forked from mirrors/linux
		
	 0646d347bd
			
		
	
	
		0646d347bd
		
	
	
	
	
		
			
			There are several places where a break statement occurs before a following break statement; these are unnecessary and can be removed to clean up the code a little. Signed-off-by: Colin Ian King <colin.king@canonical.com> Reviewed-by: Mukesh Ojha <mojha@codeaurora.org> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
		
			
				
	
	
		
			2967 lines
		
	
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2967 lines
		
	
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
 | |
|  *
 | |
|  * Copyright (C) 2003-2007 Micronas
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * version 2 only, as published by the Free Software Foundation.
 | |
|  *
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * To obtain the license, point your browser to
 | |
|  * http://www.gnu.org/copyleft/gpl.html
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/firmware.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <asm/div64.h>
 | |
| 
 | |
| #include <media/dvb_frontend.h>
 | |
| #include "drxd.h"
 | |
| #include "drxd_firm.h"
 | |
| 
 | |
| #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
 | |
| #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
 | |
| 
 | |
| #define CHUNK_SIZE 48
 | |
| 
 | |
| #define DRX_I2C_RMW           0x10
 | |
| #define DRX_I2C_BROADCAST     0x20
 | |
| #define DRX_I2C_CLEARCRC      0x80
 | |
| #define DRX_I2C_SINGLE_MASTER 0xC0
 | |
| #define DRX_I2C_MODEFLAGS     0xC0
 | |
| #define DRX_I2C_FLAGS         0xF0
 | |
| 
 | |
| #define DEFAULT_LOCK_TIMEOUT    1100
 | |
| 
 | |
| #define DRX_CHANNEL_AUTO 0
 | |
| #define DRX_CHANNEL_HIGH 1
 | |
| #define DRX_CHANNEL_LOW  2
 | |
| 
 | |
| #define DRX_LOCK_MPEG  1
 | |
| #define DRX_LOCK_FEC   2
 | |
| #define DRX_LOCK_DEMOD 4
 | |
| 
 | |
| /****************************************************************************/
 | |
| 
 | |
| enum CSCDState {
 | |
| 	CSCD_INIT = 0,
 | |
| 	CSCD_SET,
 | |
| 	CSCD_SAVED
 | |
| };
 | |
| 
 | |
| enum CDrxdState {
 | |
| 	DRXD_UNINITIALIZED = 0,
 | |
| 	DRXD_STOPPED,
 | |
| 	DRXD_STARTED
 | |
| };
 | |
| 
 | |
| enum AGC_CTRL_MODE {
 | |
| 	AGC_CTRL_AUTO = 0,
 | |
| 	AGC_CTRL_USER,
 | |
| 	AGC_CTRL_OFF
 | |
| };
 | |
| 
 | |
| enum OperationMode {
 | |
| 	OM_Default,
 | |
| 	OM_DVBT_Diversity_Front,
 | |
| 	OM_DVBT_Diversity_End
 | |
| };
 | |
| 
 | |
| struct SCfgAgc {
 | |
| 	enum AGC_CTRL_MODE ctrlMode;
 | |
| 	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
 | |
| 	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
 | |
| 	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
 | |
| 	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
 | |
| 	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
 | |
| 
 | |
| 	u16 R1;
 | |
| 	u16 R2;
 | |
| 	u16 R3;
 | |
| };
 | |
| 
 | |
| struct SNoiseCal {
 | |
| 	int cpOpt;
 | |
| 	short cpNexpOfs;
 | |
| 	short tdCal2k;
 | |
| 	short tdCal8k;
 | |
| };
 | |
| 
 | |
| enum app_env {
 | |
| 	APPENV_STATIC = 0,
 | |
| 	APPENV_PORTABLE = 1,
 | |
| 	APPENV_MOBILE = 2
 | |
| };
 | |
| 
 | |
| enum EIFFilter {
 | |
| 	IFFILTER_SAW = 0,
 | |
| 	IFFILTER_DISCRETE = 1
 | |
| };
 | |
| 
 | |
| struct drxd_state {
 | |
| 	struct dvb_frontend frontend;
 | |
| 	struct dvb_frontend_ops ops;
 | |
| 	struct dtv_frontend_properties props;
 | |
| 
 | |
| 	const struct firmware *fw;
 | |
| 	struct device *dev;
 | |
| 
 | |
| 	struct i2c_adapter *i2c;
 | |
| 	void *priv;
 | |
| 	struct drxd_config config;
 | |
| 
 | |
| 	int i2c_access;
 | |
| 	int init_done;
 | |
| 	struct mutex mutex;
 | |
| 
 | |
| 	u8 chip_adr;
 | |
| 	u16 hi_cfg_timing_div;
 | |
| 	u16 hi_cfg_bridge_delay;
 | |
| 	u16 hi_cfg_wakeup_key;
 | |
| 	u16 hi_cfg_ctrl;
 | |
| 
 | |
| 	u16 intermediate_freq;
 | |
| 	u16 osc_clock_freq;
 | |
| 
 | |
| 	enum CSCDState cscd_state;
 | |
| 	enum CDrxdState drxd_state;
 | |
| 
 | |
| 	u16 sys_clock_freq;
 | |
| 	s16 osc_clock_deviation;
 | |
| 	u16 expected_sys_clock_freq;
 | |
| 
 | |
| 	u16 insert_rs_byte;
 | |
| 	u16 enable_parallel;
 | |
| 
 | |
| 	int operation_mode;
 | |
| 
 | |
| 	struct SCfgAgc if_agc_cfg;
 | |
| 	struct SCfgAgc rf_agc_cfg;
 | |
| 
 | |
| 	struct SNoiseCal noise_cal;
 | |
| 
 | |
| 	u32 fe_fs_add_incr;
 | |
| 	u32 org_fe_fs_add_incr;
 | |
| 	u16 current_fe_if_incr;
 | |
| 
 | |
| 	u16 m_FeAgRegAgPwd;
 | |
| 	u16 m_FeAgRegAgAgcSio;
 | |
| 
 | |
| 	u16 m_EcOcRegOcModeLop;
 | |
| 	u16 m_EcOcRegSncSncLvl;
 | |
| 	u8 *m_InitAtomicRead;
 | |
| 	u8 *m_HiI2cPatch;
 | |
| 
 | |
| 	u8 *m_ResetCEFR;
 | |
| 	u8 *m_InitFE_1;
 | |
| 	u8 *m_InitFE_2;
 | |
| 	u8 *m_InitCP;
 | |
| 	u8 *m_InitCE;
 | |
| 	u8 *m_InitEQ;
 | |
| 	u8 *m_InitSC;
 | |
| 	u8 *m_InitEC;
 | |
| 	u8 *m_ResetECRAM;
 | |
| 	u8 *m_InitDiversityFront;
 | |
| 	u8 *m_InitDiversityEnd;
 | |
| 	u8 *m_DisableDiversity;
 | |
| 	u8 *m_StartDiversityFront;
 | |
| 	u8 *m_StartDiversityEnd;
 | |
| 
 | |
| 	u8 *m_DiversityDelay8MHZ;
 | |
| 	u8 *m_DiversityDelay6MHZ;
 | |
| 
 | |
| 	u8 *microcode;
 | |
| 	u32 microcode_length;
 | |
| 
 | |
| 	int type_A;
 | |
| 	int PGA;
 | |
| 	int diversity;
 | |
| 	int tuner_mirrors;
 | |
| 
 | |
| 	enum app_env app_env_default;
 | |
| 	enum app_env app_env_diversity;
 | |
| 
 | |
| };
 | |
| 
 | |
| /****************************************************************************/
 | |
| /* I2C **********************************************************************/
 | |
| /****************************************************************************/
 | |
| 
 | |
| static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
 | |
| {
 | |
| 	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
 | |
| 
 | |
| 	if (i2c_transfer(adap, &msg, 1) != 1)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int i2c_read(struct i2c_adapter *adap,
 | |
| 		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
 | |
| {
 | |
| 	struct i2c_msg msgs[2] = {
 | |
| 		{
 | |
| 			.addr = adr, .flags = 0,
 | |
| 			.buf = msg, .len = len
 | |
| 		}, {
 | |
| 			.addr = adr, .flags = I2C_M_RD,
 | |
| 			.buf = answ, .len = alen
 | |
| 		}
 | |
| 	};
 | |
| 	if (i2c_transfer(adap, msgs, 2) != 2)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline u32 MulDiv32(u32 a, u32 b, u32 c)
 | |
| {
 | |
| 	u64 tmp64;
 | |
| 
 | |
| 	tmp64 = (u64)a * (u64)b;
 | |
| 	do_div(tmp64, c);
 | |
| 
 | |
| 	return (u32) tmp64;
 | |
| }
 | |
| 
 | |
| static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
 | |
| {
 | |
| 	u8 adr = state->config.demod_address;
 | |
| 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 | |
| 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 | |
| 	};
 | |
| 	u8 mm2[2];
 | |
| 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
 | |
| 		return -1;
 | |
| 	if (data)
 | |
| 		*data = mm2[0] | (mm2[1] << 8);
 | |
| 	return mm2[0] | (mm2[1] << 8);
 | |
| }
 | |
| 
 | |
| static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
 | |
| {
 | |
| 	u8 adr = state->config.demod_address;
 | |
| 	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 | |
| 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 | |
| 	};
 | |
| 	u8 mm2[4];
 | |
| 
 | |
| 	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
 | |
| 		return -1;
 | |
| 	if (data)
 | |
| 		*data =
 | |
| 		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
 | |
| {
 | |
| 	u8 adr = state->config.demod_address;
 | |
| 	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
 | |
| 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 | |
| 		data & 0xff, (data >> 8) & 0xff
 | |
| 	};
 | |
| 
 | |
| 	if (i2c_write(state->i2c, adr, mm, 6) < 0)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
 | |
| {
 | |
| 	u8 adr = state->config.demod_address;
 | |
| 	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
 | |
| 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 | |
| 		data & 0xff, (data >> 8) & 0xff,
 | |
| 		(data >> 16) & 0xff, (data >> 24) & 0xff
 | |
| 	};
 | |
| 
 | |
| 	if (i2c_write(state->i2c, adr, mm, 8) < 0)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int write_chunk(struct drxd_state *state,
 | |
| 		       u32 reg, u8 *data, u32 len, u8 flags)
 | |
| {
 | |
| 	u8 adr = state->config.demod_address;
 | |
| 	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
 | |
| 		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 | |
| 	};
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		mm[4 + i] = data[i];
 | |
| 	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
 | |
| 		printk(KERN_ERR "error in write_chunk\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int WriteBlock(struct drxd_state *state,
 | |
| 		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
 | |
| {
 | |
| 	while (BlockSize > 0) {
 | |
| 		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
 | |
| 
 | |
| 		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
 | |
| 			return -1;
 | |
| 		pBlock += Chunk;
 | |
| 		Address += (Chunk >> 1);
 | |
| 		BlockSize -= Chunk;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int WriteTable(struct drxd_state *state, u8 * pTable)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	if (!pTable)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (!status) {
 | |
| 		u16 Length;
 | |
| 		u32 Address = pTable[0] | (pTable[1] << 8) |
 | |
| 		    (pTable[2] << 16) | (pTable[3] << 24);
 | |
| 
 | |
| 		if (Address == 0xFFFFFFFF)
 | |
| 			break;
 | |
| 		pTable += sizeof(u32);
