forked from mirrors/linux
		
	 eeafcc5a59
			
		
	
	
		eeafcc5a59
		
	
	
	
	
		
			
			workqueue: kill off ACCESS_ONCE()
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't currently harmful.
However, for some features it is necessary to instrument reads and
writes separately, which is not possible with ACCESS_ONCE(). This
distinction is critical to correct operation.
It's possible to transform the bulk of kernel code using the Coccinelle
script below. However, this doesn't handle comments, leaving references
to ACCESS_ONCE() instances which have been removed. As a preparatory
step, this patch converts the Tegra IVC code and comments to use
{READ,WRITE}_ONCE() consistently.
----
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Jonathan Hunter <jonathanh@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thierry Reding <thierry.reding@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-3-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
		
	
			
		
			
				
	
	
		
			695 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			695 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2014-2016, NVIDIA CORPORATION.  All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  */
 | |
| 
 | |
| #include <soc/tegra/ivc.h>
 | |
| 
 | |
| #define TEGRA_IVC_ALIGN 64
 | |
| 
 | |
| /*
 | |
|  * IVC channel reset protocol.
 | |
|  *
 | |
|  * Each end uses its tx_channel.state to indicate its synchronization state.
 | |
|  */
 | |
| enum tegra_ivc_state {
 | |
| 	/*
 | |
| 	 * This value is zero for backwards compatibility with services that
 | |
| 	 * assume channels to be initially zeroed. Such channels are in an
 | |
| 	 * initially valid state, but cannot be asynchronously reset, and must
 | |
| 	 * maintain a valid state at all times.
 | |
| 	 *
 | |
| 	 * The transmitting end can enter the established state from the sync or
 | |
| 	 * ack state when it observes the receiving endpoint in the ack or
 | |
| 	 * established state, indicating that has cleared the counters in our
 | |
| 	 * rx_channel.
 | |
| 	 */
 | |
| 	TEGRA_IVC_STATE_ESTABLISHED = 0,
 | |
| 
 | |
| 	/*
 | |
| 	 * If an endpoint is observed in the sync state, the remote endpoint is
 | |
| 	 * allowed to clear the counters it owns asynchronously with respect to
 | |
| 	 * the current endpoint. Therefore, the current endpoint is no longer
 | |
| 	 * allowed to communicate.
 | |
| 	 */
 | |
| 	TEGRA_IVC_STATE_SYNC,
 | |
| 
 | |
| 	/*
 | |
| 	 * When the transmitting end observes the receiving end in the sync
 | |
| 	 * state, it can clear the w_count and r_count and transition to the ack
 | |
| 	 * state. If the remote endpoint observes us in the ack state, it can
 | |
| 	 * return to the established state once it has cleared its counters.
 | |
| 	 */
 | |
| 	TEGRA_IVC_STATE_ACK
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This structure is divided into two-cache aligned parts, the first is only
 | |
|  * written through the tx.channel pointer, while the second is only written
 | |
|  * through the rx.channel pointer. This delineates ownership of the cache
 | |
|  * lines, which is critical to performance and necessary in non-cache coherent
 | |
|  * implementations.
 | |
|  */
 | |
| struct tegra_ivc_header {
 | |
| 	union {
 | |
| 		struct {
 | |
| 			/* fields owned by the transmitting end */
 | |
| 			u32 count;
 | |
| 			u32 state;
 | |
| 		};
 | |
| 
 | |
| 		u8 pad[TEGRA_IVC_ALIGN];
 | |
| 	} tx;
 | |
| 
 | |
| 	union {
 | |
| 		/* fields owned by the receiving end */
 | |
| 		u32 count;
 | |
| 		u8 pad[TEGRA_IVC_ALIGN];
 | |
| 	} rx;
 | |
| };
 | |
| 
 | |
| static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys)
 | |
| {
 | |
| 	if (!ivc->peer)
 | |
| 		return;
 | |
| 
 | |
| 	dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN,
 | |
| 				DMA_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| static inline void tegra_ivc_flush(struct tegra_ivc *ivc, dma_addr_t phys)
