forked from mirrors/linux
		
	 4b4bb99b62
			
		
	
	
		4b4bb99b62
		
	
	
	
	
		
			
			This contains a couple of fixes and cleanups for the Meson and ACPI/LPSS drivers as well as capture support for STM32. Note that given the cross- subsystem changes, the STM32 patches were merged through the MFD and PWM trees, both sharing an immutable branch. -----BEGIN PGP SIGNATURE----- iQJNBAABCAA3FiEEiOrDCAFJzPfAjcif3SOs138+s6EFAlseQMIZHHRoaWVycnku cmVkaW5nQGdtYWlsLmNvbQAKCRDdI6zXfz6zoZ+8D/9XLQhQqW+pbI28JB0Jwe22 StuPNymo4wdED9Ga1ZPsVePKouQWW9D+NFjp80zqH26M4c+B235OvUljRDPnwTMH edJBUmGO2LMil8xtKYdF98WusLT33Q/k5alDmS11gEd/1h5xOH5kORc9pHuTIwhN dq5hy5OZWHHhlvlI4tCbqLuPrj/ucNourBJaLsMTwsGjdROtaakpyBbDX6ytMZ3c VIV78GFeszWhLfi/mkQlxQ6SzfEX8D+xfNRgYZkmklsJ+K7ztvK5qcnZQgv3yoTL s9xaZJY/Ei5IIyUFK6hraWTgIBkyZ9LpEPQHnGdkp8R1WpskcNWMgQup7FUm7U2u gwHiijZvj6hLjjxFS+bje2xoBTUB5KhCcC9COMUAktigm5mtLzXdoeVUQivqZerm plISAMo9UQMeO+wYZCMY5E9lWrsCGYSYWno5aHxAu6SaSvYUDIcD49LM6JMkt9Ek 5VLirs6b53pBNKZHH2+t67GMz/8GkzlZl19sQfRhv3uYJHHn+3VuOY4wQsqBLIk8 PoMzzWuzUgvcb+pZBisGHk92DCEXR1/9mgbNBNHXm+uuQ+YvXjvltY5osaIV1aI4 eBskscme1YGYEBJbhJpKEON6UFpUc4QD9HNXfAHQ/vyf7IShUdNk7zDnKBm9O42e SfX8AtcmV4KoVHi/Sw9DbQ== =ZED5 -----END PGP SIGNATURE----- Merge tag 'pwm/for-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry.reding/linux-pwm Pull pwm updates from Thierry Reding: "This contains a couple of fixes and cleanups for the Meson and ACPI/LPSS drivers as well as capture support for STM32. Note that given the cross- subsystem changes, the STM32 patches were merged through the MFD and PWM trees, both sharing an immutable branch" * tag 'pwm/for-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry.reding/linux-pwm: pwm: stm32: Fix build warning with CONFIG_DMA_ENGINE disabled pwm: stm32: Enforce dependency on CONFIG_MFD_STM32_TIMERS ACPI / LPSS: Add missing prv_offset setting for byt/cht PWM devices pwm: lpss: platform: Save/restore the ctrl register over a suspend/resume dt-bindings: mfd: stm32-timers: Add support for dmas pwm: simplify getting .drvdata pwm: meson: Fix allocation of PWM channel array
		
			
				
	
	
		
			666 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			666 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) STMicroelectronics 2016
 | |
|  *
 | |
|  * Author: Gerald Baeza <gerald.baeza@st.com>
 | |
|  *
 | |
|  * Inspired by timer-stm32.c from Maxime Coquelin
 | |
|  *             pwm-atmel.c from Bo Shen
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/mfd/stm32-timers.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pwm.h>
 | |
| 
 | |
| #define CCMR_CHANNEL_SHIFT 8
 | |
| #define CCMR_CHANNEL_MASK  0xFF
 | |
| #define MAX_BREAKINPUT 2
 | |
| 
 | |
| struct stm32_pwm {
 | |
| 	struct pwm_chip chip;
 | |
| 	struct mutex lock; /* protect pwm config/enable */
 | |
| 	struct clk *clk;
 | |
| 	struct regmap *regmap;
 | |
| 	u32 max_arr;
 | |
| 	bool have_complementary_output;
 | |
| 	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
 | |
| };
 | |
| 
 | |
| struct stm32_breakinput {
 | |
| 	u32 index;
 | |
| 	u32 level;
 | |
| 	u32 filter;
 | |
| };
 | |
| 
 | |
| static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
 | |
| {
 | |
| 	return container_of(chip, struct stm32_pwm, chip);
 | |
| }
 | |
| 
 | |
| static u32 active_channels(struct stm32_pwm *dev)
 | |
| {
 | |
| 	u32 ccer;
 | |
| 
 | |
| 	regmap_read(dev->regmap, TIM_CCER, &ccer);
 | |
| 
 | |
| 	return ccer & TIM_CCER_CCXE;
 | |
| }
 | |
| 
 | |
| static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
 | |
| {
 | |
| 	switch (ch) {
 | |
| 	case 0:
 | |
| 		return regmap_write(dev->regmap, TIM_CCR1, value);
 | |
| 	case 1:
 | |
| 		return regmap_write(dev->regmap, TIM_CCR2, value);
 | |
| 	case 2:
 | |
| 		return regmap_write(dev->regmap, TIM_CCR3, value);
 | |
| 	case 3:
 | |
| 		return regmap_write(dev->regmap, TIM_CCR4, value);
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