 | |
| 
 | |
| 		Length = pTable[0] | (pTable[1] << 8);
 | |
| 		pTable += sizeof(u16);
 | |
| 		if (!Length)
 | |
| 			break;
 | |
| 		status = WriteBlock(state, Address, Length * 2, pTable, 0);
 | |
| 		pTable += (Length * 2);
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| 
 | |
| static int ResetCEFR(struct drxd_state *state)
 | |
| {
 | |
| 	return WriteTable(state, state->m_ResetCEFR);
 | |
| }
 | |
| 
 | |
| static int InitCP(struct drxd_state *state)
 | |
| {
 | |
| 	return WriteTable(state, state->m_InitCP);
 | |
| }
 | |
| 
 | |
| static int InitCE(struct drxd_state *state)
 | |
| {
 | |
| 	int status;
 | |
| 	enum app_env AppEnv = state->app_env_default;
 | |
| 
 | |
| 	do {
 | |
| 		status = WriteTable(state, state->m_InitCE);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (state->operation_mode == OM_DVBT_Diversity_Front ||
 | |
| 		    state->operation_mode == OM_DVBT_Diversity_End) {
 | |
| 			AppEnv = state->app_env_diversity;
 | |
| 		}
 | |
| 		if (AppEnv == APPENV_STATIC) {
 | |
| 			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} else if (AppEnv == APPENV_PORTABLE) {
 | |
| 			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
 | |
| 			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
 | |
| 			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* start ce */
 | |
| 		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 	} while (0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int StopOC(struct drxd_state *state)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u16 ocSyncLvl = 0;
 | |
| 	u16 ocModeLop = state->m_EcOcRegOcModeLop;
 | |
| 	u16 dtoIncLop = 0;
 | |
| 	u16 dtoIncHip = 0;
 | |
| 
 | |
| 	do {
 | |
| 		/* Store output configuration */
 | |
| 		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
 | |
| 		state->m_EcOcRegSncSncLvl = ocSyncLvl;
 | |
| 		/* m_EcOcRegOcModeLop = ocModeLop; */
 | |
| 
 | |
| 		/* Flush FIFO (byte-boundary) at fixed rate */
 | |
| 		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
 | |
| 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
 | |
| 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		msleep(1);
 | |
| 		/* Output pins to '0' */
 | |
| 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Force the OC out of sync */
 | |
| 		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
 | |
| 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
 | |
| 		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
 | |
| 		ocModeLop |= 0x2;	/* Magically-out-of-sync */
 | |
| 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 	} while (0);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int StartOC(struct drxd_state *state)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	do {
 | |
| 		/* Stop OC */
 | |
| 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Restore output configuration */
 | |
| 		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Output pins active again */
 | |
| 		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Start OC */
 | |
| 		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 	} while (0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int InitEQ(struct drxd_state *state)
 | |
| {
 | |
| 	return WriteTable(state, state->m_InitEQ);
 | |
| }
 | |
| 
 | |
| static int InitEC(struct drxd_state *state)
 | |
| {
 | |
| 	return WriteTable(state, state->m_InitEC);
 | |
| }
 | |
| 
 | |
| static int InitSC(struct drxd_state *state)
 | |
| {
 | |
| 	return WriteTable(state, state->m_InitSC);
 | |
| }
 | |
| 
 | |
| static int InitAtomicRead(struct drxd_state *state)
 | |
| {
 | |
| 	return WriteTable(state, state->m_InitAtomicRead);
 | |
| }
 | |
| 
 | |
| static int CorrectSysClockDeviation(struct drxd_state *state);
 | |
| 
 | |
| static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
 | |
| {
 | |
| 	u16 ScRaRamLock = 0;
 | |
| 	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
 | |
| 				    SC_RA_RAM_LOCK_FEC__M |
 | |
| 				    SC_RA_RAM_LOCK_DEMOD__M);
 | |
| 	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
 | |
| 				   SC_RA_RAM_LOCK_DEMOD__M);
 | |
| 	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
 | |
| 
 | |
| 	int status;
 | |
| 
 | |
| 	*pLockStatus = 0;
 | |
| 
 | |
| 	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
 | |
| 	if (status < 0) {
 | |
| 		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	if (state->drxd_state != DRXD_STARTED)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
 | |
| 		*pLockStatus |= DRX_LOCK_MPEG;
 | |
| 		CorrectSysClockDeviation(state);
 | |
| 	}
 | |
| 
 | |
| 	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
 | |
| 		*pLockStatus |= DRX_LOCK_FEC;
 | |
| 
 | |
| 	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
 | |
| 		*pLockStatus |= DRX_LOCK_DEMOD;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| 
 | |
| static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (cfg->ctrlMode == AGC_CTRL_USER) {
 | |
| 		do {
 | |
| 			u16 FeAgRegPm1AgcWri;
 | |
| 			u16 FeAgRegAgModeLop;
 | |
| 
 | |
| 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 | |
| 			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
 | |
| 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
 | |
| 						  FE_AG_REG_PM1_AGC_WRI__M);
 | |
| 			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} while (0);
 | |
| 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 | |
| 		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
 | |
| 		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
 | |
| 		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
 | |
| 		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
 | |
| 		    )
 | |
| 			return -1;
 | |
| 		do {
 | |
| 			u16 FeAgRegAgModeLop;
 | |
| 			u16 FeAgRegEgcSetLvl;
 | |
| 			u16 slope, offset;
 | |
| 
 | |
| 			/* == Mode == */
 | |
| 
 | |
| 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 | |
| 			FeAgRegAgModeLop |=
 | |
| 			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
 | |
| 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* == Settle level == */
 | |
| 
 | |
| 			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
 | |
| 						  FE_AG_REG_EGC_SET_LVL__M);
 | |
| 			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* == Min/Max == */
 | |
| 
 | |
| 			slope = (u16) ((cfg->maxOutputLevel -
 | |
| 					cfg->minOutputLevel) / 2);
 | |
| 			offset = (u16) ((cfg->maxOutputLevel +
 | |
| 					 cfg->minOutputLevel) / 2 - 511);
 | |
| 
 | |
| 			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* == Speed == */
 | |
| 			{
 | |
| 				const u16 maxRur = 8;
 | |
| 				static const u16 slowIncrDecLUT[] = {
 | |
| 					3, 4, 4, 5, 6 };
 | |
| 				static const u16 fastIncrDecLUT[] = {
 | |
| 					14, 15, 15, 16,
 | |
| 					17, 18, 18, 19,
 | |
| 					20, 21, 22, 23,
 | |
| 					24, 26, 27, 28,
 | |
| 					29, 31
 | |
| 				};
 | |
| 
 | |
| 				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
 | |
| 				    (maxRur + 1);
 | |
| 				u16 fineSpeed = (u16) (cfg->speed -
 | |
| 						       ((cfg->speed /
 | |
| 							 fineSteps) *
 | |
| 							fineSteps));
 | |
| 				u16 invRurCount = (u16) (cfg->speed /
 | |
| 							 fineSteps);
 | |
| 				u16 rurCount;
 | |
| 				if (invRurCount > maxRur) {
 | |
| 					rurCount = 0;
 | |
| 					fineSpeed += fineSteps;
 | |
| 				} else {
 | |
| 					rurCount = maxRur - invRurCount;
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				   fastInc = default *
 | |
| 				   (2^(fineSpeed/fineSteps))
 | |
| 				   => range[default...2*default>
 | |
| 				   slowInc = default *
 | |
| 				   (2^(fineSpeed/fineSteps))
 | |
| 				 */
 | |
| 				{
 | |
| 					u16 fastIncrDec =
 | |
| 					    fastIncrDecLUT[fineSpeed /
 | |
| 							   ((fineSteps /
 | |
| 							     (14 + 1)) + 1)];
 | |
| 					u16 slowIncrDec =
 | |
| 					    slowIncrDecLUT[fineSpeed /
 | |
| 							   (fineSteps /
 | |
| 							    (3 + 1))];
 | |
| 
 | |
| 					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
 | |
| 					if (status < 0)
 | |
| 						break;
 | |
| 					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
 | |
| 					if (status < 0)
 | |
| 						break;
 | |
| 					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
 | |
| 					if (status < 0)
 | |
| 						break;
 | |
| 					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
 | |
| 					if (status < 0)
 | |
| 						break;
 | |
| 					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
 | |
| 					if (status < 0)
 | |
| 						break;
 | |
| 				}
 | |
| 			}
 | |
| 		} while (0);
 | |
| 
 | |
| 	} else {
 | |
| 		/* No OFF mode for IF control */
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (cfg->ctrlMode == AGC_CTRL_USER) {
 | |
| 		do {
 | |
| 			u16 AgModeLop = 0;
 | |
| 			u16 level = (cfg->outputLevel);
 | |
| 
 | |
| 			if (level == DRXD_FE_CTRL_MAX)
 | |
| 				level++;
 | |
| 
 | |
| 			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/*==== Mode ====*/
 | |
| 
 | |
| 			/* Powerdown PD2, WRI source */
 | |
| 			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 | |
| 			state->m_FeAgRegAgPwd |=
 | |
| 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 | |
| 			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 | |
| 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 | |
| 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 | |
| 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 | |
