forked from mirrors/linux
		
	 3be11dbab6
			
		
	
	
		3be11dbab6
		
	
	
	
	
		
			
			This patch fixes 3 style issues warned by checkpatch.pl, - Comment lines are not aligned - Comments use "/*" on subsequent lines - Comment lines use a trailing "*/" Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
		
			
				
	
	
		
			1407 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1407 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Code for working with individual keys, and sorted sets of keys with in a
 | |
|  * btree node
 | |
|  *
 | |
|  * Copyright 2012 Google, Inc.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
 | |
| 
 | |
| #include "util.h"
 | |
| #include "bset.h"
 | |
| 
 | |
| #include <linux/console.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/prefetch.h>
 | |
| 
 | |
| #ifdef CONFIG_BCACHE_DEBUG
 | |
| 
 | |
| void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
 | |
| {
 | |
| 	struct bkey *k, *next;
 | |
| 
 | |
| 	for (k = i->start; k < bset_bkey_last(i); k = next) {
 | |
| 		next = bkey_next(k);
 | |
| 
 | |
| 		pr_err("block %u key %u/%u: ", set,
 | |
| 		       (unsigned int) ((u64 *) k - i->d), i->keys);
 | |
| 
 | |
| 		if (b->ops->key_dump)
 | |
| 			b->ops->key_dump(b, k);
 | |
| 		else
 | |
| 			pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
 | |
| 
 | |
| 		if (next < bset_bkey_last(i) &&
 | |
| 		    bkey_cmp(k, b->ops->is_extents ?
 | |
| 			     &START_KEY(next) : next) > 0)
 | |
| 			pr_err("Key skipped backwards\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void bch_dump_bucket(struct btree_keys *b)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	console_lock();
 | |
| 	for (i = 0; i <= b->nsets; i++)
 | |
| 		bch_dump_bset(b, b->set[i].data,
 | |
| 			      bset_sector_offset(b, b->set[i].data));
 | |
| 	console_unlock();
 | |
| }
 | |
| 
 | |
| int __bch_count_data(struct btree_keys *b)
 | |
| {
 | |
| 	unsigned int ret = 0;
 | |
| 	struct btree_iter iter;
 | |
| 	struct bkey *k;
 | |
| 
 | |
| 	if (b->ops->is_extents)
 | |
| 		for_each_key(b, k, &iter)
 | |
| 			ret += KEY_SIZE(k);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	struct bkey *k, *p = NULL;
 | |
| 	struct btree_iter iter;
 | |
| 	const char *err;
 | |
| 
 | |
| 	for_each_key(b, k, &iter) {
 | |
| 		if (b->ops->is_extents) {
 | |
| 			err = "Keys out of order";
 | |
| 			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
 | |
| 				goto bug;
 | |
| 
 | |
| 			if (bch_ptr_invalid(b, k))
 | |
| 				continue;
 | |
| 
 | |
| 			err =  "Overlapping keys";
 | |
| 			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
 | |
| 				goto bug;
 | |
| 		} else {
 | |
| 			if (bch_ptr_bad(b, k))
 | |
| 				continue;
 | |
| 
 | |
| 			err = "Duplicate keys";
 | |
| 			if (p && !bkey_cmp(p, k))
 | |
| 				goto bug;
 | |
| 		}
 | |
| 		p = k;
 | |
| 	}
 | |
| #if 0
 | |
| 	err = "Key larger than btree node key";
 | |
| 	if (p && bkey_cmp(p, &b->key) > 0)
 | |
| 		goto bug;
 | |
| #endif
 | |
| 	return;
 | |
| bug:
 | |
| 	bch_dump_bucket(b);
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	vprintk(fmt, args);
 | |
| 	va_end(args);
 | |
| 
 | |
| 	panic("bch_check_keys error:  %s:\n", err);
 | |
| }
 | |
| 
 | |
| static void bch_btree_iter_next_check(struct btree_iter *iter)
 | |
| {
 | |
| 	struct bkey *k = iter->data->k, *next = bkey_next(k);
 | |
| 
 | |
| 	if (next < iter->data->end &&
 | |
| 	    bkey_cmp(k, iter->b->ops->is_extents ?
 | |
| 		     &START_KEY(next) : next) > 0) {
 | |
| 		bch_dump_bucket(iter->b);
 | |
| 		panic("Key skipped backwards\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Keylists */
 | |
| 
 | |
| int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
 | |
| {
 | |
| 	size_t oldsize = bch_keylist_nkeys(l);
 | |
| 	size_t newsize = oldsize + u64s;
 | |
| 	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
 | |
| 	uint64_t *new_keys;
 | |
| 
 | |
| 	newsize = roundup_pow_of_two(newsize);
 | |
| 
 | |
| 	if (newsize <= KEYLIST_INLINE ||
 | |
| 	    roundup_pow_of_two(oldsize) == newsize)
 | |
| 		return 0;
 | |
| 
 | |
| 	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
 | |
| 
 | |
| 	if (!new_keys)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!old_keys)
 | |
| 		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
 | |
| 
 | |
| 	l->keys_p = new_keys;
 | |
| 	l->top_p = new_keys + oldsize;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct bkey *bch_keylist_pop(struct keylist *l)
 | |
| {
 | |
| 	struct bkey *k = l->keys;
 | |
| 
 | |
| 	if (k == l->top)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (bkey_next(k) != l->top)
 | |
| 		k = bkey_next(k);
 | |
| 
 | |
| 	return l->top = k;
 | |
| }
 | |
| 
 | |
| void bch_keylist_pop_front(struct keylist *l)
 | |
| {
 | |
| 	l->top_p -= bkey_u64s(l->keys);
 | |
| 
 | |
| 	memmove(l->keys,
 | |
| 		bkey_next(l->keys),
 | |
| 		bch_keylist_bytes(l));
 | |
| }
 | |
| 
 | |
| /* Key/pointer manipulation */
 | |
| 
 | |
| void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
 | |
| 			      unsigned int i)
 | |
| {
 | |
| 	BUG_ON(i > KEY_PTRS(src));
 | |
| 
 | |
| 	/* Only copy the header, key, and one pointer. */
 | |
| 	memcpy(dest, src, 2 * sizeof(uint64_t));
 | |
| 	dest->ptr[0] = src->ptr[i];
 | |
| 	SET_KEY_PTRS(dest, 1);
 | |
| 	/* We didn't copy the checksum so clear that bit. */
 | |
| 	SET_KEY_CSUM(dest, 0);
 | |
| }
 | |
| 
 | |
| bool __bch_cut_front(const struct bkey *where, struct bkey *k)
 | |
| {
 | |
| 	unsigned int i, len = 0;
 | |
| 
 | |
| 	if (bkey_cmp(where, &START_KEY(k)) <= 0)
 | |
| 		return false;
 | |
| 
 | |
| 	if (bkey_cmp(where, k) < 0)
 | |
| 		len = KEY_OFFSET(k) - KEY_OFFSET(where);
 | |
| 	else
 | |
| 		bkey_copy_key(k, where);
 | |
| 
 | |
| 	for (i = 0; i < KEY_PTRS(k); i++)
 | |
| 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
 | |
| 
 | |
| 	BUG_ON(len > KEY_SIZE(k));
 | |
| 	SET_KEY_SIZE(k, len);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool __bch_cut_back(const struct bkey *where, struct bkey *k)
 | |
| {
 | |
| 	unsigned int len = 0;
 | |
| 
 | |
