forked from mirrors/linux
		
	 4cdb562147
			
		
	
	
		4cdb562147
		
	
	
	
	
		
			
			Lochnagar is an evaluation and development board for Cirrus Logic Smart CODEC and Amp devices. It allows the connection of most Cirrus Logic devices on mini-cards, as well as allowing connection of various application processor systems to provide a full evaluation platform. This driver adds support for the hardware monitoring features of the Lochnagar 2 to the hwmon API. Monitoring is provided for the board voltages, currents and temperature supported by the board controller chip. Signed-off-by: Lucas Tanure <tanureal@opensource.cirrus.com> Signed-off-by: Charles Keepax <ckeepax@opensource.cirrus.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net>
		
			
				
	
	
		
			412 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			412 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Lochnagar hardware monitoring features
 | |
|  *
 | |
|  * Copyright (c) 2016-2019 Cirrus Logic, Inc. and
 | |
|  *                         Cirrus Logic International Semiconductor Ltd.
 | |
|  *
 | |
|  * Author: Lucas Tanure <tanureal@opensource.cirrus.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/hwmon.h>
 | |
| #include <linux/hwmon-sysfs.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/mfd/lochnagar.h>
 | |
| #include <linux/mfd/lochnagar2_regs.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/regmap.h>
 | |
| 
 | |
| #define LN2_MAX_NSAMPLE 1023
 | |
| #define LN2_SAMPLE_US   1670
 | |
| 
 | |
| #define LN2_CURR_UNITS  1000
 | |
| #define LN2_VOLT_UNITS  1000
 | |
| #define LN2_TEMP_UNITS  1000
 | |
| #define LN2_PWR_UNITS   1000000
 | |
| 
 | |
| static const char * const lochnagar_chan_names[] = {
 | |
| 	"DBVDD1",
 | |
| 	"1V8 DSP",
 | |
| 	"1V8 CDC",
 | |
| 	"VDDCORE DSP",
 | |
| 	"AVDD 1V8",
 | |
| 	"SYSVDD",
 | |
| 	"VDDCORE CDC",
 | |
| 	"MICVDD",
 | |
| };
 | |
| 
 | |
| struct lochnagar_hwmon {
 | |
| 	struct regmap *regmap;
 | |
| 
 | |
| 	long power_nsamples[ARRAY_SIZE(lochnagar_chan_names)];
 | |
| 
 | |
| 	/* Lock to ensure only a single sensor is read at a time */
 | |
| 	struct mutex sensor_lock;
 | |
| };
 | |
| 
 | |
| enum lochnagar_measure_mode {
 | |
| 	LN2_CURR = 0,
 | |
| 	LN2_VOLT,
 | |
| 	LN2_TEMP,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * float_to_long - Convert ieee754 reading from hardware to an integer
 | |
|  *
 | |
|  * @data: Value read from the hardware
 | |
|  * @precision: Units to multiply up to eg. 1000 = milli, 1000000 = micro
 | |
|  *
 | |
|  * Return: Converted integer reading
 | |
|  *
 | |
|  * Depending on the measurement type the hardware returns an ieee754
 | |
|  * floating point value in either volts, amps or celsius. This function
 | |
|  * will convert that into an integer in a smaller unit such as micro-amps
 | |
|  * or milli-celsius. The hardware does not return NaN, so consideration of
 | |
|  * that is not required.
 | |
|  */
 | |
| static long float_to_long(u32 data, u32 precision)
 | |
| {
 | |
| 	u64 man = data & 0x007FFFFF;
 | |
| 	int exp = ((data & 0x7F800000) >> 23) - 127 - 23;
 | |
| 	bool negative = data & 0x80000000;
 | |
| 	long result;
 | |
| 
 | |
| 	man = (man + (1 << 23)) * precision;
 | |
| 
 | |
| 	if (fls64(man) + exp > (int)sizeof(long) * 8 - 1)
 | |
| 		result = LONG_MAX;
 | |
| 	else if (exp < 0)
 | |
| 		result = (man + (1ull << (-exp - 1))) >> -exp;
 | |
| 	else
 | |
| 		result = man << exp;
 | |
| 
 | |
| 	return negative ? -result : result;
 | |
| }
 | |
| 
 | |
| static int do_measurement(struct regmap *regmap, int chan,
 | |
| 			  enum lochnagar_measure_mode mode, int nsamples)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 	int ret;
 | |
| 
 | |
| 	chan = 1 << (chan + LOCHNAGAR2_IMON_MEASURED_CHANNELS_SHIFT);
 | |
| 
 | |
| 	ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL1,
 | |
| 			   LOCHNAGAR2_IMON_ENA_MASK | chan | mode);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL2, nsamples);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3,
 | |
| 			   LOCHNAGAR2_IMON_CONFIGURE_MASK);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret =  regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL3, val,
 | |
| 					val & LOCHNAGAR2_IMON_DONE_MASK,
 | |
| 					1000, 10000);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3,
 | |
| 			   LOCHNAGAR2_IMON_MEASURE_MASK);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Actual measurement time is ~1.67mS per sample, approximate this
 | |
| 	 * with a 1.5mS per sample msleep and then poll for success up to
 | |
