forked from mirrors/linux
		
	 7bf7eac8d6
			
		
	
	
		7bf7eac8d6
		
	
	
	
	
		
			
			Pankaj reports that starting with commitad428cdb52"dax: Check the end of the block-device capacity with dax_direct_access()" device-mapper no longer allows dax operation. This results from the stricter checks in __bdev_dax_supported() that validate that the start and end of a block-device map to the same 'pagemap' instance. Teach the dax-core and device-mapper to validate the 'pagemap' on a per-target basis. This is accomplished by refactoring the bdev_dax_supported() internals into generic_fsdax_supported() which takes a sector range to validate. Consequently generic_fsdax_supported() is suitable to be used in a device-mapper ->iterate_devices() callback. A new ->dax_supported() operation is added to allow composite devices to split and route upper-level bdev_dax_supported() requests. Fixes:ad428cdb52("dax: Check the end of the block-device...") Cc: <stable@vger.kernel.org> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Reviewed-by: Jan Kara <jack@suse.cz> Reported-by: Pankaj Gupta <pagupta@redhat.com> Reviewed-by: Pankaj Gupta <pagupta@redhat.com> Tested-by: Pankaj Gupta <pagupta@redhat.com> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
		
			
				
	
	
		
			2126 lines
		
	
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2126 lines
		
	
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 2001 Sistina Software (UK) Limited.
 | |
|  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-core.h"
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/namei.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/blk-mq.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/dax.h>
 | |
| 
 | |
| #define DM_MSG_PREFIX "table"
 | |
| 
 | |
| #define MAX_DEPTH 16
 | |
| #define NODE_SIZE L1_CACHE_BYTES
 | |
| #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
 | |
| #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
 | |
| 
 | |
| struct dm_table {
 | |
| 	struct mapped_device *md;
 | |
| 	enum dm_queue_mode type;
 | |
| 
 | |
| 	/* btree table */
 | |
| 	unsigned int depth;
 | |
| 	unsigned int counts[MAX_DEPTH];	/* in nodes */
 | |
| 	sector_t *index[MAX_DEPTH];
 | |
| 
 | |
| 	unsigned int num_targets;
 | |
| 	unsigned int num_allocated;
 | |
| 	sector_t *highs;
 | |
| 	struct dm_target *targets;
 | |
| 
 | |
| 	struct target_type *immutable_target_type;
 | |
| 
 | |
| 	bool integrity_supported:1;
 | |
| 	bool singleton:1;
 | |
| 	unsigned integrity_added:1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Indicates the rw permissions for the new logical
 | |
| 	 * device.  This should be a combination of FMODE_READ
 | |
| 	 * and FMODE_WRITE.
 | |
| 	 */
 | |
| 	fmode_t mode;
 | |
| 
 | |
| 	/* a list of devices used by this table */
 | |
| 	struct list_head devices;
 | |
| 
 | |
| 	/* events get handed up using this callback */
 | |
| 	void (*event_fn)(void *);
 | |
| 	void *event_context;
 | |
| 
 | |
| 	struct dm_md_mempools *mempools;
 | |
| 
 | |
| 	struct list_head target_callbacks;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Similar to ceiling(log_size(n))
 | |
|  */
 | |
| static unsigned int int_log(unsigned int n, unsigned int base)
 | |
| {
 | |
| 	int result = 0;
 | |
| 
 | |
| 	while (n > 1) {
 | |
| 		n = dm_div_up(n, base);
 | |
| 		result++;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the index of the child node of the n'th node k'th key.
 | |
|  */
 | |
| static inline unsigned int get_child(unsigned int n, unsigned int k)
 | |
| {
 | |
| 	return (n * CHILDREN_PER_NODE) + k;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the n'th node of level l from table t.
 | |
|  */
 | |
| static inline sector_t *get_node(struct dm_table *t,
 | |
| 				 unsigned int l, unsigned int n)
 | |
| {
 | |
| 	return t->index[l] + (n * KEYS_PER_NODE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the highest key that you could lookup from the n'th
 | |
|  * node on level l of the btree.
 | |
|  */
 | |
| static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 | |
| {
 | |
| 	for (; l < t->depth - 1; l++)
 | |
| 		n = get_child(n, CHILDREN_PER_NODE - 1);
 | |
| 
 | |
| 	if (n >= t->counts[l])
 | |
| 		return (sector_t) - 1;
 | |
| 
 | |
| 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fills in a level of the btree based on the highs of the level
 | |
|  * below it.
 | |
|  */
 | |
| static int setup_btree_index(unsigned int l, struct dm_table *t)
 | |
| {
 | |
| 	unsigned int n, k;
 | |
| 	sector_t *node;
 | |
| 
 | |
| 	for (n = 0U; n < t->counts[l]; n++) {
 | |
| 		node = get_node(t, l, n);
 | |
| 
 | |
| 		for (k = 0U; k < KEYS_PER_NODE; k++)
 | |
| 			node[k] = high(t, l + 1, get_child(n, k));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 | |
| {
 | |
| 	unsigned long size;
 | |
| 	void *addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that we're not going to overflow.
 | |
| 	 */
 | |
| 	if (nmemb > (ULONG_MAX / elem_size))
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = nmemb * elem_size;
 | |
| 	addr = vzalloc(size);
 | |
| 
 | |
| 	return addr;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_vcalloc);
 | |
| 
 | |
| /*
 | |
|  * highs, and targets are managed as dynamic arrays during a
 | |
|  * table load.
 | |
|  */
 | |
| static int alloc_targets(struct dm_table *t, unsigned int num)
 | |
| {
 | |
| 	sector_t *n_highs;
 | |
| 	struct dm_target *n_targets;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate both the target array and offset array at once.
 | |
| 	 * Append an empty entry to catch sectors beyond the end of
 | |
| 	 * the device.
 | |
| 	 */
 | |
| 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 | |
| 					  sizeof(sector_t));
 | |
| 	if (!n_highs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	n_targets = (struct dm_target *) (n_highs + num);
 | |
| 
 | |
| 	memset(n_highs, -1, sizeof(*n_highs) * num);
 | |
| 	vfree(t->highs);
 | |
| 
 | |
| 	t->num_allocated = num;
 | |
| 	t->highs = n_highs;
 | |
| 	t->targets = n_targets;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_table_create(struct dm_table **result, fmode_t mode,
 | |
| 		    unsigned num_targets, struct mapped_device *md)
 | |
| {
 | |
| 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 | |
| 
 | |
| 	if (!t)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&t->devices);
 | |
| 	INIT_LIST_HEAD(&t->target_callbacks);
 | |
| 
 | |
| 	if (!num_targets)
 | |
| 		num_targets = KEYS_PER_NODE;
 | |
| 
 | |
| 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 | |
| 
 | |
| 	if (!num_targets) {
 | |
| 		kfree(t);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (alloc_targets(t, num_targets)) {
 | |
| 		kfree(t);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	t->type = DM_TYPE_NONE;
 | |
| 	t->mode = mode;
 | |
| 	t->md = md;
 | |
| 	*result = t;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_devices(struct list_head *devices, struct mapped_device *md)
 | |
| {
 | |
| 	struct list_head *tmp, *next;
 | |
| 
 | |
| 	list_for_each_safe(tmp, next, devices) {
 | |
| 		struct dm_dev_internal *dd =
 | |
| 		    list_entry(tmp, struct dm_dev_internal, list);
 | |
| 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 | |
| 		       dm_device_name(md), dd->dm_dev->name);
 | |
| 		dm_put_table_device(md, dd->dm_dev);
 | |
| 		kfree(dd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dm_table_destroy(struct dm_table *t)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 
 | |
| 	/* free the indexes */
 | |
| 	if (t->depth >= 2)
 | |
| 		vfree(t->index[t->depth - 2]);
 | |
| 
 | |
| 	/* free the targets */
 | |
| 	for (i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *tgt = t->targets + i;
 | |
| 
 | |
| 		if (tgt->type->dtr)
 | |
| 			tgt->type->dtr(tgt);
 | |
| 
 | |
| 		dm_put_target_type(tgt->type);
 | |
| 	}
 | |
| 
 | |
| 	vfree(t->highs);
 | |
| 
 | |
| 	/* free the device list */
 | |
| 	free_devices(&t->devices, t->md);
 | |
| 
 | |
| 	dm_free_md_mempools(t->mempools);
 | |
| 
 | |
| 	kfree(t);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if we've already got a device in the list.