 | |
| #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
 | |
| #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
 | |
| #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
 | |
| 
 | |
| /*
 | |
|  * Capture using PWM input mode:
 | |
|  *                              ___          ___
 | |
|  * TI[1, 2, 3 or 4]: ........._|   |________|
 | |
|  *                             ^0  ^1       ^2
 | |
|  *                              .   .        .
 | |
|  *                              .   .        XXXXX
 | |
|  *                              .   .   XXXXX     |
 | |
|  *                              .  XXXXX     .    |
 | |
|  *                            XXXXX .        .    |
 | |
|  * COUNTER:        ______XXXXX  .   .        .    |_XXX
 | |
|  *                 start^       .   .        .        ^stop
 | |
|  *                      .       .   .        .
 | |
|  *                      v       v   .        v
 | |
|  *                                  v
 | |
|  * CCR1/CCR3:       tx..........t0...........t2
 | |
|  * CCR2/CCR4:       tx..............t1.........
 | |
|  *
 | |
|  * DMA burst transfer:          |            |
 | |
|  *                              v            v
 | |
|  * DMA buffer:                  { t0, tx }   { t2, t1 }
 | |
|  * DMA done:                                 ^
 | |
|  *
 | |
|  * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 | |
|  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
 | |
|  * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
 | |
|  * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 | |
|  *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
 | |
|  *
 | |
|  * DMA done, compute:
 | |
|  * - Period     = t2 - t0
 | |
|  * - Duty cycle = t1 - t0
 | |
|  */
 | |
| static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
 | |
| 				 unsigned long tmo_ms, u32 *raw_prd,
 | |
| 				 u32 *raw_dty)
 | |
| {
 | |
| 	struct device *parent = priv->chip.dev->parent;
 | |
| 	enum stm32_timers_dmas dma_id;
 | |
| 	u32 ccen, ccr;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Ensure registers have been updated, enable counter and capture */
 | |
| 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
 | |
| 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
 | |
| 
 | |
| 	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
 | |
| 	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
 | |
| 	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
 | |
| 	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
 | |
| 	regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
 | |
| 
 | |
| 	/*
 | |
| 	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
 | |
| 	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
 | |
| 	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
 | |
| 	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
 | |
| 	 */
 | |
| 	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
 | |
| 					  2, tmo_ms);
 | |
| 	if (ret)
 | |
| 		goto stop;
 | |
| 
 | |
| 	/* Period: t2 - t0 (take care of counter overflow) */
 | |
| 	if (priv->capture[0] <= priv->capture[2])
 | |
| 		*raw_prd = priv->capture[2] - priv->capture[0];
 | |
| 	else
 | |
| 		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
 | |
| 
 | |
| 	/* Duty cycle capture requires at least two capture units */
 | |
| 	if (pwm->chip->npwm < 2)
 | |
| 		*raw_dty = 0;
 | |
| 	else if (priv->capture[0] <= priv->capture[3])
 | |
| 		*raw_dty = priv->capture[3] - priv->capture[0];
 | |
| 	else
 | |
| 		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
 | |
| 
 | |
| 	if (*raw_dty > *raw_prd) {
 | |
| 		/*
 | |
| 		 * Race beetween PWM input and DMA: it may happen
 | |
| 		 * falling edge triggers new capture on TI2/4 before DMA
 | |
| 		 * had a chance to read CCR2/4. It means capture[1]
 | |
| 		 * contains period + duty_cycle. So, subtract period.