| 	 * ~0.17mS * 1023 (LN2_MAX_NSAMPLES). Normally for smaller values
 | |
| 	 * of nsamples the poll will complete on the first loop due to
 | |
| 	 * other latency in the system.
 | |
| 	 */
 | |
| 	msleep((nsamples * 3) / 2);
 | |
| 
 | |
| 	ret =  regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL3, val,
 | |
| 					val & LOCHNAGAR2_IMON_DONE_MASK,
 | |
| 					5000, 200000);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return regmap_write(regmap, LOCHNAGAR2_IMON_CTRL3, 0);
 | |
| }
 | |
| 
 | |
| static int request_data(struct regmap *regmap, int chan, u32 *data)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_write(regmap, LOCHNAGAR2_IMON_CTRL4,
 | |
| 			   LOCHNAGAR2_IMON_DATA_REQ_MASK |
 | |
| 			   chan << LOCHNAGAR2_IMON_CH_SEL_SHIFT);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret =  regmap_read_poll_timeout(regmap, LOCHNAGAR2_IMON_CTRL4, val,
 | |
| 					val & LOCHNAGAR2_IMON_DATA_RDY_MASK,
 | |
| 					1000, 10000);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regmap_read(regmap, LOCHNAGAR2_IMON_DATA1, &val);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	*data = val << 16;
 | |
| 
 | |
| 	ret = regmap_read(regmap, LOCHNAGAR2_IMON_DATA2, &val);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	*data |= val;
 | |
| 
 | |
| 	return regmap_write(regmap, LOCHNAGAR2_IMON_CTRL4, 0);
 | |
| }
 | |
| 
 | |
| static int read_sensor(struct device *dev, int chan,
 | |
| 		       enum lochnagar_measure_mode mode, int nsamples,
 | |
| 		       unsigned int precision, long *val)
 | |
| {
 | |
| 	struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
 | |
| 	struct regmap *regmap = priv->regmap;
 | |
| 	u32 data;
 | |
| 	int ret;
 | |
| 
 | |
| 	mutex_lock(&priv->sensor_lock);
 | |
| 
 | |
| 	ret = do_measurement(regmap, chan, mode, nsamples);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to perform measurement: %d\n", ret);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	ret = request_data(regmap, chan, &data);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "Failed to read measurement: %d\n", ret);
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	*val = float_to_long(data, precision);
 | |
| 
 | |
| error:
 | |
| 	mutex_unlock(&priv->sensor_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int read_power(struct device *dev, int chan, long *val)
 | |
| {
 | |
| 	struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
 | |
| 	int nsamples = priv->power_nsamples[chan];
 | |
| 	u64 power;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!strcmp("SYSVDD", lochnagar_chan_names[chan])) {
 | |
| 		power = 5 * LN2_PWR_UNITS;
 | |
| 	} else {
 | |
| 		ret = read_sensor(dev, chan, LN2_VOLT, 1, LN2_PWR_UNITS, val);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 
 | |
| 		power = abs(*val);
 | |
| 	}
 | |
| 
 | |
| 	ret = read_sensor(dev, chan, LN2_CURR, nsamples, LN2_PWR_UNITS, val);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	power *= abs(*val);
 | |
| 	power = DIV_ROUND_CLOSEST_ULL(power, LN2_PWR_UNITS);
 | |
| 
 | |
| 	if (power > LONG_MAX)
 | |
| 		*val = LONG_MAX;
 | |
| 	else
 | |
| 		*val = power;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static umode_t lochnagar_is_visible(const void *drvdata,
 | |
| 				    enum hwmon_sensor_types type,
 | |
| 				    u32 attr, int chan)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case hwmon_in:
 | |
| 		if (!strcmp("SYSVDD", lochnagar_chan_names[chan]))
 | |
| 			return 0;
 | |
| 		break;
 | |
| 	case hwmon_power:
 | |
| 		if (attr == hwmon_power_average_interval)
 | |
| 			return 0644;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0444;
 | |
| }
 | |
| 
 | |
| static int lochnagar_read(struct device *dev, enum hwmon_sensor_types type,
 | |
| 			  u32 attr, int chan, long *val)
 | |
| {
 | |
| 	struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
 | |
| 	int interval;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case hwmon_in:
 | |
| 		return read_sensor(dev, chan, LN2_VOLT, 1, LN2_VOLT_UNITS, val);
 | |
| 	case hwmon_curr:
 | |
| 		return read_sensor(dev, chan, LN2_CURR, 1, LN2_CURR_UNITS, val);
 | |
| 	case hwmon_temp:
 | |
| 		return read_sensor(dev, chan, LN2_TEMP, 1, LN2_TEMP_UNITS, val);
 | |
| 	case hwmon_power:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_power_average:
 | |
| 			return read_power(dev, chan, val);
 | |
| 		case hwmon_power_average_interval:
 | |
| 			interval = priv->power_nsamples[chan] * LN2_SAMPLE_US;
 | |
| 			*val = DIV_ROUND_CLOSEST(interval, 1000);
 | |
| 			return 0;
 | |
| 		default:
 | |
| 			return -EOPNOTSUPP;
 | |
| 		}
