forked from mirrors/linux
		
	 e720a6c8fb
			
		
	
	
		e720a6c8fb
		
	
	
	
	
		
			
			Some following changes extends the PSCI driver with some additional files. Avoid to continue cluttering the toplevel firmware directory and first move the PSCI files into a PSCI sub-directory. Suggested-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org> Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
		
			
				
	
	
		
			505 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			505 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * Copyright (C) 2016 ARM Limited
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpuidle.h>
 | |
| #include <linux/cpu_pm.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <uapi/linux/sched/types.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/psci.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/topology.h>
 | |
| 
 | |
| #include <asm/cpuidle.h>
 | |
| 
 | |
| #include <uapi/linux/psci.h>
 | |
| 
 | |
| #define NUM_SUSPEND_CYCLE (10)
 | |
| 
 | |
| static unsigned int nb_available_cpus;
 | |
| static int tos_resident_cpu = -1;
 | |
| 
 | |
| static atomic_t nb_active_threads;
 | |
| static struct completion suspend_threads_started =
 | |
| 	COMPLETION_INITIALIZER(suspend_threads_started);
 | |
| static struct completion suspend_threads_done =
 | |
| 	COMPLETION_INITIALIZER(suspend_threads_done);
 | |
| 
 | |
| /*
 | |
|  * We assume that PSCI operations are used if they are available. This is not
 | |
|  * necessarily true on arm64, since the decision is based on the
 | |
|  * "enable-method" property of each CPU in the DT, but given that there is no
 | |
|  * arch-specific way to check this, we assume that the DT is sensible.
 | |
|  */
 | |
| static int psci_ops_check(void)
 | |
| {
 | |
| 	int migrate_type = -1;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!(psci_ops.cpu_off && psci_ops.cpu_on && psci_ops.cpu_suspend)) {
 | |
| 		pr_warn("Missing PSCI operations, aborting tests\n");
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	if (psci_ops.migrate_info_type)
 | |
| 		migrate_type = psci_ops.migrate_info_type();
 | |
| 
 | |
| 	if (migrate_type == PSCI_0_2_TOS_UP_MIGRATE ||
 | |
| 	    migrate_type == PSCI_0_2_TOS_UP_NO_MIGRATE) {
 | |
| 		/* There is a UP Trusted OS, find on which core it resides. */
 | |
| 		for_each_online_cpu(cpu)
 | |
| 			if (psci_tos_resident_on(cpu)) {
 | |
| 				tos_resident_cpu = cpu;
 | |
| 				break;
 | |
| 			}
 | |
| 		if (tos_resident_cpu == -1)
 | |
| 			pr_warn("UP Trusted OS resides on no online CPU\n");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * offlined_cpus is a temporary array but passing it as an argument avoids
 | |
|  * multiple allocations.
 | |
|  */
 | |
| static unsigned int down_and_up_cpus(const struct cpumask *cpus,
 | |
| 				     struct cpumask *offlined_cpus)
 | |
| {
 | |
| 	int cpu;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	cpumask_clear(offlined_cpus);
 | |
| 
 | |
| 	/* Try to power down all CPUs in the mask. */
 | |
| 	for_each_cpu(cpu, cpus) {
 | |
| 		int ret = cpu_down(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * cpu_down() checks the number of online CPUs before the TOS
 | |
| 		 * resident CPU.
 | |
| 		 */
 | |
| 		if (cpumask_weight(offlined_cpus) + 1 == nb_available_cpus) {
 | |
| 			if (ret != -EBUSY) {