 | |
| 		 */
 | |
| 		*raw_dty -= *raw_prd;
 | |
| 	}
 | |
| 
 | |
| stop:
 | |
| 	regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
 | |
| 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
 | |
| 			     struct pwm_capture *result, unsigned long tmo_ms)
 | |
| {
 | |
| 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
 | |
| 	unsigned long long prd, div, dty;
 | |
| 	unsigned long rate;
 | |
| 	unsigned int psc = 0, icpsc, scale;
 | |
| 	u32 raw_prd = 0, raw_dty = 0;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&priv->lock);
 | |
| 
 | |
| 	if (active_channels(priv)) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_enable(priv->clk);
 | |
| 	if (ret) {
 | |
| 		dev_err(priv->chip.dev, "failed to enable counter clock\n");
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	rate = clk_get_rate(priv->clk);
 | |
| 	if (!rate) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto clk_dis;
 | |
| 	}
 | |
| 
 | |
| 	/* prescaler: fit timeout window provided by upper layer */
 | |
| 	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
 | |
| 	do_div(div, MSEC_PER_SEC);
 | |
| 	prd = div;
 | |
| 	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
 | |
| 		psc++;
 | |
| 		div = prd;
 | |
| 		do_div(div, psc + 1);
 | |
| 	}
 | |
| 	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
 | |
| 	regmap_write(priv->regmap, TIM_PSC, psc);
 | |
| 
 | |
| 	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
 | |
| 	regmap_update_bits(priv->regmap,
 | |
| 			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
 | |
| 			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
 | |
| 			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
 | |
| 			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
 | |
| 
 | |
| 	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
 | |
| 	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
 | |
| 			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
 | |
| 			   TIM_CCER_CC2P : TIM_CCER_CC4P);
 | |
| 
 | |
| 	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
 | |
| 	if (ret)
 | |
| 		goto stop;
 | |
| 
 | |
| 	/*
 | |
| 	 * Got a capture. Try to improve accuracy at high rates:
 | |
| 	 * - decrease counter clock prescaler, scale up to max rate.
 | |
| 	 * - use input prescaler, capture once every /2 /4 or /8 edges.
 | |
| 	 */
 | |
| 	if (raw_prd) {
 | |
| 		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
 | |
| 
 | |
| 		scale = max_arr / min(max_arr, raw_prd);
 | |
| 	} else {
 | |
| 		scale = priv->max_arr; /* bellow resolution, use max scale */
 | |
| 	}
 | |
| 
 | |
| 	if (psc && scale > 1) {
 | |
| 		/* 2nd measure with new scale */
 | |
| 		psc /= scale;
 | |
| 		regmap_write(priv->regmap, TIM_PSC, psc);
 | |
| 		ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
 | |
| 					    &raw_dty);
 | |
| 		if (ret)
 | |
| 			goto stop;
 | |
| 	}
 | |
| 
 | |
| 	/* Compute intermediate period not to exceed timeout at low rates */
 | |
| 	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
 | |
| 	do_div(prd, rate);
 | |
| 
 | |
| 	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
 | |
| 		/* input prescaler: also keep arbitrary margin */
 | |
| 		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
 | |
| 			break;
 | |
| 		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (!icpsc)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Last chance to improve period accuracy, using input prescaler */
 | |
| 	regmap_update_bits(priv->regmap,
 | |
| 			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
 | |
| 			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
 | |
| 			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
 | |
| 			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
 | |
| 
 | |
| 	ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
 | |
| 	if (ret)
 | |
| 		goto stop;
 | |
| 
 | |
| 	if (raw_dty >= (raw_prd >> icpsc)) {
 | |
| 		/*
 | |
| 		 * We may fall here using input prescaler, when input
 | |
| 		 * capture starts on high side (before falling edge).