 | |
| {
 | |
| 	if (!ivc->peer)
 | |
| 		return;
 | |
| 
 | |
| 	dma_sync_single_for_device(ivc->peer, phys, TEGRA_IVC_ALIGN,
 | |
| 				   DMA_TO_DEVICE);
 | |
| }
 | |
| 
 | |
| static inline bool tegra_ivc_empty(struct tegra_ivc *ivc,
 | |
| 				   struct tegra_ivc_header *header)
 | |
| {
 | |
| 	/*
 | |
| 	 * This function performs multiple checks on the same values with
 | |
| 	 * security implications, so create snapshots with READ_ONCE() to
 | |
| 	 * ensure that these checks use the same values.
 | |
| 	 */
 | |
| 	u32 tx = READ_ONCE(header->tx.count);
 | |
| 	u32 rx = READ_ONCE(header->rx.count);
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform an over-full check to prevent denial of service attacks
 | |
| 	 * where a server could be easily fooled into believing that there's
 | |
| 	 * an extremely large number of frames ready, since receivers are not
 | |
| 	 * expected to check for full or over-full conditions.
 | |
| 	 *
 | |
| 	 * Although the channel isn't empty, this is an invalid case caused by
 | |
| 	 * a potentially malicious peer, so returning empty is safer, because
 | |
| 	 * it gives the impression that the channel has gone silent.
 | |
| 	 */
 | |
| 	if (tx - rx > ivc->num_frames)
 | |
| 		return true;
 | |
| 
 | |
| 	return tx == rx;
 | |
| }
 | |
| 
 | |
| static inline bool tegra_ivc_full(struct tegra_ivc *ivc,
 | |
| 				  struct tegra_ivc_header *header)
 | |
| {
 | |
| 	u32 tx = READ_ONCE(header->tx.count);
 | |
| 	u32 rx = READ_ONCE(header->rx.count);
 | |
| 
 | |
| 	/*
 | |
| 	 * Invalid cases where the counters indicate that the queue is over
 | |
| 	 * capacity also appear full.
 | |
| 	 */
 | |
| 	return tx - rx >= ivc->num_frames;
 | |
| }
 | |
| 
 | |
| static inline u32 tegra_ivc_available(struct tegra_ivc *ivc,
 | |
| 				      struct tegra_ivc_header *header)
 | |
| {
 | |
| 	u32 tx = READ_ONCE(header->tx.count);
 | |
| 	u32 rx = READ_ONCE(header->rx.count);
 | |
| 
 | |
| 	/*
 | |
| 	 * This function isn't expected to be used in scenarios where an
 | |
| 	 * over-full situation can lead to denial of service attacks. See the
 | |
| 	 * comment in tegra_ivc_empty() for an explanation about special
 | |
| 	 * over-full considerations.
 | |
| 	 */
 | |
| 	return tx - rx;
 | |
| }
 | |
| 
 | |
| static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	WRITE_ONCE(ivc->tx.channel->tx.count,
 | |
| 		   READ_ONCE(ivc->tx.channel->tx.count) + 1);
 | |
| 
 | |
| 	if (ivc->tx.position == ivc->num_frames - 1)
 | |
| 		ivc->tx.position = 0;
 | |
| 	else
 | |
| 		ivc->tx.position++;
 | |
| }
 | |
| 
 | |
| static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	WRITE_ONCE(ivc->rx.channel->rx.count,
 | |
| 		   READ_ONCE(ivc->rx.channel->rx.count) + 1);
 | |
| 
 | |
| 	if (ivc->rx.position == ivc->num_frames - 1)
 | |
| 		ivc->rx.position = 0;
 | |
| 	else
 | |
| 		ivc->rx.position++;
 | |
| }
 | |
| 
 | |
| static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
 | |
| 
 | |
| 	/*
 | |
| 	 * tx.channel->state is set locally, so it is not synchronized with
 | |
| 	 * state from the remote peer. The remote peer cannot reset its
 | |
| 	 * transmit counters until we've acknowledged its synchronization
 | |
| 	 * request, so no additional synchronization is required because an
 | |
| 	 * asynchronous transition of rx.channel->state to
 | |
| 	 * TEGRA_IVC_STATE_ACK is not allowed.
 | |
| 	 */
 | |
| 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
 | |
| 		return -ECONNRESET;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid unnecessary invalidations when performing repeated accesses
 | |
| 	 * to an IVC channel by checking the old queue pointers first.
 | |
| 	 *
 | |
| 	 * Synchronization is only necessary when these pointers indicate
 | |
| 	 * empty or full.
 | |
| 	 */
 | |
| 	if (!tegra_ivc_empty(ivc, ivc->rx.channel))
 | |
| 		return 0;
 | |
| 
 | |
| 	tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