 | |
| 				pr_err("Unexpected return code %d while trying "
 | |
| 				       "to power down last online CPU %d\n",
 | |
| 				       ret, cpu);
 | |
| 				++err;
 | |
| 			}
 | |
| 		} else if (cpu == tos_resident_cpu) {
 | |
| 			if (ret != -EPERM) {
 | |
| 				pr_err("Unexpected return code %d while trying "
 | |
| 				       "to power down TOS resident CPU %d\n",
 | |
| 				       ret, cpu);
 | |
| 				++err;
 | |
| 			}
 | |
| 		} else if (ret != 0) {
 | |
| 			pr_err("Error occurred (%d) while trying "
 | |
| 			       "to power down CPU %d\n", ret, cpu);
 | |
| 			++err;
 | |
| 		}
 | |
| 
 | |
| 		if (ret == 0)
 | |
| 			cpumask_set_cpu(cpu, offlined_cpus);
 | |
| 	}
 | |
| 
 | |
| 	/* Try to power up all the CPUs that have been offlined. */
 | |
| 	for_each_cpu(cpu, offlined_cpus) {
 | |
| 		int ret = cpu_up(cpu);
 | |
| 
 | |
| 		if (ret != 0) {
 | |
| 			pr_err("Error occurred (%d) while trying "
 | |
| 			       "to power up CPU %d\n", ret, cpu);
 | |
| 			++err;
 | |
| 		} else {
 | |
| 			cpumask_clear_cpu(cpu, offlined_cpus);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Something went bad at some point and some CPUs could not be turned
 | |
| 	 * back on.
 | |
| 	 */
 | |
| 	WARN_ON(!cpumask_empty(offlined_cpus) ||
 | |
| 		num_online_cpus() != nb_available_cpus);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void free_cpu_groups(int num, cpumask_var_t **pcpu_groups)
 | |
| {
 | |
| 	int i;
 | |
| 	cpumask_var_t *cpu_groups = *pcpu_groups;
 | |
| 
 | |
| 	for (i = 0; i < num; ++i)
 | |
| 		free_cpumask_var(cpu_groups[i]);
 | |
| 	kfree(cpu_groups);
 | |
| }
 | |
| 
 | |
| static int alloc_init_cpu_groups(cpumask_var_t **pcpu_groups)
 | |
| {
 | |
| 	int num_groups = 0;
 | |
| 	cpumask_var_t tmp, *cpu_groups;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cpu_groups = kcalloc(nb_available_cpus, sizeof(cpu_groups),
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!cpu_groups)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cpumask_copy(tmp, cpu_online_mask);
 | |
| 
 | |
| 	while (!cpumask_empty(tmp)) {
 | |
| 		const struct cpumask *cpu_group =
 | |
| 			topology_core_cpumask(cpumask_any(tmp));
 | |
| 
 | |
| 		if (!alloc_cpumask_var(&cpu_groups[num_groups], GFP_KERNEL)) {
 | |
| 			free_cpu_groups(num_groups, &cpu_groups);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		cpumask_copy(cpu_groups[num_groups++], cpu_group);
 | |
| 		cpumask_andnot(tmp, tmp, cpu_group);
 | |
| 	}
 | |
| 
 | |
| 	free_cpumask_var(tmp);
 | |
| 	*pcpu_groups = cpu_groups;
 | |
| 
 | |
| 	return num_groups;
 | |
| }
 | |
| 
 | |
| static int hotplug_tests(void)
 | |
| {
 | |
| 	int i, nb_cpu_group, err = -ENOMEM;
 | |
| 	cpumask_var_t offlined_cpus, *cpu_groups;
 | |
| 	char *page_buf;
 | |
| 
 | |
| 	if (!alloc_cpumask_var(&offlined_cpus, GFP_KERNEL))
 | |
| 		return err;
 | |
| 
 | |
| 	nb_cpu_group = alloc_init_cpu_groups(&cpu_groups);
 | |
| 	if (nb_cpu_group < 0)
 | |
| 		goto out_free_cpus;
 | |
| 	page_buf = (char *)__get_free_page(GFP_KERNEL);
 | |
| 	if (!page_buf)
 | |
| 		goto out_free_cpu_groups;
 | |
| 
 | |
| 	err = 0;
 | |
| 	/*
 | |
| 	 * Of course the last CPU cannot be powered down and cpu_down() should
 | |
| 	 * refuse doing that.
 | |
| 	 */
 | |
| 	pr_info("Trying to turn off and on again all CPUs\n");
 | |
