forked from mirrors/linux
		
	 9d8371e287
			
		
	
	
		9d8371e287
		
			
		
	
	
	
	
		
			
			The function names in the kernel-doc comments were mistyped, with a word
"dirmap" being repeated twice, so fix them.
Fixes: aa167f3fed ("spi: spi-mem: Add a new API to support direct mapping")
Signed-off-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
		
	
			
		
			
				
	
	
		
			797 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			797 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (C) 2018 Exceet Electronics GmbH
 | |
|  * Copyright (C) 2018 Bootlin
 | |
|  *
 | |
|  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
 | |
|  */
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/spi/spi-mem.h>
 | |
| 
 | |
| #include "internals.h"
 | |
| 
 | |
| #define SPI_MEM_MAX_BUSWIDTH		8
 | |
| 
 | |
| /**
 | |
|  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
 | |
|  *					  memory operation
 | |
|  * @ctlr: the SPI controller requesting this dma_map()
 | |
|  * @op: the memory operation containing the buffer to map
 | |
|  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
 | |
|  *	 function
 | |
|  *
 | |
|  * Some controllers might want to do DMA on the data buffer embedded in @op.
 | |
|  * This helper prepares everything for you and provides a ready-to-use
 | |
|  * sg_table. This function is not intended to be called from spi drivers.
 | |
|  * Only SPI controller drivers should use it.
 | |
|  * Note that the caller must ensure the memory region pointed by
 | |
|  * op->data.buf.{in,out} is DMA-able before calling this function.
 | |
|  *
 | |
|  * Return: 0 in case of success, a negative error code otherwise.
 | |
|  */
 | |
| int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
 | |
| 				       const struct spi_mem_op *op,
 | |
| 				       struct sg_table *sgt)
 | |
| {
 | |
| 	struct device *dmadev;
 | |
| 
 | |
| 	if (!op->data.nbytes)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
 | |
| 		dmadev = ctlr->dma_tx->device->dev;
 | |
| 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
 | |
| 		dmadev = ctlr->dma_rx->device->dev;
 | |
| 	else
 | |
| 		dmadev = ctlr->dev.parent;
 | |
| 
 | |
| 	if (!dmadev)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
 | |
| 			   op->data.dir == SPI_MEM_DATA_IN ?
 | |
| 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
 | |
| 
 | |
| /**
 | |
|  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
 | |
|  *					    memory operation
 | |
|  * @ctlr: the SPI controller requesting this dma_unmap()
 | |
|  * @op: the memory operation containing the buffer to unmap
 | |
|  * @sgt: a pointer to an sg_table previously initialized by
 | |
|  *	 spi_controller_dma_map_mem_op_data()
 | |
|  *
 | |
|  * Some controllers might want to do DMA on the data buffer embedded in @op.
 | |
|  * This helper prepares things so that the CPU can access the
 | |
|  * op->data.buf.{in,out} buffer again.
 | |
|  *
 | |
|  * This function is not intended to be called from SPI drivers. Only SPI
 | |
|  * controller drivers should use it.
 | |
|  *
 | |
|  * This function should be called after the DMA operation has finished and is
 | |
|  * only valid if the previous spi_controller_dma_map_mem_op_data() call
 | |
|  * returned 0.
 | |
|  *
 | |
|  * Return: 0 in case of success, a negative error code otherwise.
 | |
|  */
 | |
| void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
 | |
| 					  const struct spi_mem_op *op,
 | |
| 					  struct sg_table *sgt)
 | |
| {
 | |
| 	struct device *dmadev;
 | |
| 
 | |
| 	if (!op->data.nbytes)
 | |
| 		return;
 | |
| 
 | |
| 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
 | |
| 		dmadev = ctlr->dma_tx->device->dev;
 | |
| 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
 | |
| 		dmadev = ctlr->dma_rx->device->dev;
 | |
| 	else
 | |
| 		dmadev = ctlr->dev.parent;
 | |
| 
 | |
| 	spi_unmap_buf(ctlr, dmadev, sgt,
 | |
| 		      op->data.dir == SPI_MEM_DATA_IN ?
 | |
| 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
 | |
| 
 | |
| static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
 | |
| {
 | |
| 	u32 mode = mem->spi->mode;
 | |
| 
 | |
| 	switch (buswidth) {
 | |
| 	case 1:
 | |
| 		return 0;
 | |
| 
 | |
| 	case 2:
 | |
| 		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