| 	if (bkey_cmp(where, k) >= 0)
 | |
| 		return false;
 | |
| 
 | |
| 	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
 | |
| 
 | |
| 	if (bkey_cmp(where, &START_KEY(k)) > 0)
 | |
| 		len = KEY_OFFSET(where) - KEY_START(k);
 | |
| 
 | |
| 	bkey_copy_key(k, where);
 | |
| 
 | |
| 	BUG_ON(len > KEY_SIZE(k));
 | |
| 	SET_KEY_SIZE(k, len);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* Auxiliary search trees */
 | |
| 
 | |
| /* 32 bits total: */
 | |
| #define BKEY_MID_BITS		3
 | |
| #define BKEY_EXPONENT_BITS	7
 | |
| #define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
 | |
| #define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
 | |
| 
 | |
| struct bkey_float {
 | |
| 	unsigned int	exponent:BKEY_EXPONENT_BITS;
 | |
| 	unsigned int	m:BKEY_MID_BITS;
 | |
| 	unsigned int	mantissa:BKEY_MANTISSA_BITS;
 | |
| } __packed;
 | |
| 
 | |
| /*
 | |
|  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
 | |
|  * it used to be 64, but I realized the lookup code would touch slightly less
 | |
|  * memory if it was 128.
 | |
|  *
 | |
|  * It definites the number of bytes (in struct bset) per struct bkey_float in
 | |
|  * the auxiliar search tree - when we're done searching the bset_float tree we
 | |
|  * have this many bytes left that we do a linear search over.
 | |
|  *
 | |
|  * Since (after level 5) every level of the bset_tree is on a new cacheline,
 | |
|  * we're touching one fewer cacheline in the bset tree in exchange for one more
 | |
|  * cacheline in the linear search - but the linear search might stop before it
 | |
|  * gets to the second cacheline.
 | |
|  */
 | |
| 
 | |
| #define BSET_CACHELINE		128
 | |
| 
 | |
| /* Space required for the btree node keys */
 | |
| static inline size_t btree_keys_bytes(struct btree_keys *b)
 | |
| {
 | |
| 	return PAGE_SIZE << b->page_order;
 | |
| }
 | |
| 
 | |
| static inline size_t btree_keys_cachelines(struct btree_keys *b)
 | |
| {
 | |
| 	return btree_keys_bytes(b) / BSET_CACHELINE;
 | |
| }
 | |
| 
 | |
| /* Space required for the auxiliary search trees */
 | |
| static inline size_t bset_tree_bytes(struct btree_keys *b)
 | |
| {
 | |
| 	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
 | |
| }
 | |
| 
 | |
| /* Space required for the prev pointers */
 | |
| static inline size_t bset_prev_bytes(struct btree_keys *b)
 | |
| {
 | |
| 	return btree_keys_cachelines(b) * sizeof(uint8_t);
 | |
| }
 | |
| 
 | |
| /* Memory allocation */
 | |
| 
 | |
| void bch_btree_keys_free(struct btree_keys *b)
 | |
| {
 | |
| 	struct bset_tree *t = b->set;
 | |
| 
 | |
| 	if (bset_prev_bytes(b) < PAGE_SIZE)
 | |
| 		kfree(t->prev);
 | |
| 	else
 | |
| 		free_pages((unsigned long) t->prev,
 | |
| 			   get_order(bset_prev_bytes(b)));
 | |
| 
 | |
| 	if (bset_tree_bytes(b) < PAGE_SIZE)
 | |
| 		kfree(t->tree);
 | |
| 	else
 | |
| 		free_pages((unsigned long) t->tree,
 | |
| 			   get_order(bset_tree_bytes(b)));
 | |
| 
 | |
| 	free_pages((unsigned long) t->data, b->page_order);
 | |
| 
 | |
| 	t->prev = NULL;
 | |
| 	t->tree = NULL;
 | |
| 	t->data = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(bch_btree_keys_free);
 | |
| 
 | |
| int bch_btree_keys_alloc(struct btree_keys *b,
 | |
| 			 unsigned int page_order,
 | |
| 			 gfp_t gfp)
 | |
| {
 | |
| 	struct bset_tree *t = b->set;
 | |
| 
 | |
| 	BUG_ON(t->data);
 | |
| 
 | |
| 	b->page_order = page_order;
 | |
| 
 | |
| 	t->data = (void *) __get_free_pages(gfp, b->page_order);
 | |
| 	if (!t->data)
 | |
| 		goto err;
 | |
| 
 | |
| 	t->tree = bset_tree_bytes(b) < PAGE_SIZE
 | |
| 		? kmalloc(bset_tree_bytes(b), gfp)
 | |
| 		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
 | |
| 	if (!t->tree)
 | |
| 		goto err;
 | |
| 
 | |
| 	t->prev = bset_prev_bytes(b) < PAGE_SIZE
 | |
| 		? kmalloc(bset_prev_bytes(b), gfp)
 | |
| 		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
 | |
| 	if (!t->prev)
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	bch_btree_keys_free(b);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| EXPORT_SYMBOL(bch_btree_keys_alloc);
 | |
| 
 | |
| void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
 | |
| 			 bool *expensive_debug_checks)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	b->ops = ops;
 | |
| 	b->expensive_debug_checks = expensive_debug_checks;
 | |
| 	b->nsets = 0;
 | |
| 	b->last_set_unwritten = 0;
 | |
| 
 | |
| 	/* XXX: shouldn't be needed */
 | |
| 	for (i = 0; i < MAX_BSETS; i++)
 | |
| 		b->set[i].size = 0;
 | |
| 	/*
 | |
| 	 * Second loop starts at 1 because b->keys[0]->data is the memory we
 | |
| 	 * allocated
 | |
| 	 */
 | |
| 	for (i = 1; i < MAX_BSETS; i++)
 | |
| 		b->set[i].data = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(bch_btree_keys_init);
 | |
| 
 | |
| /* Binary tree stuff for auxiliary search trees */
 | |
| 
 | |
| /*
 | |
|  * return array index next to j when does in-order traverse
 | |
|  * of a binary tree which is stored in a linear array
 | |
|  */
 | |
| static unsigned int inorder_next(unsigned int j, unsigned int size)
 | |
| {
 | |
| 	if (j * 2 + 1 < size) {
 | |
| 		j = j * 2 + 1;
 | |
| 
 | |
| 		while (j * 2 < size)
 | |
| 			j *= 2;
 | |
| 	} else
 | |
| 		j >>= ffz(j) + 1;
 | |
| 
 | |
| 	return j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * return array index previous to j when does in-order traverse
 | |
|  * of a binary tree which is stored in a linear array
 | |
|  */
 | |
| static unsigned int inorder_prev(unsigned int j, unsigned int size)
 | |
| {
 | |
| 	if (j * 2 < size) {
 | |
| 		j = j * 2;
 | |
| 
 | |
| 		while (j * 2 + 1 < size)
 | |
| 			j = j * 2 + 1;
 | |
| 	} else
 | |
| 		j >>= ffs(j);
 | |
| 
 | |
| 	return j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * I have no idea why this code works... and I'm the one who wrote it
 | |
|  *
 | |
|  * However, I do know what it does:
 | |
|  * Given a binary tree constructed in an array (i.e. how you normally implement
 | |
|  * a heap), it converts a node in the tree - referenced by array index - to the
 | |
|  * index it would have if you did an inorder traversal.