| 	err += down_and_up_cpus(cpu_online_mask, offlined_cpus);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take down CPUs by cpu group this time. When the last CPU is turned
 | |
| 	 * off, the cpu group itself should shut down.
 | |
| 	 */
 | |
| 	for (i = 0; i < nb_cpu_group; ++i) {
 | |
| 		ssize_t len = cpumap_print_to_pagebuf(true, page_buf,
 | |
| 						      cpu_groups[i]);
 | |
| 		/* Remove trailing newline. */
 | |
| 		page_buf[len - 1] = '\0';
 | |
| 		pr_info("Trying to turn off and on again group %d (CPUs %s)\n",
 | |
| 			i, page_buf);
 | |
| 		err += down_and_up_cpus(cpu_groups[i], offlined_cpus);
 | |
| 	}
 | |
| 
 | |
| 	free_page((unsigned long)page_buf);
 | |
| out_free_cpu_groups:
 | |
| 	free_cpu_groups(nb_cpu_group, &cpu_groups);
 | |
| out_free_cpus:
 | |
| 	free_cpumask_var(offlined_cpus);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void dummy_callback(struct timer_list *unused) {}
 | |
| 
 | |
| static int suspend_cpu(int index, bool broadcast)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	arch_cpu_idle_enter();
 | |
| 
 | |
| 	if (broadcast) {
 | |
| 		/*
 | |
| 		 * The local timer will be shut down, we need to enter tick
 | |
| 		 * broadcast.
 | |
| 		 */
 | |
| 		ret = tick_broadcast_enter();
 | |
| 		if (ret) {
 | |
| 			/*
 | |
| 			 * In the absence of hardware broadcast mechanism,
 | |
| 			 * this CPU might be used to broadcast wakeups, which
 | |
| 			 * may be why entering tick broadcast has failed.
 | |
| 			 * There is little the kernel can do to work around
 | |
| 			 * that, so enter WFI instead (idle state 0).
 | |
| 			 */
 | |
| 			cpu_do_idle();
 | |
| 			ret = 0;
 | |
| 			goto out_arch_exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Replicate the common ARM cpuidle enter function
 | |
| 	 * (arm_enter_idle_state).
 | |
| 	 */
 | |
| 	ret = CPU_PM_CPU_IDLE_ENTER(arm_cpuidle_suspend, index);
 | |
| 
 | |
| 	if (broadcast)
 | |
| 		tick_broadcast_exit();
 | |
| 
 | |
| out_arch_exit:
 | |
| 	arch_cpu_idle_exit();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int suspend_test_thread(void *arg)
 | |
| {
 | |
| 	int cpu = (long)arg;
 | |
| 	int i, nb_suspend = 0, nb_shallow_sleep = 0, nb_err = 0;
 | |
| 	struct sched_param sched_priority = { .sched_priority = MAX_RT_PRIO-1 };
 | |
| 	struct cpuidle_device *dev;
 | |
| 	struct cpuidle_driver *drv;
 | |
| 	/* No need for an actual callback, we just want to wake up the CPU. */
 | |
| 	struct timer_list wakeup_timer;
 | |
| 
 | |
| 	/* Wait for the main thread to give the start signal. */
 | |
| 	wait_for_completion(&suspend_threads_started);
 | |
| 
 | |
| 	/* Set maximum priority to preempt all other threads on this CPU. */
 | |
| 	if (sched_setscheduler_nocheck(current, SCHED_FIFO, &sched_priority))
 | |
| 		pr_warn("Failed to set suspend thread scheduler on CPU %d\n",
 | |
| 			cpu);
 | |
| 
 | |
| 	dev = this_cpu_read(cpuidle_devices);
 | |
| 	drv = cpuidle_get_cpu_driver(dev);
 | |
| 
 | |
| 	pr_info("CPU %d entering suspend cycles, states 1 through %d\n",
 | |
| 		cpu, drv->state_count - 1);
 | |
| 
 | |
| 	timer_setup_on_stack(&wakeup_timer, dummy_callback, 0);
 | |
| 	for (i = 0; i < NUM_SUSPEND_CYCLE; ++i) {
 | |
| 		int index;
 | |
| 		/*
 | |
| 		 * Test all possible states, except 0 (which is usually WFI and
 | |
| 		 * doesn't use PSCI).