 | |
| 		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
 | |
| 			return 0;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case 4:
 | |
| 		if ((tx && (mode & SPI_TX_QUAD)) ||
 | |
| 		    (!tx && (mode & SPI_RX_QUAD)))
 | |
| 			return 0;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case 8:
 | |
| 		if ((tx && (mode & SPI_TX_OCTAL)) ||
 | |
| 		    (!tx && (mode & SPI_RX_OCTAL)))
 | |
| 			return 0;
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return -ENOTSUPP;
 | |
| }
 | |
| 
 | |
| bool spi_mem_default_supports_op(struct spi_mem *mem,
 | |
| 				 const struct spi_mem_op *op)
 | |
| {
 | |
| 	if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->addr.nbytes &&
 | |
| 	    spi_check_buswidth_req(mem, op->addr.buswidth, true))
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->dummy.nbytes &&
 | |
| 	    spi_check_buswidth_req(mem, op->dummy.buswidth, true))
 | |
| 		return false;
 | |
| 
 | |
| 	if (op->data.dir != SPI_MEM_NO_DATA &&
 | |
| 	    spi_check_buswidth_req(mem, op->data.buswidth,
 | |
| 				   op->data.dir == SPI_MEM_DATA_OUT))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
 | |
| 
 | |
| static bool spi_mem_buswidth_is_valid(u8 buswidth)
 | |
| {
 | |
| 	if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int spi_mem_check_op(const struct spi_mem_op *op)
 | |
| {
 | |
| 	if (!op->cmd.buswidth)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((op->addr.nbytes && !op->addr.buswidth) ||
 | |
| 	    (op->dummy.nbytes && !op->dummy.buswidth) ||
 | |
| 	    (op->data.nbytes && !op->data.buswidth))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) ||
 | |
| 	    !spi_mem_buswidth_is_valid(op->addr.buswidth) ||
 | |
| 	    !spi_mem_buswidth_is_valid(op->dummy.buswidth) ||
 | |
| 	    !spi_mem_buswidth_is_valid(op->data.buswidth))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool spi_mem_internal_supports_op(struct spi_mem *mem,
 | |
| 					 const struct spi_mem_op *op)
 | |
| {
 | |
| 	struct spi_controller *ctlr = mem->spi->controller;
 | |
| 
 | |
| 	if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
 | |
| 		return ctlr->mem_ops->supports_op(mem, op);
 | |
| 
 | |
| 	return spi_mem_default_supports_op(mem, op);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spi_mem_supports_op() - Check if a memory device and the controller it is
 | |
|  *			   connected to support a specific memory operation
 | |
|  * @mem: the SPI memory
 | |
|  * @op: the memory operation to check
 | |
|  *
 | |
|  * Some controllers are only supporting Single or Dual IOs, others might only
 | |
|  * support specific opcodes, or it can even be that the controller and device
 | |
|  * both support Quad IOs but the hardware prevents you from using it because
 | |
|  * only 2 IO lines are connected.
 | |
|  *
 | |
|  * This function checks whether a specific operation is supported.
 | |
|  *
 | |
|  * Return: true if @op is supported, false otherwise.
 | |
|  */
 | |
| bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
 | |
| {
 | |
| 	if (spi_mem_check_op(op))
 | |
| 		return false;
 | |
| 
 | |
| 	return spi_mem_internal_supports_op(mem, op);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_supports_op);
 | |
| 
 | |
| static int spi_mem_access_start(struct spi_mem *mem)
 | |
| {
 | |
| 	struct spi_controller *ctlr = mem->spi->controller;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush the message queue before executing our SPI memory
 | |
| 	 * operation to prevent preemption of regular SPI transfers.
 | |
| 	 */
 | |
| 	spi_flush_queue(ctlr);
 | |
| 
 | |
| 	if (ctlr->auto_runtime_pm) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = pm_runtime_get_sync(ctlr->dev.parent);
 | |
| 		if (ret < 0) {
 | |
| 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
 | |
| 				ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&ctlr->bus_lock_mutex);
 | |
| 	mutex_lock(&ctlr->io_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void spi_mem_access_end(struct spi_mem *mem)
 | |
| {
 | |
| 	struct spi_controller *ctlr = mem->spi->controller;
 | |
| 
 | |
| 	mutex_unlock(&ctlr->io_mutex);
 | |
| 	mutex_unlock(&ctlr->bus_lock_mutex);
 | |
| 
 | |
| 	if (ctlr->auto_runtime_pm)
 | |
