forked from mirrors/linux
		
	 498e8631f2
			
		
	
	
		498e8631f2
		
	
	
	
	
		
			
			Pull swiotlb updates from Konrad Rzeszutek Wilk: "Cleanups in the swiotlb code and extra debugfs knobs to help with the field diagnostics" * 'stable/for-linus-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb: swiotlb-xen: ensure we have a single callsite for xen_dma_map_page swiotlb-xen: simplify the DMA sync method implementations swiotlb-xen: use ->map_page to implement ->map_sg swiotlb-xen: make instances match their method names swiotlb: save io_tlb_used to local variable before leaving critical section swiotlb: dump used and total slots when swiotlb buffer is full
		
			
				
	
	
		
			622 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			622 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright 2010
 | |
|  *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
 | |
|  *
 | |
|  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License v2.0 as published by
 | |
|  * the Free Software Foundation
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * PV guests under Xen are running in an non-contiguous memory architecture.
 | |
|  *
 | |
|  * When PCI pass-through is utilized, this necessitates an IOMMU for
 | |
|  * translating bus (DMA) to virtual and vice-versa and also providing a
 | |
|  * mechanism to have contiguous pages for device drivers operations (say DMA
 | |
|  * operations).
 | |
|  *
 | |
|  * Specifically, under Xen the Linux idea of pages is an illusion. It
 | |
|  * assumes that pages start at zero and go up to the available memory. To
 | |
|  * help with that, the Linux Xen MMU provides a lookup mechanism to
 | |
|  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
 | |
|  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
 | |
|  * memory is not contiguous. Xen hypervisor stitches memory for guests
 | |
|  * from different pools, which means there is no guarantee that PFN==MFN
 | |
|  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
 | |
|  * allocated in descending order (high to low), meaning the guest might
 | |
|  * never get any MFN's under the 4GB mark.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "xen:" KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/dma-direct.h>
 | |
| #include <linux/export.h>
 | |
| #include <xen/swiotlb-xen.h>
 | |
| #include <xen/page.h>
 | |
| #include <xen/xen-ops.h>
 | |
| #include <xen/hvc-console.h>
 | |
| 
 | |
| #include <asm/dma-mapping.h>
 | |
| #include <asm/xen/page-coherent.h>
 | |
| 
 | |
| #include <trace/events/swiotlb.h>
 | |
| /*
 | |
|  * Used to do a quick range check in swiotlb_tbl_unmap_single and
 | |
|  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
 | |
|  * API.
 | |
|  */
 | |
| 
 | |
| static char *xen_io_tlb_start, *xen_io_tlb_end;
 | |
| static unsigned long xen_io_tlb_nslabs;
 | |
| /*
 | |
|  * Quick lookup value of the bus address of the IOTLB.
 | |
|  */
 | |
| 
 | |
| static u64 start_dma_addr;
 | |
| 
 | |
| /*
 | |
|  * Both of these functions should avoid XEN_PFN_PHYS because phys_addr_t
 | |
|  * can be 32bit when dma_addr_t is 64bit leading to a loss in
 | |
|  * information if the shift is done before casting to 64bit.
 | |
|  */
 | |
| static inline dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
 | |
| {
 | |
| 	unsigned long bfn = pfn_to_bfn(XEN_PFN_DOWN(paddr));
 | |
| 	dma_addr_t dma = (dma_addr_t)bfn << XEN_PAGE_SHIFT;
 | |
| 
 | |
| 	dma |= paddr & ~XEN_PAGE_MASK;
 | |
| 
 | |
| 	return dma;
 | |
| }
 | |
| 
 | |
| static inline phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
