forked from mirrors/linux
		
	 09c434b8a0
			
		
	
	
		09c434b8a0
		
	
	
	
	
		
			
			Add SPDX license identifiers to all files which:
 - Have no license information of any form
 - Have MODULE_LICENCE("GPL*") inside which was used in the initial
   scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
  GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
		
	
			
		
			
				
	
	
		
			2912 lines
		
	
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2912 lines
		
	
	
	
		
			69 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /* esp_scsi.c: ESP SCSI driver.
 | |
|  *
 | |
|  * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/irqreturn.h>
 | |
| 
 | |
| #include <asm/irq.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/dma.h>
 | |
| 
 | |
| #include <scsi/scsi.h>
 | |
| #include <scsi/scsi_host.h>
 | |
| #include <scsi/scsi_cmnd.h>
 | |
| #include <scsi/scsi_device.h>
 | |
| #include <scsi/scsi_tcq.h>
 | |
| #include <scsi/scsi_dbg.h>
 | |
| #include <scsi/scsi_transport_spi.h>
 | |
| 
 | |
| #include "esp_scsi.h"
 | |
| 
 | |
| #define DRV_MODULE_NAME		"esp"
 | |
| #define PFX DRV_MODULE_NAME	": "
 | |
| #define DRV_VERSION		"2.000"
 | |
| #define DRV_MODULE_RELDATE	"April 19, 2007"
 | |
| 
 | |
| /* SCSI bus reset settle time in seconds.  */
 | |
| static int esp_bus_reset_settle = 3;
 | |
| 
 | |
| static u32 esp_debug;
 | |
| #define ESP_DEBUG_INTR		0x00000001
 | |
| #define ESP_DEBUG_SCSICMD	0x00000002
 | |
| #define ESP_DEBUG_RESET		0x00000004
 | |
| #define ESP_DEBUG_MSGIN		0x00000008
 | |
| #define ESP_DEBUG_MSGOUT	0x00000010
 | |
| #define ESP_DEBUG_CMDDONE	0x00000020
 | |
| #define ESP_DEBUG_DISCONNECT	0x00000040
 | |
| #define ESP_DEBUG_DATASTART	0x00000080
 | |
| #define ESP_DEBUG_DATADONE	0x00000100
 | |
| #define ESP_DEBUG_RECONNECT	0x00000200
 | |
| #define ESP_DEBUG_AUTOSENSE	0x00000400
 | |
| #define ESP_DEBUG_EVENT		0x00000800
 | |
| #define ESP_DEBUG_COMMAND	0x00001000
 | |
| 
 | |
| #define esp_log_intr(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_INTR) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_reset(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_RESET) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_msgin(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_MSGIN) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_msgout(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_MSGOUT) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_cmddone(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_CMDDONE) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_disconnect(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_DISCONNECT) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_datastart(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_DATASTART) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_datadone(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_DATADONE) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_reconnect(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_RECONNECT) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_autosense(f, a...) \
 | |
| do {	if (esp_debug & ESP_DEBUG_AUTOSENSE) \
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_event(f, a...) \
 | |
| do {   if (esp_debug & ESP_DEBUG_EVENT)	\
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_log_command(f, a...) \
 | |
| do {   if (esp_debug & ESP_DEBUG_COMMAND)	\
 | |
| 		shost_printk(KERN_DEBUG, esp->host, f, ## a);	\
 | |
| } while (0)
 | |
| 
 | |
| #define esp_read8(REG)		esp->ops->esp_read8(esp, REG)
 | |
| #define esp_write8(VAL,REG)	esp->ops->esp_write8(esp, VAL, REG)
 | |
| 
 | |
| static void esp_log_fill_regs(struct esp *esp,
 | |
| 			      struct esp_event_ent *p)
 | |
| {
 | |
| 	p->sreg = esp->sreg;
 | |
| 	p->seqreg = esp->seqreg;
 | |
| 	p->sreg2 = esp->sreg2;
 | |
| 	p->ireg = esp->ireg;
 | |
| 	p->select_state = esp->select_state;
 | |
| 	p->event = esp->event;
 | |
| }
 | |
| 
 | |
| void scsi_esp_cmd(struct esp *esp, u8 val)
 | |
| {
 | |
| 	struct esp_event_ent *p;
 | |
| 	int idx = esp->esp_event_cur;
 | |
| 
 | |
| 	p = &esp->esp_event_log[idx];
 | |
| 	p->type = ESP_EVENT_TYPE_CMD;
 | |
| 	p->val = val;
 | |
| 	esp_log_fill_regs(esp, p);
 | |
| 
 | |
| 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
 | |
| 
 | |
| 	esp_log_command("cmd[%02x]\n", val);
 | |
| 	esp_write8(val, ESP_CMD);
 | |
| }
 | |
| EXPORT_SYMBOL(scsi_esp_cmd);
 | |
| 
 | |
| static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
 | |
| {
 | |
| 	if (esp->flags & ESP_FLAG_USE_FIFO) {
 | |
| 		int i;
 | |
| 
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 		for (i = 0; i < len; i++)
 | |
| 			esp_write8(esp->command_block[i], ESP_FDATA);
 | |
| 		scsi_esp_cmd(esp, cmd);
 | |
| 	} else {
 | |
| 		if (esp->rev == FASHME)
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 		cmd |= ESP_CMD_DMA;
 | |
| 		esp->ops->send_dma_cmd(esp, esp->command_block_dma,
 | |
| 				       len, max_len, 0, cmd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void esp_event(struct esp *esp, u8 val)
 | |
| {
 | |
| 	struct esp_event_ent *p;
 | |
| 	int idx = esp->esp_event_cur;
 | |
| 
 | |
| 	p = &esp->esp_event_log[idx];
 | |
| 	p->type = ESP_EVENT_TYPE_EVENT;
 | |
| 	p->val = val;
 | |
| 	esp_log_fill_regs(esp, p);
 | |
| 
 | |
| 	esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
 | |
| 
 | |
| 	esp->event = val;
 | |
| }
 | |
| 
 | |
| static void esp_dump_cmd_log(struct esp *esp)
 | |
| {
 | |
| 	int idx = esp->esp_event_cur;
 | |
| 	int stop = idx;
 | |
| 
 | |
| 	shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
 | |
| 	do {
 | |
| 		struct esp_event_ent *p = &esp->esp_event_log[idx];
 | |
| 
 | |
| 		shost_printk(KERN_INFO, esp->host,
 | |
| 			     "ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
 | |
| 			     "sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
 | |
| 			     idx,
 | |
| 			     p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
 | |
| 			     p->val, p->sreg, p->seqreg,
 | |
| 			     p->sreg2, p->ireg, p->select_state, p->event);
 | |
| 
 | |
| 		idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
 | |
| 	} while (idx != stop);
 | |
| }
 | |
| 
 | |
| static void esp_flush_fifo(struct esp *esp)
 | |
| {
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 	if (esp->rev == ESP236) {
 | |
| 		int lim = 1000;
 | |
| 
 | |
| 		while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
 | |
| 			if (--lim == 0) {
 | |
| 				shost_printk(KERN_ALERT, esp->host,
 | |
| 					     "ESP_FF_BYTES will not clear!\n");
 | |
| 				break;
 | |
| 			}
 | |
| 			udelay(1);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hme_read_fifo(struct esp *esp)
 | |
| {
 | |
| 	int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
 | |
| 	int idx = 0;
 | |
| 
 | |
| 	while (fcnt--) {
 | |
| 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
 | |
| 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
 | |
| 	}
 | |
| 	if (esp->sreg2 & ESP_STAT2_F1BYTE) {
 | |
| 		esp_write8(0, ESP_FDATA);
 | |
| 		esp->fifo[idx++] = esp_read8(ESP_FDATA);
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 	}
 | |
| 	esp->fifo_cnt = idx;
 | |
| }
 | |
| 
 | |
| static void esp_set_all_config3(struct esp *esp, u8 val)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ESP_MAX_TARGET; i++)
 | |
| 		esp->target[i].esp_config3 = val;
 | |
| }
 | |
| 
 | |
| /* Reset the ESP chip, _not_ the SCSI bus. */
 | |
| static void esp_reset_esp(struct esp *esp)
 | |
| {
 | |
| 	u8 family_code, version;
 | |
| 
 | |
| 	/* Now reset the ESP chip */
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_RC);
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
 | |
| 	if (esp->rev == FAST)
 | |
| 		esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
 | |
| 
 | |
| 	/* This is the only point at which it is reliable to read
 | |
| 	 * the ID-code for a fast ESP chip variants.
 | |
| 	 */
 | |
| 	esp->max_period = ((35 * esp->ccycle) / 1000);
 | |
| 	if (esp->rev == FAST) {
 | |
| 		version = esp_read8(ESP_UID);
 | |
| 		family_code = (version & 0xf8) >> 3;
 | |
| 		if (family_code == 0x02)
 | |
| 			esp->rev = FAS236;
 | |
| 		else if (family_code == 0x0a)
 | |
| 			esp->rev = FASHME; /* Version is usually '5'. */
 | |
| 		else
 | |
| 			esp->rev = FAS100A;
 | |
| 		esp->min_period = ((4 * esp->ccycle) / 1000);
 | |
| 	} else {
 | |
| 		esp->min_period = ((5 * esp->ccycle) / 1000);
 | |
| 	}
 | |
| 	if (esp->rev == FAS236) {
 | |
| 		/*
 | |
| 		 * The AM53c974 chip returns the same ID as FAS236;
 | |
| 		 * try to configure glitch eater.
 | |
| 		 */
 | |
| 		u8 config4 = ESP_CONFIG4_GE1;
 | |
| 		esp_write8(config4, ESP_CFG4);
 | |
| 		config4 = esp_read8(ESP_CFG4);
 | |
| 		if (config4 & ESP_CONFIG4_GE1) {
 | |
| 			esp->rev = PCSCSI;
 | |
| 			esp_write8(esp->config4, ESP_CFG4);
 | |
| 		}
 | |
| 	}
 | |
| 	esp->max_period = (esp->max_period + 3)>>2;
 | |
| 	esp->min_period = (esp->min_period + 3)>>2;
 | |
| 
 | |
| 	esp_write8(esp->config1, ESP_CFG1);
 | |
| 	switch (esp->rev) {
 | |
| 	case ESP100:
 | |
| 		/* nothing to do */
 | |
| 		break;
 | |
| 
 | |
| 	case ESP100A:
 | |
| 		esp_write8(esp->config2, ESP_CFG2);
 | |
| 		break;
 | |
| 
 | |
| 	case ESP236:
 | |
| 		/* Slow 236 */
 | |
| 		esp_write8(esp->config2, ESP_CFG2);
 | |
| 		esp->prev_cfg3 = esp->target[0].esp_config3;
 | |
| 		esp_write8(esp->prev_cfg3, ESP_CFG3);
 | |
| 		break;
 | |
| 
 | |
| 	case FASHME:
 | |
| 		esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
 | |
| 		/* fallthrough... */
 | |
| 
 | |
| 	case FAS236:
 | |
| 	case PCSCSI:
 | |
| 		/* Fast 236, AM53c974 or HME */
 | |
| 		esp_write8(esp->config2, ESP_CFG2);
 | |
| 		if (esp->rev == FASHME) {
 | |
| 			u8 cfg3 = esp->target[0].esp_config3;
 | |
| 
 | |
| 			cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
 | |
| 			if (esp->scsi_id >= 8)
 | |
| 				cfg3 |= ESP_CONFIG3_IDBIT3;
 | |
| 			esp_set_all_config3(esp, cfg3);
 | |
| 		} else {
 | |
| 			u32 cfg3 = esp->target[0].esp_config3;
 | |
| 
 | |
| 			cfg3 |= ESP_CONFIG3_FCLK;
 | |
| 			esp_set_all_config3(esp, cfg3);
 | |
| 		}
 | |
| 		esp->prev_cfg3 = esp->target[0].esp_config3;
 | |
| 		esp_write8(esp->prev_cfg3, ESP_CFG3);
 | |
| 		if (esp->rev == FASHME) {
 | |
| 			esp->radelay = 80;
 | |
| 		} else {
 | |
| 			if (esp->flags & ESP_FLAG_DIFFERENTIAL)
 | |
| 				esp->radelay = 0;
 | |
| 			else
 | |
| 				esp->radelay = 96;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case FAS100A:
 | |
| 		/* Fast 100a */
 | |
| 		esp_write8(esp->config2, ESP_CFG2);
 | |
| 		esp_set_all_config3(esp,
 | |
| 				    (esp->target[0].esp_config3 |
 | |
| 				     ESP_CONFIG3_FCLOCK));
 | |
| 		esp->prev_cfg3 = esp->target[0].esp_config3;
 | |
| 		esp_write8(esp->prev_cfg3, ESP_CFG3);
 | |
| 		esp->radelay = 32;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Reload the configuration registers */
 | |
| 	esp_write8(esp->cfact, ESP_CFACT);
 | |
| 
 | |
| 	esp->prev_stp = 0;
 | |
| 	esp_write8(esp->prev_stp, ESP_STP);
 | |
| 
 | |
| 	esp->prev_soff = 0;
 | |
| 	esp_write8(esp->prev_soff, ESP_SOFF);
 | |
| 
 | |
| 	esp_write8(esp->neg_defp, ESP_TIMEO);
 | |
| 
 | |
| 	/* Eat any bitrot in the chip */
 | |