| 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* enable AGC2 pin */
 | |
| 			{
 | |
| 				u16 FeAgRegAgAgcSio = 0;
 | |
| 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				FeAgRegAgAgcSio &=
 | |
| 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 | |
| 				FeAgRegAgAgcSio |=
 | |
| 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 | |
| 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 		} while (0);
 | |
| 	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 | |
| 		u16 AgModeLop = 0;
 | |
| 
 | |
| 		do {
 | |
| 			u16 level;
 | |
| 			/* Automatic control */
 | |
| 			/* Powerup PD2, AGC2 as output, TGC source */
 | |
| 			(state->m_FeAgRegAgPwd) &=
 | |
| 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 | |
| 			(state->m_FeAgRegAgPwd) |=
 | |
| 			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 | |
| 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 | |
| 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 | |
| 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 | |
| 				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
 | |
| 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			/* Settle level */
 | |
| 			level = (((cfg->settleLevel) >> 4) &
 | |
| 				 FE_AG_REG_TGC_SET_LVL__M);
 | |
| 			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* Min/max: don't care */
 | |
| 
 | |
| 			/* Speed: TODO */
 | |
| 
 | |
| 			/* enable AGC2 pin */
 | |
| 			{
 | |
| 				u16 FeAgRegAgAgcSio = 0;
 | |
| 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				FeAgRegAgAgcSio &=
 | |
| 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 | |
| 				FeAgRegAgAgcSio |=
 | |
| 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 | |
| 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 		} while (0);
 | |
| 	} else {
 | |
| 		u16 AgModeLop = 0;
 | |
| 
 | |
| 		do {
 | |
| 			/* No RF AGC control */
 | |
| 			/* Powerdown PD2, AGC2 as output, WRI source */
 | |
| 			(state->m_FeAgRegAgPwd) &=
 | |
| 			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 | |
| 			(state->m_FeAgRegAgPwd) |=
 | |
| 			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
 | |
| 			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 | |
| 					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 | |
| 			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 | |
| 				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 | |
| 			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
 | |
| 			{
 | |
| 				u16 FeAgRegAgAgcSio = 0;
 | |
| 				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				FeAgRegAgAgcSio &=
 | |
| 				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 | |
| 				FeAgRegAgAgcSio |=
 | |
| 				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
 | |
| 				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 			}
 | |
| 		} while (0);
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	*pValue = 0;
 | |
| 	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
 | |
| 		u16 Value;
 | |
| 		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
 | |
| 		Value &= FE_AG_REG_GC1_AGC_DAT__M;
 | |
| 		if (status >= 0) {
 | |
| 			/*           3.3V
 | |
| 			   |
 | |
| 			   R1
 | |
| 			   |
 | |
| 			   Vin - R3 - * -- Vout
 | |
| 			   |
 | |
| 			   R2
 | |
| 			   |
 | |
| 			   GND
 | |
| 			 */
 | |
| 			u32 R1 = state->if_agc_cfg.R1;
 | |
| 			u32 R2 = state->if_agc_cfg.R2;
 | |
| 			u32 R3 = state->if_agc_cfg.R3;
 | |
| 
 | |
| 			u32 Vmax, Rpar, Vmin, Vout;
 | |
| 
 | |
| 			if (R2 == 0 && (R1 == 0 || R3 == 0))
 | |
| 				return 0;
 | |
| 
 | |
| 			Vmax = (3300 * R2) / (R1 + R2);
 | |
| 			Rpar = (R2 * R3) / (R3 + R2);
 | |
| 			Vmin = (3300 * Rpar) / (R1 + Rpar);
 | |
| 			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
 | |
| 
 | |
| 			*pValue = Vout;
 | |
| 		}
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int load_firmware(struct drxd_state *state, const char *fw_name)
 | |
| {
 | |
| 	const struct firmware *fw;
 | |
| 
 | |
| 	if (request_firmware(&fw, fw_name, state->dev) < 0) {
 | |
| 		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
 | |
| 	if (!state->microcode) {
 | |
| 		release_firmware(fw);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	state->microcode_length = fw->size;
 | |
| 	release_firmware(fw);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int DownloadMicrocode(struct drxd_state *state,
 | |
| 			     const u8 *pMCImage, u32 Length)
 | |
| {
 | |
| 	u8 *pSrc;
 | |
| 	u32 Address;
 | |
| 	u16 nBlocks;
 | |
| 	u16 BlockSize;
 | |
| 	u32 offset = 0;
 | |
| 	int i, status = 0;
 | |
| 
 | |
| 	pSrc = (u8 *) pMCImage;
 | |
| 	/* We're not using Flags */
 | |
| 	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
 | |
| 	pSrc += sizeof(u16);
 | |
| 	offset += sizeof(u16);
 | |
| 	nBlocks = (pSrc[0] << 8) | pSrc[1];
 | |
| 	pSrc += sizeof(u16);
 | |
| 	offset += sizeof(u16);
 | |
| 
 | |
| 	for (i = 0; i < nBlocks; i++) {
 | |
| 		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
 | |
| 		    (pSrc[2] << 8) | pSrc[3];
 | |
| 		pSrc += sizeof(u32);
 | |
| 		offset += sizeof(u32);
 | |
| 
 | |
| 		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
 | |
| 		pSrc += sizeof(u16);
 | |
| 		offset += sizeof(u16);
 | |
| 
 | |
| 		/* We're not using Flags */
 | |
| 		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
 | |
| 		pSrc += sizeof(u16);
 | |
| 		offset += sizeof(u16);
 | |
| 
 | |
| 		/* We're not using BlockCRC */
 | |
| 		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
 | |
| 		pSrc += sizeof(u16);
 | |
| 		offset += sizeof(u16);
 | |
| 
 | |
| 		status = WriteBlock(state, Address, BlockSize,
 | |
| 				    pSrc, DRX_I2C_CLEARCRC);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		pSrc += BlockSize;
 | |
| 		offset += BlockSize;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
 | |
| {
 | |
| 	u32 nrRetries = 0;
 | |
| 	int status;
 | |
| 
 | |
| 	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	do {
 | |
| 		nrRetries += 1;
 | |
| 		if (nrRetries > DRXD_MAX_RETRIES) {
 | |
| 			status = -1;
 | |
| 			break;
 | |
| 		}
 | |
| 		status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
 | |
| 	} while (status != 0);
 | |
| 
 | |
| 	if (status >= 0)
 | |
| 		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int HI_CfgCommand(struct drxd_state *state)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	mutex_lock(&state->mutex);
 | |
| 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
 | |
| 	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
 | |
| 	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
 | |
| 	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
 | |
| 	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
 | |
| 
 | |
| 	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
 | |
| 
 | |
| 	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
 | |
| 	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
 | |
| 		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
 | |
| 				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
 | |
| 	else
 | |
| 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
 | |
| 	mutex_unlock(&state->mutex);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int InitHI(struct drxd_state *state)
 | |
| {
 | |
| 	state->hi_cfg_wakeup_key = (state->chip_adr);
 | |
| 	/* port/bridge/power down ctrl */
 | |
| 	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
 | |
| 	return HI_CfgCommand(state);
 | |
| }
 | |
| 
 | |
| static int HI_ResetCommand(struct drxd_state *state)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	mutex_lock(&state->mutex);
 | |
| 	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
 | |
| 			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
 | |
| 	if (status == 0)
 | |
| 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
 | |
| 	mutex_unlock(&state->mutex);
 | |
| 	msleep(1);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
 | |
| {
 | |
| 	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
 | |
| 	if (bEnableBridge)
 | |
| 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
 | |
| 	else
 | |
| 		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
 | |
| 
 | |
| 	return HI_CfgCommand(state);
 | |
| }
 | |
| 
 | |
| #define HI_TR_WRITE      0x9
 | |
| #define HI_TR_READ       0xA
 | |
| #define HI_TR_READ_WRITE 0xB
 | |
| #define HI_TR_BROADCAST  0x4
 | |
| 
 | |
| #if 0
 | |
| static int AtomicReadBlock(struct drxd_state *state,
 | |
| 			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
 | |
| {
 | |
| 	int status;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	/* Parameter check */
 | |
| 	if ((!pData) || ((DataSize & 1) != 0))
 | |
| 		return -1;
 | |
| 
 | |
| 	mutex_lock(&state->mutex);
 | |
| 
 | |
| 	do {
 | |
| 		/* Instruct HI to read n bytes */
 | |
| 		/* TODO use proper names forthese egisters */
 | |
| 		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 	} while (0);
 | |
| 
 | |
| 	if (status >= 0) {
 | |
| 		for (i = 0; i < (DataSize / 2); i += 1) {
 | |
| 			u16 word;
 | |
| 
 | |
| 			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
 | |
| 					&word, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			pData[2 * i] = (u8) (word & 0xFF);
 | |
| 			pData[(2 * i) + 1] = (u8) (word >> 8);
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&state->mutex);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int AtomicReadReg32(struct drxd_state *state,