 | |
| 		 */
 | |
| 		for (index = 1; index < drv->state_count; ++index) {
 | |
| 			struct cpuidle_state *state = &drv->states[index];
 | |
| 			bool broadcast = state->flags & CPUIDLE_FLAG_TIMER_STOP;
 | |
| 			int ret;
 | |
| 
 | |
| 			/*
 | |
| 			 * Set the timer to wake this CPU up in some time (which
 | |
| 			 * should be largely sufficient for entering suspend).
 | |
| 			 * If the local tick is disabled when entering suspend,
 | |
| 			 * suspend_cpu() takes care of switching to a broadcast
 | |
| 			 * tick, so the timer will still wake us up.
 | |
| 			 */
 | |
| 			mod_timer(&wakeup_timer, jiffies +
 | |
| 				  usecs_to_jiffies(state->target_residency));
 | |
| 
 | |
| 			/* IRQs must be disabled during suspend operations. */
 | |
| 			local_irq_disable();
 | |
| 
 | |
| 			ret = suspend_cpu(index, broadcast);
 | |
| 
 | |
| 			/*
 | |
| 			 * We have woken up. Re-enable IRQs to handle any
 | |
| 			 * pending interrupt, do not wait until the end of the
 | |
| 			 * loop.
 | |
| 			 */
 | |
| 			local_irq_enable();
 | |
| 
 | |
| 			if (ret == index) {
 | |
| 				++nb_suspend;
 | |
| 			} else if (ret >= 0) {
 | |
| 				/* We did not enter the expected state. */
 | |
| 				++nb_shallow_sleep;
 | |
| 			} else {
 | |
| 				pr_err("Failed to suspend CPU %d: error %d "
 | |
| 				       "(requested state %d, cycle %d)\n",
 | |
| 				       cpu, ret, index, i);
 | |
| 				++nb_err;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable the timer to make sure that the timer will not trigger
 | |
| 	 * later.
 | |
| 	 */
 | |
| 	del_timer(&wakeup_timer);
 | |
| 	destroy_timer_on_stack(&wakeup_timer);
 | |
| 
 | |
| 	if (atomic_dec_return_relaxed(&nb_active_threads) == 0)
 | |
| 		complete(&suspend_threads_done);
 | |
| 
 | |
| 	/* Give up on RT scheduling and wait for termination. */
 | |
| 	sched_priority.sched_priority = 0;
 | |
| 	if (sched_setscheduler_nocheck(current, SCHED_NORMAL, &sched_priority))
 | |
| 		pr_warn("Failed to set suspend thread scheduler on CPU %d\n",
 | |
| 			cpu);
 | |
| 	for (;;) {
 | |
| 		/* Needs to be set first to avoid missing a wakeup. */
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		if (kthread_should_stop()) {
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 			break;
 | |
| 		}
 | |
| 		schedule();
 | |
| 	}
 | |
| 
 | |
| 	pr_info("CPU %d suspend test results: success %d, shallow states %d, errors %d\n",
 | |
| 		cpu, nb_suspend, nb_shallow_sleep, nb_err);
 | |
| 
 | |
| 	return nb_err;
 | |
| }
 | |
| 
 | |
| static int suspend_tests(void)
 | |
| {
 | |
| 	int i, cpu, err = 0;
 | |
| 	struct task_struct **threads;
 | |
| 	int nb_threads = 0;
 | |
| 
 | |
| 	threads = kmalloc_array(nb_available_cpus, sizeof(*threads),
 | |
| 				GFP_KERNEL);
 | |
| 	if (!threads)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop cpuidle to prevent the idle tasks from entering a deep sleep
 | |
| 	 * mode, as it might interfere with the suspend threads on other CPUs.
 | |
| 	 * This does not prevent the suspend threads from using cpuidle (only
 | |
| 	 * the idle tasks check this status). Take the idle lock so that
 | |
| 	 * the cpuidle driver and device look-up can be carried out safely.
 | |
| 	 */
 | |
| 	cpuidle_pause_and_lock();
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct task_struct *thread;