| 		pm_runtime_put(ctlr->dev.parent);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spi_mem_exec_op() - Execute a memory operation
 | |
|  * @mem: the SPI memory
 | |
|  * @op: the memory operation to execute
 | |
|  *
 | |
|  * Executes a memory operation.
 | |
|  *
 | |
|  * This function first checks that @op is supported and then tries to execute
 | |
|  * it.
 | |
|  *
 | |
|  * Return: 0 in case of success, a negative error code otherwise.
 | |
|  */
 | |
| int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 | |
| {
 | |
| 	unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
 | |
| 	struct spi_controller *ctlr = mem->spi->controller;
 | |
| 	struct spi_transfer xfers[4] = { };
 | |
| 	struct spi_message msg;
 | |
| 	u8 *tmpbuf;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spi_mem_check_op(op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!spi_mem_internal_supports_op(mem, op))
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	if (ctlr->mem_ops) {
 | |
| 		ret = spi_mem_access_start(mem);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = ctlr->mem_ops->exec_op(mem, op);
 | |
| 
 | |
| 		spi_mem_access_end(mem);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some controllers only optimize specific paths (typically the
 | |
| 		 * read path) and expect the core to use the regular SPI
 | |
| 		 * interface in other cases.
 | |
| 		 */
 | |
| 		if (!ret || ret != -ENOTSUPP)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
 | |
| 		     op->dummy.nbytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
 | |
| 	 * we're guaranteed that this buffer is DMA-able, as required by the
 | |
| 	 * SPI layer.
 | |
| 	 */
 | |
| 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
 | |
| 	if (!tmpbuf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spi_message_init(&msg);
 | |
| 
 | |
| 	tmpbuf[0] = op->cmd.opcode;
 | |
| 	xfers[xferpos].tx_buf = tmpbuf;
 | |
| 	xfers[xferpos].len = sizeof(op->cmd.opcode);
 | |
| 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
 | |
| 	spi_message_add_tail(&xfers[xferpos], &msg);
 | |
| 	xferpos++;
 | |
| 	totalxferlen++;
 | |
| 
 | |
| 	if (op->addr.nbytes) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < op->addr.nbytes; i++)
 | |
| 			tmpbuf[i + 1] = op->addr.val >>
 | |
| 					(8 * (op->addr.nbytes - i - 1));
 | |
| 
 | |
| 		xfers[xferpos].tx_buf = tmpbuf + 1;
 | |
| 		xfers[xferpos].len = op->addr.nbytes;
 | |
| 		xfers[xferpos].tx_nbits = op->addr.buswidth;
 | |
| 		spi_message_add_tail(&xfers[xferpos], &msg);
 | |
| 		xferpos++;
 | |
| 		totalxferlen += op->addr.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	if (op->dummy.nbytes) {
 | |
| 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
 | |
| 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
 | |
| 		xfers[xferpos].len = op->dummy.nbytes;
 | |
| 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
 | |
| 		spi_message_add_tail(&xfers[xferpos], &msg);
 | |
| 		xferpos++;
 | |
| 		totalxferlen += op->dummy.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	if (op->data.nbytes) {
 | |
| 		if (op->data.dir == SPI_MEM_DATA_IN) {
 | |
| 			xfers[xferpos].rx_buf = op->data.buf.in;
 | |
| 			xfers[xferpos].rx_nbits = op->data.buswidth;
 | |
| 		} else {
 | |
| 			xfers[xferpos].tx_buf = op->data.buf.out;
 | |
| 			xfers[xferpos].tx_nbits = op->data.buswidth;
 | |
| 		}
 | |
| 
 | |
| 		xfers[xferpos].len = op->data.nbytes;
 | |
| 		spi_message_add_tail(&xfers[xferpos], &msg);
 | |
| 		xferpos++;
 | |
| 		totalxferlen += op->data.nbytes;
 | |
| 	}
 | |
| 
 | |
| 	ret = spi_sync(mem->spi, &msg);
 | |
| 
 | |
| 	kfree(tmpbuf);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (msg.actual_length != totalxferlen)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_exec_op);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_get_name() - Return the SPI mem device name to be used by the
 | |
|  *			upper layer if necessary
 | |
|  * @mem: the SPI memory
 | |
|  *
 | |
|  * This function allows SPI mem users to retrieve the SPI mem device name.
 | |
|  * It is useful if the upper layer needs to expose a custom name for
 | |
|  * compatibility reasons.
 | |
|  *
 | |
|  * Return: a string containing the name of the memory device to be used
 | |
|  *	   by the SPI mem user
 | |
|  */
 | |
