if (isprint(*p))
 | |
| 			c += scnprintf(buf + c, len - c, "%c", *p);
 | |
| 		else
 | |
| 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| static void __init dmi_format_ids(char *buf, size_t len)
 | |
| {
 | |
| 	int c = 0;
 | |
| 	const char *board;	/* Board Name is optional */
 | |
| 
 | |
| 	c += print_filtered(buf + c, len - c,
 | |
| 			    dmi_get_system_info(DMI_SYS_VENDOR));
 | |
| 	c += scnprintf(buf + c, len - c, " ");
 | |
| 	c += print_filtered(buf + c, len - c,
 | |
| 			    dmi_get_system_info(DMI_PRODUCT_NAME));
 | |
| 
 | |
| 	board = dmi_get_system_info(DMI_BOARD_NAME);
 | |
| 	if (board) {
 | |
| 		c += scnprintf(buf + c, len - c, "/");
 | |
| 		c += print_filtered(buf + c, len - c, board);
 | |
| 	}
 | |
| 	c += scnprintf(buf + c, len - c, ", BIOS ");
 | |
| 	c += print_filtered(buf + c, len - c,
 | |
| 			    dmi_get_system_info(DMI_BIOS_VERSION));
 | |
| 	c += scnprintf(buf + c, len - c, " ");
 | |
| 	c += print_filtered(buf + c, len - c,
 | |
| 			    dmi_get_system_info(DMI_BIOS_DATE));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for DMI/SMBIOS headers in the system firmware image.  Any
 | |
|  * SMBIOS header must start 16 bytes before the DMI header, so take a
 | |
|  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
 | |
|  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
 | |
|  * takes precedence) and return 0.  Otherwise return 1.
 | |
|  */
 | |
| static int __init dmi_present(const u8 *buf)
 | |
| {
 | |
| 	u32 smbios_ver;
 | |
| 
 | |
| 	if (memcmp(buf, "_SM_", 4) == 0 &&
 | |
| 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
 | |
| 		smbios_ver = get_unaligned_be16(buf + 6);
 | |
| 		smbios_entry_point_size = buf[5];
 | |
| 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 | |
| 
 | |
| 		/* Some BIOS report weird SMBIOS version, fix that up */
 | |
| 		switch (smbios_ver) {
 | |
| 		case 0x021F:
 | |
| 		case 0x0221:
 | |
| 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
 | |
| 				 smbios_ver & 0xFF, 3);
 | |
| 			smbios_ver = 0x0203;
 | |
| 			break;
 | |
| 		case 0x0233:
 | |
| 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
 | |
| 			smbios_ver = 0x0206;
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		smbios_ver = 0;
 | |
| 	}
 | |
| 
 | |
| 	buf += 16;
 | |
| 
 | |
| 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
 | |
| 		if (smbios_ver)
 | |
| 			dmi_ver = smbios_ver;
 | |
| 		else
 | |
| 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
 | |
| 		dmi_ver <<= 8;
 | |
| 		dmi_num = get_unaligned_le16(buf + 12);
 | |
| 		dmi_len = get_unaligned_le16(buf + 6);
 | |
| 		dmi_base = get_unaligned_le32(buf + 8);
 | |
| 
 | |
| 		if (dmi_walk_early(dmi_decode) == 0) {
 | |
| 			if (smbios_ver) {
 | |
| 				pr_info("SMBIOS %d.%d present.\n",
 | |
| 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 | |
| 			} else {
 | |
| 				smbios_entry_point_size = 15;
 | |
| 				memcpy(smbios_entry_point, buf,
 | |
| 				       smbios_entry_point_size);
 | |
| 				pr_info("Legacy DMI %d.%d present.\n",
 | |
| 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
 | |
| 			}
 | |
| 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 | |
| 			pr_info("DMI: %s\n", dmi_ids_string);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
 | |
|  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
 | |
|  */
 | |
| static int __init dmi_smbios3_present(const u8 *buf)
 | |
| {
 | |
| 	if (memcmp(buf, "_SM3_", 5) == 0 &&
 | |
| 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
 | |
| 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
 | |
| 		dmi_num = 0;			/* No longer specified */
 | |
| 		dmi_len = get_unaligned_le32(buf + 12);
 | |
| 		dmi_base = get_unaligned_le64(buf + 16);
 | |
| 		smbios_entry_point_size = buf[6];
 | |
| 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
 | |
| 
 | |
| 		if (dmi_walk_early(dmi_decode) == 0) {
 | |
| 			pr_info("SMBIOS %d.%d.%d present.\n",
 | |
| 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