 | |
|  *
 | |
|  * Also tested for every j, size up to size somewhere around 6 million.
 | |
|  *
 | |
|  * The binary tree starts at array index 1, not 0
 | |
|  * extra is a function of size:
 | |
|  *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
 | |
|  */
 | |
| static unsigned int __to_inorder(unsigned int j,
 | |
| 				  unsigned int size,
 | |
| 				  unsigned int extra)
 | |
| {
 | |
| 	unsigned int b = fls(j);
 | |
| 	unsigned int shift = fls(size - 1) - b;
 | |
| 
 | |
| 	j  ^= 1U << (b - 1);
 | |
| 	j <<= 1;
 | |
| 	j  |= 1;
 | |
| 	j <<= shift;
 | |
| 
 | |
| 	if (j > extra)
 | |
| 		j -= (j - extra) >> 1;
 | |
| 
 | |
| 	return j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the cacheline index in bset_tree->data, where j is index
 | |
|  * from a linear array which stores the auxiliar binary tree
 | |
|  */
 | |
| static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
 | |
| {
 | |
| 	return __to_inorder(j, t->size, t->extra);
 | |
| }
 | |
| 
 | |
| static unsigned int __inorder_to_tree(unsigned int j,
 | |
| 				      unsigned int size,
 | |
| 				      unsigned int extra)
 | |
| {
 | |
| 	unsigned int shift;
 | |
| 
 | |
| 	if (j > extra)
 | |
| 		j += j - extra;
 | |
| 
 | |
| 	shift = ffs(j);
 | |
| 
 | |
| 	j >>= shift;
 | |
| 	j  |= roundup_pow_of_two(size) >> shift;
 | |
| 
 | |
| 	return j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return an index from a linear array which stores the auxiliar binary
 | |
|  * tree, j is the cacheline index of t->data.
 | |
|  */
 | |
| static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
 | |
| {
 | |
| 	return __inorder_to_tree(j, t->size, t->extra);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| void inorder_test(void)
 | |
| {
 | |
| 	unsigned long done = 0;
 | |
| 	ktime_t start = ktime_get();
 | |
| 
 | |
| 	for (unsigned int size = 2;
 | |
| 	     size < 65536000;
 | |
| 	     size++) {
 | |
| 		unsigned int extra =
 | |
| 			(size - rounddown_pow_of_two(size - 1)) << 1;
 | |
| 		unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
 | |
| 
 | |
| 		if (!(size % 4096))
 | |
| 			pr_notice("loop %u, %llu per us\n", size,
 | |
| 			       done / ktime_us_delta(ktime_get(), start));
 | |
| 
 | |
| 		while (1) {
 | |
| 			if (__inorder_to_tree(i, size, extra) != j)
 | |
| 				panic("size %10u j %10u i %10u", size, j, i);
 | |
| 
 | |
| 			if (__to_inorder(j, size, extra) != i)
 | |
| 				panic("size %10u j %10u i %10u", size, j, i);
 | |
| 
 | |
| 			if (j == rounddown_pow_of_two(size) - 1)
 | |
| 				break;
 | |
| 
 | |
| 			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
 | |
| 
 | |
| 			j = inorder_next(j, size);
 | |
| 			i++;
 | |
| 		}
 | |
| 
 | |
| 		done += size - 1;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Cacheline/offset <-> bkey pointer arithmetic:
 | |
|  *
 | |
|  * t->tree is a binary search tree in an array; each node corresponds to a key
 | |
|  * in one cacheline in t->set (BSET_CACHELINE bytes).
 | |
|  *
 | |
|  * This means we don't have to store the full index of the key that a node in
 | |
|  * the binary tree points to; to_inorder() gives us the cacheline, and then
 | |
|  * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
 | |
|  *
 | |
|  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
 | |
|  * make this work.
 | |
|  *
 | |
|  * To construct the bfloat for an arbitrary key we need to know what the key
 | |
|  * immediately preceding it is: we have to check if the two keys differ in the
 | |
|  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
 | |
|  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
 | |
|  */
 | |
| 
 | |
| static struct bkey *cacheline_to_bkey(struct bset_tree *t,
 | |
| 				      unsigned int cacheline,
 | |
| 				      unsigned int offset)
 | |
| {
 | |
| 	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
 | |
| }
 | |
| 
 | |
| static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
 | |
| {
 | |
| 	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
 | |
| }
 | |
| 
 | |
| static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
 | |
| 					 unsigned int cacheline,
 | |
| 					 struct bkey *k)
 | |
| {
 | |
| 	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
 | |
| }
 | |
| 
 | |
| static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
 | |
| {
 | |
| 	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
 | |
| }
 | |
| 
 | |
| static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
 | |
| {
 | |
| 	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For the write set - the one we're currently inserting keys into - we don't
 | |
|  * maintain a full search tree, we just keep a simple lookup table in t->prev.