 | |
| 
 | |
| 	if (tegra_ivc_empty(ivc, ivc->rx.channel))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	unsigned int offset = offsetof(struct tegra_ivc_header, rx.count);
 | |
| 
 | |
| 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
 | |
| 		return -ECONNRESET;
 | |
| 
 | |
| 	if (!tegra_ivc_full(ivc, ivc->tx.channel))
 | |
| 		return 0;
 | |
| 
 | |
| 	tegra_ivc_invalidate(ivc, ivc->tx.phys + offset);
 | |
| 
 | |
| 	if (tegra_ivc_full(ivc, ivc->tx.channel))
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *tegra_ivc_frame_virt(struct tegra_ivc *ivc,
 | |
| 				  struct tegra_ivc_header *header,
 | |
| 				  unsigned int frame)
 | |
| {
 | |
| 	if (WARN_ON(frame >= ivc->num_frames))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	return (void *)(header + 1) + ivc->frame_size * frame;
 | |
| }
 | |
| 
 | |
| static inline dma_addr_t tegra_ivc_frame_phys(struct tegra_ivc *ivc,
 | |
| 					      dma_addr_t phys,
 | |
| 					      unsigned int frame)
 | |
| {
 | |
| 	unsigned long offset;
 | |
| 
 | |
| 	offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame;
 | |
| 
 | |
| 	return phys + offset;
 | |
| }
 | |
| 
 | |
| static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
 | |
| 					      dma_addr_t phys,
 | |
| 					      unsigned int frame,
 | |
| 					      unsigned int offset,
 | |
| 					      size_t size)
 | |
| {
 | |
| 	if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
 | |
| 		return;
 | |
| 
 | |
| 	phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;
 | |
| 
 | |
| 	dma_sync_single_for_cpu(ivc->peer, phys, size, DMA_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
 | |
| 					 dma_addr_t phys,
 | |
| 					 unsigned int frame,
 | |
| 					 unsigned int offset,
 | |
| 					 size_t size)
 | |
| {
 | |
| 	if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
 | |
| 		return;
 | |
| 
 | |
| 	phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;
 | |
| 
 | |
| 	dma_sync_single_for_device(ivc->peer, phys, size, DMA_TO_DEVICE);
 | |
| }
 | |
| 
 | |
| /* directly peek at the next frame rx'ed */
 | |
| void *tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (WARN_ON(ivc == NULL))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	err = tegra_ivc_check_read(ivc);
 | |
| 	if (err < 0)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	/*
 | |
| 	 * Order observation of ivc->rx.position potentially indicating new
 | |
| 	 * data before data read.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	tegra_ivc_invalidate_frame(ivc, ivc->rx.phys, ivc->rx.position, 0,
 | |
| 				   ivc->frame_size);
 | |
| 
 | |
| 	return tegra_ivc_frame_virt(ivc, ivc->rx.channel, ivc->rx.position);
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_read_get_next_frame);
 | |
| 
 | |
| int tegra_ivc_read_advance(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
 | |
| 	unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
 | |
| 	int err;
 | |
| 
 | |
| 	/*
 | |
| 	 * No read barriers or synchronization here: the caller is expected to
 | |
| 	 * have already observed the channel non-empty. This check is just to
 | |
| 	 * catch programming errors.
 | |
| 	 */
 | |
| 	err = tegra_ivc_check_read(ivc);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	tegra_ivc_advance_rx(ivc);
 | |
| 
 | |
| 	tegra_ivc_flush(ivc, ivc->rx.phys + rx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure our write to ivc->rx.position occurs before our read from
 | |
| 	 * ivc->tx.position.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Notify only upon transition from full to non-full. The available
 | |
| 	 * count can only asynchronously increase, so the worst possible
 | |
| 	 * side-effect will be a spurious notification.
 | |
| 	 */
 | |
| 	tegra_ivc_invalidate(ivc, ivc->rx.phys + tx);
 | |
| 
 | |
| 	if (tegra_ivc_available(ivc, ivc->rx.channel) == ivc->num_frames - 1)
 | |