 | |
| 				dmi_ver & 0xFF);
 | |
| 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
 | |
| 			pr_info("DMI: %s\n", dmi_ids_string);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void __init dmi_scan_machine(void)
 | |
| {
 | |
| 	char __iomem *p, *q;
 | |
| 	char buf[32];
 | |
| 
 | |
| 	if (efi_enabled(EFI_CONFIG_TABLES)) {
 | |
| 		/*
 | |
| 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
 | |
| 		 * allowed to define both the 64-bit entry point (smbios3) and
 | |
| 		 * the 32-bit entry point (smbios), in which case they should
 | |
| 		 * either both point to the same SMBIOS structure table, or the
 | |
| 		 * table pointed to by the 64-bit entry point should contain a
 | |
| 		 * superset of the table contents pointed to by the 32-bit entry
 | |
| 		 * point (section 5.2)
 | |
| 		 * This implies that the 64-bit entry point should have
 | |
| 		 * precedence if it is defined and supported by the OS. If we
 | |
| 		 * have the 64-bit entry point, but fail to decode it, fall
 | |
| 		 * back to the legacy one (if available)
 | |
| 		 */
 | |
| 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
 | |
| 			p = dmi_early_remap(efi.smbios3, 32);
 | |
| 			if (p == NULL)
 | |
| 				goto error;
 | |
| 			memcpy_fromio(buf, p, 32);
 | |
| 			dmi_early_unmap(p, 32);
 | |
| 
 | |
| 			if (!dmi_smbios3_present(buf)) {
 | |
| 				dmi_available = 1;
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
 | |
| 			goto error;
 | |
| 
 | |
| 		/* This is called as a core_initcall() because it isn't
 | |
| 		 * needed during early boot.  This also means we can
 | |
| 		 * iounmap the space when we're done with it.
 | |
| 		 */
 | |
| 		p = dmi_early_remap(efi.smbios, 32);
 | |
| 		if (p == NULL)
 | |
| 			goto error;
 | |
| 		memcpy_fromio(buf, p, 32);
 | |
| 		dmi_early_unmap(p, 32);
 | |
| 
 | |
| 		if (!dmi_present(buf)) {
 | |
| 			dmi_available = 1;
 | |
| 			return;
 | |
| 		}
 | |
| 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
 | |
| 		p = dmi_early_remap(0xF0000, 0x10000);
 | |
| 		if (p == NULL)
 | |
| 			goto error;
 | |
| 
 | |
| 		/*
 | |
| 		 * Same logic as above, look for a 64-bit entry point
 | |
| 		 * first, and if not found, fall back to 32-bit entry point.
 | |
| 		 */
 | |
| 		memcpy_fromio(buf, p, 16);
 | |
| 		for (q = p + 16; q < p + 0x10000; q += 16) {
 | |
| 			memcpy_fromio(buf + 16, q, 16);
 | |
| 			if (!dmi_smbios3_present(buf)) {
 | |
| 				dmi_available = 1;
 | |
| 				dmi_early_unmap(p, 0x10000);
 | |
| 				return;
 | |
| 			}
 | |
| 			memcpy(buf, buf + 16, 16);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Iterate over all possible DMI header addresses q.
 | |
| 		 * Maintain the 32 bytes around q in buf.  On the
 | |
| 		 * first iteration, substitute zero for the
 | |
| 		 * out-of-range bytes so there is no chance of falsely
 | |
| 		 * detecting an SMBIOS header.
 | |
| 		 */
 | |
| 		memset(buf, 0, 16);
 | |
| 		for (q = p; q < p + 0x10000; q += 16) {
 | |
| 			memcpy_fromio(buf + 16, q, 16);
 | |
| 			if (!dmi_present(buf)) {
 | |
| 				dmi_available = 1;
 | |
| 				dmi_early_unmap(p, 0x10000);
 | |
| 				return;
 | |
| 			}
 | |
| 			memcpy(buf, buf + 16, 16);
 | |
| 		}
 | |
| 		dmi_early_unmap(p, 0x10000);
 | |
| 	}
 | |
|  error:
 | |
| 	pr_info("DMI not present or invalid.\n");
 | |
| }
 | |
| 
 | |
| static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
 | |
| 			      struct bin_attribute *attr, char *buf,
 | |
| 			      loff_t pos, size_t count)
 | |
| {
 | |
| 	memcpy(buf, attr->private + pos, count);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
 | |
| static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
 | |
| 
 | |
| static int __init dmi_init(void)
 | |
| {
 | |
| 	struct kobject *tables_kobj;
 | |
| 	u8 *dmi_table;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	if (!dmi_available)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
 | |
| 	 * even after farther error, as it can be used by other modules like
 | |
| 	 * dmi-sysfs.