 | |
| {
 | |
| 	unsigned long xen_pfn = bfn_to_pfn(XEN_PFN_DOWN(baddr));
 | |
| 	dma_addr_t dma = (dma_addr_t)xen_pfn << XEN_PAGE_SHIFT;
 | |
| 	phys_addr_t paddr = dma;
 | |
| 
 | |
| 	paddr |= baddr & ~XEN_PAGE_MASK;
 | |
| 
 | |
| 	return paddr;
 | |
| }
 | |
| 
 | |
| static inline dma_addr_t xen_virt_to_bus(void *address)
 | |
| {
 | |
| 	return xen_phys_to_bus(virt_to_phys(address));
 | |
| }
 | |
| 
 | |
| static int check_pages_physically_contiguous(unsigned long xen_pfn,
 | |
| 					     unsigned int offset,
 | |
| 					     size_t length)
 | |
| {
 | |
| 	unsigned long next_bfn;
 | |
| 	int i;
 | |
| 	int nr_pages;
 | |
| 
 | |
| 	next_bfn = pfn_to_bfn(xen_pfn);
 | |
| 	nr_pages = (offset + length + XEN_PAGE_SIZE-1) >> XEN_PAGE_SHIFT;
 | |
| 
 | |
| 	for (i = 1; i < nr_pages; i++) {
 | |
| 		if (pfn_to_bfn(++xen_pfn) != ++next_bfn)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
 | |
| {
 | |
| 	unsigned long xen_pfn = XEN_PFN_DOWN(p);
 | |
| 	unsigned int offset = p & ~XEN_PAGE_MASK;
 | |
| 
 | |
| 	if (offset + size <= XEN_PAGE_SIZE)
 | |
| 		return 0;
 | |
| 	if (check_pages_physically_contiguous(xen_pfn, offset, size))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
 | |
| {
 | |
| 	unsigned long bfn = XEN_PFN_DOWN(dma_addr);
 | |
| 	unsigned long xen_pfn = bfn_to_local_pfn(bfn);
 | |
| 	phys_addr_t paddr = XEN_PFN_PHYS(xen_pfn);
 | |
| 
 | |
| 	/* If the address is outside our domain, it CAN
 | |
| 	 * have the same virtual address as another address
 | |
| 	 * in our domain. Therefore _only_ check address within our domain.
 | |
| 	 */
 | |
| 	if (pfn_valid(PFN_DOWN(paddr))) {
 | |
| 		return paddr >= virt_to_phys(xen_io_tlb_start) &&
 | |
| 		       paddr < virt_to_phys(xen_io_tlb_end);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int max_dma_bits = 32;
 | |
| 
 | |
| static int
 | |
| xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
 | |
| {
 | |
| 	int i, rc;
 | |
| 	int dma_bits;
 | |
| 	dma_addr_t dma_handle;
 | |
| 	phys_addr_t p = virt_to_phys(buf);
 | |
| 
 | |
| 	dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 | |
| 
 | |
| 	i = 0;
 | |
| 	do {
 | |
| 		int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
 | |
| 
 | |
| 		do {
 | |
| 			rc = xen_create_contiguous_region(
 | |
| 				p + (i << IO_TLB_SHIFT),
 | |
| 				get_order(slabs << IO_TLB_SHIFT),
 | |
| 				dma_bits, &dma_handle);
 | |
| 		} while (rc && dma_bits++ < max_dma_bits);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		i += slabs;
 | |
| 	} while (i < nslabs);
 | |
| 	return 0;
 | |
| }
 | |
| static unsigned long xen_set_nslabs(unsigned long nr_tbl)
 | |
| {
 | |
| 	if (!nr_tbl) {
 | |
| 		xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
 | |
| 		xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
 | |
| 	} else
 | |
| 		xen_io_tlb_nslabs = nr_tbl;
 | |
| 
 | |
| 	return xen_io_tlb_nslabs << IO_TLB_SHIFT;
 | |
| }
 | |
| 
 | |
| enum xen_swiotlb_err {
 | |
| 	XEN_SWIOTLB_UNKNOWN = 0,
 | |
| 	XEN_SWIOTLB_ENOMEM,
 | |
| 	XEN_SWIOTLB_EFIXUP
 | |
| };
 | |
| 
 | |
| static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
 | |
| {
 | |
| 	switch (err) {
 | |
| 	case XEN_SWIOTLB_ENOMEM:
 | |
| 		return "Cannot allocate Xen-SWIOTLB buffer\n";
 | |
| 	case XEN_SWIOTLB_EFIXUP:
 | |
| 		return "Failed to get contiguous memory for DMA from Xen!\n"\
 | |
| 		    "You either: don't have the permissions, do not have"\
 | |
| 		    " enough free memory under 4GB, or the hypervisor memory"\
 | |
| 		    " is too fragmented!";