 | |
|  */
 | |
| static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 | |
| {
 | |
| 	struct dm_dev_internal *dd;
 | |
| 
 | |
| 	list_for_each_entry (dd, l, list)
 | |
| 		if (dd->dm_dev->bdev->bd_dev == dev)
 | |
| 			return dd;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If possible, this checks an area of a destination device is invalid.
 | |
|  */
 | |
| static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				  sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q;
 | |
| 	struct queue_limits *limits = data;
 | |
| 	struct block_device *bdev = dev->bdev;
 | |
| 	sector_t dev_size =
 | |
| 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 | |
| 	unsigned short logical_block_size_sectors =
 | |
| 		limits->logical_block_size >> SECTOR_SHIFT;
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 
 | |
| 	/*
 | |
| 	 * Some devices exist without request functions,
 | |
| 	 * such as loop devices not yet bound to backing files.
 | |
| 	 * Forbid the use of such devices.
 | |
| 	 */
 | |
| 	q = bdev_get_queue(bdev);
 | |
| 	if (!q || !q->make_request_fn) {
 | |
| 		DMWARN("%s: %s is not yet initialised: "
 | |
| 		       "start=%llu, len=%llu, dev_size=%llu",
 | |
| 		       dm_device_name(ti->table->md), bdevname(bdev, b),
 | |
| 		       (unsigned long long)start,
 | |
| 		       (unsigned long long)len,
 | |
| 		       (unsigned long long)dev_size);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!dev_size)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((start >= dev_size) || (start + len > dev_size)) {
 | |
| 		DMWARN("%s: %s too small for target: "
 | |
| 		       "start=%llu, len=%llu, dev_size=%llu",
 | |
| 		       dm_device_name(ti->table->md), bdevname(bdev, b),
 | |
| 		       (unsigned long long)start,
 | |
| 		       (unsigned long long)len,
 | |
| 		       (unsigned long long)dev_size);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the target is mapped to zoned block device(s), check
 | |
| 	 * that the zones are not partially mapped.
 | |
| 	 */
 | |
| 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
 | |
| 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 | |
| 
 | |
| 		if (start & (zone_sectors - 1)) {
 | |
| 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
 | |
| 			       dm_device_name(ti->table->md),
 | |
| 			       (unsigned long long)start,
 | |
| 			       zone_sectors, bdevname(bdev, b));
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Note: The last zone of a zoned block device may be smaller
 | |
| 		 * than other zones. So for a target mapping the end of a
 | |
| 		 * zoned block device with such a zone, len would not be zone
 | |
| 		 * aligned. We do not allow such last smaller zone to be part
 | |
| 		 * of the mapping here to ensure that mappings with multiple
 | |
| 		 * devices do not end up with a smaller zone in the middle of
 | |
| 		 * the sector range.
 | |
| 		 */
 | |
| 		if (len & (zone_sectors - 1)) {
 | |
| 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
 | |
| 			       dm_device_name(ti->table->md),
 | |
| 			       (unsigned long long)len,
 | |
| 			       zone_sectors, bdevname(bdev, b));
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (logical_block_size_sectors <= 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (start & (logical_block_size_sectors - 1)) {
 | |
| 		DMWARN("%s: start=%llu not aligned to h/w "
 | |
| 		       "logical block size %u of %s",
 | |
| 		       dm_device_name(ti->table->md),
 | |
| 		       (unsigned long long)start,
 | |
| 		       limits->logical_block_size, bdevname(bdev, b));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (len & (logical_block_size_sectors - 1)) {
 | |
| 		DMWARN("%s: len=%llu not aligned to h/w "
 | |
| 		       "logical block size %u of %s",
 | |
| 		       dm_device_name(ti->table->md),
 | |
| 		       (unsigned long long)len,
 | |
| 		       limits->logical_block_size, bdevname(bdev, b));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This upgrades the mode on an already open dm_dev, being
 | |
|  * careful to leave things as they were if we fail to reopen the
 | |
|  * device and not to touch the existing bdev field in case
 | |
|  * it is accessed concurrently inside dm_table_any_congested().
 | |
|  */
 | |
| static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 | |
| 			struct mapped_device *md)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_dev *old_dev, *new_dev;
 | |
| 
 | |
| 	old_dev = dd->dm_dev;
 | |
| 
 | |
| 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 | |
| 				dd->dm_dev->mode | new_mode, &new_dev);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	dd->dm_dev = new_dev;
 | |
| 	dm_put_table_device(md, old_dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert the path to a device
 | |
|  */
 | |
| dev_t dm_get_dev_t(const char *path)
 | |
| {
 | |
| 	dev_t dev;
 | |
| 	struct block_device *bdev;
 | |
| 
 | |
| 	bdev = lookup_bdev(path);
 | |
| 	if (IS_ERR(bdev))
 | |
| 		dev = name_to_dev_t(path);
 | |
| 	else {
 | |
| 		dev = bdev->bd_dev;
 | |
| 		bdput(bdev);
 | |
| 	}
 | |
| 
 | |
| 	return dev;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_get_dev_t);
 | |
| 
 | |
| /*
 | |
|  * Add a device to the list, or just increment the usage count if
 | |
|  * it's already present.
 | |
|  */
 | |
| int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 | |
| 		  struct dm_dev **result)
 | |
| {
 | |
| 	int r;
 | |
| 	dev_t dev;
 | |
| 	struct dm_dev_internal *dd;
 | |
| 	struct dm_table *t = ti->table;
 | |
| 
 | |
| 	BUG_ON(!t);
 | |
| 
 | |
| 	dev = dm_get_dev_t(path);
 | |
| 	if (!dev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	dd = find_device(&t->devices, dev);
 | |
| 	if (!dd) {
 | |
| 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 | |
| 		if (!dd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 | |
| 			kfree(dd);
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		refcount_set(&dd->count, 1);
 | |
| 		list_add(&dd->list, &t->devices);
 | |
| 		goto out;
 | |
| 
 | |
| 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 | |
| 		r = upgrade_mode(dd, mode, t->md);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 	refcount_inc(&dd->count);
 | |
| out:
 | |
| 	*result = dd->dm_dev;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_get_device);
 | |
| 
 | |
| static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct queue_limits *limits = data;
 | |
| 	struct block_device *bdev = dev->bdev;
 | |
| 	struct request_queue *q = bdev_get_queue(bdev);
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 
 | |
| 	if (unlikely(!q)) {
 | |
| 		DMWARN("%s: Cannot set limits for nonexistent device %s",
 | |
| 		       dm_device_name(ti->table->md), bdevname(bdev, b));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bdev_stack_limits(limits, bdev, start) < 0)
 | |
| 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 | |
| 		       "physical_block_size=%u, logical_block_size=%u, "
 | |
| 		       "alignment_offset=%u, start=%llu",
 | |
| 		       dm_device_name(ti->table->md), bdevname(bdev, b),
 | |
| 		       q->limits.physical_block_size,
 | |
| 		       q->limits.logical_block_size,
 | |
| 		       q->limits.alignment_offset,
 | |
| 		       (unsigned long long) start << SECTOR_SHIFT);
 | |
| 
 | |
| 	limits->zoned = blk_queue_zoned_model(q);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement a device's use count and remove it if necessary.