| 	esp_read8(ESP_INTRPT);
 | |
| 	udelay(100);
 | |
| }
 | |
| 
 | |
| static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
 | |
| 	struct scatterlist *sg = scsi_sglist(cmd);
 | |
| 	int total = 0, i;
 | |
| 
 | |
| 	if (cmd->sc_data_direction == DMA_NONE)
 | |
| 		return;
 | |
| 
 | |
| 	if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
 | |
| 		/*
 | |
| 		 * For pseudo DMA and PIO we need the virtual address instead of
 | |
| 		 * a dma address, so perform an identity mapping.
 | |
| 		 */
 | |
| 		spriv->num_sg = scsi_sg_count(cmd);
 | |
| 		for (i = 0; i < spriv->num_sg; i++) {
 | |
| 			sg[i].dma_address = (uintptr_t)sg_virt(&sg[i]);
 | |
| 			total += sg_dma_len(&sg[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		spriv->num_sg = scsi_dma_map(cmd);
 | |
| 		for (i = 0; i < spriv->num_sg; i++)
 | |
| 			total += sg_dma_len(&sg[i]);
 | |
| 	}
 | |
| 	spriv->cur_residue = sg_dma_len(sg);
 | |
| 	spriv->cur_sg = sg;
 | |
| 	spriv->tot_residue = total;
 | |
| }
 | |
| 
 | |
| static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
 | |
| 				   struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
 | |
| 
 | |
| 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
 | |
| 		return ent->sense_dma +
 | |
| 			(ent->sense_ptr - cmd->sense_buffer);
 | |
| 	}
 | |
| 
 | |
| 	return sg_dma_address(p->cur_sg) +
 | |
| 		(sg_dma_len(p->cur_sg) -
 | |
| 		 p->cur_residue);
 | |
| }
 | |
| 
 | |
| static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
 | |
| 				    struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
 | |
| 
 | |
| 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
 | |
| 		return SCSI_SENSE_BUFFERSIZE -
 | |
| 			(ent->sense_ptr - cmd->sense_buffer);
 | |
| 	}
 | |
| 	return p->cur_residue;
 | |
| }
 | |
| 
 | |
| static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
 | |
| 			    struct scsi_cmnd *cmd, unsigned int len)
 | |
| {
 | |
| 	struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
 | |
| 
 | |
| 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
 | |
| 		ent->sense_ptr += len;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	p->cur_residue -= len;
 | |
| 	p->tot_residue -= len;
 | |
| 	if (p->cur_residue < 0 || p->tot_residue < 0) {
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Data transfer overflow.\n");
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "cur_residue[%d] tot_residue[%d] len[%u]\n",
 | |
| 			     p->cur_residue, p->tot_residue, len);
 | |
| 		p->cur_residue = 0;
 | |
| 		p->tot_residue = 0;
 | |
| 	}
 | |
| 	if (!p->cur_residue && p->tot_residue) {
 | |
| 		p->cur_sg++;
 | |
| 		p->cur_residue = sg_dma_len(p->cur_sg);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
 | |
| 		scsi_dma_unmap(cmd);
 | |
| }
 | |
| 
 | |
| static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = ent->cmd;
 | |
| 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
 | |
| 
 | |
| 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
 | |
| 		ent->saved_sense_ptr = ent->sense_ptr;
 | |
| 		return;
 | |
| 	}
 | |
| 	ent->saved_cur_residue = spriv->cur_residue;
 | |
| 	ent->saved_cur_sg = spriv->cur_sg;
 | |
| 	ent->saved_tot_residue = spriv->tot_residue;
 | |
| }
 | |
| 
 | |
| static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = ent->cmd;
 | |
| 	struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
 | |
| 
 | |
| 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
 | |
| 		ent->sense_ptr = ent->saved_sense_ptr;
 | |
| 		return;
 | |
| 	}
 | |
| 	spriv->cur_residue = ent->saved_cur_residue;
 | |
| 	spriv->cur_sg = ent->saved_cur_sg;
 | |
| 	spriv->tot_residue = ent->saved_tot_residue;
 | |
| }
 | |
| 
 | |
| static void esp_write_tgt_config3(struct esp *esp, int tgt)
 | |
| {
 | |
| 	if (esp->rev > ESP100A) {
 | |
| 		u8 val = esp->target[tgt].esp_config3;
 | |
| 
 | |
| 		if (val != esp->prev_cfg3) {
 | |
| 			esp->prev_cfg3 = val;
 | |
| 			esp_write8(val, ESP_CFG3);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void esp_write_tgt_sync(struct esp *esp, int tgt)
 | |
| {
 | |
| 	u8 off = esp->target[tgt].esp_offset;
 | |
| 	u8 per = esp->target[tgt].esp_period;
 | |
| 
 | |
| 	if (off != esp->prev_soff) {
 | |
| 		esp->prev_soff = off;
 | |
| 		esp_write8(off, ESP_SOFF);
 | |
| 	}
 | |
| 	if (per != esp->prev_stp) {
 | |
| 		esp->prev_stp = per;
 | |
| 		esp_write8(per, ESP_STP);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
 | |
| {
 | |
| 	if (esp->rev == FASHME) {
 | |
| 		/* Arbitrary segment boundaries, 24-bit counts.  */
 | |
| 		if (dma_len > (1U << 24))
 | |
| 			dma_len = (1U << 24);
 | |
| 	} else {
 | |
| 		u32 base, end;
 | |
| 
 | |
| 		/* ESP chip limits other variants by 16-bits of transfer
 | |
| 		 * count.  Actually on FAS100A and FAS236 we could get
 | |
| 		 * 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
 | |
| 		 * in the ESP_CFG2 register but that causes other unwanted
 | |
| 		 * changes so we don't use it currently.
 | |
| 		 */
 | |
| 		if (dma_len > (1U << 16))
 | |
| 			dma_len = (1U << 16);
 | |
| 
 | |
| 		/* All of the DMA variants hooked up to these chips
 | |
| 		 * cannot handle crossing a 24-bit address boundary.
 | |
| 		 */
 | |
| 		base = dma_addr & ((1U << 24) - 1U);
 | |
| 		end = base + dma_len;
 | |
| 		if (end > (1U << 24))
 | |
| 			end = (1U <<24);
 | |
| 		dma_len = end - base;
 | |
| 	}
 | |
| 	return dma_len;
 | |
| }
 | |
| 
 | |
| static int esp_need_to_nego_wide(struct esp_target_data *tp)
 | |
| {
 | |
| 	struct scsi_target *target = tp->starget;
 | |
| 
 | |
| 	return spi_width(target) != tp->nego_goal_width;
 | |
| }
 | |
| 
 | |
| static int esp_need_to_nego_sync(struct esp_target_data *tp)
 | |
| {
 | |
| 	struct scsi_target *target = tp->starget;
 | |
| 
 | |
| 	/* When offset is zero, period is "don't care".  */
 | |
| 	if (!spi_offset(target) && !tp->nego_goal_offset)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (spi_offset(target) == tp->nego_goal_offset &&
 | |
| 	    spi_period(target) == tp->nego_goal_period)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
 | |
| 			     struct esp_lun_data *lp)
 | |
| {
 | |
| 	if (!ent->orig_tag[0]) {
 | |
| 		/* Non-tagged, slot already taken?  */
 | |
| 		if (lp->non_tagged_cmd)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		if (lp->hold) {
 | |
| 			/* We are being held by active tagged
 | |
| 			 * commands.
 | |
| 			 */
 | |
| 			if (lp->num_tagged)
 | |
| 				return -EBUSY;
 | |
| 
 | |
| 			/* Tagged commands completed, we can unplug
 | |
| 			 * the queue and run this untagged command.
 | |
| 			 */
 | |
| 			lp->hold = 0;
 | |
| 		} else if (lp->num_tagged) {
 | |
| 			/* Plug the queue until num_tagged decreases
 | |
| 			 * to zero in esp_free_lun_tag.
 | |
| 			 */
 | |
| 			lp->hold = 1;
 | |
| 			return -EBUSY;
 | |
| 		}
 | |
| 
 | |
| 		lp->non_tagged_cmd = ent;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Tagged command. Check that it isn't blocked by a non-tagged one. */
 | |
| 	if (lp->non_tagged_cmd || lp->hold)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
 | |
| 
 | |
| 	lp->tagged_cmds[ent->orig_tag[1]] = ent;
 | |
| 	lp->num_tagged++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void esp_free_lun_tag(struct esp_cmd_entry *ent,
 | |
| 			     struct esp_lun_data *lp)
 | |
| {
 | |
| 	if (ent->orig_tag[0]) {
 | |
| 		BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
 | |
| 		lp->tagged_cmds[ent->orig_tag[1]] = NULL;
 | |
| 		lp->num_tagged--;
 | |
| 	} else {
 | |
| 		BUG_ON(lp->non_tagged_cmd != ent);
 | |
| 		lp->non_tagged_cmd = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent)
 | |
| {
 | |
| 	ent->sense_ptr = ent->cmd->sense_buffer;
 | |
| 	if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
 | |
| 		ent->sense_dma = (uintptr_t)ent->sense_ptr;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr,
 | |
| 					SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent)
 | |
| {
 | |
| 	if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
 | |
| 		dma_unmap_single(esp->dev, ent->sense_dma,
 | |
| 				 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
 | |
| 	ent->sense_ptr = NULL;
 | |
| }
 | |
| 
 | |
| /* When a contingent allegiance conditon is created, we force feed a
 | |
|  * REQUEST_SENSE command to the device to fetch the sense data.  I
 | |
|  * tried many other schemes, relying on the scsi error handling layer
 | |
|  * to send out the REQUEST_SENSE automatically, but this was difficult
 | |
|  * to get right especially in the presence of applications like smartd
 | |
|  * which use SG_IO to send out their own REQUEST_SENSE commands.
 | |
|  */
 | |
| static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = ent->cmd;
 | |
| 	struct scsi_device *dev = cmd->device;
 | |
| 	int tgt, lun;
 | |
| 	u8 *p, val;
 | |
| 
 | |
| 	tgt = dev->id;
 | |
| 	lun = dev->lun;
 | |
| 
 | |
| 
 | |
| 	if (!ent->sense_ptr) {
 | |
| 		esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
 | |
| 				  tgt, lun);
 | |
| 		esp_map_sense(esp, ent);
 | |
| 	}
 | |
| 	ent->saved_sense_ptr = ent->sense_ptr;
 | |
| 
 | |
| 	esp->active_cmd = ent;
 | |
| 
 | |
| 	p = esp->command_block;
 | |
| 	esp->msg_out_len = 0;
 | |
| 
 | |
| 	*p++ = IDENTIFY(0, lun);
 | |
| 	*p++ = REQUEST_SENSE;
 | |
| 	*p++ = ((dev->scsi_level <= SCSI_2) ?
 | |
| 		(lun << 5) : 0);
 | |
| 	*p++ = 0;
 | |
| 	*p++ = 0;
 | |
| 	*p++ = SCSI_SENSE_BUFFERSIZE;
 | |
| 	*p++ = 0;
 | |
| 
 | |
| 	esp->select_state = ESP_SELECT_BASIC;
 | |
| 
 | |
| 	val = tgt;
 | |
| 	if (esp->rev == FASHME)
 | |
| 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
 | |
| 	esp_write8(val, ESP_BUSID);
 | |
| 
 | |
| 	esp_write_tgt_sync(esp, tgt);
 | |
| 	esp_write_tgt_config3(esp, tgt);
 | |
| 
 | |
| 	val = (p - esp->command_block);
 | |
| 
 | |
| 	esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
 | |
| }
 | |
| 
 | |
| static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
 | |
| {
 | |
| 	struct esp_cmd_entry *ent;
 | |
| 
 | |
| 	list_for_each_entry(ent, &esp->queued_cmds, list) {
 | |
| 		struct scsi_cmnd *cmd = ent->cmd;
 | |
| 		struct scsi_device *dev = cmd->device;
 | |
| 		struct esp_lun_data *lp = dev->hostdata;
 | |
| 
 | |
| 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
 | |
| 			ent->tag[0] = 0;
 | |
| 			ent->tag[1] = 0;
 | |
| 			return ent;
 | |
| 		}
 | |
| 
 | |
| 		if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
 | |
| 			ent->tag[0] = 0;
 | |
| 			ent->tag[1] = 0;
 | |
| 		}
 | |
| 		ent->orig_tag[0] = ent->tag[0];
 | |
| 		ent->orig_tag[1] = ent->tag[1];
 | |
| 
 | |
| 		if (esp_alloc_lun_tag(ent, lp) < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		return ent;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void esp_maybe_execute_command(struct esp *esp)
 | |
| {
 | |
| 	struct esp_target_data *tp;
 | |
| 	struct scsi_device *dev;
 | |
| 	struct scsi_cmnd *cmd;
 | |
| 	struct esp_cmd_entry *ent;
 | |
| 	bool select_and_stop = false;
 | |
| 	int tgt, lun, i;
 | |
| 	u32 val, start_cmd;
 | |
| 	u8 *p;
 | |
| 
 | |
| 	if (esp->active_cmd ||
 | |
| 	    (esp->flags & ESP_FLAG_RESETTING))
 | |
| 		return;
 | |
| 
 | |
| 	ent = find_and_prep_issuable_command(esp);
 | |
| 	if (!ent)
 | |
| 		return;