| 		ivc->notify(ivc, ivc->notify_data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_read_advance);
 | |
| 
 | |
| /* directly poke at the next frame to be tx'ed */
 | |
| void *tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = tegra_ivc_check_write(ivc);
 | |
| 	if (err < 0)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	return tegra_ivc_frame_virt(ivc, ivc->tx.channel, ivc->tx.position);
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_write_get_next_frame);
 | |
| 
 | |
| /* advance the tx buffer */
 | |
| int tegra_ivc_write_advance(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
 | |
| 	unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
 | |
| 	int err;
 | |
| 
 | |
| 	err = tegra_ivc_check_write(ivc);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	tegra_ivc_flush_frame(ivc, ivc->tx.phys, ivc->tx.position, 0,
 | |
| 			      ivc->frame_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Order any possible stores to the frame before update of
 | |
| 	 * ivc->tx.position.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	tegra_ivc_advance_tx(ivc);
 | |
| 	tegra_ivc_flush(ivc, ivc->tx.phys + tx);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure our write to ivc->tx.position occurs before our read from
 | |
| 	 * ivc->rx.position.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Notify only upon transition from empty to non-empty. The available
 | |
| 	 * count can only asynchronously decrease, so the worst possible
 | |
| 	 * side-effect will be a spurious notification.
 | |
| 	 */
 | |
| 	tegra_ivc_invalidate(ivc, ivc->tx.phys + rx);
 | |
| 
 | |
| 	if (tegra_ivc_available(ivc, ivc->tx.channel) == 1)
 | |
| 		ivc->notify(ivc, ivc->notify_data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_write_advance);
 | |
| 
 | |
| void tegra_ivc_reset(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
 | |
| 
 | |
| 	ivc->tx.channel->tx.state = TEGRA_IVC_STATE_SYNC;
 | |
| 	tegra_ivc_flush(ivc, ivc->tx.phys + offset);
 | |
| 	ivc->notify(ivc, ivc->notify_data);
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_reset);
 | |
| 
 | |
| /*
 | |
|  * =======================================================
 | |
|  *  IVC State Transition Table - see tegra_ivc_notified()
 | |
|  * =======================================================
 | |
|  *
 | |
|  *	local	remote	action
 | |
|  *	-----	------	-----------------------------------
 | |
|  *	SYNC	EST	<none>
 | |
|  *	SYNC	ACK	reset counters; move to EST; notify
 | |
|  *	SYNC	SYNC	reset counters; move to ACK; notify
 | |
|  *	ACK	EST	move to EST; notify
 | |
|  *	ACK	ACK	move to EST; notify
 | |
|  *	ACK	SYNC	reset counters; move to ACK; notify
 | |
|  *	EST	EST	<none>
 | |
|  *	EST	ACK	<none>
 | |
|  *	EST	SYNC	reset counters; move to ACK; notify
 | |
|  *
 | |
|  * ===============================================================
 | |
|  */
 | |
| 
 | |
| int tegra_ivc_notified(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
 | |
| 	enum tegra_ivc_state state;
 | |
| 
 | |
| 	/* Copy the receiver's state out of shared memory. */
 | |
| 	tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
 | |
| 	state = READ_ONCE(ivc->rx.channel->tx.state);
 | |
| 
 | |
| 	if (state == TEGRA_IVC_STATE_SYNC) {
 | |
| 		offset = offsetof(struct tegra_ivc_header, tx.count);
 | |
| 
 | |
| 		/*
 | |
| 		 * Order observation of TEGRA_IVC_STATE_SYNC before stores
 | |
| 		 * clearing tx.channel.
 | |
| 		 */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		/*
 | |
| 		 * Reset tx.channel counters. The remote end is in the SYNC
 | |
| 		 * state and won't make progress until we change our state,
 | |
| 		 * so the counters are not in use at this time.
 | |
| 		 */
 | |
| 		ivc->tx.channel->tx.count = 0;
 | |
| 		ivc->rx.channel->rx.count = 0;
 | |
| 
 | |
| 		ivc->tx.position = 0;
 | |
| 		ivc->rx.position = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure that counters appear cleared before new state can be