 | |
|  */
 | |
| void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 | |
| {
 | |
| 	int found = 0;
 | |
| 	struct list_head *devices = &ti->table->devices;
 | |
| 	struct dm_dev_internal *dd;
 | |
| 
 | |
| 	list_for_each_entry(dd, devices, list) {
 | |
| 		if (dd->dm_dev == d) {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!found) {
 | |
| 		DMWARN("%s: device %s not in table devices list",
 | |
| 		       dm_device_name(ti->table->md), d->name);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (refcount_dec_and_test(&dd->count)) {
 | |
| 		dm_put_table_device(ti->table->md, d);
 | |
| 		list_del(&dd->list);
 | |
| 		kfree(dd);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(dm_put_device);
 | |
| 
 | |
| /*
 | |
|  * Checks to see if the target joins onto the end of the table.
 | |
|  */
 | |
| static int adjoin(struct dm_table *table, struct dm_target *ti)
 | |
| {
 | |
| 	struct dm_target *prev;
 | |
| 
 | |
| 	if (!table->num_targets)
 | |
| 		return !ti->begin;
 | |
| 
 | |
| 	prev = &table->targets[table->num_targets - 1];
 | |
| 	return (ti->begin == (prev->begin + prev->len));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used to dynamically allocate the arg array.
 | |
|  *
 | |
|  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 | |
|  * process messages even if some device is suspended. These messages have a
 | |
|  * small fixed number of arguments.
 | |
|  *
 | |
|  * On the other hand, dm-switch needs to process bulk data using messages and
 | |
|  * excessive use of GFP_NOIO could cause trouble.
 | |
|  */
 | |
| static char **realloc_argv(unsigned *size, char **old_argv)
 | |
| {
 | |
| 	char **argv;
 | |
| 	unsigned new_size;
 | |
| 	gfp_t gfp;
 | |
| 
 | |
| 	if (*size) {
 | |
| 		new_size = *size * 2;
 | |
| 		gfp = GFP_KERNEL;
 | |
| 	} else {
 | |
| 		new_size = 8;
 | |
| 		gfp = GFP_NOIO;
 | |
| 	}
 | |
| 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 | |
| 	if (argv) {
 | |
| 		memcpy(argv, old_argv, *size * sizeof(*argv));
 | |
| 		*size = new_size;
 | |
| 	}
 | |
| 
 | |
| 	kfree(old_argv);
 | |
| 	return argv;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destructively splits up the argument list to pass to ctr.
 | |
|  */
 | |
| int dm_split_args(int *argc, char ***argvp, char *input)
 | |
| {
 | |
| 	char *start, *end = input, *out, **argv = NULL;
 | |
| 	unsigned array_size = 0;
 | |
| 
 | |
| 	*argc = 0;
 | |
| 
 | |
| 	if (!input) {
 | |
| 		*argvp = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	argv = realloc_argv(&array_size, argv);
 | |
| 	if (!argv)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	while (1) {
 | |
| 		/* Skip whitespace */
 | |
| 		start = skip_spaces(end);
 | |
| 
 | |
| 		if (!*start)
 | |
| 			break;	/* success, we hit the end */
 | |
| 
 | |
| 		/* 'out' is used to remove any back-quotes */
 | |
| 		end = out = start;
 | |
| 		while (*end) {
 | |
| 			/* Everything apart from '\0' can be quoted */
 | |
| 			if (*end == '\\' && *(end + 1)) {
 | |
| 				*out++ = *(end + 1);
 | |
| 				end += 2;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (isspace(*end))
 | |
| 				break;	/* end of token */
 | |
| 
 | |
| 			*out++ = *end++;
 | |
| 		}
 | |
| 
 | |
| 		/* have we already filled the array ? */
 | |
| 		if ((*argc + 1) > array_size) {
 | |
| 			argv = realloc_argv(&array_size, argv);
 | |
| 			if (!argv)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		/* we know this is whitespace */
 | |
| 		if (*end)
 | |
| 			end++;
 | |
| 
 | |
| 		/* terminate the string and put it in the array */
 | |
| 		*out = '\0';
 | |
| 		argv[*argc] = start;
 | |
| 		(*argc)++;
 | |
| 	}
 | |
| 
 | |
| 	*argvp = argv;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Impose necessary and sufficient conditions on a devices's table such
 | |
|  * that any incoming bio which respects its logical_block_size can be
 | |
|  * processed successfully.  If it falls across the boundary between
 | |
|  * two or more targets, the size of each piece it gets split into must
 | |
|  * be compatible with the logical_block_size of the target processing it.
 | |
|  */
 | |
| static int validate_hardware_logical_block_alignment(struct dm_table *table,
 | |
| 						 struct queue_limits *limits)
 | |
| {
 | |
| 	/*
 | |
| 	 * This function uses arithmetic modulo the logical_block_size
 | |
| 	 * (in units of 512-byte sectors).
 | |
| 	 */
 | |
| 	unsigned short device_logical_block_size_sects =
 | |
| 		limits->logical_block_size >> SECTOR_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Offset of the start of the next table entry, mod logical_block_size.
 | |
| 	 */
 | |
| 	unsigned short next_target_start = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Given an aligned bio that extends beyond the end of a
 | |
| 	 * target, how many sectors must the next target handle?
 | |
| 	 */
 | |
| 	unsigned short remaining = 0;
 | |
| 
 | |
| 	struct dm_target *uninitialized_var(ti);
 | |
| 	struct queue_limits ti_limits;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check each entry in the table in turn.
 | |
| 	 */
 | |
| 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
 | |
| 		ti = dm_table_get_target(table, i);
 | |
| 
 | |
| 		blk_set_stacking_limits(&ti_limits);
 | |
| 
 | |
| 		/* combine all target devices' limits */
 | |
| 		if (ti->type->iterate_devices)
 | |
| 			ti->type->iterate_devices(ti, dm_set_device_limits,
 | |
| 						  &ti_limits);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the remaining sectors fall entirely within this
 | |
| 		 * table entry are they compatible with its logical_block_size?
 | |
| 		 */
 | |
| 		if (remaining < ti->len &&
 | |
| 		    remaining & ((ti_limits.logical_block_size >>
 | |
| 				  SECTOR_SHIFT) - 1))
 | |
| 			break;	/* Error */
 | |
| 
 | |
| 		next_target_start =
 | |
| 		    (unsigned short) ((next_target_start + ti->len) &
 | |
| 				      (device_logical_block_size_sects - 1));
 | |
| 		remaining = next_target_start ?