 | |
| 			   u32 Addr, u32 *pData, u8 Flags)
 | |
| {
 | |
| 	u8 buf[sizeof(u32)];
 | |
| 	int status;
 | |
| 
 | |
| 	if (!pData)
 | |
| 		return -1;
 | |
| 	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
 | |
| 	*pData = (((u32) buf[0]) << 0) +
 | |
| 	    (((u32) buf[1]) << 8) +
 | |
| 	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
 | |
| 	return status;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int StopAllProcessors(struct drxd_state *state)
 | |
| {
 | |
| 	return Write16(state, HI_COMM_EXEC__A,
 | |
| 		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
 | |
| }
 | |
| 
 | |
| static int EnableAndResetMB(struct drxd_state *state)
 | |
| {
 | |
| 	if (state->type_A) {
 | |
| 		/* disable? monitor bus observe @ EC_OC */
 | |
| 		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
 | |
| 	}
 | |
| 
 | |
| 	/* do inverse broadcast, followed by explicit write to HI */
 | |
| 	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
 | |
| 	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int InitCC(struct drxd_state *state)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	if (state->osc_clock_freq == 0 ||
 | |
| 	    state->osc_clock_freq > 20000 ||
 | |
| 	    (state->osc_clock_freq % 4000) != 0) {
 | |
| 		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
 | |
| 	status |= Write16(state, CC_REG_PLL_MODE__A,
 | |
| 				CC_REG_PLL_MODE_BYPASS_PLL |
 | |
| 				CC_REG_PLL_MODE_PUMP_CUR_12, 0);
 | |
| 	status |= Write16(state, CC_REG_REF_DIVIDE__A,
 | |
| 				state->osc_clock_freq / 4000, 0);
 | |
| 	status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
 | |
| 				0);
 | |
| 	status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int ResetECOD(struct drxd_state *state)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	if (state->type_A)
 | |
| 		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
 | |
| 	else
 | |
| 		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
 | |
| 
 | |
| 	if (!(status < 0))
 | |
| 		status = WriteTable(state, state->m_ResetECRAM);
 | |
| 	if (!(status < 0))
 | |
| 		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /* Configure PGA switch */
 | |
| 
 | |
| static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
 | |
| {
 | |
| 	int status;
 | |
| 	u16 AgModeLop = 0;
 | |
| 	u16 AgModeHip = 0;
 | |
| 	do {
 | |
| 		if (pgaSwitch) {
 | |
| 			/* PGA on */
 | |
| 			/* fine gain */
 | |
| 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
 | |
| 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
 | |
| 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* coarse gain */
 | |
| 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
 | |
| 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
 | |
| 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* enable fine and coarse gain, enable AAF,
 | |
| 			   no ext resistor */
 | |
| 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			/* PGA off, bypass */
 | |
| 
 | |
| 			/* fine gain */
 | |
| 			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
 | |
| 			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
 | |
| 			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* coarse gain */
 | |
| 			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
 | |
| 			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
 | |
| 			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* disable fine and coarse gain, enable AAF,
 | |
| 			   no ext resistor */
 | |
| 			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	} while (0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int InitFE(struct drxd_state *state)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	do {
 | |
| 		status = WriteTable(state, state->m_InitFE_1);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (state->type_A) {
 | |
| 			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
 | |
| 					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
 | |
| 					 0);
 | |
| 		} else {
 | |
| 			if (state->PGA)
 | |
| 				status = SetCfgPga(state, 0);
 | |
| 			else
 | |
| 				status =
 | |
| 				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
 | |
| 					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
 | |
| 					    0);
 | |
| 		}
 | |
| 
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = WriteTable(state, state->m_InitFE_2);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 	} while (0);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int InitFT(struct drxd_state *state)
 | |
| {
 | |
| 	/*
 | |
| 	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
 | |
| 	   SC stuff
 | |
| 	 */
 | |
| 	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
 | |
| }
 | |
| 
 | |
| static int SC_WaitForReady(struct drxd_state *state)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
 | |
| 		int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
 | |
| 		if (status == 0)
 | |
| 			return status;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int SC_SendCommand(struct drxd_state *state, u16 cmd)
 | |
| {
 | |
| 	int status = 0, ret;
 | |
| 	u16 errCode;
 | |
| 
 | |
| 	status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	SC_WaitForReady(state);
 | |
| 
 | |
| 	ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
 | |
| 
 | |
| 	if (ret < 0 || errCode == 0xFFFF) {
 | |
| 		printk(KERN_ERR "Command Error\n");
 | |
| 		status = -1;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int SC_ProcStartCommand(struct drxd_state *state,
 | |
| 			       u16 subCmd, u16 param0, u16 param1)
 | |
| {
 | |
| 	int ret, status = 0;
 | |
| 	u16 scExec;
 | |
| 
 | |
| 	mutex_lock(&state->mutex);
 | |
| 	do {
 | |
| 		ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
 | |
| 		if (ret < 0 || scExec != 1) {
 | |
| 			status = -1;
 | |
| 			break;
 | |
| 		}
 | |
| 		SC_WaitForReady(state);
 | |
| 		status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
 | |
| 		status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
 | |
| 		status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
 | |
| 
 | |
| 		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
 | |
| 	} while (0);
 | |
| 	mutex_unlock(&state->mutex);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int SC_SetPrefParamCommand(struct drxd_state *state,
 | |
| 				  u16 subCmd, u16 param0, u16 param1)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	mutex_lock(&state->mutex);
 | |
| 	do {
 | |
| 		status = SC_WaitForReady(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 	} while (0);
 | |
| 	mutex_unlock(&state->mutex);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
 | |
| {
 | |
| 	int status = 0;
 | |
| 
 | |
| 	mutex_lock(&state->mutex);
 | |
| 	do {
 | |
| 		status = SC_WaitForReady(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 	} while (0);
 | |
| 	mutex_unlock(&state->mutex);
 | |
| 	return status;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	do {
 | |
| 		u16 EcOcRegIprInvMpg = 0;
 | |
| 		u16 EcOcRegOcModeLop = 0;
 | |
| 		u16 EcOcRegOcModeHip = 0;
 | |
| 		u16 EcOcRegOcMpgSio = 0;
 | |
| 
 | |
| 		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
 | |
| 
 | |
| 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
 | |
| 			if (bEnableOutput) {
 | |
| 				EcOcRegOcModeHip |=
 | |
| 				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
 | |
| 			} else
 | |
| 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
 | |
| 			EcOcRegOcModeLop |=
 | |
| 			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
 | |
| 		} else {
 | |
| 			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
 | |
| 
 | |
| 			if (bEnableOutput)
 | |
| 				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
 | |
| 			else
 | |
| 				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
 | |
| 
 | |
| 			/* Don't Insert RS Byte */
 | |
| 			if (state->insert_rs_byte) {
 | |
| 				EcOcRegOcModeLop &=
 | |
| 				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
 | |
| 				EcOcRegOcModeHip &=
 | |
| 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
 | |
| 				EcOcRegOcModeHip |=
 | |
| 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
 | |
| 			} else {
 | |
| 				EcOcRegOcModeLop |=
 | |
| 				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
 | |
| 				EcOcRegOcModeHip &=
 | |
| 				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
 | |
| 				EcOcRegOcModeHip |=
 | |
| 				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
 | |
| 			}
 | |
| 
 | |
| 			/* Mode = Parallel */
 | |
| 			if (state->enable_parallel)
 | |
| 				EcOcRegOcModeLop &=
 | |
| 				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
 | |
| 			else
 | |
| 				EcOcRegOcModeLop |=
 | |
| 				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
 | |
| 		}
 | |
| 		/* Invert Data */
 | |
| 		/* EcOcRegIprInvMpg |= 0x00FF; */
 | |
| 		EcOcRegIprInvMpg &= (~(0x00FF));
 | |
| 
 | |
| 		/* Invert Error ( we don't use the pin ) */
 | |
| 		/*  EcOcRegIprInvMpg |= 0x0100; */
 | |
| 		EcOcRegIprInvMpg &= (~(0x0100));
 | |
| 
 | |
| 		/* Invert Start ( we don't use the pin ) */
 | |
| 		/* EcOcRegIprInvMpg |= 0x0200; */
 | |
| 		EcOcRegIprInvMpg &= (~(0x0200));
 | |
| 
 | |
| 		/* Invert Valid ( we don't use the pin ) */
 | |
| 		/* EcOcRegIprInvMpg |= 0x0400; */
 | |
| 		EcOcRegIprInvMpg &= (~(0x0400));
 | |
| 
 | |
| 		/* Invert Clock */
 | |
| 		/* EcOcRegIprInvMpg |= 0x0800; */
 | |