 | |
| 		 * Example with icpsc to capture on each 4 events:
 | |
| 		 *
 | |
| 		 *       start   1st capture                     2nd capture
 | |
| 		 *         v     v                               v
 | |
| 		 *         ___   _____   _____   _____   _____   ____
 | |
| 		 * TI1..4     |__|    |__|    |__|    |__|    |__|
 | |
| 		 *            v  v    .  .    .  .    .       v  v
 | |
| 		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
 | |
| 		 * icpsc2/4:  0       1       2       3       0
 | |
| 		 *            v  v                            v  v
 | |
| 		 * CCR1/3  ......t0..............................t2
 | |
| 		 * CCR2/4  ..t1..............................t1'...
 | |
| 		 *               .                            .  .
 | |
| 		 * Capture0:     .<----------------------------->.
 | |
| 		 * Capture1:     .<-------------------------->.  .
 | |
| 		 *               .                            .  .
 | |
| 		 * Period:       .<------>                    .  .
 | |
| 		 * Low side:                                  .<>.
 | |
| 		 *
 | |
| 		 * Result:
 | |
| 		 * - Period = Capture0 / icpsc
 | |
| 		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
 | |
| 		 */
 | |
| 		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
 | |
| 	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
 | |
| 	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
 | |
| 	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
 | |
| stop:
 | |
| 	regmap_write(priv->regmap, TIM_CCER, 0);
 | |
| 	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
 | |
| 	regmap_write(priv->regmap, TIM_PSC, 0);
 | |
| clk_dis:
 | |
| 	clk_disable(priv->clk);
 | |
| unlock:
 | |
| 	mutex_unlock(&priv->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
 | |
| 			    int duty_ns, int period_ns)
 | |
| {
 | |
| 	unsigned long long prd, div, dty;
 | |
| 	unsigned int prescaler = 0;
 | |
| 	u32 ccmr, mask, shift;
 | |
| 
 | |
| 	/* Period and prescaler values depends on clock rate */
 | |
| 	div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
 | |
| 
 | |
| 	do_div(div, NSEC_PER_SEC);
 | |
| 	prd = div;
 | |
| 
 | |
| 	while (div > priv->max_arr) {
 | |
| 		prescaler++;
 | |
| 		div = prd;
 | |
| 		do_div(div, prescaler + 1);
 | |
| 	}
 | |
| 
 | |
| 	prd = div;
 | |
| 
 | |
| 	if (prescaler > MAX_TIM_PSC)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * All channels share the same prescaler and counter so when two
 | |
| 	 * channels are active at the same time we can't change them
 | |
| 	 */
 | |
| 	if (active_channels(priv) & ~(1 << ch * 4)) {
 | |
| 		u32 psc, arr;
 | |
| 
 | |
| 		regmap_read(priv->regmap, TIM_PSC, &psc);
 | |
| 		regmap_read(priv->regmap, TIM_ARR, &arr);
 | |
| 
 | |
| 		if ((psc != prescaler) || (arr != prd - 1))
 | |
| 			return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	regmap_write(priv->regmap, TIM_PSC, prescaler);
 | |
| 	regmap_write(priv->regmap, TIM_ARR, prd - 1);
 | |
| 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
 | |
| 
 | |
| 	/* Calculate the duty cycles */
 | |
| 	dty = prd * duty_ns;
 | |
| 	do_div(dty, period_ns);
 | |
| 
 | |
| 	write_ccrx(priv, ch, dty);
 | |
| 
 | |
| 	/* Configure output mode */
 | |
| 	shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
 | |
| 	ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
 | |
| 	mask = CCMR_CHANNEL_MASK << shift;
 | |
| 
 | |
| 	if (ch < 2)
 | |
| 		regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
 | |
| 	else
 | |
| 		regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
 | |
| 
 | |
| 	regmap_update_bits(priv->regmap, TIM_BDTR,
 | |
| 			   TIM_BDTR_MOE | TIM_BDTR_AOE,
 | |
| 			   TIM_BDTR_MOE | TIM_BDTR_AOE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
 | |
| 				  enum pwm_polarity polarity)
 | |
| {
 | |
| 	u32 mask;
 | |
| 
 | |
| 	mask = TIM_CCER_CC1P << (ch * 4);
 | |
| 	if (priv->have_complementary_output)
 | |