 | |
| 	 */
 | |
| 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
 | |
| 	if (!dmi_kobj)
 | |
| 		goto err;
 | |
| 
 | |
| 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
 | |
| 	if (!tables_kobj)
 | |
| 		goto err;
 | |
| 
 | |
| 	dmi_table = dmi_remap(dmi_base, dmi_len);
 | |
| 	if (!dmi_table)
 | |
| 		goto err_tables;
 | |
| 
 | |
| 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
 | |
| 	bin_attr_smbios_entry_point.private = smbios_entry_point;
 | |
| 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
 | |
| 	if (ret)
 | |
| 		goto err_unmap;
 | |
| 
 | |
| 	bin_attr_DMI.size = dmi_len;
 | |
| 	bin_attr_DMI.private = dmi_table;
 | |
| 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	sysfs_remove_bin_file(tables_kobj,
 | |
| 			      &bin_attr_smbios_entry_point);
 | |
|  err_unmap:
 | |
| 	dmi_unmap(dmi_table);
 | |
|  err_tables:
 | |
| 	kobject_del(tables_kobj);
 | |
| 	kobject_put(tables_kobj);
 | |
|  err:
 | |
| 	pr_err("dmi: Firmware registration failed.\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| subsys_initcall(dmi_init);
 | |
| 
 | |
| /**
 | |
|  *	dmi_setup - scan and setup DMI system information
 | |
|  *
 | |
|  *	Scan the DMI system information. This setups DMI identifiers
 | |
|  *	(dmi_system_id) for printing it out on task dumps and prepares
 | |
|  *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
 | |
|  *	for using this when reporting memory errors.
 | |
|  */
 | |
| void __init dmi_setup(void)
 | |
| {
 | |
| 	dmi_scan_machine();
 | |
| 	if (!dmi_available)
 | |
| 		return;
 | |
| 
 | |
| 	dmi_memdev_walk();
 | |
| 	dump_stack_set_arch_desc("%s", dmi_ids_string);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dmi_matches - check if dmi_system_id structure matches system DMI data
 | |
|  *	@dmi: pointer to the dmi_system_id structure to check
 | |
|  */
 | |
| static bool dmi_matches(const struct dmi_system_id *dmi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
 | |
| 		int s = dmi->matches[i].slot;
 | |
| 		if (s == DMI_NONE)
 | |
| 			break;
 | |
| 		if (s == DMI_OEM_STRING) {
 | |
| 			/* DMI_OEM_STRING must be exact match */
 | |
| 			const struct dmi_device *valid;
 | |
| 
 | |
| 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
 | |
| 						dmi->matches[i].substr, NULL);
 | |
| 			if (valid)
 | |
| 				continue;
 | |
| 		} else if (dmi_ident[s]) {
 | |
| 			if (dmi->matches[i].exact_match) {
 | |
| 				if (!strcmp(dmi_ident[s],
 | |
| 					    dmi->matches[i].substr))
 | |
| 					continue;
 | |
| 			} else {
 | |
| 				if (strstr(dmi_ident[s],
 | |
| 					   dmi->matches[i].substr))
 | |
| 					continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* No match */
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dmi_is_end_of_table - check for end-of-table marker
 | |
|  *	@dmi: pointer to the dmi_system_id structure to check
 | |
|  */
 | |
| static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
 | |
| {
 | |
| 	return dmi->matches[0].slot == DMI_NONE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dmi_check_system - check system DMI data
 | |
|  *	@list: array of dmi_system_id structures to match against
 | |
|  *		All non-null elements of the list must match
 | |
|  *		their slot's (field index's) data (i.e., each
 | |
|  *		list string must be a substring of the specified
 | |
|  *		DMI slot's string data) to be considered a
 | |
|  *		successful match.
 | |
|  *
 | |
|  *	Walk the blacklist table running matching functions until someone
 | |
|  *	returns non zero or we hit the end. Callback function is called for
 | |
|  *	each successful match. Returns the number of matches.
 | |
|  *
 | |
|  *	dmi_setup must be called before this function is called.
 | |
|  */
 | |
| int dmi_check_system(const struct dmi_system_id *list)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	const struct dmi_system_id *d;
 | |
| 
 | |
| 	for (d = list; !dmi_is_end_of_table(d); d++)
 | |
| 		if (dmi_matches(d)) {
 | |
| 			count++;
 | |
| 			if (d->callback && d->callback(d))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| EXPORT_SYMBOL(dmi_check_system);
 | |
| 
 | |
| /**
 | |
|  *	dmi_first_match - find dmi_system_id structure matching system DMI data
 | |
|  *	@list: array of dmi_system_id structures to match against
 | |
|  *		All non-null elements of the list must match
 | |
|  *		their slot's (field index's) data (i.e., each
 | |
|  *		list string must be a substring of the specified
 | |
|  *		DMI slot's string data) to be considered a
 | |
|  *		successful match.