 | |
|  */
 | |
| static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
 | |
| {
 | |
| 	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
 | |
| }
 | |
| 
 | |
| static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
 | |
| {
 | |
| 	low >>= shift;
 | |
| 	low  |= (high << 1) << (63U - shift);
 | |
| 	return low;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate mantissa value for struct bkey_float.
 | |
|  * If most significant bit of f->exponent is not set, then
 | |
|  *  - f->exponent >> 6 is 0
 | |
|  *  - p[0] points to bkey->low
 | |
|  *  - p[-1] borrows bits from KEY_INODE() of bkey->high
 | |
|  * if most isgnificant bits of f->exponent is set, then
 | |
|  *  - f->exponent >> 6 is 1
 | |
|  *  - p[0] points to bits from KEY_INODE() of bkey->high
 | |
|  *  - p[-1] points to other bits from KEY_INODE() of
 | |
|  *    bkey->high too.
 | |
|  * See make_bfloat() to check when most significant bit of f->exponent
 | |
|  * is set or not.
 | |
|  */
 | |
| static inline unsigned int bfloat_mantissa(const struct bkey *k,
 | |
| 				       struct bkey_float *f)
 | |
| {
 | |
| 	const uint64_t *p = &k->low - (f->exponent >> 6);
 | |
| 
 | |
| 	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
 | |
| }
 | |
| 
 | |
| static void make_bfloat(struct bset_tree *t, unsigned int j)
 | |
| {
 | |
| 	struct bkey_float *f = &t->tree[j];
 | |
| 	struct bkey *m = tree_to_bkey(t, j);
 | |
| 	struct bkey *p = tree_to_prev_bkey(t, j);
 | |
| 
 | |
| 	struct bkey *l = is_power_of_2(j)
 | |
| 		? t->data->start
 | |
| 		: tree_to_prev_bkey(t, j >> ffs(j));
 | |
| 
 | |
| 	struct bkey *r = is_power_of_2(j + 1)
 | |
| 		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
 | |
| 		: tree_to_bkey(t, j >> (ffz(j) + 1));
 | |
| 
 | |
| 	BUG_ON(m < l || m > r);
 | |
| 	BUG_ON(bkey_next(p) != m);
 | |
| 
 | |
| 	/*
 | |
| 	 * If l and r have different KEY_INODE values (different backing
 | |
| 	 * device), f->exponent records how many least significant bits
 | |
| 	 * are different in KEY_INODE values and sets most significant
 | |
| 	 * bits to 1 (by +64).
 | |
| 	 * If l and r have same KEY_INODE value, f->exponent records
 | |
| 	 * how many different bits in least significant bits of bkey->low.
 | |
| 	 * See bfloat_mantiss() how the most significant bit of
 | |
| 	 * f->exponent is used to calculate bfloat mantissa value.
 | |
| 	 */
 | |
| 	if (KEY_INODE(l) != KEY_INODE(r))
 | |
| 		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
 | |
| 	else
 | |
| 		f->exponent = fls64(r->low ^ l->low);
 | |
| 
 | |
| 	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setting f->exponent = 127 flags this node as failed, and causes the
 | |
| 	 * lookup code to fall back to comparing against the original key.
 | |
| 	 */
 | |
| 
 | |
| 	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
 | |
| 		f->mantissa = bfloat_mantissa(m, f) - 1;
 | |
| 	else
 | |
| 		f->exponent = 127;
 | |
| }
 | |
| 
 | |
| static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
 | |
| {
 | |
| 	if (t != b->set) {
 | |
| 		unsigned int j = roundup(t[-1].size,
 | |
| 				     64 / sizeof(struct bkey_float));
 | |
| 
 | |
| 		t->tree = t[-1].tree + j;
 | |
| 		t->prev = t[-1].prev + j;
 | |
| 	}
 | |
| 
 | |
| 	while (t < b->set + MAX_BSETS)
 | |
| 		t++->size = 0;
 | |
| }
 | |
| 
 | |
| static void bch_bset_build_unwritten_tree(struct btree_keys *b)
 | |
| {
 | |
| 	struct bset_tree *t = bset_tree_last(b);
 | |
| 
 | |
| 	BUG_ON(b->last_set_unwritten);
 | |
| 	b->last_set_unwritten = 1;
 | |
| 
 | |
| 	bset_alloc_tree(b, t);
 | |
| 
 | |
| 	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
 | |
| 		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
 | |
| 		t->size = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
 | |
| {
 | |
| 	if (i != b->set->data) {
 | |
| 		b->set[++b->nsets].data = i;
 | |
| 		i->seq = b->set->data->seq;
 | |
| 	} else
 | |
| 		get_random_bytes(&i->seq, sizeof(uint64_t));
 | |
| 
 | |
| 	i->magic	= magic;
 | |
| 	i->version	= 0;
 | |
| 	i->keys		= 0;
 | |
| 
 | |
| 	bch_bset_build_unwritten_tree(b);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_bset_init_next);
 | |
| 
 | |
| /*
 | |
|  * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
 | |
|  * accelerate bkey search in a btree node (pointed by bset_tree->data in
 | |
|  * memory). After search in the auxiliar tree by calling bset_search_tree(),
 | |
|  * a struct bset_search_iter is returned which indicates range [l, r] from
 | |
|  * bset_tree->data where the searching bkey might be inside. Then a followed
 | |
|  * linear comparison does the exact search, see __bch_bset_search() for how
 | |
|  * the auxiliary tree is used.