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int lochnagar_read_string(struct device *dev,
 | |
| 				 enum hwmon_sensor_types type, u32 attr,
 | |
| 				 int chan, const char **str)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case hwmon_in:
 | |
| 	case hwmon_curr:
 | |
| 	case hwmon_power:
 | |
| 		*str = lochnagar_chan_names[chan];
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int lochnagar_write(struct device *dev, enum hwmon_sensor_types type,
 | |
| 			   u32 attr, int chan, long val)
 | |
| {
 | |
| 	struct lochnagar_hwmon *priv = dev_get_drvdata(dev);
 | |
| 
 | |
| 	if (type != hwmon_power || attr != hwmon_power_average_interval)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	val = clamp_t(long, val, 1, (LN2_MAX_NSAMPLE * LN2_SAMPLE_US) / 1000);
 | |
| 	val = DIV_ROUND_CLOSEST(val * 1000, LN2_SAMPLE_US);
 | |
| 
 | |
| 	priv->power_nsamples[chan] = val;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct hwmon_ops lochnagar_ops = {
 | |
| 	.is_visible = lochnagar_is_visible,
 | |
| 	.read = lochnagar_read,
 | |
| 	.read_string = lochnagar_read_string,
 | |
| 	.write = lochnagar_write,
 | |
| };
 | |
| 
 | |
| static const struct hwmon_channel_info *lochnagar_info[] = {
 | |
| 	HWMON_CHANNEL_INFO(temp,  HWMON_T_INPUT),
 | |
| 	HWMON_CHANNEL_INFO(in,    HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 				  HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 				  HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 				  HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 				  HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 				  HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 				  HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 				  HWMON_I_INPUT | HWMON_I_LABEL),
 | |
| 	HWMON_CHANNEL_INFO(curr,  HWMON_C_INPUT | HWMON_C_LABEL,
 | |
| 				  HWMON_C_INPUT | HWMON_C_LABEL,
 | |
| 				  HWMON_C_INPUT | HWMON_C_LABEL,
 | |
| 				  HWMON_C_INPUT | HWMON_C_LABEL,
 | |
| 				  HWMON_C_INPUT | HWMON_C_LABEL,
 | |
| 				  HWMON_C_INPUT | HWMON_C_LABEL,
 | |
| 				  HWMON_C_INPUT | HWMON_C_LABEL,
 | |
| 				  HWMON_C_INPUT | HWMON_C_LABEL),
 | |
| 	HWMON_CHANNEL_INFO(power, HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
 | |
| 				  HWMON_P_LABEL,
 | |
| 				  HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
 | |
| 				  HWMON_P_LABEL,
 | |
| 				  HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
 | |
| 				  HWMON_P_LABEL,
 | |
| 				  HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
 | |
| 				  HWMON_P_LABEL,
 | |
| 				  HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
 | |
| 				  HWMON_P_LABEL,
 | |
| 				  HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
 | |
| 				  HWMON_P_LABEL,
 | |
| 				  HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
 | |
| 				  HWMON_P_LABEL,
 | |
| 				  HWMON_P_AVERAGE | HWMON_P_AVERAGE_INTERVAL |
 | |
| 				  HWMON_P_LABEL),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct hwmon_chip_info lochnagar_chip_info = {
 | |
| 	.ops = &lochnagar_ops,
 | |
| 	.info = lochnagar_info,
 | |
| };
 | |
| 
 | |
| static const struct of_device_id lochnagar_of_match[] = {
 | |
| 	{ .compatible = "cirrus,lochnagar2-hwmon" },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, lochnagar_of_match);
 | |
| 
 | |
| static int lochnagar_hwmon_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct device *hwmon_dev;
 | |
| 	struct lochnagar_hwmon *priv;
 | |
| 	int i;
 | |
| 
 | |
| 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
 | |
| 	if (!priv)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_init(&priv->sensor_lock);
 | |
| 
 | |
| 	priv->regmap = dev_get_regmap(dev->parent, NULL);
 | |
| 	if (!priv->regmap) {
 | |
| 		dev_err(dev, "No register map found\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(priv->power_nsamples); i++)
 | |
| 		priv->power_nsamples[i] = 96;
 | |
| 
 | |
| 	hwmon_dev = devm_hwmon_device_register_with_info(dev, "Lochnagar", priv,
 | |
| 							 &lochnagar_chip_info,
 | |
| 							 NULL);
 | |
| 
 | |
| 	return PTR_ERR_OR_ZERO(hwmon_dev);
 | |
| }
 | |
| 
 | |
| static struct platform_driver lochnagar_hwmon_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "lochnagar-hwmon",
 | |
| 		.of_match_table = lochnagar_of_match,
 | |
| 	},
 | |
| 	.probe = lochnagar_hwmon_probe,
 | |
| };
 | |
| module_platform_driver(lochnagar_hwmon_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Lucas Tanure <tanureal@opensource.cirrus.com>");
 | |
| MODULE_DESCRIPTION("Lochnagar hardware monitoring features");
 | |
| MODULE_LICENSE("GPL");
 |