 | |
|  *
 | |
|  *	Walk the blacklist table until the first match is found.  Return the
 | |
|  *	pointer to the matching entry or NULL if there's no match.
 | |
|  *
 | |
|  *	dmi_setup must be called before this function is called.
 | |
|  */
 | |
| const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
 | |
| {
 | |
| 	const struct dmi_system_id *d;
 | |
| 
 | |
| 	for (d = list; !dmi_is_end_of_table(d); d++)
 | |
| 		if (dmi_matches(d))
 | |
| 			return d;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(dmi_first_match);
 | |
| 
 | |
| /**
 | |
|  *	dmi_get_system_info - return DMI data value
 | |
|  *	@field: data index (see enum dmi_field)
 | |
|  *
 | |
|  *	Returns one DMI data value, can be used to perform
 | |
|  *	complex DMI data checks.
 | |
|  */
 | |
| const char *dmi_get_system_info(int field)
 | |
| {
 | |
| 	return dmi_ident[field];
 | |
| }
 | |
| EXPORT_SYMBOL(dmi_get_system_info);
 | |
| 
 | |
| /**
 | |
|  * dmi_name_in_serial - Check if string is in the DMI product serial information
 | |
|  * @str: string to check for
 | |
|  */
 | |
| int dmi_name_in_serial(const char *str)
 | |
| {
 | |
| 	int f = DMI_PRODUCT_SERIAL;
 | |
| 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 | |
|  *	@str: Case sensitive Name
 | |
|  */
 | |
| int dmi_name_in_vendors(const char *str)
 | |
| {
 | |
| 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
 | |
| 	int i;
 | |
| 	for (i = 0; fields[i] != DMI_NONE; i++) {
 | |
| 		int f = fields[i];
 | |
| 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dmi_name_in_vendors);
 | |
| 
 | |
| /**
 | |
|  *	dmi_find_device - find onboard device by type/name
 | |
|  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
 | |
|  *	@name: device name string or %NULL to match all
 | |
|  *	@from: previous device found in search, or %NULL for new search.
 | |
|  *
 | |
|  *	Iterates through the list of known onboard devices. If a device is
 | |
|  *	found with a matching @type and @name, a pointer to its device
 | |
|  *	structure is returned.  Otherwise, %NULL is returned.
 | |
|  *	A new search is initiated by passing %NULL as the @from argument.
 | |
|  *	If @from is not %NULL, searches continue from next device.
 | |
|  */
 | |
| const struct dmi_device *dmi_find_device(int type, const char *name,
 | |
| 				    const struct dmi_device *from)
 | |
| {
 | |
| 	const struct list_head *head = from ? &from->list : &dmi_devices;
 | |
| 	struct list_head *d;
 | |
| 
 | |
| 	for (d = head->next; d != &dmi_devices; d = d->next) {
 | |
| 		const struct dmi_device *dev =
 | |
| 			list_entry(d, struct dmi_device, list);
 | |
| 
 | |
| 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
 | |
| 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
 | |
| 			return dev;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(dmi_find_device);
 | |
| 
 | |
| /**
 | |
|  *	dmi_get_date - parse a DMI date
 | |
|  *	@field:	data index (see enum dmi_field)
 | |
|  *	@yearp: optional out parameter for the year
 | |
|  *	@monthp: optional out parameter for the month
 | |
|  *	@dayp: optional out parameter for the day
 | |
|  *
 | |
|  *	The date field is assumed to be in the form resembling
 | |
|  *	[mm[/dd]]/yy[yy] and the result is stored in the out
 | |
|  *	parameters any or all of which can be omitted.
 | |
|  *
 | |
|  *	If the field doesn't exist, all out parameters are set to zero
 | |
|  *	and false is returned.  Otherwise, true is returned with any
 | |
|  *	invalid part of date set to zero.
 | |
|  *
 | |
|  *	On return, year, month and day are guaranteed to be in the
 | |
|  *	range of [0,9999], [0,12] and [0,31] respectively.