 | |
|  */
 | |
| void bch_bset_build_written_tree(struct btree_keys *b)
 | |
| {
 | |
| 	struct bset_tree *t = bset_tree_last(b);
 | |
| 	struct bkey *prev = NULL, *k = t->data->start;
 | |
| 	unsigned int j, cacheline = 1;
 | |
| 
 | |
| 	b->last_set_unwritten = 0;
 | |
| 
 | |
| 	bset_alloc_tree(b, t);
 | |
| 
 | |
| 	t->size = min_t(unsigned int,
 | |
| 			bkey_to_cacheline(t, bset_bkey_last(t->data)),
 | |
| 			b->set->tree + btree_keys_cachelines(b) - t->tree);
 | |
| 
 | |
| 	if (t->size < 2) {
 | |
| 		t->size = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
 | |
| 
 | |
| 	/* First we figure out where the first key in each cacheline is */
 | |
| 	for (j = inorder_next(0, t->size);
 | |
| 	     j;
 | |
| 	     j = inorder_next(j, t->size)) {
 | |
| 		while (bkey_to_cacheline(t, k) < cacheline)
 | |
| 			prev = k, k = bkey_next(k);
 | |
| 
 | |
| 		t->prev[j] = bkey_u64s(prev);
 | |
| 		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
 | |
| 	}
 | |
| 
 | |
| 	while (bkey_next(k) != bset_bkey_last(t->data))
 | |
| 		k = bkey_next(k);
 | |
| 
 | |
| 	t->end = *k;
 | |
| 
 | |
| 	/* Then we build the tree */
 | |
| 	for (j = inorder_next(0, t->size);
 | |
| 	     j;
 | |
| 	     j = inorder_next(j, t->size))
 | |
| 		make_bfloat(t, j);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_bset_build_written_tree);
 | |
| 
 | |
| /* Insert */
 | |
| 
 | |
| void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
 | |
| {
 | |
| 	struct bset_tree *t;
 | |
| 	unsigned int inorder, j = 1;
 | |
| 
 | |
| 	for (t = b->set; t <= bset_tree_last(b); t++)
 | |
| 		if (k < bset_bkey_last(t->data))
 | |
| 			goto found_set;
 | |
| 
 | |
| 	BUG();
 | |
| found_set:
 | |
| 	if (!t->size || !bset_written(b, t))
 | |
| 		return;
 | |
| 
 | |
| 	inorder = bkey_to_cacheline(t, k);
 | |
| 
 | |
| 	if (k == t->data->start)
 | |
| 		goto fix_left;
 | |
| 
 | |
| 	if (bkey_next(k) == bset_bkey_last(t->data)) {
 | |
| 		t->end = *k;
 | |
| 		goto fix_right;
 | |
| 	}
 | |
| 
 | |
| 	j = inorder_to_tree(inorder, t);
 | |
| 
 | |
| 	if (j &&
 | |
| 	    j < t->size &&
 | |
| 	    k == tree_to_bkey(t, j))
 | |
| fix_left:	do {
 | |
| 			make_bfloat(t, j);
 | |
| 			j = j * 2;
 | |
| 		} while (j < t->size);
 | |
| 
 | |
| 	j = inorder_to_tree(inorder + 1, t);
 | |
| 
 | |
| 	if (j &&
 | |
| 	    j < t->size &&
 | |
| 	    k == tree_to_prev_bkey(t, j))
 | |
| fix_right:	do {
 | |
| 			make_bfloat(t, j);
 | |
| 			j = j * 2 + 1;
 | |
| 		} while (j < t->size);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
 | |
| 
 | |
| static void bch_bset_fix_lookup_table(struct btree_keys *b,
 | |
| 				      struct bset_tree *t,
 | |
| 				      struct bkey *k)
 | |
| {
 | |
| 	unsigned int shift = bkey_u64s(k);
 | |
| 	unsigned int j = bkey_to_cacheline(t, k);
 | |
| 
 | |
| 	/* We're getting called from btree_split() or btree_gc, just bail out */
 | |
| 	if (!t->size)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * k is the key we just inserted; we need to find the entry in the
 | |
| 	 * lookup table for the first key that is strictly greater than k:
 | |
| 	 * it's either k's cacheline or the next one
 | |
| 	 */
 | |
| 	while (j < t->size &&
 | |
| 	       table_to_bkey(t, j) <= k)
 | |
| 		j++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust all the lookup table entries, and find a new key for any that
 | |
| 	 * have gotten too big
 | |
| 	 */
 | |
| 	for (; j < t->size; j++) {
 | |
| 		t->prev[j] += shift;
 | |
| 
 | |
| 		if (t->prev[j] > 7) {
 | |
| 			k = table_to_bkey(t, j - 1);
 | |
| 
 | |
| 			while (k < cacheline_to_bkey(t, j, 0))
 | |
| 				k = bkey_next(k);
 | |
| 
 | |
| 			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
 | |
| 		return;
 | |
| 
 | |
| 	/* Possibly add a new entry to the end of the lookup table */
 | |
| 
 | |
| 	for (k = table_to_bkey(t, t->size - 1);
 | |
| 	     k != bset_bkey_last(t->data);
 | |
| 	     k = bkey_next(k))
 | |
| 		if (t->size == bkey_to_cacheline(t, k)) {
 | |
| 			t->prev[t->size] =
 | |
| 				bkey_to_cacheline_offset(t, t->size, k);
 | |
| 			t->size++;
 | |
| 		}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tries to merge l and r: l should be lower than r
 | |
|  * Returns true if we were able to merge. If we did merge, l will be the merged
 | |
|  * key, r will be untouched.