 | |
| 
 | |
| 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
 | |
| 		esp_autosense(esp, ent);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cmd = ent->cmd;
 | |
| 	dev = cmd->device;
 | |
| 	tgt = dev->id;
 | |
| 	lun = dev->lun;
 | |
| 	tp = &esp->target[tgt];
 | |
| 
 | |
| 	list_move(&ent->list, &esp->active_cmds);
 | |
| 
 | |
| 	esp->active_cmd = ent;
 | |
| 
 | |
| 	esp_map_dma(esp, cmd);
 | |
| 	esp_save_pointers(esp, ent);
 | |
| 
 | |
| 	if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12))
 | |
| 		select_and_stop = true;
 | |
| 
 | |
| 	p = esp->command_block;
 | |
| 
 | |
| 	esp->msg_out_len = 0;
 | |
| 	if (tp->flags & ESP_TGT_CHECK_NEGO) {
 | |
| 		/* Need to negotiate.  If the target is broken
 | |
| 		 * go for synchronous transfers and non-wide.
 | |
| 		 */
 | |
| 		if (tp->flags & ESP_TGT_BROKEN) {
 | |
| 			tp->flags &= ~ESP_TGT_DISCONNECT;
 | |
| 			tp->nego_goal_period = 0;
 | |
| 			tp->nego_goal_offset = 0;
 | |
| 			tp->nego_goal_width = 0;
 | |
| 			tp->nego_goal_tags = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* If the settings are not changing, skip this.  */
 | |
| 		if (spi_width(tp->starget) == tp->nego_goal_width &&
 | |
| 		    spi_period(tp->starget) == tp->nego_goal_period &&
 | |
| 		    spi_offset(tp->starget) == tp->nego_goal_offset) {
 | |
| 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
 | |
| 			goto build_identify;
 | |
| 		}
 | |
| 
 | |
| 		if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
 | |
| 			esp->msg_out_len =
 | |
| 				spi_populate_width_msg(&esp->msg_out[0],
 | |
| 						       (tp->nego_goal_width ?
 | |
| 							1 : 0));
 | |
| 			tp->flags |= ESP_TGT_NEGO_WIDE;
 | |
| 		} else if (esp_need_to_nego_sync(tp)) {
 | |
| 			esp->msg_out_len =
 | |
| 				spi_populate_sync_msg(&esp->msg_out[0],
 | |
| 						      tp->nego_goal_period,
 | |
| 						      tp->nego_goal_offset);
 | |
| 			tp->flags |= ESP_TGT_NEGO_SYNC;
 | |
| 		} else {
 | |
| 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
 | |
| 		}
 | |
| 
 | |
| 		/* If there are multiple message bytes, use Select and Stop */
 | |
| 		if (esp->msg_out_len)
 | |
| 			select_and_stop = true;
 | |
| 	}
 | |
| 
 | |
| build_identify:
 | |
| 	*p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun);
 | |
| 
 | |
| 	if (ent->tag[0] && esp->rev == ESP100) {
 | |
| 		/* ESP100 lacks select w/atn3 command, use select
 | |
| 		 * and stop instead.
 | |
| 		 */
 | |
| 		select_and_stop = true;
 | |
| 	}
 | |
| 
 | |
| 	if (select_and_stop) {
 | |
| 		esp->cmd_bytes_left = cmd->cmd_len;
 | |
| 		esp->cmd_bytes_ptr = &cmd->cmnd[0];
 | |
| 
 | |
| 		if (ent->tag[0]) {
 | |
| 			for (i = esp->msg_out_len - 1;
 | |
| 			     i >= 0; i--)
 | |
| 				esp->msg_out[i + 2] = esp->msg_out[i];
 | |
| 			esp->msg_out[0] = ent->tag[0];
 | |
| 			esp->msg_out[1] = ent->tag[1];
 | |
| 			esp->msg_out_len += 2;
 | |
| 		}
 | |
| 
 | |
| 		start_cmd = ESP_CMD_SELAS;
 | |
| 		esp->select_state = ESP_SELECT_MSGOUT;
 | |
| 	} else {
 | |
| 		start_cmd = ESP_CMD_SELA;
 | |
| 		if (ent->tag[0]) {
 | |
| 			*p++ = ent->tag[0];
 | |
| 			*p++ = ent->tag[1];
 | |
| 
 | |
| 			start_cmd = ESP_CMD_SA3;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < cmd->cmd_len; i++)
 | |
| 			*p++ = cmd->cmnd[i];
 | |
| 
 | |
| 		esp->select_state = ESP_SELECT_BASIC;
 | |
| 	}
 | |
| 	val = tgt;
 | |
| 	if (esp->rev == FASHME)
 | |
| 		val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
 | |
| 	esp_write8(val, ESP_BUSID);
 | |
| 
 | |
| 	esp_write_tgt_sync(esp, tgt);
 | |
| 	esp_write_tgt_config3(esp, tgt);
 | |
| 
 | |
| 	val = (p - esp->command_block);
 | |
| 
 | |
| 	if (esp_debug & ESP_DEBUG_SCSICMD) {
 | |
| 		printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
 | |
| 		for (i = 0; i < cmd->cmd_len; i++)
 | |
| 			printk("%02x ", cmd->cmnd[i]);
 | |
| 		printk("]\n");
 | |
| 	}
 | |
| 
 | |
| 	esp_send_dma_cmd(esp, val, 16, start_cmd);
 | |
| }
 | |
| 
 | |
| static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
 | |
| {
 | |
| 	struct list_head *head = &esp->esp_cmd_pool;
 | |
| 	struct esp_cmd_entry *ret;
 | |
| 
 | |
| 	if (list_empty(head)) {
 | |
| 		ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
 | |
| 	} else {
 | |
| 		ret = list_entry(head->next, struct esp_cmd_entry, list);
 | |
| 		list_del(&ret->list);
 | |
| 		memset(ret, 0, sizeof(*ret));
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
 | |
| {
 | |
| 	list_add(&ent->list, &esp->esp_cmd_pool);
 | |
| }
 | |
| 
 | |
| static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
 | |
| 			    struct scsi_cmnd *cmd, unsigned int result)
 | |
| {
 | |
| 	struct scsi_device *dev = cmd->device;
 | |
| 	int tgt = dev->id;
 | |
| 	int lun = dev->lun;
 | |
| 
 | |
| 	esp->active_cmd = NULL;
 | |
| 	esp_unmap_dma(esp, cmd);
 | |
| 	esp_free_lun_tag(ent, dev->hostdata);
 | |
| 	cmd->result = result;
 | |
| 
 | |
| 	if (ent->eh_done) {
 | |
| 		complete(ent->eh_done);
 | |
| 		ent->eh_done = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
 | |
| 		esp_unmap_sense(esp, ent);
 | |
| 
 | |
| 		/* Restore the message/status bytes to what we actually
 | |
| 		 * saw originally.  Also, report that we are providing
 | |
| 		 * the sense data.
 | |
| 		 */
 | |
| 		cmd->result = ((DRIVER_SENSE << 24) |
 | |
| 			       (DID_OK << 16) |
 | |
| 			       (COMMAND_COMPLETE << 8) |
 | |
| 			       (SAM_STAT_CHECK_CONDITION << 0));
 | |
| 
 | |
| 		ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
 | |
| 		if (esp_debug & ESP_DEBUG_AUTOSENSE) {
 | |
| 			int i;
 | |
| 
 | |
| 			printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
 | |
| 			       esp->host->unique_id, tgt, lun);
 | |
| 			for (i = 0; i < 18; i++)
 | |
| 				printk("%02x ", cmd->sense_buffer[i]);
 | |
| 			printk("]\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cmd->scsi_done(cmd);
 | |
| 
 | |
| 	list_del(&ent->list);
 | |
| 	esp_put_ent(esp, ent);
 | |
| 
 | |
| 	esp_maybe_execute_command(esp);
 | |
| }
 | |
| 
 | |
| static unsigned int compose_result(unsigned int status, unsigned int message,
 | |
| 				   unsigned int driver_code)
 | |
| {
 | |
| 	return (status | (message << 8) | (driver_code << 16));
 | |
| }
 | |
| 
 | |
| static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
 | |
| {
 | |
| 	struct scsi_device *dev = ent->cmd->device;
 | |
| 	struct esp_lun_data *lp = dev->hostdata;
 | |
| 
 | |
| 	scsi_track_queue_full(dev, lp->num_tagged - 1);
 | |
| }
 | |
| 
 | |
| static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
 | |
| {
 | |
| 	struct scsi_device *dev = cmd->device;
 | |
| 	struct esp *esp = shost_priv(dev->host);
 | |
| 	struct esp_cmd_priv *spriv;
 | |
| 	struct esp_cmd_entry *ent;
 | |
| 
 | |
| 	ent = esp_get_ent(esp);
 | |
| 	if (!ent)
 | |
| 		return SCSI_MLQUEUE_HOST_BUSY;
 | |
| 
 | |
| 	ent->cmd = cmd;
 | |
| 
 | |
| 	cmd->scsi_done = done;
 | |
| 
 | |
| 	spriv = ESP_CMD_PRIV(cmd);
 | |
| 	spriv->num_sg = 0;
 | |
| 
 | |
| 	list_add_tail(&ent->list, &esp->queued_cmds);
 | |
| 
 | |
| 	esp_maybe_execute_command(esp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEF_SCSI_QCMD(esp_queuecommand)
 | |
| 
 | |
| static int esp_check_gross_error(struct esp *esp)
 | |
| {
 | |
| 	if (esp->sreg & ESP_STAT_SPAM) {
 | |
| 		/* Gross Error, could be one of:
 | |
| 		 * - top of fifo overwritten
 | |
| 		 * - top of command register overwritten
 | |
| 		 * - DMA programmed with wrong direction
 | |
| 		 * - improper phase change
 | |
| 		 */
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Gross error sreg[%02x]\n", esp->sreg);
 | |
| 		/* XXX Reset the chip. XXX */
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int esp_check_spur_intr(struct esp *esp)
 | |
| {
 | |
| 	switch (esp->rev) {
 | |
| 	case ESP100:
 | |
| 	case ESP100A:
 | |
| 		/* The interrupt pending bit of the status register cannot
 | |
| 		 * be trusted on these revisions.
 | |
| 		 */
 | |
| 		esp->sreg &= ~ESP_STAT_INTR;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		if (!(esp->sreg & ESP_STAT_INTR)) {
 | |
| 			if (esp->ireg & ESP_INTR_SR)
 | |
| 				return 1;
 | |
| 
 | |
| 			/* If the DMA is indicating interrupt pending and the
 | |
| 			 * ESP is not, the only possibility is a DMA error.
 | |
| 			 */
 | |
| 			if (!esp->ops->dma_error(esp)) {
 | |
| 				shost_printk(KERN_ERR, esp->host,
 | |
| 					     "Spurious irq, sreg=%02x.\n",
 | |
| 					     esp->sreg);
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			shost_printk(KERN_ERR, esp->host, "DMA error\n");
 | |
| 
 | |
| 			/* XXX Reset the chip. XXX */
 | |
| 			return -1;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void esp_schedule_reset(struct esp *esp)
 | |
| {
 | |
| 	esp_log_reset("esp_schedule_reset() from %ps\n",
 | |
| 		      __builtin_return_address(0));
 | |
| 	esp->flags |= ESP_FLAG_RESETTING;
 | |
| 	esp_event(esp, ESP_EVENT_RESET);
 | |
| }
 | |
| 
 | |
| /* In order to avoid having to add a special half-reconnected state
 | |
|  * into the driver we just sit here and poll through the rest of
 | |
|  * the reselection process to get the tag message bytes.
 | |
|  */
 | |
| static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
 | |
| 						    struct esp_lun_data *lp)
 | |
| {
 | |
| 	struct esp_cmd_entry *ent;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!lp->num_tagged) {
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Reconnect w/num_tagged==0\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	esp_log_reconnect("reconnect tag, ");
 | |
| 
 | |
| 	for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
 | |
| 		if (esp->ops->irq_pending(esp))
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i == ESP_QUICKIRQ_LIMIT) {
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Reconnect IRQ1 timeout\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	esp->sreg = esp_read8(ESP_STATUS);
 | |
| 	esp->ireg = esp_read8(ESP_INTRPT);
 | |
| 
 | |
| 	esp_log_reconnect("IRQ(%d:%x:%x), ",
 | |
| 			  i, esp->ireg, esp->sreg);
 | |
| 
 | |
| 	if (esp->ireg & ESP_INTR_DC) {
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Reconnect, got disconnect.\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Reconnect, not MIP sreg[%02x].\n", esp->sreg);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* DMA in the tag bytes... */
 | |
| 	esp->command_block[0] = 0xff;
 | |
| 	esp->command_block[1] = 0xff;
 | |
| 	esp->ops->send_dma_cmd(esp, esp->command_block_dma,
 | |
| 			       2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
 | |
| 
 | |
| 	/* ACK the message.  */
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_MOK);
 | |
| 
 | |
| 	for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
 | |
| 		if (esp->ops->irq_pending(esp)) {
 | |
| 			esp->sreg = esp_read8(ESP_STATUS);
 | |
| 			esp->ireg = esp_read8(ESP_INTRPT);
 | |
| 			if (esp->ireg & ESP_INTR_FDONE)
 | |
| 				break;
 | |
| 		}
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	if (i == ESP_RESELECT_TAG_LIMIT) {
 | |
| 		shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	esp->ops->dma_drain(esp);
 | |
| 	esp->ops->dma_invalidate(esp);
 | |
| 
 | |
| 	esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
 | |