| 		mask |= TIM_CCER_CC1NP << (ch * 4);
 | |
| 
 | |
| 	regmap_update_bits(priv->regmap, TIM_CCER, mask,
 | |
| 			   polarity == PWM_POLARITY_NORMAL ? 0 : mask);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
 | |
| {
 | |
| 	u32 mask;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = clk_enable(priv->clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Enable channel */
 | |
| 	mask = TIM_CCER_CC1E << (ch * 4);
 | |
| 	if (priv->have_complementary_output)
 | |
| 		mask |= TIM_CCER_CC1NE << (ch * 4);
 | |
| 
 | |
| 	regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
 | |
| 
 | |
| 	/* Make sure that registers are updated */
 | |
| 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
 | |
| 
 | |
| 	/* Enable controller */
 | |
| 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
 | |
| {
 | |
| 	u32 mask;
 | |
| 
 | |
| 	/* Disable channel */
 | |
| 	mask = TIM_CCER_CC1E << (ch * 4);
 | |
| 	if (priv->have_complementary_output)
 | |
| 		mask |= TIM_CCER_CC1NE << (ch * 4);
 | |
| 
 | |
| 	regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
 | |
| 
 | |
| 	/* When all channels are disabled, we can disable the controller */
 | |
| 	if (!active_channels(priv))
 | |
| 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
 | |
| 
 | |
| 	clk_disable(priv->clk);
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 | |
| 			   struct pwm_state *state)
 | |
| {
 | |
| 	bool enabled;
 | |
| 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	enabled = pwm->state.enabled;
 | |
| 
 | |
| 	if (enabled && !state->enabled) {
 | |
| 		stm32_pwm_disable(priv, pwm->hwpwm);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (state->polarity != pwm->state.polarity)
 | |
| 		stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
 | |
| 
 | |
| 	ret = stm32_pwm_config(priv, pwm->hwpwm,
 | |
| 			       state->duty_cycle, state->period);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!enabled && state->enabled)
 | |
| 		ret = stm32_pwm_enable(priv, pwm->hwpwm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
 | |
| 				  struct pwm_state *state)
 | |
| {
 | |
| 	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* protect common prescaler for all active channels */
 | |
| 	mutex_lock(&priv->lock);
 | |
| 	ret = stm32_pwm_apply(chip, pwm, state);
 | |
| 	mutex_unlock(&priv->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct pwm_ops stm32pwm_ops = {
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.apply = stm32_pwm_apply_locked,
 | |
| 	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
 | |
| };
 | |
| 
 | |
| static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
 | |
| 				    int index, int level, int filter)
 | |
| {
 | |
| 	u32 bke = (index == 0) ? TIM_BDTR_BKE : TIM_BDTR_BK2E;
 | |
| 	int shift = (index == 0) ? TIM_BDTR_BKF_SHIFT : TIM_BDTR_BK2F_SHIFT;
 | |
| 	u32 mask = (index == 0) ? TIM_BDTR_BKE | TIM_BDTR_BKP | TIM_BDTR_BKF
 | |
| 				: TIM_BDTR_BK2E | TIM_BDTR_BK2P | TIM_BDTR_BK2F;
 | |
| 	u32 bdtr = bke;
 | |
| 
 | |
| 	/*
 | |
| 	 * The both bits could be set since only one will be wrote
 | |
| 	 * due to mask value.
 | |
| 	 */
 | |
| 	if (level)
 | |
| 		bdtr |= TIM_BDTR_BKP | TIM_BDTR_BK2P;
 | |
| 
 | |
| 	bdtr |= (filter & TIM_BDTR_BKF_MASK) << shift;
 | |
| 
 | |
| 	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
 | |
| 
 | |
| 	regmap_read(priv->regmap, TIM_BDTR, &bdtr);
 | |
| 
 | |
| 	return (bdtr & bke) ? 0 : -EINVAL;
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv,
 | |
| 				       struct device_node *np)
 | |
| {
 | |
| 	struct stm32_breakinput breakinput[MAX_BREAKINPUT];
 | |
| 	int nb, ret, i, array_size;
 | |
| 
 | |
| 	nb = of_property_count_elems_of_size(np, "st,breakinput",
 | |
| 					     sizeof(struct stm32_breakinput));
 | |
| 
 | |
| 	/*
 | |
| 	 * Because "st,breakinput" parameter is optional do not make probe
 | |
| 	 * failed if it doesn't exist.