 | |
| 		    device_logical_block_size_sects - next_target_start : 0;
 | |
| 	}
 | |
| 
 | |
| 	if (remaining) {
 | |
| 		DMWARN("%s: table line %u (start sect %llu len %llu) "
 | |
| 		       "not aligned to h/w logical block size %u",
 | |
| 		       dm_device_name(table->md), i,
 | |
| 		       (unsigned long long) ti->begin,
 | |
| 		       (unsigned long long) ti->len,
 | |
| 		       limits->logical_block_size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_table_add_target(struct dm_table *t, const char *type,
 | |
| 			sector_t start, sector_t len, char *params)
 | |
| {
 | |
| 	int r = -EINVAL, argc;
 | |
| 	char **argv;
 | |
| 	struct dm_target *tgt;
 | |
| 
 | |
| 	if (t->singleton) {
 | |
| 		DMERR("%s: target type %s must appear alone in table",
 | |
| 		      dm_device_name(t->md), t->targets->type->name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(t->num_targets >= t->num_allocated);
 | |
| 
 | |
| 	tgt = t->targets + t->num_targets;
 | |
| 	memset(tgt, 0, sizeof(*tgt));
 | |
| 
 | |
| 	if (!len) {
 | |
| 		DMERR("%s: zero-length target", dm_device_name(t->md));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	tgt->type = dm_get_target_type(type);
 | |
| 	if (!tgt->type) {
 | |
| 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (dm_target_needs_singleton(tgt->type)) {
 | |
| 		if (t->num_targets) {
 | |
| 			tgt->error = "singleton target type must appear alone in table";
 | |
| 			goto bad;
 | |
| 		}
 | |
| 		t->singleton = true;
 | |
| 	}
 | |
| 
 | |
| 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 | |
| 		tgt->error = "target type may not be included in a read-only table";
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	if (t->immutable_target_type) {
 | |
| 		if (t->immutable_target_type != tgt->type) {
 | |
| 			tgt->error = "immutable target type cannot be mixed with other target types";
 | |
| 			goto bad;
 | |
| 		}
 | |
| 	} else if (dm_target_is_immutable(tgt->type)) {
 | |
| 		if (t->num_targets) {
 | |
| 			tgt->error = "immutable target type cannot be mixed with other target types";
 | |
| 			goto bad;
 | |
| 		}
 | |
| 		t->immutable_target_type = tgt->type;
 | |
| 	}
 | |
| 
 | |
| 	if (dm_target_has_integrity(tgt->type))
 | |
| 		t->integrity_added = 1;
 | |
| 
 | |
| 	tgt->table = t;
 | |
| 	tgt->begin = start;
 | |
| 	tgt->len = len;
 | |
| 	tgt->error = "Unknown error";
 | |
| 
 | |
| 	/*
 | |
| 	 * Does this target adjoin the previous one ?
 | |
| 	 */
 | |
| 	if (!adjoin(t, tgt)) {
 | |
| 		tgt->error = "Gap in table";
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_split_args(&argc, &argv, params);
 | |
| 	if (r) {
 | |
| 		tgt->error = "couldn't split parameters (insufficient memory)";
 | |
| 		goto bad;
 | |
| 	}
 | |
| 
 | |
| 	r = tgt->type->ctr(tgt, argc, argv);
 | |
| 	kfree(argv);
 | |
| 	if (r)
 | |
| 		goto bad;
 | |
| 
 | |
| 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 | |
| 
 | |
| 	if (!tgt->num_discard_bios && tgt->discards_supported)
 | |
| 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 | |
| 		       dm_device_name(t->md), type);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  bad:
 | |
| 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 | |
| 	dm_put_target_type(tgt->type);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Target argument parsing helpers.
 | |
|  */
 | |
| static int validate_next_arg(const struct dm_arg *arg,
 | |
| 			     struct dm_arg_set *arg_set,
 | |
| 			     unsigned *value, char **error, unsigned grouped)
 | |
| {
 | |
| 	const char *arg_str = dm_shift_arg(arg_set);
 | |
| 	char dummy;
 | |
| 
 | |
| 	if (!arg_str ||
 | |
| 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 | |
| 	    (*value < arg->min) ||
 | |
| 	    (*value > arg->max) ||
 | |
| 	    (grouped && arg_set->argc < *value)) {
 | |
| 		*error = arg->error;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 | |
| 		unsigned *value, char **error)
 | |
| {
 | |
| 	return validate_next_arg(arg, arg_set, value, error, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_read_arg);
 | |
| 
 | |
| int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 | |
| 		      unsigned *value, char **error)
 | |
| {
 | |
| 	return validate_next_arg(arg, arg_set, value, error, 1);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_read_arg_group);
 | |
| 
 | |
| const char *dm_shift_arg(struct dm_arg_set *as)
 | |
| {
 | |
| 	char *r;
 | |
| 
 | |
| 	if (as->argc) {
 | |
| 		as->argc--;
 | |
| 		r = *as->argv;
 | |
| 		as->argv++;
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_shift_arg);
 | |
| 
 | |
| void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 | |
| {
 | |
| 	BUG_ON(as->argc < num_args);
 | |
| 	as->argc -= num_args;
 | |
| 	as->argv += num_args;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_consume_args);
 | |
| 
 | |
| static bool __table_type_bio_based(enum dm_queue_mode table_type)
 | |
| {
 | |
| 	return (table_type == DM_TYPE_BIO_BASED ||
 | |
| 		table_type == DM_TYPE_DAX_BIO_BASED ||
 | |
| 		table_type == DM_TYPE_NVME_BIO_BASED);
 | |
| }
 | |
| 
 | |
| static bool __table_type_request_based(enum dm_queue_mode table_type)
 | |
| {
 | |
| 	return table_type == DM_TYPE_REQUEST_BASED;
 | |
| }
 | |
| 
 | |
| void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 | |
| {
 | |
| 	t->type = type;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_table_set_type);
 | |
| 
 | |
| /* validate the dax capability of the target device span */
 | |
| static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				       sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	int blocksize = *(int *) data;
 | |
| 
 | |
| 	return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize,
 | |
| 			start, len);
 | |
| }
 | |
| 
 | |
| bool dm_table_supports_dax(struct dm_table *t, int blocksize)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	/* Ensure that all targets support DAX. */
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->type->direct_access)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    !ti->type->iterate_devices(ti, device_supports_dax,
 | |
| 			    &blocksize))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
 | |
| 
 | |
| struct verify_rq_based_data {
 | |
| 	unsigned sq_count;
 | |
| 	unsigned mq_count;
 | |
| };
 | |
| 
 | |
| static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			      sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 	struct verify_rq_based_data *v = data;
 | |
| 
 | |
| 	if (queue_is_mq(q))
 | |
| 		v->mq_count++;
 | |
| 	else
 | |
| 		v->sq_count++;
 | |
| 
 | |
| 	return queue_is_mq(q);
 | |
| }
 | |
| 
 | |
| static int dm_table_determine_type(struct dm_table *t)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 | |
| 	struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
 | |
| 	struct dm_target *tgt;
 | |
| 	struct list_head *devices = dm_table_get_devices(t);
 | |
| 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 | |
| 
 | |
| 	if (t->type != DM_TYPE_NONE) {
 | |
| 		/* target already set the table's type */
 | |
| 		if (t->type == DM_TYPE_BIO_BASED) {
 | |
| 			/* possibly upgrade to a variant of bio-based */
 | |
| 			goto verify_bio_based;
 | |
| 		}
 | |
| 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 | |
| 		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
 | |
| 		goto verify_rq_based;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < t->num_targets; i++) {
 | |
| 		tgt = t->targets + i;
 | |
| 		if (dm_target_hybrid(tgt))
 | |
| 			hybrid = 1;
 | |
| 		else if (dm_target_request_based(tgt))
 | |
| 			request_based = 1;
 | |
| 		else
 | |
| 			bio_based = 1;
 | |
| 
 | |
| 		if (bio_based && request_based) {
 | |
| 			DMERR("Inconsistent table: different target types"
 | |
| 			      " can't be mixed up");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (hybrid && !bio_based && !request_based) {
 | |
| 		/*
 | |
| 		 * The targets can work either way.
 | |
| 		 * Determine the type from the live device.
 | |
| 		 * Default to bio-based if device is new.