| 			  i, esp->ireg, esp->sreg,
 | |
| 			  esp->command_block[0],
 | |
| 			  esp->command_block[1]);
 | |
| 
 | |
| 	if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
 | |
| 	    esp->command_block[0] > ORDERED_QUEUE_TAG) {
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Reconnect, bad tag type %02x.\n",
 | |
| 			     esp->command_block[0]);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ent = lp->tagged_cmds[esp->command_block[1]];
 | |
| 	if (!ent) {
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Reconnect, no entry for tag %02x.\n",
 | |
| 			     esp->command_block[1]);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return ent;
 | |
| }
 | |
| 
 | |
| static int esp_reconnect(struct esp *esp)
 | |
| {
 | |
| 	struct esp_cmd_entry *ent;
 | |
| 	struct esp_target_data *tp;
 | |
| 	struct esp_lun_data *lp;
 | |
| 	struct scsi_device *dev;
 | |
| 	int target, lun;
 | |
| 
 | |
| 	BUG_ON(esp->active_cmd);
 | |
| 	if (esp->rev == FASHME) {
 | |
| 		/* FASHME puts the target and lun numbers directly
 | |
| 		 * into the fifo.
 | |
| 		 */
 | |
| 		target = esp->fifo[0];
 | |
| 		lun = esp->fifo[1] & 0x7;
 | |
| 	} else {
 | |
| 		u8 bits = esp_read8(ESP_FDATA);
 | |
| 
 | |
| 		/* Older chips put the lun directly into the fifo, but
 | |
| 		 * the target is given as a sample of the arbitration
 | |
| 		 * lines on the bus at reselection time.  So we should
 | |
| 		 * see the ID of the ESP and the one reconnecting target
 | |
| 		 * set in the bitmap.
 | |
| 		 */
 | |
| 		if (!(bits & esp->scsi_id_mask))
 | |
| 			goto do_reset;
 | |
| 		bits &= ~esp->scsi_id_mask;
 | |
| 		if (!bits || (bits & (bits - 1)))
 | |
| 			goto do_reset;
 | |
| 
 | |
| 		target = ffs(bits) - 1;
 | |
| 		lun = (esp_read8(ESP_FDATA) & 0x7);
 | |
| 
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 		if (esp->rev == ESP100) {
 | |
| 			u8 ireg = esp_read8(ESP_INTRPT);
 | |
| 			/* This chip has a bug during reselection that can
 | |
| 			 * cause a spurious illegal-command interrupt, which
 | |
| 			 * we simply ACK here.  Another possibility is a bus
 | |
| 			 * reset so we must check for that.
 | |
| 			 */
 | |
| 			if (ireg & ESP_INTR_SR)
 | |
| 				goto do_reset;
 | |
| 		}
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_NULL);
 | |
| 	}
 | |
| 
 | |
| 	esp_write_tgt_sync(esp, target);
 | |
| 	esp_write_tgt_config3(esp, target);
 | |
| 
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_MOK);
 | |
| 
 | |
| 	if (esp->rev == FASHME)
 | |
| 		esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
 | |
| 			   ESP_BUSID);
 | |
| 
 | |
| 	tp = &esp->target[target];
 | |
| 	dev = __scsi_device_lookup_by_target(tp->starget, lun);
 | |
| 	if (!dev) {
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Reconnect, no lp tgt[%u] lun[%u]\n",
 | |
| 			     target, lun);
 | |
| 		goto do_reset;
 | |
| 	}
 | |
| 	lp = dev->hostdata;
 | |
| 
 | |
| 	ent = lp->non_tagged_cmd;
 | |
| 	if (!ent) {
 | |
| 		ent = esp_reconnect_with_tag(esp, lp);
 | |
| 		if (!ent)
 | |
| 			goto do_reset;
 | |
| 	}
 | |
| 
 | |
| 	esp->active_cmd = ent;
 | |
| 
 | |
| 	esp_event(esp, ESP_EVENT_CHECK_PHASE);
 | |
| 	esp_restore_pointers(esp, ent);
 | |
| 	esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
 | |
| 	return 1;
 | |
| 
 | |
| do_reset:
 | |
| 	esp_schedule_reset(esp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int esp_finish_select(struct esp *esp)
 | |
| {
 | |
| 	struct esp_cmd_entry *ent;
 | |
| 	struct scsi_cmnd *cmd;
 | |
| 
 | |
| 	/* No longer selecting.  */
 | |
| 	esp->select_state = ESP_SELECT_NONE;
 | |
| 
 | |
| 	esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
 | |
| 	ent = esp->active_cmd;
 | |
| 	cmd = ent->cmd;
 | |
| 
 | |
| 	if (esp->ops->dma_error(esp)) {
 | |
| 		/* If we see a DMA error during or as a result of selection,
 | |
| 		 * all bets are off.
 | |
| 		 */
 | |
| 		esp_schedule_reset(esp);
 | |
| 		esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	esp->ops->dma_invalidate(esp);
 | |
| 
 | |
| 	if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
 | |
| 		struct esp_target_data *tp = &esp->target[cmd->device->id];
 | |
| 
 | |
| 		/* Carefully back out of the selection attempt.  Release
 | |
| 		 * resources (such as DMA mapping & TAG) and reset state (such
 | |
| 		 * as message out and command delivery variables).
 | |
| 		 */
 | |
| 		if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
 | |
| 			esp_unmap_dma(esp, cmd);
 | |
| 			esp_free_lun_tag(ent, cmd->device->hostdata);
 | |
| 			tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
 | |
| 			esp->cmd_bytes_ptr = NULL;
 | |
| 			esp->cmd_bytes_left = 0;
 | |
| 		} else {
 | |
| 			esp_unmap_sense(esp, ent);
 | |
| 		}
 | |
| 
 | |
| 		/* Now that the state is unwound properly, put back onto
 | |
| 		 * the issue queue.  This command is no longer active.
 | |
| 		 */
 | |
| 		list_move(&ent->list, &esp->queued_cmds);
 | |
| 		esp->active_cmd = NULL;
 | |
| 
 | |
| 		/* Return value ignored by caller, it directly invokes
 | |
| 		 * esp_reconnect().
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (esp->ireg == ESP_INTR_DC) {
 | |
| 		struct scsi_device *dev = cmd->device;
 | |
| 
 | |
| 		/* Disconnect.  Make sure we re-negotiate sync and
 | |
| 		 * wide parameters if this target starts responding
 | |
| 		 * again in the future.
 | |
| 		 */
 | |
| 		esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
 | |
| 
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_ESEL);
 | |
| 		esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
 | |
| 		/* Selection successful.  On pre-FAST chips we have
 | |
| 		 * to do a NOP and possibly clean out the FIFO.
 | |
| 		 */
 | |
| 		if (esp->rev <= ESP236) {
 | |
| 			int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
 | |
| 
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_NULL);
 | |
| 
 | |
| 			if (!fcnt &&
 | |
| 			    (!esp->prev_soff ||
 | |
| 			     ((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
 | |
| 				esp_flush_fifo(esp);
 | |
| 		}
 | |
| 
 | |
| 		/* If we are doing a Select And Stop command, negotiation, etc.
 | |
| 		 * we'll do the right thing as we transition to the next phase.
 | |
| 		 */
 | |
| 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	shost_printk(KERN_INFO, esp->host,
 | |
| 		     "Unexpected selection completion ireg[%x]\n", esp->ireg);
 | |
| 	esp_schedule_reset(esp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
 | |
| 			       struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	int fifo_cnt, ecount, bytes_sent, flush_fifo;
 | |
| 
 | |
| 	fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
 | |
| 	if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
 | |
| 		fifo_cnt <<= 1;
 | |
| 
 | |
| 	ecount = 0;
 | |
| 	if (!(esp->sreg & ESP_STAT_TCNT)) {
 | |
| 		ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
 | |
| 			  (((unsigned int)esp_read8(ESP_TCMED)) << 8));
 | |
| 		if (esp->rev == FASHME)
 | |
| 			ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
 | |
| 		if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
 | |
| 			ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
 | |
| 	}
 | |
| 
 | |
| 	bytes_sent = esp->data_dma_len;
 | |
| 	bytes_sent -= ecount;
 | |
| 	bytes_sent -= esp->send_cmd_residual;
 | |
| 
 | |
| 	/*
 | |
| 	 * The am53c974 has a DMA 'pecularity'. The doc states:
 | |
| 	 * In some odd byte conditions, one residual byte will
 | |
| 	 * be left in the SCSI FIFO, and the FIFO Flags will
 | |
| 	 * never count to '0 '. When this happens, the residual
 | |
| 	 * byte should be retrieved via PIO following completion
 | |
| 	 * of the BLAST operation.
 | |
| 	 */
 | |
| 	if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
 | |
| 		size_t count = 1;
 | |
| 		size_t offset = bytes_sent;
 | |
| 		u8 bval = esp_read8(ESP_FDATA);
 | |
| 
 | |
| 		if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
 | |
| 			ent->sense_ptr[bytes_sent] = bval;
 | |
| 		else {
 | |
| 			struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
 | |
| 			u8 *ptr;
 | |
| 
 | |
| 			ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg,
 | |
| 						  &offset, &count);
 | |
| 			if (likely(ptr)) {
 | |
| 				*(ptr + offset) = bval;
 | |
| 				scsi_kunmap_atomic_sg(ptr);
 | |
| 			}
 | |
| 		}
 | |
| 		bytes_sent += fifo_cnt;
 | |
| 		ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
 | |
| 	}
 | |
| 	if (!(ent->flags & ESP_CMD_FLAG_WRITE))
 | |
| 		bytes_sent -= fifo_cnt;
 | |
| 
 | |
| 	flush_fifo = 0;
 | |
| 	if (!esp->prev_soff) {
 | |
| 		/* Synchronous data transfer, always flush fifo. */
 | |
| 		flush_fifo = 1;
 | |
| 	} else {
 | |
| 		if (esp->rev == ESP100) {
 | |
| 			u32 fflags, phase;
 | |
| 
 | |
| 			/* ESP100 has a chip bug where in the synchronous data
 | |
| 			 * phase it can mistake a final long REQ pulse from the
 | |
| 			 * target as an extra data byte.  Fun.
 | |
| 			 *
 | |
| 			 * To detect this case we resample the status register
 | |
| 			 * and fifo flags.  If we're still in a data phase and
 | |
| 			 * we see spurious chunks in the fifo, we return error
 | |
| 			 * to the caller which should reset and set things up
 | |
| 			 * such that we only try future transfers to this
 | |
| 			 * target in synchronous mode.
 | |
| 			 */
 | |
| 			esp->sreg = esp_read8(ESP_STATUS);
 | |
| 			phase = esp->sreg & ESP_STAT_PMASK;
 | |
| 			fflags = esp_read8(ESP_FFLAGS);
 | |
| 
 | |
| 			if ((phase == ESP_DOP &&
 | |
| 			     (fflags & ESP_FF_ONOTZERO)) ||
 | |
| 			    (phase == ESP_DIP &&
 | |
| 			     (fflags & ESP_FF_FBYTES)))
 | |
| 				return -1;
 | |
| 		}
 | |
| 		if (!(ent->flags & ESP_CMD_FLAG_WRITE))
 | |
| 			flush_fifo = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (flush_fifo)
 | |
| 		esp_flush_fifo(esp);
 | |
| 
 | |
| 	return bytes_sent;
 | |
| }
 | |
| 
 | |
| static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
 | |
| 			u8 scsi_period, u8 scsi_offset,
 | |
| 			u8 esp_stp, u8 esp_soff)
 | |
| {
 | |
| 	spi_period(tp->starget) = scsi_period;
 | |
| 	spi_offset(tp->starget) = scsi_offset;
 | |
| 	spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
 | |
| 
 | |
| 	if (esp_soff) {
 | |
| 		esp_stp &= 0x1f;
 | |
| 		esp_soff |= esp->radelay;
 | |
| 		if (esp->rev >= FAS236) {
 | |
| 			u8 bit = ESP_CONFIG3_FSCSI;
 | |
| 			if (esp->rev >= FAS100A)
 | |
| 				bit = ESP_CONFIG3_FAST;
 | |
| 
 | |
| 			if (scsi_period < 50) {
 | |
| 				if (esp->rev == FASHME)
 | |
| 					esp_soff &= ~esp->radelay;
 | |
| 				tp->esp_config3 |= bit;
 | |
| 			} else {
 | |
| 				tp->esp_config3 &= ~bit;
 | |
| 			}
 | |
| 			esp->prev_cfg3 = tp->esp_config3;
 | |
| 			esp_write8(esp->prev_cfg3, ESP_CFG3);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	tp->esp_period = esp->prev_stp = esp_stp;
 | |
| 	tp->esp_offset = esp->prev_soff = esp_soff;
 | |
| 
 | |
| 	esp_write8(esp_soff, ESP_SOFF);
 | |
| 	esp_write8(esp_stp, ESP_STP);
 | |
| 
 | |
| 	tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
 | |
| 
 | |
| 	spi_display_xfer_agreement(tp->starget);
 | |
| }
 | |
| 
 | |
| static void esp_msgin_reject(struct esp *esp)
 | |
| {
 | |
| 	struct esp_cmd_entry *ent = esp->active_cmd;
 | |