| 		EcOcRegIprInvMpg &= (~(0x0800));
 | |
| 
 | |
| 		/* EcOcRegOcModeLop =0x05; */
 | |
| 		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 	} while (0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int SetDeviceTypeId(struct drxd_state *state)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u16 deviceId = 0;
 | |
| 
 | |
| 	do {
 | |
| 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		/* TODO: why twice? */
 | |
| 		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
 | |
| 
 | |
| 		state->type_A = 0;
 | |
| 		state->PGA = 0;
 | |
| 		state->diversity = 0;
 | |
| 		if (deviceId == 0) {	/* on A2 only 3975 available */
 | |
| 			state->type_A = 1;
 | |
| 			printk(KERN_INFO "DRX3975D-A2\n");
 | |
| 		} else {
 | |
| 			deviceId >>= 12;
 | |
| 			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
 | |
| 			switch (deviceId) {
 | |
| 			case 4:
 | |
| 				state->diversity = 1;
 | |
| 				/* fall through */
 | |
| 			case 3:
 | |
| 			case 7:
 | |
| 				state->PGA = 1;
 | |
| 				break;
 | |
| 			case 6:
 | |
| 				state->diversity = 1;
 | |
| 				/* fall through */
 | |
| 			case 5:
 | |
| 			case 8:
 | |
| 				break;
 | |
| 			default:
 | |
| 				status = -1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	} while (0);
 | |
| 
 | |
| 	if (status < 0)
 | |
| 		return status;
 | |
| 
 | |
| 	/* Init Table selection */
 | |
| 	state->m_InitAtomicRead = DRXD_InitAtomicRead;
 | |
| 	state->m_InitSC = DRXD_InitSC;
 | |
| 	state->m_ResetECRAM = DRXD_ResetECRAM;
 | |
| 	if (state->type_A) {
 | |
| 		state->m_ResetCEFR = DRXD_ResetCEFR;
 | |
| 		state->m_InitFE_1 = DRXD_InitFEA2_1;
 | |
| 		state->m_InitFE_2 = DRXD_InitFEA2_2;
 | |
| 		state->m_InitCP = DRXD_InitCPA2;
 | |
| 		state->m_InitCE = DRXD_InitCEA2;
 | |
| 		state->m_InitEQ = DRXD_InitEQA2;
 | |
| 		state->m_InitEC = DRXD_InitECA2;
 | |
| 		if (load_firmware(state, DRX_FW_FILENAME_A2))
 | |
| 			return -EIO;
 | |
| 	} else {
 | |
| 		state->m_ResetCEFR = NULL;
 | |
| 		state->m_InitFE_1 = DRXD_InitFEB1_1;
 | |
| 		state->m_InitFE_2 = DRXD_InitFEB1_2;
 | |
| 		state->m_InitCP = DRXD_InitCPB1;
 | |
| 		state->m_InitCE = DRXD_InitCEB1;
 | |
| 		state->m_InitEQ = DRXD_InitEQB1;
 | |
| 		state->m_InitEC = DRXD_InitECB1;
 | |
| 		if (load_firmware(state, DRX_FW_FILENAME_B1))
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 	if (state->diversity) {
 | |
| 		state->m_InitDiversityFront = DRXD_InitDiversityFront;
 | |
| 		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
 | |
| 		state->m_DisableDiversity = DRXD_DisableDiversity;
 | |
| 		state->m_StartDiversityFront = DRXD_StartDiversityFront;
 | |
| 		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
 | |
| 		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
 | |
| 		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
 | |
| 	} else {
 | |
| 		state->m_InitDiversityFront = NULL;
 | |
| 		state->m_InitDiversityEnd = NULL;
 | |
| 		state->m_DisableDiversity = NULL;
 | |
| 		state->m_StartDiversityFront = NULL;
 | |
| 		state->m_StartDiversityEnd = NULL;
 | |
| 		state->m_DiversityDelay8MHZ = NULL;
 | |
| 		state->m_DiversityDelay6MHZ = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int CorrectSysClockDeviation(struct drxd_state *state)
 | |
| {
 | |
| 	int status;
 | |
| 	s32 incr = 0;
 | |
| 	s32 nomincr = 0;
 | |
| 	u32 bandwidth = 0;
 | |
| 	u32 sysClockInHz = 0;
 | |
| 	u32 sysClockFreq = 0;	/* in kHz */
 | |
| 	s16 oscClockDeviation;
 | |
| 	s16 Diff;
 | |
| 
 | |
| 	do {
 | |
| 		/* Retrieve bandwidth and incr, sanity check */
 | |
| 
 | |
| 		/* These accesses should be AtomicReadReg32, but that
 | |
| 		   causes trouble (at least for diversity */
 | |
| 		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (state->type_A) {
 | |
| 			if ((nomincr - incr < -500) || (nomincr - incr > 500))
 | |
| 				break;
 | |
| 		} else {
 | |
| 			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		switch (state->props.bandwidth_hz) {
 | |
| 		case 8000000:
 | |
| 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
 | |
| 			break;
 | |
| 		case 7000000:
 | |
| 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
 | |
| 			break;
 | |
| 		case 6000000:
 | |
| 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Compute new sysclock value
 | |
| 		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
 | |
| 		incr += (1 << 23);
 | |
| 		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
 | |
| 		sysClockFreq = (u32) (sysClockInHz / 1000);
 | |
| 		/* rounding */
 | |
| 		if ((sysClockInHz % 1000) > 500)
 | |
| 			sysClockFreq++;
 | |
| 
 | |
| 		/* Compute clock deviation in ppm */
 | |
| 		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
 | |
| 					     (s32)
 | |
| 					     (state->expected_sys_clock_freq)) *
 | |
| 					    1000000L) /
 | |
| 					   (s32)
 | |
| 					   (state->expected_sys_clock_freq));
 | |
| 
 | |
| 		Diff = oscClockDeviation - state->osc_clock_deviation;
 | |
| 		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
 | |
| 		if (Diff >= -200 && Diff <= 200) {
 | |
| 			state->sys_clock_freq = (u16) sysClockFreq;
 | |
| 			if (oscClockDeviation != state->osc_clock_deviation) {
 | |
| 				if (state->config.osc_deviation) {
 | |
| 					state->config.osc_deviation(state->priv,
 | |
| 								    oscClockDeviation,
 | |
| 								    1);
 | |
| 					state->osc_clock_deviation =
 | |
| 					    oscClockDeviation;
 | |
| 				}
 | |
| 			}
 | |
| 			/* switch OFF SRMM scan in SC */
 | |
| 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			/* overrule FE_IF internal value for
 | |
| 			   proper re-locking */
 | |
| 			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			state->cscd_state = CSCD_SAVED;
 | |
| 		}
 | |
| 	} while (0);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int DRX_Stop(struct drxd_state *state)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	if (state->drxd_state != DRXD_STARTED)
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		if (state->cscd_state != CSCD_SAVED) {
 | |
| 			u32 lock;
 | |
| 			status = DRX_GetLockStatus(state, &lock);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		status = StopOC(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		state->drxd_state = DRXD_STOPPED;
 | |
| 
 | |
| 		status = ConfigureMPEGOutput(state, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (state->type_A) {
 | |
| 			/* Stop relevant processors off the device */
 | |
| 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			/* Stop all processors except HI & CC & FE */
 | |
| 			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 	} while (0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| #if 0	/* Currently unused */
 | |
| static int SetOperationMode(struct drxd_state *state, int oMode)
 | |
| {
 | |
| 	int status;
 | |
| 
 | |
| 	do {
 | |
| 		if (state->drxd_state != DRXD_STOPPED) {
 | |
| 			status = -1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (oMode == state->operation_mode) {
 | |
| 			status = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (oMode != OM_Default && !state->diversity) {
 | |
| 			status = -1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (oMode) {
 | |
| 		case OM_DVBT_Diversity_Front:
 | |
| 			status = WriteTable(state, state->m_InitDiversityFront);
 | |
| 			break;
 | |
| 		case OM_DVBT_Diversity_End:
 | |
| 			status = WriteTable(state, state->m_InitDiversityEnd);
 | |
| 			break;
 | |
| 		case OM_Default:
 | |
| 			/* We need to check how to
 | |
| 			   get DRXD out of diversity */
 | |
| 		default:
 | |
| 			status = WriteTable(state, state->m_DisableDiversity);
 | |
| 			break;
 | |
| 		}
 | |
| 	} while (0);
 | |
| 
 | |
| 	if (!status)
 | |
| 		state->operation_mode = oMode;
 | |
| 	return status;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int StartDiversity(struct drxd_state *state)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u16 rcControl;
 | |
| 
 | |
| 	do {
 | |
| 		if (state->operation_mode == OM_DVBT_Diversity_Front) {
 | |
| 			status = WriteTable(state, state->m_StartDiversityFront);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
 | |
| 			status = WriteTable(state, state->m_StartDiversityEnd);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			if (state->props.bandwidth_hz == 8000000) {
 | |
| 				status = WriteTable(state, state->m_DiversityDelay8MHZ);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 			} else {
 | |
| 				status = WriteTable(state, state->m_DiversityDelay6MHZ);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
 | |
| 			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
 | |
| 			    /*  combining enabled */
 | |
| 			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
 | |
| 			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
 | |
| 			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
 | |
| 			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	} while (0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int SetFrequencyShift(struct drxd_state *state,
 | |
| 			     u32 offsetFreq, int channelMirrored)
 | |
| {
 | |
| 	int negativeShift = (state->tuner_mirrors == channelMirrored);
 | |
| 
 | |
| 	/* Handle all mirroring
 | |
| 	 *
 | |
| 	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
 | |
| 	 * feFsRegAddInc to 28 bits below
 | |
| 	 * (if the result before masking is more than 28 bits, this means
 | |
| 	 *  that the ADC is mirroring.