 | |
|  */
 | |
| bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
 | |
| {
 | |
| 	if (!b->ops->key_merge)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Generic header checks
 | |
| 	 * Assumes left and right are in order
 | |
| 	 * Left and right must be exactly aligned
 | |
| 	 */
 | |
| 	if (!bch_bkey_equal_header(l, r) ||
 | |
| 	     bkey_cmp(l, &START_KEY(r)))
 | |
| 		return false;
 | |
| 
 | |
| 	return b->ops->key_merge(b, l, r);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_bkey_try_merge);
 | |
| 
 | |
| void bch_bset_insert(struct btree_keys *b, struct bkey *where,
 | |
| 		     struct bkey *insert)
 | |
| {
 | |
| 	struct bset_tree *t = bset_tree_last(b);
 | |
| 
 | |
| 	BUG_ON(!b->last_set_unwritten);
 | |
| 	BUG_ON(bset_byte_offset(b, t->data) +
 | |
| 	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
 | |
| 	       PAGE_SIZE << b->page_order);
 | |
| 
 | |
| 	memmove((uint64_t *) where + bkey_u64s(insert),
 | |
| 		where,
 | |
| 		(void *) bset_bkey_last(t->data) - (void *) where);
 | |
| 
 | |
| 	t->data->keys += bkey_u64s(insert);
 | |
| 	bkey_copy(where, insert);
 | |
| 	bch_bset_fix_lookup_table(b, t, where);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_bset_insert);
 | |
| 
 | |
| unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
 | |
| 			      struct bkey *replace_key)
 | |
| {
 | |
| 	unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
 | |
| 	struct bset *i = bset_tree_last(b)->data;
 | |
| 	struct bkey *m, *prev = NULL;
 | |
| 	struct btree_iter iter;
 | |
| 
 | |
| 	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
 | |
| 
 | |
| 	m = bch_btree_iter_init(b, &iter, b->ops->is_extents
 | |
| 				? PRECEDING_KEY(&START_KEY(k))
 | |
| 				: PRECEDING_KEY(k));
 | |
| 
 | |
| 	if (b->ops->insert_fixup(b, k, &iter, replace_key))
 | |
| 		return status;
 | |
| 
 | |
| 	status = BTREE_INSERT_STATUS_INSERT;
 | |
| 
 | |
| 	while (m != bset_bkey_last(i) &&
 | |
| 	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
 | |
| 		prev = m, m = bkey_next(m);
 | |
| 
 | |
| 	/* prev is in the tree, if we merge we're done */
 | |
| 	status = BTREE_INSERT_STATUS_BACK_MERGE;
 | |
| 	if (prev &&
 | |
| 	    bch_bkey_try_merge(b, prev, k))
 | |
| 		goto merged;
 | |
| #if 0
 | |
| 	status = BTREE_INSERT_STATUS_OVERWROTE;
 | |
| 	if (m != bset_bkey_last(i) &&
 | |
| 	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
 | |
| 		goto copy;
 | |
| #endif
 | |
| 	status = BTREE_INSERT_STATUS_FRONT_MERGE;
 | |
| 	if (m != bset_bkey_last(i) &&
 | |
| 	    bch_bkey_try_merge(b, k, m))
 | |
| 		goto copy;
 | |
| 
 | |
| 	bch_bset_insert(b, m, k);
 | |
| copy:	bkey_copy(m, k);
 | |
| merged:
 | |
| 	return status;
 | |
| }
 | |
| EXPORT_SYMBOL(bch_btree_insert_key);
 | |
| 
 | |
| /* Lookup */
 | |
| 
 | |
| struct bset_search_iter {
 | |
| 	struct bkey *l, *r;
 | |
| };
 | |
| 
 | |
| static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
 | |
| 						     const struct bkey *search)
 | |
| {
 | |
| 	unsigned int li = 0, ri = t->size;
 | |
| 
 | |
| 	while (li + 1 != ri) {
 | |
| 		unsigned int m = (li + ri) >> 1;
 | |
| 
 | |
| 		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
 | |
| 			ri = m;
 | |
| 		else
 | |
| 			li = m;
 | |
| 	}
 | |
| 
 | |
| 	return (struct bset_search_iter) {
 | |
| 		table_to_bkey(t, li),
 | |
| 		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
 | |
| 	};
 | |
| }
 | |
| 
 | |
| static struct bset_search_iter bset_search_tree(struct bset_tree *t,
 | |
| 						const struct bkey *search)
 | |
| {
 | |
| 	struct bkey *l, *r;
 | |
| 	struct bkey_float *f;
 | |
| 	unsigned int inorder, j, n = 1;
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * A bit trick here.
 | |
| 		 * If p < t->size, (int)(p - t->size) is a minus value and
 | |
| 		 * the most significant bit is set, right shifting 31 bits
 | |
| 		 * gets 1. If p >= t->size, the most significant bit is
 | |
| 		 * not set, right shifting 31 bits gets 0.
 | |
| 		 * So the following 2 lines equals to
 | |
| 		 *	if (p >= t->size)
 | |
| 		 *		p = 0;
 | |
| 		 * but a branch instruction is avoided.
 | |
| 		 */
 | |
| 		unsigned int p = n << 4;
 | |
| 
 | |
| 		p &= ((int) (p - t->size)) >> 31;
 | |
| 
 | |
| 		prefetch(&t->tree[p]);
 | |
| 
 | |
| 		j = n;
 | |
| 		f = &t->tree[j];
 | |
| 
 | |
| 		/*
 | |
| 		 * Similar bit trick, use subtract operation to avoid a branch
 | |
| 		 * instruction.
 | |
| 		 *
 | |
| 		 * n = (f->mantissa > bfloat_mantissa())
 | |
| 		 *	? j * 2
 | |
| 		 *	: j * 2 + 1;
 | |
| 		 *
 | |
| 		 * We need to subtract 1 from f->mantissa for the sign bit trick
 | |
| 		 * to work  - that's done in make_bfloat()
 | |
| 		 */
 | |
| 		if (likely(f->exponent != 127))
 | |
| 			n = j * 2 + (((unsigned int)
 | |
| 				      (f->mantissa -
 | |
| 				       bfloat_mantissa(search, f))) >> 31);
 | |
| 		else
 | |
| 			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
 | |
| 				? j * 2
 | |
| 				: j * 2 + 1;
 | |
| 	} while (n < t->size);
 | |
| 
 | |
| 	inorder = to_inorder(j, t);
 | |
| 
 | |
| 	/*
 | |
| 	 * n would have been the node we recursed to - the low bit tells us if
 | |
| 	 * we recursed left or recursed right.
 | |
| 	 */
 | |
| 	if (n & 1) {
 | |
| 		l = cacheline_to_bkey(t, inorder, f->m);
 | |
| 
 | |
| 		if (++inorder != t->size) {
 | |
| 			f = &t->tree[inorder_next(j, t->size)];
 | |
| 			r = cacheline_to_bkey(t, inorder, f->m);
 | |
| 		} else
 | |
| 			r = bset_bkey_last(t->data);
 | |
| 	} else {
 | |
| 		r = cacheline_to_bkey(t, inorder, f->m);
 | |
| 
 | |
| 		if (--inorder) {
 | |
| 			f = &t->tree[inorder_prev(j, t->size)];
 | |
| 			l = cacheline_to_bkey(t, inorder, f->m);
 | |
| 		} else
 | |
| 			l = t->data->start;
 | |
| 	}
 | |
| 
 | |
| 	return (struct bset_search_iter) {l, r};
 | |
| }
 | |
| 
 | |
| struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
 | |
| 			       const struct bkey *search)
 | |
| {
 | |
| 	struct bset_search_iter i;
 | |
| 
 | |
| 	/*
 | |
| 	 * First, we search for a cacheline, then lastly we do a linear search
 | |
| 	 * within that cacheline.
 | |
| 	 *
 | |
| 	 * To search for the cacheline, there's three different possibilities:
 | |
| 	 *  * The set is too small to have a search tree, so we just do a linear
 | |
| 	 *    search over the whole set.
 | |
| 	 *  * The set is the one we're currently inserting into; keeping a full
 | |
| 	 *    auxiliary search tree up to date would be too expensive, so we
 | |
| 	 *    use a much simpler lookup table to do a binary search -
 | |
| 	 *    bset_search_write_set().