| 	struct scsi_cmnd *cmd = ent->cmd;
 | |
| 	struct esp_target_data *tp;
 | |
| 	int tgt;
 | |
| 
 | |
| 	tgt = cmd->device->id;
 | |
| 	tp = &esp->target[tgt];
 | |
| 
 | |
| 	if (tp->flags & ESP_TGT_NEGO_WIDE) {
 | |
| 		tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
 | |
| 
 | |
| 		if (!esp_need_to_nego_sync(tp)) {
 | |
| 			tp->flags &= ~ESP_TGT_CHECK_NEGO;
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_RATN);
 | |
| 		} else {
 | |
| 			esp->msg_out_len =
 | |
| 				spi_populate_sync_msg(&esp->msg_out[0],
 | |
| 						      tp->nego_goal_period,
 | |
| 						      tp->nego_goal_offset);
 | |
| 			tp->flags |= ESP_TGT_NEGO_SYNC;
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_SATN);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (tp->flags & ESP_TGT_NEGO_SYNC) {
 | |
| 		tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
 | |
| 		tp->esp_period = 0;
 | |
| 		tp->esp_offset = 0;
 | |
| 		esp_setsync(esp, tp, 0, 0, 0, 0);
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_RATN);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
 | |
| 	esp_schedule_reset(esp);
 | |
| }
 | |
| 
 | |
| static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
 | |
| {
 | |
| 	u8 period = esp->msg_in[3];
 | |
| 	u8 offset = esp->msg_in[4];
 | |
| 	u8 stp;
 | |
| 
 | |
| 	if (!(tp->flags & ESP_TGT_NEGO_SYNC))
 | |
| 		goto do_reject;
 | |
| 
 | |
| 	if (offset > 15)
 | |
| 		goto do_reject;
 | |
| 
 | |
| 	if (offset) {
 | |
| 		int one_clock;
 | |
| 
 | |
| 		if (period > esp->max_period) {
 | |
| 			period = offset = 0;
 | |
| 			goto do_sdtr;
 | |
| 		}
 | |
| 		if (period < esp->min_period)
 | |
| 			goto do_reject;
 | |
| 
 | |
| 		one_clock = esp->ccycle / 1000;
 | |
| 		stp = DIV_ROUND_UP(period << 2, one_clock);
 | |
| 		if (stp && esp->rev >= FAS236) {
 | |
| 			if (stp >= 50)
 | |
| 				stp--;
 | |
| 		}
 | |
| 	} else {
 | |
| 		stp = 0;
 | |
| 	}
 | |
| 
 | |
| 	esp_setsync(esp, tp, period, offset, stp, offset);
 | |
| 	return;
 | |
| 
 | |
| do_reject:
 | |
| 	esp->msg_out[0] = MESSAGE_REJECT;
 | |
| 	esp->msg_out_len = 1;
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_SATN);
 | |
| 	return;
 | |
| 
 | |
| do_sdtr:
 | |
| 	tp->nego_goal_period = period;
 | |
| 	tp->nego_goal_offset = offset;
 | |
| 	esp->msg_out_len =
 | |
| 		spi_populate_sync_msg(&esp->msg_out[0],
 | |
| 				      tp->nego_goal_period,
 | |
| 				      tp->nego_goal_offset);
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_SATN);
 | |
| }
 | |
| 
 | |
| static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
 | |
| {
 | |
| 	int size = 8 << esp->msg_in[3];
 | |
| 	u8 cfg3;
 | |
| 
 | |
| 	if (esp->rev != FASHME)
 | |
| 		goto do_reject;
 | |
| 
 | |
| 	if (size != 8 && size != 16)
 | |
| 		goto do_reject;
 | |
| 
 | |
| 	if (!(tp->flags & ESP_TGT_NEGO_WIDE))
 | |
| 		goto do_reject;
 | |
| 
 | |
| 	cfg3 = tp->esp_config3;
 | |
| 	if (size == 16) {
 | |
| 		tp->flags |= ESP_TGT_WIDE;
 | |
| 		cfg3 |= ESP_CONFIG3_EWIDE;
 | |
| 	} else {
 | |
| 		tp->flags &= ~ESP_TGT_WIDE;
 | |
| 		cfg3 &= ~ESP_CONFIG3_EWIDE;
 | |
| 	}
 | |
| 	tp->esp_config3 = cfg3;
 | |
| 	esp->prev_cfg3 = cfg3;
 | |
| 	esp_write8(cfg3, ESP_CFG3);
 | |
| 
 | |
| 	tp->flags &= ~ESP_TGT_NEGO_WIDE;
 | |
| 
 | |
| 	spi_period(tp->starget) = 0;
 | |
| 	spi_offset(tp->starget) = 0;
 | |
| 	if (!esp_need_to_nego_sync(tp)) {
 | |
| 		tp->flags &= ~ESP_TGT_CHECK_NEGO;
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_RATN);
 | |
| 	} else {
 | |
| 		esp->msg_out_len =
 | |
| 			spi_populate_sync_msg(&esp->msg_out[0],
 | |
| 					      tp->nego_goal_period,
 | |
| 					      tp->nego_goal_offset);
 | |
| 		tp->flags |= ESP_TGT_NEGO_SYNC;
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_SATN);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| do_reject:
 | |
| 	esp->msg_out[0] = MESSAGE_REJECT;
 | |
| 	esp->msg_out_len = 1;
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_SATN);
 | |
| }
 | |
| 
 | |
| static void esp_msgin_extended(struct esp *esp)
 | |
| {
 | |
| 	struct esp_cmd_entry *ent = esp->active_cmd;
 | |
| 	struct scsi_cmnd *cmd = ent->cmd;
 | |
| 	struct esp_target_data *tp;
 | |
| 	int tgt = cmd->device->id;
 | |
| 
 | |
| 	tp = &esp->target[tgt];
 | |
| 	if (esp->msg_in[2] == EXTENDED_SDTR) {
 | |
| 		esp_msgin_sdtr(esp, tp);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (esp->msg_in[2] == EXTENDED_WDTR) {
 | |
| 		esp_msgin_wdtr(esp, tp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	shost_printk(KERN_INFO, esp->host,
 | |
| 		     "Unexpected extended msg type %x\n", esp->msg_in[2]);
 | |
| 
 | |
| 	esp->msg_out[0] = MESSAGE_REJECT;
 | |
| 	esp->msg_out_len = 1;
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_SATN);
 | |
| }
 | |
| 
 | |
| /* Analyze msgin bytes received from target so far.  Return non-zero
 | |
|  * if there are more bytes needed to complete the message.
 | |
|  */
 | |
| static int esp_msgin_process(struct esp *esp)
 | |
| {
 | |
| 	u8 msg0 = esp->msg_in[0];
 | |
| 	int len = esp->msg_in_len;
 | |
| 
 | |
| 	if (msg0 & 0x80) {
 | |
| 		/* Identify */
 | |
| 		shost_printk(KERN_INFO, esp->host,
 | |
| 			     "Unexpected msgin identify\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	switch (msg0) {
 | |
| 	case EXTENDED_MESSAGE:
 | |
| 		if (len == 1)
 | |
| 			return 1;
 | |
| 		if (len < esp->msg_in[1] + 2)
 | |
| 			return 1;
 | |
| 		esp_msgin_extended(esp);
 | |
| 		return 0;
 | |
| 
 | |
| 	case IGNORE_WIDE_RESIDUE: {
 | |
| 		struct esp_cmd_entry *ent;
 | |
| 		struct esp_cmd_priv *spriv;
 | |
| 		if (len == 1)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (esp->msg_in[1] != 1)
 | |
| 			goto do_reject;
 | |
| 
 | |
| 		ent = esp->active_cmd;
 | |
| 		spriv = ESP_CMD_PRIV(ent->cmd);
 | |
| 
 | |
| 		if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
 | |
| 			spriv->cur_sg--;
 | |
| 			spriv->cur_residue = 1;
 | |
| 		} else
 | |
| 			spriv->cur_residue++;
 | |
| 		spriv->tot_residue++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case NOP:
 | |
| 		return 0;
 | |
| 	case RESTORE_POINTERS:
 | |
| 		esp_restore_pointers(esp, esp->active_cmd);
 | |
| 		return 0;
 | |
| 	case SAVE_POINTERS:
 | |
| 		esp_save_pointers(esp, esp->active_cmd);
 | |
| 		return 0;
 | |
| 
 | |
| 	case COMMAND_COMPLETE:
 | |
| 	case DISCONNECT: {
 | |
| 		struct esp_cmd_entry *ent = esp->active_cmd;
 | |
| 
 | |
| 		ent->message = msg0;
 | |
| 		esp_event(esp, ESP_EVENT_FREE_BUS);
 | |
| 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case MESSAGE_REJECT:
 | |
| 		esp_msgin_reject(esp);
 | |
| 		return 0;
 | |
| 
 | |
| 	default:
 | |
| 	do_reject:
 | |
| 		esp->msg_out[0] = MESSAGE_REJECT;
 | |
| 		esp->msg_out_len = 1;
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_SATN);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int esp_process_event(struct esp *esp)
 | |
| {
 | |
| 	int write, i;
 | |
| 
 | |
| again:
 | |
| 	write = 0;
 | |
| 	esp_log_event("process event %d phase %x\n",
 | |
| 		      esp->event, esp->sreg & ESP_STAT_PMASK);
 | |
| 	switch (esp->event) {
 | |
| 	case ESP_EVENT_CHECK_PHASE:
 | |
| 		switch (esp->sreg & ESP_STAT_PMASK) {
 | |
| 		case ESP_DOP:
 | |
| 			esp_event(esp, ESP_EVENT_DATA_OUT);
 | |
| 			break;
 | |
| 		case ESP_DIP:
 | |
| 			esp_event(esp, ESP_EVENT_DATA_IN);
 | |
| 			break;
 | |
| 		case ESP_STATP:
 | |
| 			esp_flush_fifo(esp);
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
 | |
| 			esp_event(esp, ESP_EVENT_STATUS);
 | |
| 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
 | |
| 			return 1;
 | |
| 
 | |
| 		case ESP_MOP:
 | |
| 			esp_event(esp, ESP_EVENT_MSGOUT);
 | |
| 			break;
 | |
| 
 | |
| 		case ESP_MIP:
 | |
| 			esp_event(esp, ESP_EVENT_MSGIN);
 | |
| 			break;
 | |
| 
 | |
| 		case ESP_CMDP:
 | |
| 			esp_event(esp, ESP_EVENT_CMD_START);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			shost_printk(KERN_INFO, esp->host,
 | |
| 				     "Unexpected phase, sreg=%02x\n",
 | |
| 				     esp->sreg);
 | |
| 			esp_schedule_reset(esp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		goto again;
 | |
| 
 | |
| 	case ESP_EVENT_DATA_IN:
 | |
| 		write = 1;
 | |
| 		/* fallthru */
 | |
| 
 | |
| 	case ESP_EVENT_DATA_OUT: {
 | |
| 		struct esp_cmd_entry *ent = esp->active_cmd;
 | |
| 		struct scsi_cmnd *cmd = ent->cmd;
 | |
| 		dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
 | |
| 		unsigned int dma_len = esp_cur_dma_len(ent, cmd);
 | |
| 
 | |
| 		if (esp->rev == ESP100)
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_NULL);
 | |
| 
 | |
| 		if (write)
 | |
| 			ent->flags |= ESP_CMD_FLAG_WRITE;
 | |
| 		else
 | |
| 			ent->flags &= ~ESP_CMD_FLAG_WRITE;
 | |
| 
 | |
| 		if (esp->ops->dma_length_limit)
 | |
| 			dma_len = esp->ops->dma_length_limit(esp, dma_addr,
 | |
| 							     dma_len);
 | |
| 		else
 | |
| 			dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
 | |
| 
 | |
| 		esp->data_dma_len = dma_len;
 | |
| 
 | |
| 		if (!dma_len) {
 | |
| 			shost_printk(KERN_ERR, esp->host,
 | |
| 				     "DMA length is zero!\n");
 | |
| 			shost_printk(KERN_ERR, esp->host,
 | |
| 				     "cur adr[%08llx] len[%08x]\n",
 | |
| 				     (unsigned long long)esp_cur_dma_addr(ent, cmd),
 | |
| 				     esp_cur_dma_len(ent, cmd));
 | |
| 			esp_schedule_reset(esp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
 | |
| 				  (unsigned long long)dma_addr, dma_len, write);
 | |
| 
 | |
| 		esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
 | |
| 				       write, ESP_CMD_DMA | ESP_CMD_TI);
 | |
| 		esp_event(esp, ESP_EVENT_DATA_DONE);
 | |
| 		break;
 | |
| 	}
 | |
| 	case ESP_EVENT_DATA_DONE: {
 | |
| 		struct esp_cmd_entry *ent = esp->active_cmd;
 | |
| 		struct scsi_cmnd *cmd = ent->cmd;
 | |
| 		int bytes_sent;
 | |
| 
 | |
| 		if (esp->ops->dma_error(esp)) {
 | |
| 			shost_printk(KERN_INFO, esp->host,
 | |
| 				     "data done, DMA error, resetting\n");
 | |
| 			esp_schedule_reset(esp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (ent->flags & ESP_CMD_FLAG_WRITE) {
 | |
| 			/* XXX parity errors, etc. XXX */
 | |
| 
 | |
| 			esp->ops->dma_drain(esp);
 | |
| 		}
 | |
| 		esp->ops->dma_invalidate(esp);
 | |
| 
 | |
| 		if (esp->ireg != ESP_INTR_BSERV) {
 | |
| 			/* We should always see exactly a bus-service
 | |
| 			 * interrupt at the end of a successful transfer.
 | |
| 			 */
 | |
| 			shost_printk(KERN_INFO, esp->host,
 | |
| 				     "data done, not BSERV, resetting\n");
 | |
| 			esp_schedule_reset(esp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
 | |
| 
 | |
| 		esp_log_datadone("data done flgs[%x] sent[%d]\n",
 | |
| 				 ent->flags, bytes_sent);
 | |
| 
 | |
| 		if (bytes_sent < 0) {
 | |
| 			/* XXX force sync mode for this target XXX */
 | |
| 			esp_schedule_reset(esp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		esp_advance_dma(esp, ent, cmd, bytes_sent);
 | |
| 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	case ESP_EVENT_STATUS: {
 | |
| 		struct esp_cmd_entry *ent = esp->active_cmd;
 | |
| 
 | |
| 		if (esp->ireg & ESP_INTR_FDONE) {
 | |
| 			ent->status = esp_read8(ESP_FDATA);
 | |
| 			ent->message = esp_read8(ESP_FDATA);
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_MOK);
 | |
| 		} else if (esp->ireg == ESP_INTR_BSERV) {