 | |
| 		 * observed.
 | |
| 		 */
 | |
| 		smp_wmb();
 | |
| 
 | |
| 		/*
 | |
| 		 * Move to ACK state. We have just cleared our counters, so it
 | |
| 		 * is now safe for the remote end to start using these values.
 | |
| 		 */
 | |
| 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ACK;
 | |
| 		tegra_ivc_flush(ivc, ivc->tx.phys + offset);
 | |
| 
 | |
| 		/*
 | |
| 		 * Notify remote end to observe state transition.
 | |
| 		 */
 | |
| 		ivc->notify(ivc, ivc->notify_data);
 | |
| 
 | |
| 	} else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_SYNC &&
 | |
| 		   state == TEGRA_IVC_STATE_ACK) {
 | |
| 		offset = offsetof(struct tegra_ivc_header, tx.count);
 | |
| 
 | |
| 		/*
 | |
| 		 * Order observation of ivc_state_sync before stores clearing
 | |
| 		 * tx_channel.
 | |
| 		 */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		/*
 | |
| 		 * Reset tx.channel counters. The remote end is in the ACK
 | |
| 		 * state and won't make progress until we change our state,
 | |
| 		 * so the counters are not in use at this time.
 | |
| 		 */
 | |
| 		ivc->tx.channel->tx.count = 0;
 | |
| 		ivc->rx.channel->rx.count = 0;
 | |
| 
 | |
| 		ivc->tx.position = 0;
 | |
| 		ivc->rx.position = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ensure that counters appear cleared before new state can be
 | |
| 		 * observed.
 | |
| 		 */
 | |
| 		smp_wmb();
 | |
| 
 | |
| 		/*
 | |
| 		 * Move to ESTABLISHED state. We know that the remote end has
 | |
| 		 * already cleared its counters, so it is safe to start
 | |
| 		 * writing/reading on this channel.
 | |
| 		 */
 | |
| 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED;
 | |
| 		tegra_ivc_flush(ivc, ivc->tx.phys + offset);
 | |
| 
 | |
| 		/*
 | |
| 		 * Notify remote end to observe state transition.
 | |
| 		 */
 | |
| 		ivc->notify(ivc, ivc->notify_data);
 | |
| 
 | |
| 	} else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_ACK) {
 | |
| 		offset = offsetof(struct tegra_ivc_header, tx.count);
 | |
| 
 | |
| 		/*
 | |
| 		 * At this point, we have observed the peer to be in either
 | |
| 		 * the ACK or ESTABLISHED state. Next, order observation of
 | |
| 		 * peer state before storing to tx.channel.
 | |
| 		 */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		/*
 | |
| 		 * Move to ESTABLISHED state. We know that we have previously
 | |
| 		 * cleared our counters, and we know that the remote end has
 | |
| 		 * cleared its counters, so it is safe to start writing/reading
 | |
| 		 * on this channel.
 | |
| 		 */
 | |
| 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED;
 | |
| 		tegra_ivc_flush(ivc, ivc->tx.phys + offset);
 | |
| 
 | |
| 		/*
 | |
| 		 * Notify remote end to observe state transition.
 | |
| 		 */
 | |
| 		ivc->notify(ivc, ivc->notify_data);
 | |
| 
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * There is no need to handle any further action. Either the
 | |
| 		 * channel is already fully established, or we are waiting for
 | |
| 		 * the remote end to catch up with our current state. Refer
 | |
| 		 * to the diagram in "IVC State Transition Table" above.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_notified);
 | |
| 
 | |
| size_t tegra_ivc_align(size_t size)
 | |
| {
 | |
| 	return ALIGN(size, TEGRA_IVC_ALIGN);
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_align);
 | |
| 
 | |
| unsigned tegra_ivc_total_queue_size(unsigned queue_size)
 | |
| {
 | |
| 	if (!IS_ALIGNED(queue_size, TEGRA_IVC_ALIGN)) {
 | |
| 		pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
 | |
| 		       __func__, queue_size, TEGRA_IVC_ALIGN);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return queue_size + sizeof(struct tegra_ivc_header);
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_total_queue_size);
 | |
| 
 | |
| static int tegra_ivc_check_params(unsigned long rx, unsigned long tx,
 | |
| 				  unsigned int num_frames, size_t frame_size)