 | |
| 		/* Check that cpuidle is available on that CPU. */
 | |
| 		struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
 | |
| 		struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
 | |
| 
 | |
| 		if (!dev || !drv) {
 | |
| 			pr_warn("cpuidle not available on CPU %d, ignoring\n",
 | |
| 				cpu);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		thread = kthread_create_on_cpu(suspend_test_thread,
 | |
| 					       (void *)(long)cpu, cpu,
 | |
| 					       "psci_suspend_test");
 | |
| 		if (IS_ERR(thread))
 | |
| 			pr_err("Failed to create kthread on CPU %d\n", cpu);
 | |
| 		else
 | |
| 			threads[nb_threads++] = thread;
 | |
| 	}
 | |
| 
 | |
| 	if (nb_threads < 1) {
 | |
| 		err = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&nb_active_threads, nb_threads);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wake up the suspend threads. To avoid the main thread being preempted
 | |
| 	 * before all the threads have been unparked, the suspend threads will
 | |
| 	 * wait for the completion of suspend_threads_started.
 | |
| 	 */
 | |
| 	for (i = 0; i < nb_threads; ++i)
 | |
| 		wake_up_process(threads[i]);
 | |
| 	complete_all(&suspend_threads_started);
 | |
| 
 | |
| 	wait_for_completion(&suspend_threads_done);
 | |
| 
 | |
| 
 | |
| 	/* Stop and destroy all threads, get return status. */
 | |
| 	for (i = 0; i < nb_threads; ++i)
 | |
| 		err += kthread_stop(threads[i]);
 | |
|  out:
 | |
| 	cpuidle_resume_and_unlock();
 | |
| 	kfree(threads);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __init psci_checker(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we're in an initcall, we assume that all the CPUs that all
 | |
| 	 * CPUs that can be onlined have been onlined.
 | |
| 	 *
 | |
| 	 * The tests assume that hotplug is enabled but nobody else is using it,
 | |
| 	 * otherwise the results will be unpredictable. However, since there
 | |
| 	 * is no userspace yet in initcalls, that should be fine, as long as
 | |
| 	 * no torture test is running at the same time (see Kconfig).
 | |
| 	 */
 | |
| 	nb_available_cpus = num_online_cpus();
 | |
| 
 | |
| 	/* Check PSCI operations are set up and working. */
 | |
| 	ret = psci_ops_check();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	pr_info("PSCI checker started using %u CPUs\n", nb_available_cpus);
 | |
| 
 | |
| 	pr_info("Starting hotplug tests\n");
 | |
| 	ret = hotplug_tests();
 | |
| 	if (ret == 0)
 | |
| 		pr_info("Hotplug tests passed OK\n");
 | |
| 	else if (ret > 0)
 | |
| 		pr_err("%d error(s) encountered in hotplug tests\n", ret);
 | |
| 	else {
 | |
| 		pr_err("Out of memory\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("Starting suspend tests (%d cycles per state)\n",
 | |
| 		NUM_SUSPEND_CYCLE);
 | |
| 	ret = suspend_tests();
 | |
| 	if (ret == 0)
 | |
| 		pr_info("Suspend tests passed OK\n");
 | |
| 	else if (ret > 0)
 | |
| 		pr_err("%d error(s) encountered in suspend tests\n", ret);
 | |
| 	else {
 | |
| 		switch (ret) {
 | |
| 		case -ENOMEM:
 | |
| 			pr_err("Out of memory\n");
 | |
| 			break;
 | |
| 		case -ENODEV:
 | |
| 			pr_warn("Could not start suspend tests on any CPU\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pr_info("PSCI checker completed\n");
 | |
| 	return ret < 0 ? ret : 0;
 | |
| }
 | |
| late_initcall(psci_checker);
 |