 | |
| 	 * The masking is in fact the aliasing of the ADC)
 | |
| 	 *
 | |
| 	 */
 | |
| 
 | |
| 	/* Compute register value, unsigned computation */
 | |
| 	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
 | |
| 					 offsetFreq,
 | |
| 					 1 << 28, state->sys_clock_freq);
 | |
| 	/* Remove integer part */
 | |
| 	state->fe_fs_add_incr &= 0x0FFFFFFFL;
 | |
| 	if (negativeShift)
 | |
| 		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
 | |
| 
 | |
| 	/* Save the frequency shift without tunerOffset compensation
 | |
| 	   for CtrlGetChannel. */
 | |
| 	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
 | |
| 					     1 << 28, state->sys_clock_freq);
 | |
| 	/* Remove integer part */
 | |
| 	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
 | |
| 	if (negativeShift)
 | |
| 		state->org_fe_fs_add_incr = ((1L << 28) -
 | |
| 					     state->org_fe_fs_add_incr);
 | |
| 
 | |
| 	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
 | |
| 		       state->fe_fs_add_incr, 0);
 | |
| }
 | |
| 
 | |
| static int SetCfgNoiseCalibration(struct drxd_state *state,
 | |
| 				  struct SNoiseCal *noiseCal)
 | |
| {
 | |
| 	u16 beOptEna;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	do {
 | |
| 		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		if (noiseCal->cpOpt) {
 | |
| 			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
 | |
| 		} else {
 | |
| 			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
 | |
| 			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (!state->type_A) {
 | |
| 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 	} while (0);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int DRX_Start(struct drxd_state *state, s32 off)
 | |
| {
 | |
| 	struct dtv_frontend_properties *p = &state->props;
 | |
| 	int status;
 | |
| 
 | |
| 	u16 transmissionParams = 0;
 | |
| 	u16 operationMode = 0;
 | |
| 	u16 qpskTdTpsPwr = 0;
 | |
| 	u16 qam16TdTpsPwr = 0;
 | |
| 	u16 qam64TdTpsPwr = 0;
 | |
| 	u32 feIfIncr = 0;
 | |
| 	u32 bandwidth = 0;
 | |
| 	int mirrorFreqSpect;
 | |
| 
 | |
| 	u16 qpskSnCeGain = 0;
 | |
| 	u16 qam16SnCeGain = 0;
 | |
| 	u16 qam64SnCeGain = 0;
 | |
| 	u16 qpskIsGainMan = 0;
 | |
| 	u16 qam16IsGainMan = 0;
 | |
| 	u16 qam64IsGainMan = 0;
 | |
| 	u16 qpskIsGainExp = 0;
 | |
| 	u16 qam16IsGainExp = 0;
 | |
| 	u16 qam64IsGainExp = 0;
 | |
| 	u16 bandwidthParam = 0;
 | |
| 
 | |
| 	if (off < 0)
 | |
| 		off = (off - 500) / 1000;
 | |
| 	else
 | |
| 		off = (off + 500) / 1000;
 | |
| 
 | |
| 	do {
 | |
| 		if (state->drxd_state != DRXD_STOPPED)
 | |
| 			return -1;
 | |
| 		status = ResetECOD(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		if (state->type_A) {
 | |
| 			status = InitSC(state);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			status = InitFT(state);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = InitCP(state);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = InitCE(state);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = InitEQ(state);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 			status = InitSC(state);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* Restore current IF & RF AGC settings */
 | |
| 
 | |
| 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
 | |
| 
 | |
| 		switch (p->transmission_mode) {
 | |
| 		default:	/* Not set, detect it automatically */
 | |
| 			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
 | |
| 			/* fall through - try first guess DRX_FFTMODE_8K */
 | |
| 		case TRANSMISSION_MODE_8K:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				qpskSnCeGain = 99;
 | |
| 				qam16SnCeGain = 83;
 | |
| 				qam64SnCeGain = 67;
 | |
| 			}
 | |
| 			break;
 | |
| 		case TRANSMISSION_MODE_2K:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				qpskSnCeGain = 97;
 | |
| 				qam16SnCeGain = 71;
 | |
| 				qam64SnCeGain = 65;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (p->guard_interval) {
 | |
| 		case GUARD_INTERVAL_1_4:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
 | |
| 			break;
 | |
| 		case GUARD_INTERVAL_1_8:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
 | |
| 			break;
 | |
| 		case GUARD_INTERVAL_1_16:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
 | |
| 			break;
 | |
| 		case GUARD_INTERVAL_1_32:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
 | |
| 			break;
 | |
| 		default:	/* Not set, detect it automatically */
 | |
| 			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
 | |
| 			/* try first guess 1/4 */
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (p->hierarchy) {
 | |
| 		case HIERARCHY_1:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 
 | |
| 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
 | |
| 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
 | |
| 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
 | |
| 
 | |
| 				qpskIsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
 | |
| 				qam16IsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
 | |
| 				qam64IsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
 | |
| 
 | |
| 				qpskIsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
 | |
| 				qam16IsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
 | |
| 				qam64IsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case HIERARCHY_2:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 
 | |
| 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
 | |
| 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
 | |
| 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
 | |
| 
 | |
| 				qpskIsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
 | |
| 				qam16IsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
 | |
| 				qam64IsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
 | |
| 
 | |
| 				qpskIsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
 | |
| 				qam16IsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
 | |
| 				qam64IsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
 | |
| 			}
 | |
| 			break;
 | |
| 		case HIERARCHY_4:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 
 | |
| 				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
 | |
| 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
 | |
| 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
 | |
| 
 | |
| 				qpskIsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
 | |
| 				qam16IsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
 | |
| 				qam64IsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
 | |
| 
 | |
| 				qpskIsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
 | |
| 				qam16IsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
 | |
| 				qam64IsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
 | |
| 			}
 | |
| 			break;
 | |
| 		case HIERARCHY_AUTO:
 | |
| 		default:
 | |
| 			/* Not set, detect it automatically, start with none */
 | |
| 			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 
 | |
| 				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
 | |
| 				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
 | |
| 				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
 | |
| 
 | |
| 				qpskIsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
 | |
| 				qam16IsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
 | |
| 				qam64IsGainMan =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
 | |
| 
 | |
| 				qpskIsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
 | |
| 				qam16IsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
 | |
| 				qam64IsGainExp =
 | |
| 				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		switch (p->modulation) {
 | |
| 		default:
 | |
| 			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
 | |
| 			/* fall through - try first guess DRX_CONSTELLATION_QAM64 */
 | |
| 		case QAM_64:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 
 | |
| 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 			}
 | |
| 			break;
 | |
| 		case QPSK:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 
 | |
| 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		case QAM_16:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
 | |
| 			if (state->type_A) {
 | |
| 				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 
 | |
| 				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
 | |
| 				if (status < 0)
 | |
| 					break;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		}
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		switch (DRX_CHANNEL_HIGH) {
 | |
| 		default:
 | |
| 		case DRX_CHANNEL_AUTO:
 | |
| 		case DRX_CHANNEL_LOW:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
 | |
| 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
 | |
| 			break;
 | |
| 		case DRX_CHANNEL_HIGH:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
 | |
| 			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (p->code_rate_HP) {
 | |
| 		case FEC_1_2:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
 | |
| 			if (state->type_A)
 | |
| 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
 | |
| 			break;
 | |
| 		default:
 | |
| 			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
 | |
| 			/* fall through */
 | |
| 		case FEC_2_3:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
 | |
| 			if (state->type_A)
 | |
| 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
 | |
| 			break;
 | |
| 		case FEC_3_4:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
 | |
| 			if (state->type_A)
 | |
| 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
 | |
| 			break;
 | |
| 		case FEC_5_6:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
 | |
| 			if (state->type_A)
 | |
| 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
 | |
| 			break;
 | |
| 		case FEC_7_8:
 | |
| 			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
 | |
| 			if (state->type_A)
 | |