 | |
| 			ent->status = esp_read8(ESP_FDATA);
 | |
| 			ent->message = 0xff;
 | |
| 			esp_event(esp, ESP_EVENT_MSGIN);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (ent->message != COMMAND_COMPLETE) {
 | |
| 			shost_printk(KERN_INFO, esp->host,
 | |
| 				     "Unexpected message %x in status\n",
 | |
| 				     ent->message);
 | |
| 			esp_schedule_reset(esp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		esp_event(esp, ESP_EVENT_FREE_BUS);
 | |
| 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
 | |
| 		break;
 | |
| 	}
 | |
| 	case ESP_EVENT_FREE_BUS: {
 | |
| 		struct esp_cmd_entry *ent = esp->active_cmd;
 | |
| 		struct scsi_cmnd *cmd = ent->cmd;
 | |
| 
 | |
| 		if (ent->message == COMMAND_COMPLETE ||
 | |
| 		    ent->message == DISCONNECT)
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_ESEL);
 | |
| 
 | |
| 		if (ent->message == COMMAND_COMPLETE) {
 | |
| 			esp_log_cmddone("Command done status[%x] message[%x]\n",
 | |
| 					ent->status, ent->message);
 | |
| 			if (ent->status == SAM_STAT_TASK_SET_FULL)
 | |
| 				esp_event_queue_full(esp, ent);
 | |
| 
 | |
| 			if (ent->status == SAM_STAT_CHECK_CONDITION &&
 | |
| 			    !(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
 | |
| 				ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
 | |
| 				esp_autosense(esp, ent);
 | |
| 			} else {
 | |
| 				esp_cmd_is_done(esp, ent, cmd,
 | |
| 						compose_result(ent->status,
 | |
| 							       ent->message,
 | |
| 							       DID_OK));
 | |
| 			}
 | |
| 		} else if (ent->message == DISCONNECT) {
 | |
| 			esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
 | |
| 					   cmd->device->id,
 | |
| 					   ent->tag[0], ent->tag[1]);
 | |
| 
 | |
| 			esp->active_cmd = NULL;
 | |
| 			esp_maybe_execute_command(esp);
 | |
| 		} else {
 | |
| 			shost_printk(KERN_INFO, esp->host,
 | |
| 				     "Unexpected message %x in freebus\n",
 | |
| 				     ent->message);
 | |
| 			esp_schedule_reset(esp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (esp->active_cmd)
 | |
| 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
 | |
| 		break;
 | |
| 	}
 | |
| 	case ESP_EVENT_MSGOUT: {
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 
 | |
| 		if (esp_debug & ESP_DEBUG_MSGOUT) {
 | |
| 			int i;
 | |
| 			printk("ESP: Sending message [ ");
 | |
| 			for (i = 0; i < esp->msg_out_len; i++)
 | |
| 				printk("%02x ", esp->msg_out[i]);
 | |
| 			printk("]\n");
 | |
| 		}
 | |
| 
 | |
| 		if (esp->rev == FASHME) {
 | |
| 			int i;
 | |
| 
 | |
| 			/* Always use the fifo.  */
 | |
| 			for (i = 0; i < esp->msg_out_len; i++) {
 | |
| 				esp_write8(esp->msg_out[i], ESP_FDATA);
 | |
| 				esp_write8(0, ESP_FDATA);
 | |
| 			}
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_TI);
 | |
| 		} else {
 | |
| 			if (esp->msg_out_len == 1) {
 | |
| 				esp_write8(esp->msg_out[0], ESP_FDATA);
 | |
| 				scsi_esp_cmd(esp, ESP_CMD_TI);
 | |
| 			} else if (esp->flags & ESP_FLAG_USE_FIFO) {
 | |
| 				for (i = 0; i < esp->msg_out_len; i++)
 | |
| 					esp_write8(esp->msg_out[i], ESP_FDATA);
 | |
| 				scsi_esp_cmd(esp, ESP_CMD_TI);
 | |
| 			} else {
 | |
| 				/* Use DMA. */
 | |
| 				memcpy(esp->command_block,
 | |
| 				       esp->msg_out,
 | |
| 				       esp->msg_out_len);
 | |
| 
 | |
| 				esp->ops->send_dma_cmd(esp,
 | |
| 						       esp->command_block_dma,
 | |
| 						       esp->msg_out_len,
 | |
| 						       esp->msg_out_len,
 | |
| 						       0,
 | |
| 						       ESP_CMD_DMA|ESP_CMD_TI);
 | |
| 			}
 | |
| 		}
 | |
| 		esp_event(esp, ESP_EVENT_MSGOUT_DONE);
 | |
| 		break;
 | |
| 	}
 | |
| 	case ESP_EVENT_MSGOUT_DONE:
 | |
| 		if (esp->rev == FASHME) {
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 		} else {
 | |
| 			if (esp->msg_out_len > 1)
 | |
| 				esp->ops->dma_invalidate(esp);
 | |
| 
 | |
| 			/* XXX if the chip went into disconnected mode,
 | |
| 			 * we can't run the phase state machine anyway.
 | |
| 			 */
 | |
| 			if (!(esp->ireg & ESP_INTR_DC))
 | |
| 				scsi_esp_cmd(esp, ESP_CMD_NULL);
 | |
| 		}
 | |
| 
 | |
| 		esp->msg_out_len = 0;
 | |
| 
 | |
| 		esp_event(esp, ESP_EVENT_CHECK_PHASE);
 | |
| 		goto again;
 | |
| 	case ESP_EVENT_MSGIN:
 | |
| 		if (esp->ireg & ESP_INTR_BSERV) {
 | |
| 			if (esp->rev == FASHME) {
 | |
| 				if (!(esp_read8(ESP_STATUS2) &
 | |
| 				      ESP_STAT2_FEMPTY))
 | |
| 					scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 			} else {
 | |
| 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 				if (esp->rev == ESP100)
 | |
| 					scsi_esp_cmd(esp, ESP_CMD_NULL);
 | |
| 			}
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_TI);
 | |
| 			esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
 | |
| 			return 1;
 | |
| 		}
 | |
| 		if (esp->ireg & ESP_INTR_FDONE) {
 | |
| 			u8 val;
 | |
| 
 | |
| 			if (esp->rev == FASHME)
 | |
| 				val = esp->fifo[0];
 | |
| 			else
 | |
| 				val = esp_read8(ESP_FDATA);
 | |
| 			esp->msg_in[esp->msg_in_len++] = val;
 | |
| 
 | |
| 			esp_log_msgin("Got msgin byte %x\n", val);
 | |
| 
 | |
| 			if (!esp_msgin_process(esp))
 | |
| 				esp->msg_in_len = 0;
 | |
| 
 | |
| 			if (esp->rev == FASHME)
 | |
| 				scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 
 | |
| 			scsi_esp_cmd(esp, ESP_CMD_MOK);
 | |
| 
 | |
| 			/* Check whether a bus reset is to be done next */
 | |
| 			if (esp->event == ESP_EVENT_RESET)
 | |
| 				return 0;
 | |
| 
 | |
| 			if (esp->event != ESP_EVENT_FREE_BUS)
 | |
| 				esp_event(esp, ESP_EVENT_CHECK_PHASE);
 | |
| 		} else {
 | |
| 			shost_printk(KERN_INFO, esp->host,
 | |
| 				     "MSGIN neither BSERV not FDON, resetting");
 | |
| 			esp_schedule_reset(esp);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case ESP_EVENT_CMD_START:
 | |
| 		memcpy(esp->command_block, esp->cmd_bytes_ptr,
 | |
| 		       esp->cmd_bytes_left);
 | |
| 		esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
 | |
| 		esp_event(esp, ESP_EVENT_CMD_DONE);
 | |
| 		esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
 | |
| 		break;
 | |
| 	case ESP_EVENT_CMD_DONE:
 | |
| 		esp->ops->dma_invalidate(esp);
 | |
| 		if (esp->ireg & ESP_INTR_BSERV) {
 | |
| 			esp_event(esp, ESP_EVENT_CHECK_PHASE);
 | |
| 			goto again;
 | |
| 		}
 | |
| 		esp_schedule_reset(esp);
 | |
| 		return 0;
 | |
| 
 | |
| 	case ESP_EVENT_RESET:
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_RS);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		shost_printk(KERN_INFO, esp->host,
 | |
| 			     "Unexpected event %x, resetting\n", esp->event);
 | |
| 		esp_schedule_reset(esp);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
 | |
| {
 | |
| 	struct scsi_cmnd *cmd = ent->cmd;
 | |
| 
 | |
| 	esp_unmap_dma(esp, cmd);
 | |
| 	esp_free_lun_tag(ent, cmd->device->hostdata);
 | |
| 	cmd->result = DID_RESET << 16;
 | |
| 
 | |
| 	if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
 | |
| 		esp_unmap_sense(esp, ent);
 | |
| 
 | |
| 	cmd->scsi_done(cmd);
 | |
| 	list_del(&ent->list);
 | |
| 	esp_put_ent(esp, ent);
 | |
| }
 | |
| 
 | |
| static void esp_clear_hold(struct scsi_device *dev, void *data)
 | |
| {
 | |
| 	struct esp_lun_data *lp = dev->hostdata;
 | |
| 
 | |
| 	BUG_ON(lp->num_tagged);
 | |
| 	lp->hold = 0;
 | |
| }
 | |
| 
 | |
| static void esp_reset_cleanup(struct esp *esp)
 | |
| {
 | |
| 	struct esp_cmd_entry *ent, *tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
 | |
| 		struct scsi_cmnd *cmd = ent->cmd;
 | |
| 
 | |
| 		list_del(&ent->list);
 | |
| 		cmd->result = DID_RESET << 16;
 | |
| 		cmd->scsi_done(cmd);
 | |
| 		esp_put_ent(esp, ent);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
 | |
| 		if (ent == esp->active_cmd)
 | |
| 			esp->active_cmd = NULL;
 | |
| 		esp_reset_cleanup_one(esp, ent);
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(esp->active_cmd != NULL);
 | |
| 
 | |
| 	/* Force renegotiation of sync/wide transfers.  */
 | |
| 	for (i = 0; i < ESP_MAX_TARGET; i++) {
 | |
| 		struct esp_target_data *tp = &esp->target[i];
 | |
| 
 | |
| 		tp->esp_period = 0;
 | |
| 		tp->esp_offset = 0;
 | |
| 		tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
 | |
| 				     ESP_CONFIG3_FSCSI |
 | |
| 				     ESP_CONFIG3_FAST);
 | |
| 		tp->flags &= ~ESP_TGT_WIDE;
 | |
| 		tp->flags |= ESP_TGT_CHECK_NEGO;
 | |
| 
 | |
| 		if (tp->starget)
 | |
| 			__starget_for_each_device(tp->starget, NULL,
 | |
| 						  esp_clear_hold);
 | |
| 	}
 | |
| 	esp->flags &= ~ESP_FLAG_RESETTING;
 | |
| }
 | |
| 
 | |
| /* Runs under host->lock */
 | |
| static void __esp_interrupt(struct esp *esp)
 | |
| {
 | |
| 	int finish_reset, intr_done;
 | |
| 	u8 phase;
 | |
| 
 | |
|        /*
 | |
| 	* Once INTRPT is read STATUS and SSTEP are cleared.
 | |
| 	*/
 | |
| 	esp->sreg = esp_read8(ESP_STATUS);
 | |
| 	esp->seqreg = esp_read8(ESP_SSTEP);
 | |
| 	esp->ireg = esp_read8(ESP_INTRPT);
 | |
| 
 | |
| 	if (esp->flags & ESP_FLAG_RESETTING) {
 | |
| 		finish_reset = 1;
 | |
| 	} else {
 | |
| 		if (esp_check_gross_error(esp))
 | |
| 			return;
 | |
| 
 | |
| 		finish_reset = esp_check_spur_intr(esp);
 | |
| 		if (finish_reset < 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	if (esp->ireg & ESP_INTR_SR)
 | |
| 		finish_reset = 1;
 | |
| 
 | |
| 	if (finish_reset) {
 | |
| 		esp_reset_cleanup(esp);
 | |
| 		if (esp->eh_reset) {
 | |
| 			complete(esp->eh_reset);
 | |
| 			esp->eh_reset = NULL;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	phase = (esp->sreg & ESP_STAT_PMASK);
 | |
| 	if (esp->rev == FASHME) {
 | |
| 		if (((phase != ESP_DIP && phase != ESP_DOP) &&
 | |
| 		     esp->select_state == ESP_SELECT_NONE &&
 | |
| 		     esp->event != ESP_EVENT_STATUS &&
 | |
| 		     esp->event != ESP_EVENT_DATA_DONE) ||
 | |
| 		    (esp->ireg & ESP_INTR_RSEL)) {
 | |
| 			esp->sreg2 = esp_read8(ESP_STATUS2);
 | |
| 			if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
 | |
| 			    (esp->sreg2 & ESP_STAT2_F1BYTE))
 | |
| 				hme_read_fifo(esp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	esp_log_intr("intr sreg[%02x] seqreg[%02x] "
 | |
| 		     "sreg2[%02x] ireg[%02x]\n",
 | |
| 		     esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
 | |
| 
 | |
| 	intr_done = 0;
 | |
| 
 | |
| 	if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
 | |
| 		shost_printk(KERN_INFO, esp->host,
 | |
| 			     "unexpected IREG %02x\n", esp->ireg);
 | |
| 		if (esp->ireg & ESP_INTR_IC)
 | |
| 			esp_dump_cmd_log(esp);
 | |
| 
 | |
| 		esp_schedule_reset(esp);
 | |
| 	} else {
 | |
| 		if (esp->ireg & ESP_INTR_RSEL) {
 | |
| 			if (esp->active_cmd)
 | |
| 				(void) esp_finish_select(esp);
 | |
| 			intr_done = esp_reconnect(esp);
 | |
| 		} else {
 | |
| 			/* Some combination of FDONE, BSERV, DC. */
 | |
| 			if (esp->select_state != ESP_SELECT_NONE)
 | |
| 				intr_done = esp_finish_select(esp);
 | |
| 		}
 | |
| 	}
 | |
| 	while (!intr_done)
 | |
| 		intr_done = esp_process_event(esp);
 | |
| }
 | |
| 
 | |
| irqreturn_t scsi_esp_intr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct esp *esp = dev_id;
 | |
| 	unsigned long flags;
 | |
| 	irqreturn_t ret;
 | |
| 
 | |
| 	spin_lock_irqsave(esp->host->host_lock, flags);
 | |
| 	ret = IRQ_NONE;
 | |
| 	if (esp->ops->irq_pending(esp)) {