 | |
| 		 */
 | |
| 		if (__table_type_request_based(live_md_type))
 | |
| 			request_based = 1;
 | |
| 		else
 | |
| 			bio_based = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (bio_based) {
 | |
| verify_bio_based:
 | |
| 		/* We must use this table as bio-based */
 | |
| 		t->type = DM_TYPE_BIO_BASED;
 | |
| 		if (dm_table_supports_dax(t, PAGE_SIZE) ||
 | |
| 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 | |
| 			t->type = DM_TYPE_DAX_BIO_BASED;
 | |
| 		} else {
 | |
| 			/* Check if upgrading to NVMe bio-based is valid or required */
 | |
| 			tgt = dm_table_get_immutable_target(t);
 | |
| 			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
 | |
| 				t->type = DM_TYPE_NVME_BIO_BASED;
 | |
| 				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
 | |
| 			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
 | |
| 				t->type = DM_TYPE_NVME_BIO_BASED;
 | |
| 			}
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!request_based); /* No targets in this table */
 | |
| 
 | |
| 	t->type = DM_TYPE_REQUEST_BASED;
 | |
| 
 | |
| verify_rq_based:
 | |
| 	/*
 | |
| 	 * Request-based dm supports only tables that have a single target now.
 | |
| 	 * To support multiple targets, request splitting support is needed,
 | |
| 	 * and that needs lots of changes in the block-layer.
 | |
| 	 * (e.g. request completion process for partial completion.)
 | |
| 	 */
 | |
| 	if (t->num_targets > 1) {
 | |
| 		DMERR("%s DM doesn't support multiple targets",
 | |
| 		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (list_empty(devices)) {
 | |
| 		int srcu_idx;
 | |
| 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 | |
| 
 | |
| 		/* inherit live table's type */
 | |
| 		if (live_table)
 | |
| 			t->type = live_table->type;
 | |
| 		dm_put_live_table(t->md, srcu_idx);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	tgt = dm_table_get_immutable_target(t);
 | |
| 	if (!tgt) {
 | |
| 		DMERR("table load rejected: immutable target is required");
 | |
| 		return -EINVAL;
 | |
| 	} else if (tgt->max_io_len) {
 | |
| 		DMERR("table load rejected: immutable target that splits IO is not supported");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Non-request-stackable devices can't be used for request-based dm */
 | |
| 	if (!tgt->type->iterate_devices ||
 | |
| 	    !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
 | |
| 		DMERR("table load rejected: including non-request-stackable devices");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (v.sq_count > 0) {
 | |
| 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| enum dm_queue_mode dm_table_get_type(struct dm_table *t)
 | |
| {
 | |
| 	return t->type;
 | |
| }
 | |
| 
 | |
| struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 | |
| {
 | |
| 	return t->immutable_target_type;
 | |
| }
 | |
| 
 | |
| struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 | |
| {
 | |
| 	/* Immutable target is implicitly a singleton */
 | |
| 	if (t->num_targets > 1 ||
 | |
| 	    !dm_target_is_immutable(t->targets[0].type))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return t->targets;
 | |
| }
 | |
| 
 | |
| struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 		if (dm_target_is_wildcard(ti->type))
 | |
| 			return ti;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| bool dm_table_bio_based(struct dm_table *t)
 | |
| {
 | |
| 	return __table_type_bio_based(dm_table_get_type(t));
 | |
| }
 | |
| 
 | |
| bool dm_table_request_based(struct dm_table *t)
 | |
| {
 | |
| 	return __table_type_request_based(dm_table_get_type(t));
 | |
| }
 | |
| 
 | |
| static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
 | |
| {
 | |
| 	enum dm_queue_mode type = dm_table_get_type(t);
 | |
| 	unsigned per_io_data_size = 0;
 | |
| 	unsigned min_pool_size = 0;
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	if (unlikely(type == DM_TYPE_NONE)) {
 | |
| 		DMWARN("no table type is set, can't allocate mempools");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (__table_type_bio_based(type))
 | |
| 		for (i = 0; i < t->num_targets; i++) {
 | |
| 			ti = t->targets + i;
 | |
| 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
 | |
| 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
 | |
| 		}
 | |
| 
 | |
| 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
 | |
| 					   per_io_data_size, min_pool_size);
 | |
| 	if (!t->mempools)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dm_table_free_md_mempools(struct dm_table *t)
 | |
| {
 | |
| 	dm_free_md_mempools(t->mempools);
 | |
| 	t->mempools = NULL;
 | |
| }
 | |
| 
 | |
| struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 | |
| {
 | |
| 	return t->mempools;
 | |
| }
 | |
| 
 | |
| static int setup_indexes(struct dm_table *t)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int total = 0;
 | |
| 	sector_t *indexes;
 | |
| 
 | |
| 	/* allocate the space for *all* the indexes */
 | |
| 	for (i = t->depth - 2; i >= 0; i--) {
 | |
| 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 | |
| 		total += t->counts[i];
 | |
| 	}
 | |
| 
 | |
| 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
 | |
| 	if (!indexes)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* set up internal nodes, bottom-up */
 | |
| 	for (i = t->depth - 2; i >= 0; i--) {
 | |
| 		t->index[i] = indexes;
 | |
| 		indexes += (KEYS_PER_NODE * t->counts[i]);
 | |
| 		setup_btree_index(i, t);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Builds the btree to index the map.
 | |
|  */
 | |
| static int dm_table_build_index(struct dm_table *t)
 | |
| {
 | |
| 	int r = 0;
 | |
| 	unsigned int leaf_nodes;
 | |
| 
 | |
| 	/* how many indexes will the btree have ? */
 | |
| 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
 | |
| 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
 | |
| 
 | |
| 	/* leaf layer has already been set up */
 | |
| 	t->counts[t->depth - 1] = leaf_nodes;
 | |
| 	t->index[t->depth - 1] = t->highs;
 | |
| 
 | |
| 	if (t->depth >= 2)
 | |
| 		r = setup_indexes(t);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static bool integrity_profile_exists(struct gendisk *disk)
 | |
| {
 | |
| 	return !!blk_get_integrity(disk);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a disk whose integrity profile reflects the table's profile.
 | |
|  * Returns NULL if integrity support was inconsistent or unavailable.
 | |
|  */
 | |
| static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
 | |
| {
 | |
| 	struct list_head *devices = dm_table_get_devices(t);
 | |
| 	struct dm_dev_internal *dd = NULL;
 | |
| 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 		if (!dm_target_passes_integrity(ti->type))
 | |
| 			goto no_integrity;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(dd, devices, list) {
 | |
| 		template_disk = dd->dm_dev->bdev->bd_disk;
 | |
| 		if (!integrity_profile_exists(template_disk))
 | |
| 			goto no_integrity;
 | |
| 		else if (prev_disk &&
 | |
| 			 blk_integrity_compare(prev_disk, template_disk) < 0)
 | |
| 			goto no_integrity;
 | |
| 		prev_disk = template_disk;
 | |
| 	}
 | |
| 
 | |
| 	return template_disk;
 | |
| 
 | |
| no_integrity:
 | |
| 	if (prev_disk)
 | |
| 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
 | |
| 		       dm_device_name(t->md),
 | |
| 		       prev_disk->disk_name,
 | |
| 		       template_disk->disk_name);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Register the mapped device for blk_integrity support if the
 | |
|  * underlying devices have an integrity profile.  But all devices may
 | |
|  * not have matching profiles (checking all devices isn't reliable
 | |
|  * during table load because this table may use other DM device(s) which
 | |
|  * must be resumed before they will have an initialized integity
 | |
|  * profile).  Consequently, stacked DM devices force a 2 stage integrity
 | |
|  * profile validation: First pass during table load, final pass during
 | |
|  * resume.