| 				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* First determine real bandwidth (Hz) */
 | |
| 		/* Also set delay for impulse noise cruncher (only A2) */
 | |
| 		/* Also set parameters for EC_OC fix, note
 | |
| 		   EC_OC_REG_TMD_HIL_MAR is changed
 | |
| 		   by SC for fix for some 8K,1/8 guard but is restored by
 | |
| 		   InitEC and ResetEC
 | |
| 		   functions */
 | |
| 		switch (p->bandwidth_hz) {
 | |
| 		case 0:
 | |
| 			p->bandwidth_hz = 8000000;
 | |
| 			/* fall through */
 | |
| 		case 8000000:
 | |
| 			/* (64/7)*(8/8)*1000000 */
 | |
| 			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
 | |
| 
 | |
| 			bandwidthParam = 0;
 | |
| 			status = Write16(state,
 | |
| 					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
 | |
| 			break;
 | |
| 		case 7000000:
 | |
| 			/* (64/7)*(7/8)*1000000 */
 | |
| 			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
 | |
| 			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
 | |
| 			status = Write16(state,
 | |
| 					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
 | |
| 			break;
 | |
| 		case 6000000:
 | |
| 			/* (64/7)*(6/8)*1000000 */
 | |
| 			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
 | |
| 			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
 | |
| 			status = Write16(state,
 | |
| 					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
 | |
| 			break;
 | |
| 		default:
 | |
| 			status = -EINVAL;
 | |
| 		}
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		{
 | |
| 			u16 sc_config;
 | |
| 			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 
 | |
| 			/* enable SLAVE mode in 2k 1/32 to
 | |
| 			   prevent timing change glitches */
 | |
| 			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
 | |
| 			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
 | |
| 				/* enable slave */
 | |
| 				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
 | |
| 			} else {
 | |
| 				/* disable slave */
 | |
| 				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
 | |
| 			}
 | |
| 			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		status = SetCfgNoiseCalibration(state, &state->noise_cal);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (state->cscd_state == CSCD_INIT) {
 | |
| 			/* switch on SRMM scan in SC */
 | |
| 			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| /*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
 | |
| 			state->cscd_state = CSCD_SET;
 | |
| 		}
 | |
| 
 | |
| 		/* Now compute FE_IF_REG_INCR */
 | |
| 		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
 | |
| 		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
 | |
| 		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
 | |
| 				    (1ULL << 21), bandwidth) - (1 << 23);
 | |
| 		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		/* Bandwidth setting done */
 | |
| 
 | |
| 		/* Mirror & frequency offset */
 | |
| 		SetFrequencyShift(state, off, mirrorFreqSpect);
 | |
| 
 | |
| 		/* Start SC, write channel settings to SC */
 | |
| 
 | |
| 		/* Enable SC after setting all other parameters */
 | |
| 		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Write SC parameter registers, operation mode */
 | |
| #if 1
 | |
| 		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
 | |
| 				 SC_RA_RAM_OP_AUTO_GUARD__M |
 | |
| 				 SC_RA_RAM_OP_AUTO_CONST__M |
 | |
| 				 SC_RA_RAM_OP_AUTO_HIER__M |
 | |
| 				 SC_RA_RAM_OP_AUTO_RATE__M);
 | |
| #endif
 | |
| 		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Start correct processes to get in lock */
 | |
| 		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = StartOC(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (state->operation_mode != OM_Default) {
 | |
| 			status = StartDiversity(state);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		state->drxd_state = DRXD_STARTED;
 | |
| 	} while (0);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
 | |
| {
 | |
| 	u32 ulRfAgcOutputLevel = 0xffffffff;
 | |
| 	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
 | |
| 	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
 | |
| 	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
 | |
| 	u32 ulRfAgcSpeed = 0;	/* Currently unused */
 | |
| 	u32 ulRfAgcMode = 0;	/*2;   Off */
 | |
| 	u32 ulRfAgcR1 = 820;
 | |
| 	u32 ulRfAgcR2 = 2200;
 | |
| 	u32 ulRfAgcR3 = 150;
 | |
| 	u32 ulIfAgcMode = 0;	/* Auto */
 | |
| 	u32 ulIfAgcOutputLevel = 0xffffffff;
 | |
| 	u32 ulIfAgcSettleLevel = 0xffffffff;
 | |
| 	u32 ulIfAgcMinLevel = 0xffffffff;
 | |
| 	u32 ulIfAgcMaxLevel = 0xffffffff;
 | |
| 	u32 ulIfAgcSpeed = 0xffffffff;
 | |
| 	u32 ulIfAgcR1 = 820;
 | |
| 	u32 ulIfAgcR2 = 2200;
 | |
| 	u32 ulIfAgcR3 = 150;
 | |
| 	u32 ulClock = state->config.clock;
 | |
| 	u32 ulSerialMode = 0;
 | |
| 	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
 | |
| 	u32 ulHiI2cDelay = HI_I2C_DELAY;
 | |
| 	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
 | |
| 	u32 ulHiI2cPatch = 0;
 | |
| 	u32 ulEnvironment = APPENV_PORTABLE;
 | |
| 	u32 ulEnvironmentDiversity = APPENV_MOBILE;
 | |
| 	u32 ulIFFilter = IFFILTER_SAW;
 | |
| 
 | |
| 	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
 | |
| 	state->if_agc_cfg.outputLevel = 0;
 | |
| 	state->if_agc_cfg.settleLevel = 140;
 | |
| 	state->if_agc_cfg.minOutputLevel = 0;
 | |
| 	state->if_agc_cfg.maxOutputLevel = 1023;
 | |
| 	state->if_agc_cfg.speed = 904;
 | |
| 
 | |
| 	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
 | |
| 		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
 | |
| 		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
 | |
| 	}
 | |
| 
 | |
| 	if (ulIfAgcMode == 0 &&
 | |
| 	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
 | |
| 	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
 | |
| 	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
 | |
| 	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
 | |
| 		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
 | |
| 		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
 | |
| 		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
 | |
| 		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
 | |
| 		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
 | |
| 	}
 | |
| 
 | |
| 	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
 | |
| 	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
 | |
| 	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
 | |
| 
 | |
| 	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
 | |
| 	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
 | |
| 	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
 | |
| 
 | |
| 	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
 | |
| 	/* rest of the RFAgcCfg structure currently unused */
 | |
| 	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
 | |
| 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
 | |
| 		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
 | |
| 	}
 | |
| 
 | |
| 	if (ulRfAgcMode == 0 &&
 | |
| 	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
 | |
| 	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
 | |
| 	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
 | |
| 	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
 | |
| 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
 | |
| 		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
 | |
| 		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
 | |
| 		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
 | |
| 		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
 | |
| 	}
 | |
| 
 | |
| 	if (ulRfAgcMode == 2)
 | |
| 		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
 | |
| 
 | |
| 	if (ulEnvironment <= 2)
 | |
| 		state->app_env_default = (enum app_env)
 | |
| 		    (ulEnvironment);
 | |
| 	if (ulEnvironmentDiversity <= 2)
 | |
| 		state->app_env_diversity = (enum app_env)
 | |
| 		    (ulEnvironmentDiversity);
 | |
| 
 | |
| 	if (ulIFFilter == IFFILTER_DISCRETE) {
 | |
| 		/* discrete filter */
 | |
| 		state->noise_cal.cpOpt = 0;
 | |
| 		state->noise_cal.cpNexpOfs = 40;
 | |
| 		state->noise_cal.tdCal2k = -40;
 | |
| 		state->noise_cal.tdCal8k = -24;
 | |
| 	} else {
 | |
| 		/* SAW filter */
 | |
| 		state->noise_cal.cpOpt = 1;
 | |
| 		state->noise_cal.cpNexpOfs = 0;
 | |
| 		state->noise_cal.tdCal2k = -21;
 | |
| 		state->noise_cal.tdCal8k = -24;
 | |
| 	}
 | |
| 	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
 | |
| 
 | |
| 	state->chip_adr = (state->config.demod_address << 1) | 1;
 | |
| 	switch (ulHiI2cPatch) {
 | |
| 	case 1:
 | |
| 		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
 | |
| 		break;
 | |
| 	default:
 | |
| 		state->m_HiI2cPatch = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* modify tuner and clock attributes */
 | |
| 	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
 | |
| 	/* expected system clock frequency in kHz */
 | |
| 	state->expected_sys_clock_freq = 48000;
 | |
| 	/* real system clock frequency in kHz */
 | |
| 	state->sys_clock_freq = 48000;
 | |
| 	state->osc_clock_freq = (u16) ulClock;
 | |
| 	state->osc_clock_deviation = 0;
 | |
| 	state->cscd_state = CSCD_INIT;
 | |
| 	state->drxd_state = DRXD_UNINITIALIZED;
 | |
| 
 | |
| 	state->PGA = 0;
 | |
| 	state->type_A = 0;
 | |
| 	state->tuner_mirrors = 0;
 | |
| 
 | |
| 	/* modify MPEG output attributes */
 | |
| 	state->insert_rs_byte = state->config.insert_rs_byte;
 | |
| 	state->enable_parallel = (ulSerialMode != 1);
 | |
| 
 | |
| 	/* Timing div, 250ns/Psys */
 | |
| 	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
 | |
| 
 | |
| 	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
 | |
| 					  ulHiI2cDelay) / 1000;
 | |
| 	/* Bridge delay, uses oscilator clock */
 | |
| 	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
 | |
| 	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
 | |
| 					    ulHiI2cBridgeDelay) / 1000;