| const char *spi_mem_get_name(struct spi_mem *mem)
 | |
| {
 | |
| 	return mem->name;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_get_name);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
 | |
|  *			      match controller limitations
 | |
|  * @mem: the SPI memory
 | |
|  * @op: the operation to adjust
 | |
|  *
 | |
|  * Some controllers have FIFO limitations and must split a data transfer
 | |
|  * operation into multiple ones, others require a specific alignment for
 | |
|  * optimized accesses. This function allows SPI mem drivers to split a single
 | |
|  * operation into multiple sub-operations when required.
 | |
|  *
 | |
|  * Return: a negative error code if the controller can't properly adjust @op,
 | |
|  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
 | |
|  *	   can't be handled in a single step.
 | |
|  */
 | |
| int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 | |
| {
 | |
| 	struct spi_controller *ctlr = mem->spi->controller;
 | |
| 	size_t len;
 | |
| 
 | |
| 	len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
 | |
| 
 | |
| 	if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
 | |
| 		return ctlr->mem_ops->adjust_op_size(mem, op);
 | |
| 
 | |
| 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
 | |
| 		if (len > spi_max_transfer_size(mem->spi))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		op->data.nbytes = min3((size_t)op->data.nbytes,
 | |
| 				       spi_max_transfer_size(mem->spi),
 | |
| 				       spi_max_message_size(mem->spi) -
 | |
| 				       len);
 | |
| 		if (!op->data.nbytes)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
 | |
| 
 | |
| static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc,
 | |
| 				      u64 offs, size_t len, void *buf)
 | |
| {
 | |
| 	struct spi_mem_op op = desc->info.op_tmpl;
 | |
| 	int ret;
 | |
| 
 | |
| 	op.addr.val = desc->info.offset + offs;
 | |
| 	op.data.buf.in = buf;
 | |
| 	op.data.nbytes = len;
 | |
| 	ret = spi_mem_adjust_op_size(desc->mem, &op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spi_mem_exec_op(desc->mem, &op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return op.data.nbytes;
 | |
| }
 | |
| 
 | |
| static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc,
 | |
| 				       u64 offs, size_t len, const void *buf)
 | |
| {
 | |
| 	struct spi_mem_op op = desc->info.op_tmpl;
 | |
| 	int ret;
 | |
| 
 | |
| 	op.addr.val = desc->info.offset + offs;
 | |
| 	op.data.buf.out = buf;
 | |
| 	op.data.nbytes = len;
 | |
| 	ret = spi_mem_adjust_op_size(desc->mem, &op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spi_mem_exec_op(desc->mem, &op);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return op.data.nbytes;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spi_mem_dirmap_create() - Create a direct mapping descriptor
 | |
|  * @mem: SPI mem device this direct mapping should be created for
 | |
|  * @info: direct mapping information
 | |
|  *
 | |
|  * This function is creating a direct mapping descriptor which can then be used
 | |
|  * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write().
 | |
|  * If the SPI controller driver does not support direct mapping, this function
 | |
|  * fallback to an implementation using spi_mem_exec_op(), so that the caller
 | |
|  * doesn't have to bother implementing a fallback on his own.
 | |
|  *
 | |
|  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
 | |
|  */
 | |
| struct spi_mem_dirmap_desc *
 | |
| spi_mem_dirmap_create(struct spi_mem *mem,
 | |
| 		      const struct spi_mem_dirmap_info *info)
 | |
| {
 | |
| 	struct spi_controller *ctlr = mem->spi->controller;
 | |
| 	struct spi_mem_dirmap_desc *desc;
 | |
| 	int ret = -ENOTSUPP;
 | |
| 
 | |
| 	/* Make sure the number of address cycles is between 1 and 8 bytes. */
 | |
| 	if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */
 | |
| 	if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
 | |
| 	if (!desc)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	desc->mem = mem;
 | |
| 	desc->info = *info;
 | |
| 	if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create)
 | |
| 		ret = ctlr->mem_ops->dirmap_create(desc);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		desc->nodirmap = true;
 | |