 | |
|  */
 | |
| static int dm_table_register_integrity(struct dm_table *t)
 | |
| {
 | |
| 	struct mapped_device *md = t->md;
 | |
| 	struct gendisk *template_disk = NULL;
 | |
| 
 | |
| 	/* If target handles integrity itself do not register it here. */
 | |
| 	if (t->integrity_added)
 | |
| 		return 0;
 | |
| 
 | |
| 	template_disk = dm_table_get_integrity_disk(t);
 | |
| 	if (!template_disk)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!integrity_profile_exists(dm_disk(md))) {
 | |
| 		t->integrity_supported = true;
 | |
| 		/*
 | |
| 		 * Register integrity profile during table load; we can do
 | |
| 		 * this because the final profile must match during resume.
 | |
| 		 */
 | |
| 		blk_integrity_register(dm_disk(md),
 | |
| 				       blk_get_integrity(template_disk));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If DM device already has an initialized integrity
 | |
| 	 * profile the new profile should not conflict.
 | |
| 	 */
 | |
| 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
 | |
| 		DMWARN("%s: conflict with existing integrity profile: "
 | |
| 		       "%s profile mismatch",
 | |
| 		       dm_device_name(t->md),
 | |
| 		       template_disk->disk_name);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Preserve existing integrity profile */
 | |
| 	t->integrity_supported = true;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepares the table for use by building the indices,
 | |
|  * setting the type, and allocating mempools.
 | |
|  */
 | |
| int dm_table_complete(struct dm_table *t)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = dm_table_determine_type(t);
 | |
| 	if (r) {
 | |
| 		DMERR("unable to determine table type");
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_table_build_index(t);
 | |
| 	if (r) {
 | |
| 		DMERR("unable to build btrees");
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_table_register_integrity(t);
 | |
| 	if (r) {
 | |
| 		DMERR("could not register integrity profile.");
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_table_alloc_md_mempools(t, t->md);
 | |
| 	if (r)
 | |
| 		DMERR("unable to allocate mempools");
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static DEFINE_MUTEX(_event_lock);
 | |
| void dm_table_event_callback(struct dm_table *t,
 | |
| 			     void (*fn)(void *), void *context)
 | |
| {
 | |
| 	mutex_lock(&_event_lock);
 | |
| 	t->event_fn = fn;
 | |
| 	t->event_context = context;
 | |
| 	mutex_unlock(&_event_lock);
 | |
| }
 | |
| 
 | |
| void dm_table_event(struct dm_table *t)
 | |
| {
 | |
| 	/*
 | |
| 	 * You can no longer call dm_table_event() from interrupt
 | |
| 	 * context, use a bottom half instead.
 | |
| 	 */
 | |
| 	BUG_ON(in_interrupt());
 | |
| 
 | |
| 	mutex_lock(&_event_lock);
 | |
| 	if (t->event_fn)
 | |
| 		t->event_fn(t->event_context);
 | |
| 	mutex_unlock(&_event_lock);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_event);
 | |
| 
 | |
| sector_t dm_table_get_size(struct dm_table *t)
 | |
| {
 | |
| 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_get_size);
 | |
| 
 | |
| struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
 | |
| {
 | |
| 	if (index >= t->num_targets)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return t->targets + index;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search the btree for the correct target.
 | |
|  *
 | |
|  * Caller should check returned pointer with dm_target_is_valid()
 | |
|  * to trap I/O beyond end of device.
 | |
|  */
 | |
| struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
 | |
| {
 | |
| 	unsigned int l, n = 0, k = 0;
 | |
| 	sector_t *node;
 | |
| 
 | |
| 	for (l = 0; l < t->depth; l++) {
 | |
| 		n = get_child(n, k);
 | |
| 		node = get_node(t, l, n);
 | |
| 
 | |
| 		for (k = 0; k < KEYS_PER_NODE; k++)
 | |
| 			if (node[k] >= sector)
 | |
| 				break;
 | |
| 	}
 | |
| 
 | |
| 	return &t->targets[(KEYS_PER_NODE * n) + k];
 | |
| }
 | |
| 
 | |
| static int count_device(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	unsigned *num_devices = data;
 | |
| 
 | |
| 	(*num_devices)++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether a table has no data devices attached using each
 | |
|  * target's iterate_devices method.
 | |
|  * Returns false if the result is unknown because a target doesn't
 | |
|  * support iterate_devices.
 | |
|  */
 | |
| bool dm_table_has_no_data_devices(struct dm_table *table)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i, num_devices;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
 | |
| 		ti = dm_table_get_target(table, i);
 | |
| 
 | |
| 		if (!ti->type->iterate_devices)
 | |
| 			return false;
 | |
| 
 | |
| 		num_devices = 0;
 | |
| 		ti->type->iterate_devices(ti, count_device, &num_devices);
 | |
| 		if (num_devices)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				 sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 	enum blk_zoned_model *zoned_model = data;
 | |
| 
 | |
| 	return q && blk_queue_zoned_model(q) == *zoned_model;
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_zoned_model(struct dm_table *t,
 | |
| 					  enum blk_zoned_model zoned_model)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (zoned_model == BLK_ZONED_HM &&
 | |
| 		    !dm_target_supports_zoned_hm(ti->type))
 | |
| 			return false;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				       sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 	unsigned int *zone_sectors = data;
 | |
| 
 | |
| 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
 | |
| }
 | |
| 
 | |
| static bool dm_table_matches_zone_sectors(struct dm_table *t,
 | |
| 					  unsigned int zone_sectors)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int validate_hardware_zoned_model(struct dm_table *table,
 | |
| 					 enum blk_zoned_model zoned_model,
 | |
| 					 unsigned int zone_sectors)
 | |
| {
 | |
| 	if (zoned_model == BLK_ZONED_NONE)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
 | |
| 		DMERR("%s: zoned model is not consistent across all devices",
 | |
| 		      dm_device_name(table->md));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Check zone size validity and compatibility */
 | |
| 	if (!zone_sectors || !is_power_of_2(zone_sectors))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
 | |
| 		DMERR("%s: zone sectors is not consistent across all devices",
 | |
| 		      dm_device_name(table->md));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Establish the new table's queue_limits and validate them.
 | |
|  */
 | |
| int dm_calculate_queue_limits(struct dm_table *table,
 | |
| 			      struct queue_limits *limits)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	struct queue_limits ti_limits;
 | |
| 	unsigned i;
 | |
| 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
 | |
| 	unsigned int zone_sectors = 0;
 | |
| 
 | |
| 	blk_set_stacking_limits(limits);
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
 | |
| 		blk_set_stacking_limits(&ti_limits);
 | |
| 
 | |
| 		ti = dm_table_get_target(table, i);
 | |
| 
 | |
| 		if (!ti->type->iterate_devices)
 | |
| 			goto combine_limits;
 | |
| 
 | |
| 		/*
 | |
| 		 * Combine queue limits of all the devices this target uses.
 | |
| 		 */
 | |
| 		ti->type->iterate_devices(ti, dm_set_device_limits,
 | |
| 					  &ti_limits);
 | |
| 
 | |
| 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
 | |
| 			/*
 | |
| 			 * After stacking all limits, validate all devices
 | |
| 			 * in table support this zoned model and zone sectors.
 | |
| 			 */
 | |
| 			zoned_model = ti_limits.zoned;
 | |
| 			zone_sectors = ti_limits.chunk_sectors;
 | |
| 		}
 | |
| 
 | |
| 		/* Set I/O hints portion of queue limits */
 | |
| 		if (ti->type->io_hints)
 | |
| 			ti->type->io_hints(ti, &ti_limits);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check each device area is consistent with the target's
 | |
| 		 * overall queue limits.