 | |
| 	 */
 | |
| 	if (nb <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (nb > MAX_BREAKINPUT)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
 | |
| 	ret = of_property_read_u32_array(np, "st,breakinput",
 | |
| 					 (u32 *)breakinput, array_size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < nb && !ret; i++) {
 | |
| 		ret = stm32_pwm_set_breakinput(priv,
 | |
| 					       breakinput[i].index,
 | |
| 					       breakinput[i].level,
 | |
| 					       breakinput[i].filter);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
 | |
| {
 | |
| 	u32 ccer;
 | |
| 
 | |
| 	/*
 | |
| 	 * If complementary bit doesn't exist writing 1 will have no
 | |
| 	 * effect so we can detect it.
 | |
| 	 */
 | |
| 	regmap_update_bits(priv->regmap,
 | |
| 			   TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
 | |
| 	regmap_read(priv->regmap, TIM_CCER, &ccer);
 | |
| 	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
 | |
| 
 | |
| 	priv->have_complementary_output = (ccer != 0);
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
 | |
| {
 | |
| 	u32 ccer;
 | |
| 	int npwm = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If channels enable bits don't exist writing 1 will have no
 | |
| 	 * effect so we can detect and count them.
 | |
| 	 */
 | |
| 	regmap_update_bits(priv->regmap,
 | |
| 			   TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
 | |
| 	regmap_read(priv->regmap, TIM_CCER, &ccer);
 | |
| 	regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
 | |
| 
 | |
| 	if (ccer & TIM_CCER_CC1E)
 | |
| 		npwm++;
 | |
| 
 | |
| 	if (ccer & TIM_CCER_CC2E)
 | |
| 		npwm++;
 | |
| 
 | |
| 	if (ccer & TIM_CCER_CC3E)
 | |
| 		npwm++;
 | |
| 
 | |
| 	if (ccer & TIM_CCER_CC4E)
 | |
| 		npwm++;
 | |
| 
 | |
| 	return npwm;
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct device_node *np = dev->of_node;
 | |
| 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
 | |
| 	struct stm32_pwm *priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
 | |
| 	if (!priv)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_init(&priv->lock);
 | |
| 	priv->regmap = ddata->regmap;
 | |
| 	priv->clk = ddata->clk;
 | |
| 	priv->max_arr = ddata->max_arr;
 | |
| 
 | |
| 	if (!priv->regmap || !priv->clk)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = stm32_pwm_apply_breakinputs(priv, np);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	stm32_pwm_detect_complementary(priv);
 | |
| 
 | |
| 	priv->chip.base = -1;
 | |
| 	priv->chip.dev = dev;
 | |
| 	priv->chip.ops = &stm32pwm_ops;
 | |
| 	priv->chip.npwm = stm32_pwm_detect_channels(priv);
 | |
| 
 | |
| 	ret = pwmchip_add(&priv->chip);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, priv);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int stm32_pwm_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct stm32_pwm *priv = platform_get_drvdata(pdev);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < priv->chip.npwm; i++)
 | |
| 		pwm_disable(&priv->chip.pwms[i]);
 | |
| 
 | |
| 	pwmchip_remove(&priv->chip);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id stm32_pwm_of_match[] = {
 | |
| 	{ .compatible = "st,stm32-pwm",	},
 | |
| 	{ /* end node */ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
 | |
| 
 | |
| static struct platform_driver stm32_pwm_driver = {
 | |
| 	.probe	= stm32_pwm_probe,
 | |
| 	.remove	= stm32_pwm_remove,
 | |
| 	.driver	= {
 | |
| 		.name = "stm32-pwm",
 | |
| 		.of_match_table = stm32_pwm_of_match,
 | |
| 	},
 | |
| };
 | |
| module_platform_driver(stm32_pwm_driver);
 | |
| 
 | |
| MODULE_ALIAS("platform:stm32-pwm");
 | |
| MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
 | |
| MODULE_LICENSE("GPL v2");
 |