| 		if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
 | |
| 			ret = -ENOTSUPP;
 | |
| 		else
 | |
| 			ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		kfree(desc);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	return desc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_dirmap_create);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor
 | |
|  * @desc: the direct mapping descriptor to destroy
 | |
|  *
 | |
|  * This function destroys a direct mapping descriptor previously created by
 | |
|  * spi_mem_dirmap_create().
 | |
|  */
 | |
| void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc)
 | |
| {
 | |
| 	struct spi_controller *ctlr = desc->mem->spi->controller;
 | |
| 
 | |
| 	if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy)
 | |
| 		ctlr->mem_ops->dirmap_destroy(desc);
 | |
| 
 | |
| 	kfree(desc);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy);
 | |
| 
 | |
| static void devm_spi_mem_dirmap_release(struct device *dev, void *res)
 | |
| {
 | |
| 	struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res;
 | |
| 
 | |
| 	spi_mem_dirmap_destroy(desc);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach
 | |
|  *				  it to a device
 | |
|  * @dev: device the dirmap desc will be attached to
 | |
|  * @mem: SPI mem device this direct mapping should be created for
 | |
|  * @info: direct mapping information
 | |
|  *
 | |
|  * devm_ variant of the spi_mem_dirmap_create() function. See
 | |
|  * spi_mem_dirmap_create() for more details.
 | |
|  *
 | |
|  * Return: a valid pointer in case of success, and ERR_PTR() otherwise.
 | |
|  */
 | |
| struct spi_mem_dirmap_desc *
 | |
| devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
 | |
| 			   const struct spi_mem_dirmap_info *info)
 | |
| {
 | |
| 	struct spi_mem_dirmap_desc **ptr, *desc;
 | |
| 
 | |
| 	ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr),
 | |
| 			   GFP_KERNEL);
 | |
| 	if (!ptr)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	desc = spi_mem_dirmap_create(mem, info);
 | |
| 	if (IS_ERR(desc)) {
 | |
| 		devres_free(ptr);
 | |
| 	} else {
 | |
| 		*ptr = desc;
 | |
| 		devres_add(dev, ptr);
 | |
| 	}
 | |
| 
 | |
| 	return desc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create);
 | |
| 
 | |
| static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data)
 | |
| {
 | |
|         struct spi_mem_dirmap_desc **ptr = res;
 | |
| 
 | |
|         if (WARN_ON(!ptr || !*ptr))
 | |
|                 return 0;
 | |
| 
 | |
| 	return *ptr == data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached
 | |
|  *				   to a device
 | |
|  * @dev: device the dirmap desc is attached to
 | |
|  * @desc: the direct mapping descriptor to destroy
 | |
|  *
 | |
|  * devm_ variant of the spi_mem_dirmap_destroy() function. See
 | |
|  * spi_mem_dirmap_destroy() for more details.
 | |
|  */
 | |
| void devm_spi_mem_dirmap_destroy(struct device *dev,
 | |
| 				 struct spi_mem_dirmap_desc *desc)
 | |
| {
 | |
| 	devres_release(dev, devm_spi_mem_dirmap_release,
 | |
| 		       devm_spi_mem_dirmap_match, desc);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_dirmap_read() - Read data through a direct mapping
 | |
|  * @desc: direct mapping descriptor
 | |
|  * @offs: offset to start reading from. Note that this is not an absolute
 | |
|  *	  offset, but the offset within the direct mapping which already has
 | |
|  *	  its own offset
 | |
|  * @len: length in bytes
 | |
|  * @buf: destination buffer. This buffer must be DMA-able
 | |
|  *
 | |
|  * This function reads data from a memory device using a direct mapping
 | |
|  * previously instantiated with spi_mem_dirmap_create().
 | |
|  *
 | |
|  * Return: the amount of data read from the memory device or a negative error
 | |
|  * code. Note that the returned size might be smaller than @len, and the caller
 | |
|  * is responsible for calling spi_mem_dirmap_read() again when that happens.
 | |
|  */
 | |
| ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
 | |
| 			    u64 offs, size_t len, void *buf)
 | |
| {
 | |
| 	struct spi_controller *ctlr = desc->mem->spi->controller;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (desc->nodirmap) {
 | |
| 		ret = spi_mem_no_dirmap_read(desc, offs, len, buf);
 | |
| 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) {