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return "";
 | |
| }
 | |
| int __ref xen_swiotlb_init(int verbose, bool early)
 | |
| {
 | |
| 	unsigned long bytes, order;
 | |
| 	int rc = -ENOMEM;
 | |
| 	enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
 | |
| 	unsigned int repeat = 3;
 | |
| 
 | |
| 	xen_io_tlb_nslabs = swiotlb_nr_tbl();
 | |
| retry:
 | |
| 	bytes = xen_set_nslabs(xen_io_tlb_nslabs);
 | |
| 	order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
 | |
| 	/*
 | |
| 	 * Get IO TLB memory from any location.
 | |
| 	 */
 | |
| 	if (early) {
 | |
| 		xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
 | |
| 						  PAGE_SIZE);
 | |
| 		if (!xen_io_tlb_start)
 | |
| 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 | |
| 			      __func__, PAGE_ALIGN(bytes), PAGE_SIZE);
 | |
| 	} else {
 | |
| #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
 | |
| #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
 | |
| 		while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
 | |
| 			xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order);
 | |
| 			if (xen_io_tlb_start)
 | |
| 				break;
 | |
| 			order--;
 | |
| 		}
 | |
| 		if (order != get_order(bytes)) {
 | |
| 			pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
 | |
| 				(PAGE_SIZE << order) >> 20);
 | |
| 			xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
 | |
| 			bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!xen_io_tlb_start) {
 | |
| 		m_ret = XEN_SWIOTLB_ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	xen_io_tlb_end = xen_io_tlb_start + bytes;
 | |
| 	/*
 | |
| 	 * And replace that memory with pages under 4GB.
 | |
| 	 */
 | |
| 	rc = xen_swiotlb_fixup(xen_io_tlb_start,
 | |
| 			       bytes,
 | |
| 			       xen_io_tlb_nslabs);
 | |
| 	if (rc) {
 | |
| 		if (early)
 | |
| 			memblock_free(__pa(xen_io_tlb_start),
 | |
| 				      PAGE_ALIGN(bytes));
 | |
| 		else {
 | |
| 			free_pages((unsigned long)xen_io_tlb_start, order);
 | |
| 			xen_io_tlb_start = NULL;
 | |
| 		}
 | |
| 		m_ret = XEN_SWIOTLB_EFIXUP;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
 | |
| 	if (early) {
 | |
| 		if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs,
 | |
| 			 verbose))
 | |
| 			panic("Cannot allocate SWIOTLB buffer");
 | |
| 		rc = 0;
 | |
| 	} else
 | |
| 		rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
 | |
| 
 | |
| 	if (!rc)
 | |
| 		swiotlb_set_max_segment(PAGE_SIZE);
 | |
| 
 | |
| 	return rc;
 | |
| error:
 | |
| 	if (repeat--) {
 | |
| 		xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
 | |
| 					(xen_io_tlb_nslabs >> 1));
 | |
| 		pr_info("Lowering to %luMB\n",
 | |
| 			(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
 | |
| 	if (early)
 | |
| 		panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
 | |
| 	else
 | |
| 		free_pages((unsigned long)xen_io_tlb_start, order);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| static void *
 | |
| xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 | |
| 			   dma_addr_t *dma_handle, gfp_t flags,
 | |
| 			   unsigned long attrs)
 | |
| {
 | |
| 	void *ret;
 | |
| 	int order = get_order(size);
 | |
| 	u64 dma_mask = DMA_BIT_MASK(32);
 | |
| 	phys_addr_t phys;
 | |
| 	dma_addr_t dev_addr;
 | |
| 
 | |
| 	/*
 | |
| 	* Ignore region specifiers - the kernel's ideas of
 | |
| 	* pseudo-phys memory layout has nothing to do with the
 | |
| 	* machine physical layout.  We can't allocate highmem
 | |
| 	* because we can't return a pointer to it.
 | |
| 	*/
 | |
| 	flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