 | |
| 	 *  * Or we use the auxiliary search tree we constructed earlier -
 | |
| 	 *    bset_search_tree()
 | |
| 	 */
 | |
| 
 | |
| 	if (unlikely(!t->size)) {
 | |
| 		i.l = t->data->start;
 | |
| 		i.r = bset_bkey_last(t->data);
 | |
| 	} else if (bset_written(b, t)) {
 | |
| 		/*
 | |
| 		 * Each node in the auxiliary search tree covers a certain range
 | |
| 		 * of bits, and keys above and below the set it covers might
 | |
| 		 * differ outside those bits - so we have to special case the
 | |
| 		 * start and end - handle that here:
 | |
| 		 */
 | |
| 
 | |
| 		if (unlikely(bkey_cmp(search, &t->end) >= 0))
 | |
| 			return bset_bkey_last(t->data);
 | |
| 
 | |
| 		if (unlikely(bkey_cmp(search, t->data->start) < 0))
 | |
| 			return t->data->start;
 | |
| 
 | |
| 		i = bset_search_tree(t, search);
 | |
| 	} else {
 | |
| 		BUG_ON(!b->nsets &&
 | |
| 		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
 | |
| 
 | |
| 		i = bset_search_write_set(t, search);
 | |
| 	}
 | |
| 
 | |
| 	if (btree_keys_expensive_checks(b)) {
 | |
| 		BUG_ON(bset_written(b, t) &&
 | |
| 		       i.l != t->data->start &&
 | |
| 		       bkey_cmp(tree_to_prev_bkey(t,
 | |
| 			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
 | |
| 				search) > 0);
 | |
| 
 | |
| 		BUG_ON(i.r != bset_bkey_last(t->data) &&
 | |
| 		       bkey_cmp(i.r, search) <= 0);
 | |
| 	}
 | |
| 
 | |
| 	while (likely(i.l != i.r) &&
 | |
| 	       bkey_cmp(i.l, search) <= 0)
 | |
| 		i.l = bkey_next(i.l);
 | |
| 
 | |
| 	return i.l;
 | |
| }
 | |
| EXPORT_SYMBOL(__bch_bset_search);
 | |
| 
 | |
| /* Btree iterator */
 | |
| 
 | |
| typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
 | |
| 				 struct btree_iter_set);
 | |
| 
 | |
| static inline bool btree_iter_cmp(struct btree_iter_set l,
 | |
| 				  struct btree_iter_set r)
 | |
| {
 | |
| 	return bkey_cmp(l.k, r.k) > 0;
 | |
| }
 | |
| 
 | |
| static inline bool btree_iter_end(struct btree_iter *iter)
 | |
| {
 | |
| 	return !iter->used;
 | |
| }
 | |
| 
 | |
| void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
 | |
| 			 struct bkey *end)
 | |
| {
 | |
| 	if (k != end)
 | |
| 		BUG_ON(!heap_add(iter,
 | |
| 				 ((struct btree_iter_set) { k, end }),
 | |
| 				 btree_iter_cmp));
 | |
| }
 | |
| 
 | |
| static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
 | |
| 					  struct btree_iter *iter,
 | |
| 					  struct bkey *search,
 | |
| 					  struct bset_tree *start)
 | |
| {
 | |
| 	struct bkey *ret = NULL;
 | |
| 
 | |
| 	iter->size = ARRAY_SIZE(iter->data);
 | |
| 	iter->used = 0;
 | |
| 
 | |
| #ifdef CONFIG_BCACHE_DEBUG
 | |
| 	iter->b = b;
 | |
| #endif
 | |
| 
 | |
| 	for (; start <= bset_tree_last(b); start++) {
 | |
| 		ret = bch_bset_search(b, start, search);
 | |
| 		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct bkey *bch_btree_iter_init(struct btree_keys *b,
 | |
| 				 struct btree_iter *iter,
 | |
| 				 struct bkey *search)
 | |
| {
 | |
| 	return __bch_btree_iter_init(b, iter, search, b->set);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_btree_iter_init);
 | |
| 
 | |
| static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
 | |
| 						 btree_iter_cmp_fn *cmp)
 | |
| {
 | |
| 	struct btree_iter_set b __maybe_unused;
 | |
| 	struct bkey *ret = NULL;
 | |
| 
 | |
| 	if (!btree_iter_end(iter)) {
 | |
| 		bch_btree_iter_next_check(iter);
 | |
| 
 | |
| 		ret = iter->data->k;
 | |
| 		iter->data->k = bkey_next(iter->data->k);
 | |
| 
 | |
| 		if (iter->data->k > iter->data->end) {
 | |
| 			WARN_ONCE(1, "bset was corrupt!\n");
 | |
| 			iter->data->k = iter->data->end;
 | |
| 		}
 | |
| 
 | |
| 		if (iter->data->k == iter->data->end)
 | |
| 			heap_pop(iter, b, cmp);
 | |
| 		else
 | |
| 			heap_sift(iter, 0, cmp);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct bkey *bch_btree_iter_next(struct btree_iter *iter)
 | |
| {
 | |
| 	return __bch_btree_iter_next(iter, btree_iter_cmp);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL(bch_btree_iter_next);
 | |
| 
 | |
| struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
 | |
| 					struct btree_keys *b, ptr_filter_fn fn)
 | |
| {
 | |
| 	struct bkey *ret;
 | |
| 
 | |
| 	do {
 | |
| 		ret = bch_btree_iter_next(iter);
 | |
| 	} while (ret && fn(b, ret));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Mergesort */
 | |
| 
 | |
| void bch_bset_sort_state_free(struct bset_sort_state *state)
 | |
| {
 | |
| 	mempool_exit(&state->pool);
 | |
| }
 | |
| 
 | |
| int bch_bset_sort_state_init(struct bset_sort_state *state,
 | |
| 			     unsigned int page_order)
 | |
| {
 | |
| 	spin_lock_init(&state->time.lock);
 | |
| 
 | |
| 	state->page_order = page_order;
 | |
| 	state->crit_factor = int_sqrt(1 << page_order);
 | |
| 
 | |
| 	return mempool_init_page_pool(&state->pool, 1, page_order);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_bset_sort_state_init);
 | |
| 
 | |
| static void btree_mergesort(struct btree_keys *b, struct bset *out,
 | |
| 			    struct btree_iter *iter,
 | |
| 			    bool fixup, bool remove_stale)
 | |
| {
 | |
| 	int i;
 | |
| 	struct bkey *k, *last = NULL;
 | |
| 	BKEY_PADDED(k) tmp;
 | |
| 	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
 | |
| 		? bch_ptr_bad
 | |
| 		: bch_ptr_invalid;
 | |
| 
 | |