 | |
| 		 */
 | |
| 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
 | |
| 					      &ti_limits))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| combine_limits:
 | |
| 		/*
 | |
| 		 * Merge this target's queue limits into the overall limits
 | |
| 		 * for the table.
 | |
| 		 */
 | |
| 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
 | |
| 			DMWARN("%s: adding target device "
 | |
| 			       "(start sect %llu len %llu) "
 | |
| 			       "caused an alignment inconsistency",
 | |
| 			       dm_device_name(table->md),
 | |
| 			       (unsigned long long) ti->begin,
 | |
| 			       (unsigned long long) ti->len);
 | |
| 
 | |
| 		/*
 | |
| 		 * FIXME: this should likely be moved to blk_stack_limits(), would
 | |
| 		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
 | |
| 		 */
 | |
| 		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
 | |
| 			/*
 | |
| 			 * By default, the stacked limits zoned model is set to
 | |
| 			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
 | |
| 			 * this model using the first target model reported
 | |
| 			 * that is not BLK_ZONED_NONE. This will be either the
 | |
| 			 * first target device zoned model or the model reported
 | |
| 			 * by the target .io_hints.
 | |
| 			 */
 | |
| 			limits->zoned = ti_limits.zoned;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that the zoned model and zone sectors, as determined before
 | |
| 	 * any .io_hints override, are the same across all devices in the table.
 | |
| 	 * - this is especially relevant if .io_hints is emulating a disk-managed
 | |
| 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
 | |
| 	 * BUT...
 | |
| 	 */
 | |
| 	if (limits->zoned != BLK_ZONED_NONE) {
 | |
| 		/*
 | |
| 		 * ...IF the above limits stacking determined a zoned model
 | |
| 		 * validate that all of the table's devices conform to it.
 | |
| 		 */
 | |
| 		zoned_model = limits->zoned;
 | |
| 		zone_sectors = limits->chunk_sectors;
 | |
| 	}
 | |
| 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return validate_hardware_logical_block_alignment(table, limits);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that all devices have an integrity profile that matches the
 | |
|  * DM device's registered integrity profile.  If the profiles don't
 | |
|  * match then unregister the DM device's integrity profile.
 | |
|  */
 | |
| static void dm_table_verify_integrity(struct dm_table *t)
 | |
| {
 | |
| 	struct gendisk *template_disk = NULL;
 | |
| 
 | |
| 	if (t->integrity_added)
 | |
| 		return;
 | |
| 
 | |
| 	if (t->integrity_supported) {
 | |
| 		/*
 | |
| 		 * Verify that the original integrity profile
 | |
| 		 * matches all the devices in this table.
 | |
| 		 */
 | |
| 		template_disk = dm_table_get_integrity_disk(t);
 | |
| 		if (template_disk &&
 | |
| 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	if (integrity_profile_exists(dm_disk(t->md))) {
 | |
| 		DMWARN("%s: unable to establish an integrity profile",
 | |
| 		       dm_device_name(t->md));
 | |
| 		blk_integrity_unregister(dm_disk(t->md));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	unsigned long flush = (unsigned long) data;
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return q && (q->queue_flags & flush);
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Require at least one underlying device to support flushes.
 | |
| 	 * t->devices includes internal dm devices such as mirror logs
 | |
| 	 * so we need to use iterate_devices here, which targets
 | |
| 	 * supporting flushes must provide.
 | |
| 	 */
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->num_flush_bios)
 | |
| 			continue;
 | |
| 
 | |
| 		if (ti->flush_supported)
 | |
| 			return true;
 | |
| 
 | |
| 		if (ti->type->iterate_devices &&
 | |
| 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int device_dax_write_cache_enabled(struct dm_target *ti,
 | |
| 					  struct dm_dev *dev, sector_t start,
 | |
| 					  sector_t len, void *data)
 | |
| {
 | |
| 	struct dax_device *dax_dev = dev->dax_dev;
 | |
| 
 | |
| 	if (!dax_dev)
 | |
| 		return false;
 | |
| 
 | |
| 	if (dax_write_cache_enabled(dax_dev))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int dm_table_supports_dax_write_cache(struct dm_table *t)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (ti->type->iterate_devices &&
 | |
| 		    ti->type->iterate_devices(ti,
 | |
| 				device_dax_write_cache_enabled, NULL))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			    sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return q && blk_queue_nonrot(q);
 | |
| }
 | |
| 
 | |
| static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			     sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return q && !blk_queue_add_random(q);
 | |
| }
 | |
| 
 | |
| static bool dm_table_all_devices_attribute(struct dm_table *t,
 | |
| 					   iterate_devices_callout_fn func)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    !ti->type->iterate_devices(ti, func, NULL))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
 | |
| 					sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	char b[BDEVNAME_SIZE];
 | |
| 
 | |
| 	/* For now, NVMe devices are the only devices of this class */
 | |
| 	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
 | |
| }
 | |
| 
 | |
| static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
 | |
| {
 | |
| 	return dm_table_all_devices_attribute(t, device_no_partial_completion);
 | |
| }
 | |
| 
 | |
| static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 					 sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return q && !q->limits.max_write_same_sectors;
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_write_same(struct dm_table *t)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->num_write_same_bios)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 					   sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return q && !q->limits.max_write_zeroes_sectors;
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_write_zeroes(struct dm_table *t)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i = 0;
 | |
| 
 | |
| 	while (i < dm_table_get_num_targets(t)) {
 | |
| 		ti = dm_table_get_target(t, i++);
 | |
| 
 | |
| 		if (!ti->num_write_zeroes_bios)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				      sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return q && !blk_queue_discard(q);
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_discards(struct dm_table *t)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->num_discard_bios)
 | |
| 			return false;
 | |
| 
 | |
| 		/*
 | |
| 		 * Either the target provides discard support (as implied by setting
 | |
| 		 * 'discards_supported') or it relies on _all_ data devices having
 | |
| 		 * discard support.
 | |
| 		 */
 | |
| 		if (!ti->discards_supported &&
 | |
| 		    (!ti->type->iterate_devices ||
 | |
| 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_not_secure_erase_capable(struct dm_target *ti,
 | |
| 					   struct dm_dev *dev, sector_t start,
 | |
| 					   sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return q && !blk_queue_secure_erase(q);
 | |
| }
 | |
| 
 | |
| static bool dm_table_supports_secure_erase(struct dm_table *t)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (!ti->num_secure_erase_bios)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!ti->type->iterate_devices ||
 | |
| 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int device_requires_stable_pages(struct dm_target *ti,
 | |
| 					struct dm_dev *dev, sector_t start,
 | |
| 					sector_t len, void *data)
 | |
| {
 | |
| 	struct request_queue *q = bdev_get_queue(dev->bdev);
 | |
| 
 | |
| 	return q && bdi_cap_stable_pages_required(q->backing_dev_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If any underlying device requires stable pages, a table must require
 | |
|  * them as well.  Only targets that support iterate_devices are considered:
 | |
|  * don't want error, zero, etc to require stable pages.