 | |
| 
 | |
| 	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
 | |
| 	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
 | |
| 	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
 | |
| {
 | |
| 	int status = 0;
 | |
| 	u32 driverVersion;
 | |
| 
 | |
| 	if (state->init_done)
 | |
| 		return 0;
 | |
| 
 | |
| 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
 | |
| 
 | |
| 	do {
 | |
| 		state->operation_mode = OM_Default;
 | |
| 
 | |
| 		status = SetDeviceTypeId(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Apply I2c address patch to B1 */
 | |
| 		if (!state->type_A && state->m_HiI2cPatch) {
 | |
| 			status = WriteTable(state, state->m_HiI2cPatch);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (state->type_A) {
 | |
| 			/* HI firmware patch for UIO readout,
 | |
| 			   avoid clearing of result register */
 | |
| 			status = Write16(state, 0x43012D, 0x047f, 0);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		status = HI_ResetCommand(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = StopAllProcessors(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = InitCC(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		state->osc_clock_deviation = 0;
 | |
| 
 | |
| 		if (state->config.osc_deviation)
 | |
| 			state->osc_clock_deviation =
 | |
| 			    state->config.osc_deviation(state->priv, 0, 0);
 | |
| 		{
 | |
| 			/* Handle clock deviation */
 | |
| 			s32 devB;
 | |
| 			s32 devA = (s32) (state->osc_clock_deviation) *
 | |
| 			    (s32) (state->expected_sys_clock_freq);
 | |
| 			/* deviation in kHz */
 | |
| 			s32 deviation = (devA / (1000000L));
 | |
| 			/* rounding, signed */
 | |
| 			if (devA > 0)
 | |
| 				devB = (2);
 | |
| 			else
 | |
| 				devB = (-2);
 | |
| 			if ((devB * (devA % 1000000L) > 1000000L)) {
 | |
| 				/* add +1 or -1 */
 | |
| 				deviation += (devB / 2);
 | |
| 			}
 | |
| 
 | |
| 			state->sys_clock_freq =
 | |
| 			    (u16) ((state->expected_sys_clock_freq) +
 | |
| 				   deviation);
 | |
| 		}
 | |
| 		status = InitHI(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = InitAtomicRead(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = EnableAndResetMB(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		if (state->type_A) {
 | |
| 			status = ResetCEFR(state);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 		if (fw) {
 | |
| 			status = DownloadMicrocode(state, fw, fw_size);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
 | |
| 			if (status < 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (state->PGA) {
 | |
| 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
 | |
| 			SetCfgPga(state, 0);	/* PGA = 0 dB */
 | |
| 		} else {
 | |
| 			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
 | |
| 		}
 | |
| 
 | |
| 		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
 | |
| 
 | |
| 		status = InitFE(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = InitFT(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = InitCP(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = InitCE(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = InitEQ(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = InitEC(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = InitSC(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = SetCfgIfAgc(state, &state->if_agc_cfg);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		state->cscd_state = CSCD_INIT;
 | |
| 		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		driverVersion = (((VERSION_MAJOR / 10) << 4) +
 | |
| 				 (VERSION_MAJOR % 10)) << 24;
 | |
| 		driverVersion += (((VERSION_MINOR / 10) << 4) +
 | |
| 				  (VERSION_MINOR % 10)) << 16;
 | |
| 		driverVersion += ((VERSION_PATCH / 1000) << 12) +
 | |
| 		    ((VERSION_PATCH / 100) << 8) +
 | |
| 		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
 | |
| 
 | |
| 		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		status = StopOC(state);
 | |
| 		if (status < 0)
 | |
| 			break;
 | |
| 
 | |
| 		state->drxd_state = DRXD_STOPPED;
 | |
| 		state->init_done = 1;
 | |
| 		status = 0;
 | |
| 	} while (0);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
 | |
| {
 | |
| 	DRX_GetLockStatus(state, pLockStatus);
 | |
| 
 | |
| 	/*if (*pLockStatus&DRX_LOCK_MPEG) */
 | |
| 	if (*pLockStatus & DRX_LOCK_FEC) {
 | |
| 		ConfigureMPEGOutput(state, 1);
 | |
| 		/* Get status again, in case we have MPEG lock now */
 | |
| 		/*DRX_GetLockStatus(state, pLockStatus); */
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| /****************************************************************************/
 | |
| 
 | |
| static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
 | |
| {
 | |
| 	struct drxd_state *state = fe->demodulator_priv;
 | |
| 	u32 value;
 | |
| 	int res;
 | |
| 
 | |
| 	res = ReadIFAgc(state, &value);
 | |
| 	if (res < 0)
 | |
| 		*strength = 0;
 | |
| 	else
 | |
| 		*strength = 0xffff - (value << 4);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
 | |
| {
 | |
| 	struct drxd_state *state = fe->demodulator_priv;
 | |
| 	u32 lock;
 | |
| 
 | |
| 	DRXD_status(state, &lock);
 | |
| 	*status = 0;
 | |
| 	/* No MPEG lock in V255 firmware, bug ? */
 | |
| #if 1
 | |
| 	if (lock & DRX_LOCK_MPEG)
 | |
| 		*status |= FE_HAS_LOCK;
 | |
| #else
 | |
| 	if (lock & DRX_LOCK_FEC)
 | |
| 		*status |= FE_HAS_LOCK;
 | |
| #endif
 | |
| 	if (lock & DRX_LOCK_FEC)
 | |
| 		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
 | |
| 	if (lock & DRX_LOCK_DEMOD)
 | |
| 		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int drxd_init(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct drxd_state *state = fe->demodulator_priv;
 | |
| 
 | |
| 	return DRXD_init(state, NULL, 0);
 | |
| }
 | |
| 
 | |
| static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
 | |
| {
 | |
| 	struct drxd_state *state = fe->demodulator_priv;
 | |
| 
 | |
| 	if (state->config.disable_i2c_gate_ctrl == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	return DRX_ConfigureI2CBridge(state, onoff);
 | |
| }
 | |
| 
 | |
| static int drxd_get_tune_settings(struct dvb_frontend *fe,
 | |
| 				  struct dvb_frontend_tune_settings *sets)
 | |
| {
 | |
| 	sets->min_delay_ms = 10000;
 | |
| 	sets->max_drift = 0;
 | |
| 	sets->step_size = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
 | |
| {
 | |
| 	*ber = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
 | |
| {
 | |
| 	*snr = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
 | |
| {
 | |
| 	*ucblocks = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int drxd_sleep(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct drxd_state *state = fe->demodulator_priv;
 | |
| 
 | |
| 	ConfigureMPEGOutput(state, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
 | |
| {
 | |
| 	return drxd_config_i2c(fe, enable);
 | |
| }
 | |
| 
 | |
| static int drxd_set_frontend(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
 | |
| 	struct drxd_state *state = fe->demodulator_priv;
 | |
| 	s32 off = 0;
 | |
| 
 | |
| 	state->props = *p;
 | |
| 	DRX_Stop(state);
 | |
| 
 | |
| 	if (fe->ops.tuner_ops.set_params) {
 | |
| 		fe->ops.tuner_ops.set_params(fe);
 | |
| 		if (fe->ops.i2c_gate_ctrl)
 | |
| 			fe->ops.i2c_gate_ctrl(fe, 0);
 | |
| 	}
 | |
| 
 | |
| 	msleep(200);
 | |
| 
 | |
| 	return DRX_Start(state, off);
 | |
| }
 | |
| 
 | |
| static void drxd_release(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct drxd_state *state = fe->demodulator_priv;
 | |
| 
 | |
| 	kfree(state);
 | |
| }
 | |
| 
 | |
| static const struct dvb_frontend_ops drxd_ops = {
 | |
| 	.delsys = { SYS_DVBT},
 | |
| 	.info = {
 | |
| 		 .name = "Micronas DRXD DVB-T",
 | |
| 		 .frequency_min_hz =  47125 * kHz,
 | |
| 		 .frequency_max_hz = 855250 * kHz,
 | |
| 		 .frequency_stepsize_hz = 166667,
 | |
| 		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
 | |
| 		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
 | |
| 		 FE_CAN_FEC_AUTO |
 | |
| 		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
 | |
| 		 FE_CAN_QAM_AUTO |
 | |
| 		 FE_CAN_TRANSMISSION_MODE_AUTO |
 | |
| 		 FE_CAN_GUARD_INTERVAL_AUTO |
 | |
| 		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
 | |
| 
 | |
| 	.release = drxd_release,
 | |
| 	.init = drxd_init,
 | |
| 	.sleep = drxd_sleep,
 | |
| 	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
 | |
| 
 | |
| 	.set_frontend = drxd_set_frontend,
 | |
| 	.get_tune_settings = drxd_get_tune_settings,
 | |
| 
 | |
| 	.read_status = drxd_read_status,
 | |
| 	.read_ber = drxd_read_ber,
 | |
| 	.read_signal_strength = drxd_read_signal_strength,
 | |
| 	.read_snr = drxd_read_snr,
 | |
| 	.read_ucblocks = drxd_read_ucblocks,
 | |
| };
 | |
| 
 | |
| struct dvb_frontend *drxd_attach(const struct drxd_config *config,
 | |
| 				 void *priv, struct i2c_adapter *i2c,
 | |
| 				 struct device *dev)
 | |
| {
 | |
| 	struct drxd_state *state = NULL;
 | |
| 
 | |
| 	state = kzalloc(sizeof(*state), GFP_KERNEL);
 | |
| 	if (!state)
 | |
| 		return NULL;
 | |
| 
 | |
| 	state->ops = drxd_ops;
 | |
| 	state->dev = dev;
 | |
| 	state->config = *config;
 | |
| 	state->i2c = i2c;
 | |
| 	state->priv = priv;
 | |
| 
 | |
| 	mutex_init(&state->mutex);
 | |
| 
 | |
| 	if (Read16(state, 0, NULL, 0) < 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	state->frontend.ops = drxd_ops;
 | |
| 	state->frontend.demodulator_priv = state;
 | |
| 	ConfigureMPEGOutput(state, 0);
 | |
| 	/* add few initialization to allow gate control */
 | |
| 	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
 | |
| 	InitHI(state);
 | |
| 
 | |
| 	return &state->frontend;
 | |
| 
 | |
| error:
 | |
| 	printk(KERN_ERR "drxd: not found\n");
 | |
| 	kfree(state);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(drxd_attach);
 | |
| 
 | |
| MODULE_DESCRIPTION("DRXD driver");
 | |
| MODULE_AUTHOR("Micronas");
 | |
| MODULE_LICENSE("GPL");
 |