| 	/* Heapify the iterator, using our comparison function */
 | |
| 	for (i = iter->used / 2 - 1; i >= 0; --i)
 | |
| 		heap_sift(iter, i, b->ops->sort_cmp);
 | |
| 
 | |
| 	while (!btree_iter_end(iter)) {
 | |
| 		if (b->ops->sort_fixup && fixup)
 | |
| 			k = b->ops->sort_fixup(iter, &tmp.k);
 | |
| 		else
 | |
| 			k = NULL;
 | |
| 
 | |
| 		if (!k)
 | |
| 			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
 | |
| 
 | |
| 		if (bad(b, k))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!last) {
 | |
| 			last = out->start;
 | |
| 			bkey_copy(last, k);
 | |
| 		} else if (!bch_bkey_try_merge(b, last, k)) {
 | |
| 			last = bkey_next(last);
 | |
| 			bkey_copy(last, k);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
 | |
| 
 | |
| 	pr_debug("sorted %i keys", out->keys);
 | |
| }
 | |
| 
 | |
| static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
 | |
| 			 unsigned int start, unsigned int order, bool fixup,
 | |
| 			 struct bset_sort_state *state)
 | |
| {
 | |
| 	uint64_t start_time;
 | |
| 	bool used_mempool = false;
 | |
| 	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
 | |
| 						     order);
 | |
| 	if (!out) {
 | |
| 		struct page *outp;
 | |
| 
 | |
| 		BUG_ON(order > state->page_order);
 | |
| 
 | |
| 		outp = mempool_alloc(&state->pool, GFP_NOIO);
 | |
| 		out = page_address(outp);
 | |
| 		used_mempool = true;
 | |
| 		order = state->page_order;
 | |
| 	}
 | |
| 
 | |
| 	start_time = local_clock();
 | |
| 
 | |
| 	btree_mergesort(b, out, iter, fixup, false);
 | |
| 	b->nsets = start;
 | |
| 
 | |
| 	if (!start && order == b->page_order) {
 | |
| 		/*
 | |
| 		 * Our temporary buffer is the same size as the btree node's
 | |
| 		 * buffer, we can just swap buffers instead of doing a big
 | |
| 		 * memcpy()
 | |
| 		 */
 | |
| 
 | |
| 		out->magic	= b->set->data->magic;
 | |
| 		out->seq	= b->set->data->seq;
 | |
| 		out->version	= b->set->data->version;
 | |
| 		swap(out, b->set->data);
 | |
| 	} else {
 | |
| 		b->set[start].data->keys = out->keys;
 | |
| 		memcpy(b->set[start].data->start, out->start,
 | |
| 		       (void *) bset_bkey_last(out) - (void *) out->start);
 | |
| 	}
 | |
| 
 | |
| 	if (used_mempool)
 | |
| 		mempool_free(virt_to_page(out), &state->pool);
 | |
| 	else
 | |
| 		free_pages((unsigned long) out, order);
 | |
| 
 | |
| 	bch_bset_build_written_tree(b);
 | |
| 
 | |
| 	if (!start)
 | |
| 		bch_time_stats_update(&state->time, start_time);
 | |
| }
 | |
| 
 | |
| void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
 | |
| 			    struct bset_sort_state *state)
 | |
| {
 | |
| 	size_t order = b->page_order, keys = 0;
 | |
| 	struct btree_iter iter;
 | |
| 	int oldsize = bch_count_data(b);
 | |
| 
 | |
| 	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
 | |
| 
 | |
| 	if (start) {
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		for (i = start; i <= b->nsets; i++)
 | |
| 			keys += b->set[i].data->keys;
 | |
| 
 | |
| 		order = get_order(__set_bytes(b->set->data, keys));
 | |
| 	}
 | |
| 
 | |
| 	__btree_sort(b, &iter, start, order, false, state);
 | |
| 
 | |
| 	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_btree_sort_partial);
 | |
| 
 | |
| void bch_btree_sort_and_fix_extents(struct btree_keys *b,
 | |
| 				    struct btree_iter *iter,
 | |
| 				    struct bset_sort_state *state)
 | |
| {
 | |
| 	__btree_sort(b, iter, 0, b->page_order, true, state);
 | |
| }
 | |
| 
 | |
| void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
 | |
| 			 struct bset_sort_state *state)
 | |
| {
 | |
| 	uint64_t start_time = local_clock();
 | |
| 	struct btree_iter iter;
 | |
| 
 | |
| 	bch_btree_iter_init(b, &iter, NULL);
 | |
| 
 | |
| 	btree_mergesort(b, new->set->data, &iter, false, true);
 | |
| 
 | |
| 	bch_time_stats_update(&state->time, start_time);
 | |
| 
 | |
| 	new->set->size = 0; // XXX: why?
 | |
| }
 | |
| 
 | |
| #define SORT_CRIT	(4096 / sizeof(uint64_t))
 | |
| 
 | |
| void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
 | |
| {
 | |
| 	unsigned int crit = SORT_CRIT;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Don't sort if nothing to do */
 | |
| 	if (!b->nsets)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (i = b->nsets - 1; i >= 0; --i) {
 | |
| 		crit *= state->crit_factor;
 | |
| 
 | |
| 		if (b->set[i].data->keys < crit) {
 | |
| 			bch_btree_sort_partial(b, i, state);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Sort if we'd overflow */
 | |
| 	if (b->nsets + 1 == MAX_BSETS) {
 | |
| 		bch_btree_sort(b, state);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	bch_bset_build_written_tree(b);
 | |
| }
 | |
| EXPORT_SYMBOL(bch_btree_sort_lazy);
 | |
| 
 | |
| void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i <= b->nsets; i++) {
 | |
| 		struct bset_tree *t = &b->set[i];
 | |
| 		size_t bytes = t->data->keys * sizeof(uint64_t);
 | |
| 		size_t j;
 | |
| 
 | |
| 		if (bset_written(b, t)) {
 | |
| 			stats->sets_written++;
 | |
| 			stats->bytes_written += bytes;
 | |
| 
 | |
| 			stats->floats += t->size - 1;
 | |
| 
 | |
| 			for (j = 1; j < t->size; j++)
 | |
| 				if (t->tree[j].exponent == 127)
 | |
| 					stats->failed++;
 | |
| 		} else {
 | |
| 			stats->sets_unwritten++;
 | |
| 			stats->bytes_unwritten += bytes;
 | |
| 		}
 | |
| 	}
 | |
| }
 |