 | |
|  */
 | |
| static bool dm_table_requires_stable_pages(struct dm_table *t)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 | |
| 		ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (ti->type->iterate_devices &&
 | |
| 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
 | |
| 			       struct queue_limits *limits)
 | |
| {
 | |
| 	bool wc = false, fua = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy table's limits to the DM device's request_queue
 | |
| 	 */
 | |
| 	q->limits = *limits;
 | |
| 
 | |
| 	if (!dm_table_supports_discards(t)) {
 | |
| 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 | |
| 		/* Must also clear discard limits... */
 | |
| 		q->limits.max_discard_sectors = 0;
 | |
| 		q->limits.max_hw_discard_sectors = 0;
 | |
| 		q->limits.discard_granularity = 0;
 | |
| 		q->limits.discard_alignment = 0;
 | |
| 		q->limits.discard_misaligned = 0;
 | |
| 	} else
 | |
| 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 | |
| 
 | |
| 	if (dm_table_supports_secure_erase(t))
 | |
| 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
 | |
| 
 | |
| 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
 | |
| 		wc = true;
 | |
| 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
 | |
| 			fua = true;
 | |
| 	}
 | |
| 	blk_queue_write_cache(q, wc, fua);
 | |
| 
 | |
| 	if (dm_table_supports_dax(t, PAGE_SIZE))
 | |
| 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
 | |
| 	else
 | |
| 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
 | |
| 
 | |
| 	if (dm_table_supports_dax_write_cache(t))
 | |
| 		dax_write_cache(t->md->dax_dev, true);
 | |
| 
 | |
| 	/* Ensure that all underlying devices are non-rotational. */
 | |
| 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
 | |
| 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 | |
| 	else
 | |
| 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
 | |
| 
 | |
| 	if (!dm_table_supports_write_same(t))
 | |
| 		q->limits.max_write_same_sectors = 0;
 | |
| 	if (!dm_table_supports_write_zeroes(t))
 | |
| 		q->limits.max_write_zeroes_sectors = 0;
 | |
| 
 | |
| 	dm_table_verify_integrity(t);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some devices don't use blk_integrity but still want stable pages
 | |
| 	 * because they do their own checksumming.
 | |
| 	 */
 | |
| 	if (dm_table_requires_stable_pages(t))
 | |
| 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
 | |
| 	else
 | |
| 		q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine whether or not this queue's I/O timings contribute
 | |
| 	 * to the entropy pool, Only request-based targets use this.
 | |
| 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
 | |
| 	 * have it set.
 | |
| 	 */
 | |
| 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
 | |
| 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
 | |
| 
 | |
| 	/*
 | |
| 	 * For a zoned target, the number of zones should be updated for the
 | |
| 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
 | |
| 	 * target, this is all that is needed. For a request based target, the
 | |
| 	 * queue zone bitmaps must also be updated.
 | |
| 	 * Use blk_revalidate_disk_zones() to handle this.
 | |
| 	 */
 | |
| 	if (blk_queue_is_zoned(q))
 | |
| 		blk_revalidate_disk_zones(t->md->disk);
 | |
| 
 | |
| 	/* Allow reads to exceed readahead limits */
 | |
| 	q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
 | |
| }
 | |
| 
 | |
| unsigned int dm_table_get_num_targets(struct dm_table *t)
 | |
| {
 | |
| 	return t->num_targets;
 | |
| }
 | |
| 
 | |
| struct list_head *dm_table_get_devices(struct dm_table *t)
 | |
| {
 | |
| 	return &t->devices;
 | |
| }
 | |
| 
 | |
| fmode_t dm_table_get_mode(struct dm_table *t)
 | |
| {
 | |
| 	return t->mode;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_get_mode);
 | |
| 
 | |
| enum suspend_mode {
 | |
| 	PRESUSPEND,
 | |
| 	PRESUSPEND_UNDO,
 | |
| 	POSTSUSPEND,
 | |
| };
 | |
| 
 | |
| static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
 | |
| {
 | |
| 	int i = t->num_targets;
 | |
| 	struct dm_target *ti = t->targets;
 | |
| 
 | |
| 	lockdep_assert_held(&t->md->suspend_lock);
 | |
| 
 | |
| 	while (i--) {
 | |
| 		switch (mode) {
 | |
| 		case PRESUSPEND:
 | |
| 			if (ti->type->presuspend)
 | |
| 				ti->type->presuspend(ti);
 | |
| 			break;
 | |
| 		case PRESUSPEND_UNDO:
 | |
| 			if (ti->type->presuspend_undo)
 | |
| 				ti->type->presuspend_undo(ti);
 | |
| 			break;
 | |
| 		case POSTSUSPEND:
 | |
| 			if (ti->type->postsuspend)
 | |
| 				ti->type->postsuspend(ti);
 | |
| 			break;
 | |
| 		}
 | |
| 		ti++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void dm_table_presuspend_targets(struct dm_table *t)
 | |
| {
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 
 | |
| 	suspend_targets(t, PRESUSPEND);
 | |
| }
 | |
| 
 | |
| void dm_table_presuspend_undo_targets(struct dm_table *t)
 | |
| {
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 
 | |
| 	suspend_targets(t, PRESUSPEND_UNDO);
 | |
| }
 | |
| 
 | |
| void dm_table_postsuspend_targets(struct dm_table *t)
 | |
| {
 | |
| 	if (!t)
 | |
| 		return;
 | |
| 
 | |
| 	suspend_targets(t, POSTSUSPEND);
 | |
| }
 | |
| 
 | |
| int dm_table_resume_targets(struct dm_table *t)
 | |
| {
 | |
| 	int i, r = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&t->md->suspend_lock);
 | |
| 
 | |
| 	for (i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = t->targets + i;
 | |
| 
 | |
| 		if (!ti->type->preresume)
 | |
| 			continue;
 | |
| 
 | |
| 		r = ti->type->preresume(ti);
 | |
| 		if (r) {
 | |
| 			DMERR("%s: %s: preresume failed, error = %d",
 | |
| 			      dm_device_name(t->md), ti->type->name, r);
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = t->targets + i;
 | |
| 
 | |
| 		if (ti->type->resume)
 | |
| 			ti->type->resume(ti);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
 | |
| {
 | |
| 	list_add(&cb->list, &t->target_callbacks);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
 | |
| 
 | |
| int dm_table_any_congested(struct dm_table *t, int bdi_bits)
 | |
| {
 | |
| 	struct dm_dev_internal *dd;
 | |
| 	struct list_head *devices = dm_table_get_devices(t);
 | |
| 	struct dm_target_callbacks *cb;
 | |
| 	int r = 0;
 | |
| 
 | |
| 	list_for_each_entry(dd, devices, list) {
 | |
| 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
 | |
| 		char b[BDEVNAME_SIZE];
 | |
| 
 | |
| 		if (likely(q))
 | |
| 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
 | |
| 		else
 | |
| 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
 | |
| 				     dm_device_name(t->md),
 | |
| 				     bdevname(dd->dm_dev->bdev, b));
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(cb, &t->target_callbacks, list)
 | |
| 		if (cb->congested_fn)
 | |
| 			r |= cb->congested_fn(cb, bdi_bits);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| struct mapped_device *dm_table_get_md(struct dm_table *t)
 | |
| {
 | |
| 	return t->md;
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_get_md);
 | |
| 
 | |
| const char *dm_table_device_name(struct dm_table *t)
 | |
| {
 | |
| 	return dm_device_name(t->md);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_table_device_name);
 | |
| 
 | |
| void dm_table_run_md_queue_async(struct dm_table *t)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 	struct request_queue *queue;
 | |
| 
 | |
| 	if (!dm_table_request_based(t))
 | |
| 		return;
 | |
| 
 | |
| 	md = dm_table_get_md(t);
 | |
| 	queue = dm_get_md_queue(md);
 | |
| 	if (queue)
 | |
| 		blk_mq_run_hw_queues(queue, true);
 | |
| }
 | |
| EXPORT_SYMBOL(dm_table_run_md_queue_async);
 | |
| 
 |