 | |
| 		ret = spi_mem_access_start(desc->mem);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf);
 | |
| 
 | |
| 		spi_mem_access_end(desc->mem);
 | |
| 	} else {
 | |
| 		ret = -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_dirmap_read);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_dirmap_write() - Write data through a direct mapping
 | |
|  * @desc: direct mapping descriptor
 | |
|  * @offs: offset to start writing from. Note that this is not an absolute
 | |
|  *	  offset, but the offset within the direct mapping which already has
 | |
|  *	  its own offset
 | |
|  * @len: length in bytes
 | |
|  * @buf: source buffer. This buffer must be DMA-able
 | |
|  *
 | |
|  * This function writes data to a memory device using a direct mapping
 | |
|  * previously instantiated with spi_mem_dirmap_create().
 | |
|  *
 | |
|  * Return: the amount of data written to the memory device or a negative error
 | |
|  * code. Note that the returned size might be smaller than @len, and the caller
 | |
|  * is responsible for calling spi_mem_dirmap_write() again when that happens.
 | |
|  */
 | |
| ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
 | |
| 			     u64 offs, size_t len, const void *buf)
 | |
| {
 | |
| 	struct spi_controller *ctlr = desc->mem->spi->controller;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (desc->nodirmap) {
 | |
| 		ret = spi_mem_no_dirmap_write(desc, offs, len, buf);
 | |
| 	} else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) {
 | |
| 		ret = spi_mem_access_start(desc->mem);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf);
 | |
| 
 | |
| 		spi_mem_access_end(desc->mem);
 | |
| 	} else {
 | |
| 		ret = -ENOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_dirmap_write);
 | |
| 
 | |
| static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
 | |
| {
 | |
| 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
 | |
| }
 | |
| 
 | |
| static int spi_mem_probe(struct spi_device *spi)
 | |
| {
 | |
| 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
 | |
| 	struct spi_controller *ctlr = spi->controller;
 | |
| 	struct spi_mem *mem;
 | |
| 
 | |
| 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
 | |
| 	if (!mem)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mem->spi = spi;
 | |
| 
 | |
| 	if (ctlr->mem_ops && ctlr->mem_ops->get_name)
 | |
| 		mem->name = ctlr->mem_ops->get_name(mem);
 | |
| 	else
 | |
| 		mem->name = dev_name(&spi->dev);
 | |
| 
 | |
| 	if (IS_ERR_OR_NULL(mem->name))
 | |
| 		return PTR_ERR(mem->name);
 | |
| 
 | |
| 	spi_set_drvdata(spi, mem);
 | |
| 
 | |
| 	return memdrv->probe(mem);
 | |
| }
 | |
| 
 | |
| static int spi_mem_remove(struct spi_device *spi)
 | |
| {
 | |
| 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
 | |
| 	struct spi_mem *mem = spi_get_drvdata(spi);
 | |
| 
 | |
| 	if (memdrv->remove)
 | |
| 		return memdrv->remove(mem);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void spi_mem_shutdown(struct spi_device *spi)
 | |
| {
 | |
| 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
 | |
| 	struct spi_mem *mem = spi_get_drvdata(spi);
 | |
| 
 | |
| 	if (memdrv->shutdown)
 | |
| 		memdrv->shutdown(mem);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
 | |
|  * @memdrv: the SPI memory driver to register
 | |
|  * @owner: the owner of this driver
 | |
|  *
 | |
|  * Registers a SPI memory driver.
 | |
|  *
 | |
|  * Return: 0 in case of success, a negative error core otherwise.
 | |
|  */
 | |
| 
 | |
| int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
 | |
| 				       struct module *owner)
 | |
| {
 | |
| 	memdrv->spidrv.probe = spi_mem_probe;
 | |
| 	memdrv->spidrv.remove = spi_mem_remove;
 | |
| 	memdrv->spidrv.shutdown = spi_mem_shutdown;
 | |
| 
 | |
| 	return __spi_register_driver(owner, &memdrv->spidrv);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
 | |
| 
 | |
| /**
 | |
|  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
 | |
|  * @memdrv: the SPI memory driver to unregister
 | |
|  *
 | |
|  * Unregisters a SPI memory driver.
 | |
|  */
 | |
| void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
 | |
| {
 | |
| 	spi_unregister_driver(&memdrv->spidrv);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
 |