 | |
|  */
 | |
| bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
 | |
| {
 | |
| 	int year = 0, month = 0, day = 0;
 | |
| 	bool exists;
 | |
| 	const char *s, *y;
 | |
| 	char *e;
 | |
| 
 | |
| 	s = dmi_get_system_info(field);
 | |
| 	exists = s;
 | |
| 	if (!exists)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine year first.  We assume the date string resembles
 | |
| 	 * mm/dd/yy[yy] but the original code extracted only the year
 | |
| 	 * from the end.  Keep the behavior in the spirit of no
 | |
| 	 * surprises.
 | |
| 	 */
 | |
| 	y = strrchr(s, '/');
 | |
| 	if (!y)
 | |
| 		goto out;
 | |
| 
 | |
| 	y++;
 | |
| 	year = simple_strtoul(y, &e, 10);
 | |
| 	if (y != e && year < 100) {	/* 2-digit year */
 | |
| 		year += 1900;
 | |
| 		if (year < 1996)	/* no dates < spec 1.0 */
 | |
| 			year += 100;
 | |
| 	}
 | |
| 	if (year > 9999)		/* year should fit in %04d */
 | |
| 		year = 0;
 | |
| 
 | |
| 	/* parse the mm and dd */
 | |
| 	month = simple_strtoul(s, &e, 10);
 | |
| 	if (s == e || *e != '/' || !month || month > 12) {
 | |
| 		month = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	s = e + 1;
 | |
| 	day = simple_strtoul(s, &e, 10);
 | |
| 	if (s == y || s == e || *e != '/' || day > 31)
 | |
| 		day = 0;
 | |
| out:
 | |
| 	if (yearp)
 | |
| 		*yearp = year;
 | |
| 	if (monthp)
 | |
| 		*monthp = month;
 | |
| 	if (dayp)
 | |
| 		*dayp = day;
 | |
| 	return exists;
 | |
| }
 | |
| EXPORT_SYMBOL(dmi_get_date);
 | |
| 
 | |
| /**
 | |
|  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
 | |
|  *
 | |
|  *	Returns year on success, -ENXIO if DMI is not selected,
 | |
|  *	or a different negative error code if DMI field is not present
 | |
|  *	or not parseable.
 | |
|  */
 | |
| int dmi_get_bios_year(void)
 | |
| {
 | |
| 	bool exists;
 | |
| 	int year;
 | |
| 
 | |
| 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
 | |
| 	if (!exists)
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	return year ? year : -ERANGE;
 | |
| }
 | |
| EXPORT_SYMBOL(dmi_get_bios_year);
 | |
| 
 | |
| /**
 | |
|  *	dmi_walk - Walk the DMI table and get called back for every record
 | |
|  *	@decode: Callback function
 | |
|  *	@private_data: Private data to be passed to the callback function
 | |
|  *
 | |
|  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
 | |
|  *	or a different negative error code if DMI walking fails.
 | |
|  */
 | |
| int dmi_walk(void (*decode)(const struct dmi_header *, void *),
 | |
| 	     void *private_data)
 | |
| {
 | |
| 	u8 *buf;
 | |
| 
 | |
| 	if (!dmi_available)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	buf = dmi_remap(dmi_base, dmi_len);
 | |
| 	if (buf == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dmi_decode_table(buf, decode, private_data);
 | |
| 
 | |
| 	dmi_unmap(buf);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dmi_walk);
 | |
| 
 | |
| /**
 | |
|  * dmi_match - compare a string to the dmi field (if exists)
 | |
|  * @f: DMI field identifier
 | |
|  * @str: string to compare the DMI field to
 | |
|  *
 | |
|  * Returns true if the requested field equals to the str (including NULL).
 | |
|  */
 | |
| bool dmi_match(enum dmi_field f, const char *str)
 | |
| {
 | |
| 	const char *info = dmi_get_system_info(f);
 | |
| 
 | |
| 	if (info == NULL || str == NULL)
 | |
| 		return info == str;
 | |
| 
 | |
| 	return !strcmp(info, str);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dmi_match);
 | |
| 
 | |
| void dmi_memdev_name(u16 handle, const char **bank, const char **device)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	if (dmi_memdev == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	for (n = 0; n < dmi_memdev_nr; n++) {
 | |
| 		if (handle == dmi_memdev[n].handle) {
 | |
| 			*bank = dmi_memdev[n].bank;
 | |
| 			*device = dmi_memdev[n].device;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dmi_memdev_name);
 | |
| 
 | |
| u64 dmi_memdev_size(u16 handle)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	if (dmi_memdev) {
 | |
| 		for (n = 0; n < dmi_memdev_nr; n++) {
 | |
| 			if (handle == dmi_memdev[n].handle)
 | |
| 				return dmi_memdev[n].size;
 | |
| 		}
 | |
| 	}
 | |
| 	return ~0ull;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dmi_memdev_size);
 |