 | |
| 		ret = IRQ_HANDLED;
 | |
| 		for (;;) {
 | |
| 			int i;
 | |
| 
 | |
| 			__esp_interrupt(esp);
 | |
| 			if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
 | |
| 				break;
 | |
| 			esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
 | |
| 
 | |
| 			for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
 | |
| 				if (esp->ops->irq_pending(esp))
 | |
| 					break;
 | |
| 			}
 | |
| 			if (i == ESP_QUICKIRQ_LIMIT)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(scsi_esp_intr);
 | |
| 
 | |
| static void esp_get_revision(struct esp *esp)
 | |
| {
 | |
| 	u8 val;
 | |
| 
 | |
| 	esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
 | |
| 	if (esp->config2 == 0) {
 | |
| 		esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
 | |
| 		esp_write8(esp->config2, ESP_CFG2);
 | |
| 
 | |
| 		val = esp_read8(ESP_CFG2);
 | |
| 		val &= ~ESP_CONFIG2_MAGIC;
 | |
| 
 | |
| 		esp->config2 = 0;
 | |
| 		if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
 | |
| 			/*
 | |
| 			 * If what we write to cfg2 does not come back,
 | |
| 			 * cfg2 is not implemented.
 | |
| 			 * Therefore this must be a plain esp100.
 | |
| 			 */
 | |
| 			esp->rev = ESP100;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	esp_set_all_config3(esp, 5);
 | |
| 	esp->prev_cfg3 = 5;
 | |
| 	esp_write8(esp->config2, ESP_CFG2);
 | |
| 	esp_write8(0, ESP_CFG3);
 | |
| 	esp_write8(esp->prev_cfg3, ESP_CFG3);
 | |
| 
 | |
| 	val = esp_read8(ESP_CFG3);
 | |
| 	if (val != 5) {
 | |
| 		/* The cfg2 register is implemented, however
 | |
| 		 * cfg3 is not, must be esp100a.
 | |
| 		 */
 | |
| 		esp->rev = ESP100A;
 | |
| 	} else {
 | |
| 		esp_set_all_config3(esp, 0);
 | |
| 		esp->prev_cfg3 = 0;
 | |
| 		esp_write8(esp->prev_cfg3, ESP_CFG3);
 | |
| 
 | |
| 		/* All of cfg{1,2,3} implemented, must be one of
 | |
| 		 * the fas variants, figure out which one.
 | |
| 		 */
 | |
| 		if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
 | |
| 			esp->rev = FAST;
 | |
| 			esp->sync_defp = SYNC_DEFP_FAST;
 | |
| 		} else {
 | |
| 			esp->rev = ESP236;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void esp_init_swstate(struct esp *esp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&esp->queued_cmds);
 | |
| 	INIT_LIST_HEAD(&esp->active_cmds);
 | |
| 	INIT_LIST_HEAD(&esp->esp_cmd_pool);
 | |
| 
 | |
| 	/* Start with a clear state, domain validation (via ->slave_configure,
 | |
| 	 * spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
 | |
| 	 * commands.
 | |
| 	 */
 | |
| 	for (i = 0 ; i < ESP_MAX_TARGET; i++) {
 | |
| 		esp->target[i].flags = 0;
 | |
| 		esp->target[i].nego_goal_period = 0;
 | |
| 		esp->target[i].nego_goal_offset = 0;
 | |
| 		esp->target[i].nego_goal_width = 0;
 | |
| 		esp->target[i].nego_goal_tags = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This places the ESP into a known state at boot time. */
 | |
| static void esp_bootup_reset(struct esp *esp)
 | |
| {
 | |
| 	u8 val;
 | |
| 
 | |
| 	/* Reset the DMA */
 | |
| 	esp->ops->reset_dma(esp);
 | |
| 
 | |
| 	/* Reset the ESP */
 | |
| 	esp_reset_esp(esp);
 | |
| 
 | |
| 	/* Reset the SCSI bus, but tell ESP not to generate an irq */
 | |
| 	val = esp_read8(ESP_CFG1);
 | |
| 	val |= ESP_CONFIG1_SRRDISAB;
 | |
| 	esp_write8(val, ESP_CFG1);
 | |
| 
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_RS);
 | |
| 	udelay(400);
 | |
| 
 | |
| 	esp_write8(esp->config1, ESP_CFG1);
 | |
| 
 | |
| 	/* Eat any bitrot in the chip and we are done... */
 | |
| 	esp_read8(ESP_INTRPT);
 | |
| }
 | |
| 
 | |
| static void esp_set_clock_params(struct esp *esp)
 | |
| {
 | |
| 	int fhz;
 | |
| 	u8 ccf;
 | |
| 
 | |
| 	/* This is getting messy but it has to be done correctly or else
 | |
| 	 * you get weird behavior all over the place.  We are trying to
 | |
| 	 * basically figure out three pieces of information.
 | |
| 	 *
 | |
| 	 * a) Clock Conversion Factor
 | |
| 	 *
 | |
| 	 *    This is a representation of the input crystal clock frequency
 | |
| 	 *    going into the ESP on this machine.  Any operation whose timing
 | |
| 	 *    is longer than 400ns depends on this value being correct.  For
 | |
| 	 *    example, you'll get blips for arbitration/selection during high
 | |
| 	 *    load or with multiple targets if this is not set correctly.
 | |
| 	 *
 | |
| 	 * b) Selection Time-Out
 | |
| 	 *
 | |
| 	 *    The ESP isn't very bright and will arbitrate for the bus and try
 | |
| 	 *    to select a target forever if you let it.  This value tells the
 | |
| 	 *    ESP when it has taken too long to negotiate and that it should
 | |
| 	 *    interrupt the CPU so we can see what happened.  The value is
 | |
| 	 *    computed as follows (from NCR/Symbios chip docs).
 | |
| 	 *
 | |
| 	 *          (Time Out Period) *  (Input Clock)
 | |
| 	 *    STO = ----------------------------------
 | |
| 	 *          (8192) * (Clock Conversion Factor)
 | |
| 	 *
 | |
| 	 *    We use a time out period of 250ms (ESP_BUS_TIMEOUT).
 | |
| 	 *
 | |
| 	 * c) Imperical constants for synchronous offset and transfer period
 | |
|          *    register values
 | |
| 	 *
 | |
| 	 *    This entails the smallest and largest sync period we could ever
 | |
| 	 *    handle on this ESP.
 | |
| 	 */
 | |
| 	fhz = esp->cfreq;
 | |
| 
 | |
| 	ccf = ((fhz / 1000000) + 4) / 5;
 | |
| 	if (ccf == 1)
 | |
| 		ccf = 2;
 | |
| 
 | |
| 	/* If we can't find anything reasonable, just assume 20MHZ.
 | |
| 	 * This is the clock frequency of the older sun4c's where I've
 | |
| 	 * been unable to find the clock-frequency PROM property.  All
 | |
| 	 * other machines provide useful values it seems.
 | |
| 	 */
 | |
| 	if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
 | |
| 		fhz = 20000000;
 | |
| 		ccf = 4;
 | |
| 	}
 | |
| 
 | |
| 	esp->cfact = (ccf == 8 ? 0 : ccf);
 | |
| 	esp->cfreq = fhz;
 | |
| 	esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
 | |
| 	esp->ctick = ESP_TICK(ccf, esp->ccycle);
 | |
| 	esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
 | |
| 	esp->sync_defp = SYNC_DEFP_SLOW;
 | |
| }
 | |
| 
 | |
| static const char *esp_chip_names[] = {
 | |
| 	"ESP100",
 | |
| 	"ESP100A",
 | |
| 	"ESP236",
 | |
| 	"FAS236",
 | |
| 	"FAS100A",
 | |
| 	"FAST",
 | |
| 	"FASHME",
 | |
| 	"AM53C974",
 | |
| };
 | |
| 
 | |
| static struct scsi_transport_template *esp_transport_template;
 | |
| 
 | |
| int scsi_esp_register(struct esp *esp)
 | |
| {
 | |
| 	static int instance;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!esp->num_tags)
 | |
| 		esp->num_tags = ESP_DEFAULT_TAGS;
 | |
| 	esp->host->transportt = esp_transport_template;
 | |
| 	esp->host->max_lun = ESP_MAX_LUN;
 | |
| 	esp->host->cmd_per_lun = 2;
 | |
| 	esp->host->unique_id = instance;
 | |
| 
 | |
| 	esp_set_clock_params(esp);
 | |
| 
 | |
| 	esp_get_revision(esp);
 | |
| 
 | |
| 	esp_init_swstate(esp);
 | |
| 
 | |
| 	esp_bootup_reset(esp);
 | |
| 
 | |
| 	dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
 | |
| 		   esp->host->unique_id, esp->regs, esp->dma_regs,
 | |
| 		   esp->host->irq);
 | |
| 	dev_printk(KERN_INFO, esp->dev,
 | |
| 		   "esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
 | |
| 		   esp->host->unique_id, esp_chip_names[esp->rev],
 | |
| 		   esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
 | |
| 
 | |
| 	/* Let the SCSI bus reset settle. */
 | |
| 	ssleep(esp_bus_reset_settle);
 | |
| 
 | |
| 	err = scsi_add_host(esp->host, esp->dev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	instance++;
 | |
| 
 | |
| 	scsi_scan_host(esp->host);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(scsi_esp_register);
 | |
| 
 | |
| void scsi_esp_unregister(struct esp *esp)
 | |
| {
 | |
| 	scsi_remove_host(esp->host);
 | |
| }
 | |
| EXPORT_SYMBOL(scsi_esp_unregister);
 | |
| 
 | |
| static int esp_target_alloc(struct scsi_target *starget)
 | |
| {
 | |
| 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
 | |
| 	struct esp_target_data *tp = &esp->target[starget->id];
 | |
| 
 | |
| 	tp->starget = starget;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void esp_target_destroy(struct scsi_target *starget)
 | |
| {
 | |
| 	struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
 | |
| 	struct esp_target_data *tp = &esp->target[starget->id];
 | |
| 
 | |
| 	tp->starget = NULL;
 | |
| }
 | |
| 
 | |
| static int esp_slave_alloc(struct scsi_device *dev)
 | |
| {
 | |
| 	struct esp *esp = shost_priv(dev->host);
 | |
| 	struct esp_target_data *tp = &esp->target[dev->id];
 | |
| 	struct esp_lun_data *lp;
 | |
| 
 | |
| 	lp = kzalloc(sizeof(*lp), GFP_KERNEL);
 | |
| 	if (!lp)
 | |
| 		return -ENOMEM;
 | |
| 	dev->hostdata = lp;
 | |
| 
 | |
| 	spi_min_period(tp->starget) = esp->min_period;
 | |
| 	spi_max_offset(tp->starget) = 15;
 | |
| 
 | |
| 	if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
 | |
| 		spi_max_width(tp->starget) = 1;
 | |
| 	else
 | |
| 		spi_max_width(tp->starget) = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int esp_slave_configure(struct scsi_device *dev)
 | |
| {
 | |
| 	struct esp *esp = shost_priv(dev->host);
 | |
| 	struct esp_target_data *tp = &esp->target[dev->id];
 | |
| 
 | |
| 	if (dev->tagged_supported)
 | |
| 		scsi_change_queue_depth(dev, esp->num_tags);
 | |
| 
 | |
| 	tp->flags |= ESP_TGT_DISCONNECT;
 | |
| 
 | |
| 	if (!spi_initial_dv(dev->sdev_target))
 | |
| 		spi_dv_device(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void esp_slave_destroy(struct scsi_device *dev)
 | |
| {
 | |
| 	struct esp_lun_data *lp = dev->hostdata;
 | |
| 
 | |
| 	kfree(lp);
 | |
| 	dev->hostdata = NULL;
 | |
| }
 | |
| 
 | |
| static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	struct esp *esp = shost_priv(cmd->device->host);
 | |
| 	struct esp_cmd_entry *ent, *tmp;
 | |
| 	struct completion eh_done;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* XXX This helps a lot with debugging but might be a bit
 | |
| 	 * XXX much for the final driver.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(esp->host->host_lock, flags);
 | |
| 	shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
 | |
| 		     cmd, cmd->cmnd[0]);
 | |
| 	ent = esp->active_cmd;
 | |
| 	if (ent)
 | |
| 		shost_printk(KERN_ERR, esp->host,
 | |
| 			     "Current command [%p:%02x]\n",
 | |
| 			     ent->cmd, ent->cmd->cmnd[0]);
 | |
| 	list_for_each_entry(ent, &esp->queued_cmds, list) {
 | |
| 		shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
 | |
| 			     ent->cmd, ent->cmd->cmnd[0]);
 | |
| 	}
 | |
| 	list_for_each_entry(ent, &esp->active_cmds, list) {
 | |
| 		shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
 | |
| 			     ent->cmd, ent->cmd->cmnd[0]);
 | |
| 	}
 | |
| 	esp_dump_cmd_log(esp);
 | |
| 	spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 
 | |
| 	spin_lock_irqsave(esp->host->host_lock, flags);
 | |
| 
 | |
| 	ent = NULL;
 | |
| 	list_for_each_entry(tmp, &esp->queued_cmds, list) {
 | |
| 		if (tmp->cmd == cmd) {
 | |
| 			ent = tmp;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ent) {
 | |
| 		/* Easiest case, we didn't even issue the command
 | |
| 		 * yet so it is trivial to abort.
 | |
| 		 */
 | |
| 		list_del(&ent->list);
 | |
| 
 | |
| 		cmd->result = DID_ABORT << 16;
 | |