 | |
| {
 | |
| 	BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, tx.count),
 | |
| 				 TEGRA_IVC_ALIGN));
 | |
| 	BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, rx.count),
 | |
| 				 TEGRA_IVC_ALIGN));
 | |
| 	BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct tegra_ivc_header),
 | |
| 				 TEGRA_IVC_ALIGN));
 | |
| 
 | |
| 	if ((uint64_t)num_frames * (uint64_t)frame_size >= 0x100000000UL) {
 | |
| 		pr_err("num_frames * frame_size overflows\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ALIGNED(frame_size, TEGRA_IVC_ALIGN)) {
 | |
| 		pr_err("frame size not adequately aligned: %zu\n", frame_size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The headers must at least be aligned enough for counters
 | |
| 	 * to be accessed atomically.
 | |
| 	 */
 | |
| 	if (!IS_ALIGNED(rx, TEGRA_IVC_ALIGN)) {
 | |
| 		pr_err("IVC channel start not aligned: %#lx\n", rx);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ALIGNED(tx, TEGRA_IVC_ALIGN)) {
 | |
| 		pr_err("IVC channel start not aligned: %#lx\n", tx);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (rx < tx) {
 | |
| 		if (rx + frame_size * num_frames > tx) {
 | |
| 			pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
 | |
| 			       rx, frame_size * num_frames, tx);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (tx + frame_size * num_frames > rx) {
 | |
| 			pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
 | |
| 			       tx, frame_size * num_frames, rx);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int tegra_ivc_init(struct tegra_ivc *ivc, struct device *peer, void *rx,
 | |
| 		   dma_addr_t rx_phys, void *tx, dma_addr_t tx_phys,
 | |
| 		   unsigned int num_frames, size_t frame_size,
 | |
| 		   void (*notify)(struct tegra_ivc *ivc, void *data),
 | |
| 		   void *data)
 | |
| {
 | |
| 	size_t queue_size;
 | |
| 	int err;
 | |
| 
 | |
| 	if (WARN_ON(!ivc || !notify))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * All sizes that can be returned by communication functions should
 | |
| 	 * fit in an int.
 | |
| 	 */
 | |
| 	if (frame_size > INT_MAX)
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	err = tegra_ivc_check_params((unsigned long)rx, (unsigned long)tx,
 | |
| 				     num_frames, frame_size);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	queue_size = tegra_ivc_total_queue_size(num_frames * frame_size);
 | |
| 
 | |
| 	if (peer) {
 | |
| 		ivc->rx.phys = dma_map_single(peer, rx, queue_size,
 | |
| 					      DMA_BIDIRECTIONAL);
 | |
| 		if (dma_mapping_error(peer, ivc->rx.phys))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		ivc->tx.phys = dma_map_single(peer, tx, queue_size,
 | |
| 					      DMA_BIDIRECTIONAL);
 | |
| 		if (dma_mapping_error(peer, ivc->tx.phys)) {
 | |
| 			dma_unmap_single(peer, ivc->rx.phys, queue_size,
 | |
| 					 DMA_BIDIRECTIONAL);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	} else {
 | |
| 		ivc->rx.phys = rx_phys;
 | |
| 		ivc->tx.phys = tx_phys;
 | |
| 	}
 | |
| 
 | |
| 	ivc->rx.channel = rx;
 | |
| 	ivc->tx.channel = tx;
 | |
| 	ivc->peer = peer;
 | |
| 	ivc->notify = notify;
 | |
| 	ivc->notify_data = data;
 | |
| 	ivc->frame_size = frame_size;
 | |
| 	ivc->num_frames = num_frames;
 | |
| 
 | |
| 	/*
 | |
| 	 * These values aren't necessarily correct until the channel has been
 | |
| 	 * reset.
 | |
| 	 */
 | |
| 	ivc->tx.position = 0;
 | |
| 	ivc->rx.position = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_init);
 | |
| 
 | |
| void tegra_ivc_cleanup(struct tegra_ivc *ivc)
 | |
| {
 | |
| 	if (ivc->peer) {
 | |
| 		size_t size = tegra_ivc_total_queue_size(ivc->num_frames *
 | |
| 							 ivc->frame_size);
 | |
| 
 | |
| 		dma_unmap_single(ivc->peer, ivc->rx.phys, size,
 | |
| 				 DMA_BIDIRECTIONAL);
 | |
| 		dma_unmap_single(ivc->peer, ivc->tx.phys, size,
 | |
| 				 DMA_BIDIRECTIONAL);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(tegra_ivc_cleanup);
 |