| 		cmd->scsi_done(cmd);
 | |
| 
 | |
| 		esp_put_ent(esp, ent);
 | |
| 
 | |
| 		goto out_success;
 | |
| 	}
 | |
| 
 | |
| 	init_completion(&eh_done);
 | |
| 
 | |
| 	ent = esp->active_cmd;
 | |
| 	if (ent && ent->cmd == cmd) {
 | |
| 		/* Command is the currently active command on
 | |
| 		 * the bus.  If we already have an output message
 | |
| 		 * pending, no dice.
 | |
| 		 */
 | |
| 		if (esp->msg_out_len)
 | |
| 			goto out_failure;
 | |
| 
 | |
| 		/* Send out an abort, encouraging the target to
 | |
| 		 * go to MSGOUT phase by asserting ATN.
 | |
| 		 */
 | |
| 		esp->msg_out[0] = ABORT_TASK_SET;
 | |
| 		esp->msg_out_len = 1;
 | |
| 		ent->eh_done = &eh_done;
 | |
| 
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_SATN);
 | |
| 	} else {
 | |
| 		/* The command is disconnected.  This is not easy to
 | |
| 		 * abort.  For now we fail and let the scsi error
 | |
| 		 * handling layer go try a scsi bus reset or host
 | |
| 		 * reset.
 | |
| 		 *
 | |
| 		 * What we could do is put together a scsi command
 | |
| 		 * solely for the purpose of sending an abort message
 | |
| 		 * to the target.  Coming up with all the code to
 | |
| 		 * cook up scsi commands, special case them everywhere,
 | |
| 		 * etc. is for questionable gain and it would be better
 | |
| 		 * if the generic scsi error handling layer could do at
 | |
| 		 * least some of that for us.
 | |
| 		 *
 | |
| 		 * Anyways this is an area for potential future improvement
 | |
| 		 * in this driver.
 | |
| 		 */
 | |
| 		goto out_failure;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 
 | |
| 	if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
 | |
| 		spin_lock_irqsave(esp->host->host_lock, flags);
 | |
| 		ent->eh_done = NULL;
 | |
| 		spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 
 | |
| 		return FAILED;
 | |
| 	}
 | |
| 
 | |
| 	return SUCCESS;
 | |
| 
 | |
| out_success:
 | |
| 	spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 	return SUCCESS;
 | |
| 
 | |
| out_failure:
 | |
| 	/* XXX This might be a good location to set ESP_TGT_BROKEN
 | |
| 	 * XXX since we know which target/lun in particular is
 | |
| 	 * XXX causing trouble.
 | |
| 	 */
 | |
| 	spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 	return FAILED;
 | |
| }
 | |
| 
 | |
| static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	struct esp *esp = shost_priv(cmd->device->host);
 | |
| 	struct completion eh_reset;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	init_completion(&eh_reset);
 | |
| 
 | |
| 	spin_lock_irqsave(esp->host->host_lock, flags);
 | |
| 
 | |
| 	esp->eh_reset = &eh_reset;
 | |
| 
 | |
| 	/* XXX This is too simple... We should add lots of
 | |
| 	 * XXX checks here so that if we find that the chip is
 | |
| 	 * XXX very wedged we return failure immediately so
 | |
| 	 * XXX that we can perform a full chip reset.
 | |
| 	 */
 | |
| 	esp->flags |= ESP_FLAG_RESETTING;
 | |
| 	scsi_esp_cmd(esp, ESP_CMD_RS);
 | |
| 
 | |
| 	spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 
 | |
| 	ssleep(esp_bus_reset_settle);
 | |
| 
 | |
| 	if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
 | |
| 		spin_lock_irqsave(esp->host->host_lock, flags);
 | |
| 		esp->eh_reset = NULL;
 | |
| 		spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 
 | |
| 		return FAILED;
 | |
| 	}
 | |
| 
 | |
| 	return SUCCESS;
 | |
| }
 | |
| 
 | |
| /* All bets are off, reset the entire device.  */
 | |
| static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
 | |
| {
 | |
| 	struct esp *esp = shost_priv(cmd->device->host);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(esp->host->host_lock, flags);
 | |
| 	esp_bootup_reset(esp);
 | |
| 	esp_reset_cleanup(esp);
 | |
| 	spin_unlock_irqrestore(esp->host->host_lock, flags);
 | |
| 
 | |
| 	ssleep(esp_bus_reset_settle);
 | |
| 
 | |
| 	return SUCCESS;
 | |
| }
 | |
| 
 | |
| static const char *esp_info(struct Scsi_Host *host)
 | |
| {
 | |
| 	return "esp";
 | |
| }
 | |
| 
 | |
| struct scsi_host_template scsi_esp_template = {
 | |
| 	.module			= THIS_MODULE,
 | |
| 	.name			= "esp",
 | |
| 	.info			= esp_info,
 | |
| 	.queuecommand		= esp_queuecommand,
 | |
| 	.target_alloc		= esp_target_alloc,
 | |
| 	.target_destroy		= esp_target_destroy,
 | |
| 	.slave_alloc		= esp_slave_alloc,
 | |
| 	.slave_configure	= esp_slave_configure,
 | |
| 	.slave_destroy		= esp_slave_destroy,
 | |
| 	.eh_abort_handler	= esp_eh_abort_handler,
 | |
| 	.eh_bus_reset_handler	= esp_eh_bus_reset_handler,
 | |
| 	.eh_host_reset_handler	= esp_eh_host_reset_handler,
 | |
| 	.can_queue		= 7,
 | |
| 	.this_id		= 7,
 | |
| 	.sg_tablesize		= SG_ALL,
 | |
| 	.max_sectors		= 0xffff,
 | |
| 	.skip_settle_delay	= 1,
 | |
| };
 | |
| EXPORT_SYMBOL(scsi_esp_template);
 | |
| 
 | |
| static void esp_get_signalling(struct Scsi_Host *host)
 | |
| {
 | |
| 	struct esp *esp = shost_priv(host);
 | |
| 	enum spi_signal_type type;
 | |
| 
 | |
| 	if (esp->flags & ESP_FLAG_DIFFERENTIAL)
 | |
| 		type = SPI_SIGNAL_HVD;
 | |
| 	else
 | |
| 		type = SPI_SIGNAL_SE;
 | |
| 
 | |
| 	spi_signalling(host) = type;
 | |
| }
 | |
| 
 | |
| static void esp_set_offset(struct scsi_target *target, int offset)
 | |
| {
 | |
| 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
 | |
| 	struct esp *esp = shost_priv(host);
 | |
| 	struct esp_target_data *tp = &esp->target[target->id];
 | |
| 
 | |
| 	if (esp->flags & ESP_FLAG_DISABLE_SYNC)
 | |
| 		tp->nego_goal_offset = 0;
 | |
| 	else
 | |
| 		tp->nego_goal_offset = offset;
 | |
| 	tp->flags |= ESP_TGT_CHECK_NEGO;
 | |
| }
 | |
| 
 | |
| static void esp_set_period(struct scsi_target *target, int period)
 | |
| {
 | |
| 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
 | |
| 	struct esp *esp = shost_priv(host);
 | |
| 	struct esp_target_data *tp = &esp->target[target->id];
 | |
| 
 | |
| 	tp->nego_goal_period = period;
 | |
| 	tp->flags |= ESP_TGT_CHECK_NEGO;
 | |
| }
 | |
| 
 | |
| static void esp_set_width(struct scsi_target *target, int width)
 | |
| {
 | |
| 	struct Scsi_Host *host = dev_to_shost(target->dev.parent);
 | |
| 	struct esp *esp = shost_priv(host);
 | |
| 	struct esp_target_data *tp = &esp->target[target->id];
 | |
| 
 | |
| 	tp->nego_goal_width = (width ? 1 : 0);
 | |
| 	tp->flags |= ESP_TGT_CHECK_NEGO;
 | |
| }
 | |
| 
 | |
| static struct spi_function_template esp_transport_ops = {
 | |
| 	.set_offset		= esp_set_offset,
 | |
| 	.show_offset		= 1,
 | |
| 	.set_period		= esp_set_period,
 | |
| 	.show_period		= 1,
 | |
| 	.set_width		= esp_set_width,
 | |
| 	.show_width		= 1,
 | |
| 	.get_signalling		= esp_get_signalling,
 | |
| };
 | |
| 
 | |
| static int __init esp_init(void)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof(struct scsi_pointer) <
 | |
| 		     sizeof(struct esp_cmd_priv));
 | |
| 
 | |
| 	esp_transport_template = spi_attach_transport(&esp_transport_ops);
 | |
| 	if (!esp_transport_template)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit esp_exit(void)
 | |
| {
 | |
| 	spi_release_transport(esp_transport_template);
 | |
| }
 | |
| 
 | |
| MODULE_DESCRIPTION("ESP SCSI driver core");
 | |
| MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_VERSION(DRV_VERSION);
 | |
| 
 | |
| module_param(esp_bus_reset_settle, int, 0);
 | |
| MODULE_PARM_DESC(esp_bus_reset_settle,
 | |
| 		 "ESP scsi bus reset delay in seconds");
 | |
| 
 | |
| module_param(esp_debug, int, 0);
 | |
| MODULE_PARM_DESC(esp_debug,
 | |
| "ESP bitmapped debugging message enable value:\n"
 | |
| "	0x00000001	Log interrupt events\n"
 | |
| "	0x00000002	Log scsi commands\n"
 | |
| "	0x00000004	Log resets\n"
 | |
| "	0x00000008	Log message in events\n"
 | |
| "	0x00000010	Log message out events\n"
 | |
| "	0x00000020	Log command completion\n"
 | |
| "	0x00000040	Log disconnects\n"
 | |
| "	0x00000080	Log data start\n"
 | |
| "	0x00000100	Log data done\n"
 | |
| "	0x00000200	Log reconnects\n"
 | |
| "	0x00000400	Log auto-sense data\n"
 | |
| );
 | |
| 
 | |
| module_init(esp_init);
 | |
| module_exit(esp_exit);
 | |
| 
 | |
| #ifdef CONFIG_SCSI_ESP_PIO
 | |
| static inline unsigned int esp_wait_for_fifo(struct esp *esp)
 | |
| {
 | |
| 	int i = 500000;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
 | |
| 
 | |
| 		if (fbytes)
 | |
| 			return fbytes;
 | |
| 
 | |
| 		udelay(1);
 | |
| 	} while (--i);
 | |
| 
 | |
| 	shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n",
 | |
| 		     esp_read8(ESP_STATUS));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int esp_wait_for_intr(struct esp *esp)
 | |
| {
 | |
| 	int i = 500000;
 | |
| 
 | |
| 	do {
 | |
| 		esp->sreg = esp_read8(ESP_STATUS);
 | |
| 		if (esp->sreg & ESP_STAT_INTR)
 | |
| 			return 0;
 | |
| 
 | |
| 		udelay(1);
 | |
| 	} while (--i);
 | |
| 
 | |
| 	shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n",
 | |
| 		     esp->sreg);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| #define ESP_FIFO_SIZE 16
 | |
| 
 | |
| void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count,
 | |
| 		      u32 dma_count, int write, u8 cmd)
 | |
| {
 | |
| 	u8 phase = esp->sreg & ESP_STAT_PMASK;
 | |
| 
 | |
| 	cmd &= ~ESP_CMD_DMA;
 | |
| 	esp->send_cmd_error = 0;
 | |
| 
 | |
| 	if (write) {
 | |
| 		u8 *dst = (u8 *)addr;
 | |
| 		u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV);
 | |
| 
 | |
| 		scsi_esp_cmd(esp, cmd);
 | |
| 
 | |
| 		while (1) {
 | |
| 			if (!esp_wait_for_fifo(esp))
 | |
| 				break;
 | |
| 
 | |
| 			*dst++ = readb(esp->fifo_reg);
 | |
| 			--esp_count;
 | |
| 
 | |
| 			if (!esp_count)
 | |
| 				break;
 | |
| 
 | |
| 			if (esp_wait_for_intr(esp)) {
 | |
| 				esp->send_cmd_error = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if ((esp->sreg & ESP_STAT_PMASK) != phase)
 | |
| 				break;
 | |
| 
 | |
| 			esp->ireg = esp_read8(ESP_INTRPT);
 | |
| 			if (esp->ireg & mask) {
 | |
| 				esp->send_cmd_error = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (phase == ESP_MIP)
 | |
| 				esp_write8(ESP_CMD_MOK, ESP_CMD);
 | |
| 
 | |
| 			esp_write8(ESP_CMD_TI, ESP_CMD);
 | |
| 		}
 | |
| 	} else {
 | |
| 		unsigned int n = ESP_FIFO_SIZE;
 | |
| 		u8 *src = (u8 *)addr;
 | |
| 
 | |
| 		scsi_esp_cmd(esp, ESP_CMD_FLUSH);
 | |
| 
 | |
| 		if (n > esp_count)
 | |
| 			n = esp_count;
 | |
| 		writesb(esp->fifo_reg, src, n);
 | |
| 		src += n;
 | |
| 		esp_count -= n;
 | |
| 
 | |
| 		scsi_esp_cmd(esp, cmd);
 | |
| 
 | |
| 		while (esp_count) {
 | |
| 			if (esp_wait_for_intr(esp)) {
 | |
| 				esp->send_cmd_error = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if ((esp->sreg & ESP_STAT_PMASK) != phase)
 | |
| 				break;
 | |
| 
 | |
| 			esp->ireg = esp_read8(ESP_INTRPT);
 | |
| 			if (esp->ireg & ~ESP_INTR_BSERV) {
 | |
| 				esp->send_cmd_error = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			n = ESP_FIFO_SIZE -
 | |
| 			    (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES);
 | |
| 
 | |
| 			if (n > esp_count)
 | |
| 				n = esp_count;
 | |
| 			writesb(esp->fifo_reg, src, n);
 | |
| 			src += n;
 | |
| 			esp_count -= n;
 | |
| 
 | |
| 			esp_write8(ESP_CMD_TI, ESP_CMD);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	esp->send_cmd_residual = esp_count;
 | |
| }
 | |
| EXPORT_SYMBOL(esp_send_pio_cmd);
 | |
| #endif
 |