 | |
| 
 | |
| 	/* Convert the size to actually allocated. */
 | |
| 	size = 1UL << (order + XEN_PAGE_SHIFT);
 | |
| 
 | |
| 	/* On ARM this function returns an ioremap'ped virtual address for
 | |
| 	 * which virt_to_phys doesn't return the corresponding physical
 | |
| 	 * address. In fact on ARM virt_to_phys only works for kernel direct
 | |
| 	 * mapped RAM memory. Also see comment below.
 | |
| 	 */
 | |
| 	ret = xen_alloc_coherent_pages(hwdev, size, dma_handle, flags, attrs);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (hwdev && hwdev->coherent_dma_mask)
 | |
| 		dma_mask = hwdev->coherent_dma_mask;
 | |
| 
 | |
| 	/* At this point dma_handle is the physical address, next we are
 | |
| 	 * going to set it to the machine address.
 | |
| 	 * Do not use virt_to_phys(ret) because on ARM it doesn't correspond
 | |
| 	 * to *dma_handle. */
 | |
| 	phys = *dma_handle;
 | |
| 	dev_addr = xen_phys_to_bus(phys);
 | |
| 	if (((dev_addr + size - 1 <= dma_mask)) &&
 | |
| 	    !range_straddles_page_boundary(phys, size))
 | |
| 		*dma_handle = dev_addr;
 | |
| 	else {
 | |
| 		if (xen_create_contiguous_region(phys, order,
 | |
| 						 fls64(dma_mask), dma_handle) != 0) {
 | |
| 			xen_free_coherent_pages(hwdev, size, ret, (dma_addr_t)phys, attrs);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	memset(ret, 0, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 | |
| 			  dma_addr_t dev_addr, unsigned long attrs)
 | |
| {
 | |
| 	int order = get_order(size);
 | |
| 	phys_addr_t phys;
 | |
| 	u64 dma_mask = DMA_BIT_MASK(32);
 | |
| 
 | |
| 	if (hwdev && hwdev->coherent_dma_mask)
 | |
| 		dma_mask = hwdev->coherent_dma_mask;
 | |
| 
 | |
| 	/* do not use virt_to_phys because on ARM it doesn't return you the
 | |
| 	 * physical address */
 | |
| 	phys = xen_bus_to_phys(dev_addr);
 | |
| 
 | |
| 	/* Convert the size to actually allocated. */
 | |
| 	size = 1UL << (order + XEN_PAGE_SHIFT);
 | |
| 
 | |
| 	if (((dev_addr + size - 1 <= dma_mask)) ||
 | |
| 	    range_straddles_page_boundary(phys, size))
 | |
| 		xen_destroy_contiguous_region(phys, order);
 | |
| 
 | |
| 	xen_free_coherent_pages(hwdev, size, vaddr, (dma_addr_t)phys, attrs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map a single buffer of the indicated size for DMA in streaming mode.  The
 | |
|  * physical address to use is returned.
 | |
|  *
 | |
|  * Once the device is given the dma address, the device owns this memory until
 | |
|  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 | |
|  */
 | |
| static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
 | |
| 				unsigned long offset, size_t size,
 | |
| 				enum dma_data_direction dir,
 | |
| 				unsigned long attrs)
 | |
| {
 | |
| 	phys_addr_t map, phys = page_to_phys(page) + offset;
 | |
| 	dma_addr_t dev_addr = xen_phys_to_bus(phys);
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 	/*
 | |
| 	 * If the address happens to be in the device's DMA window,
 | |
| 	 * we can safely return the device addr and not worry about bounce
 | |
| 	 * buffering it.
 | |
| 	 */
 | |
| 	if (dma_capable(dev, dev_addr, size) &&
 | |
| 	    !range_straddles_page_boundary(phys, size) &&
 | |
| 		!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
 | |
| 		swiotlb_force != SWIOTLB_FORCE)
 | |
| 		goto done;
 | |
| 
 | |
| 	/*
 | |
| 	 * Oh well, have to allocate and map a bounce buffer.
 | |
| 	 */
 | |
| 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
 | |
| 
 | |
| 	map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir,
 | |
| 				     attrs);
 | |
| 	if (map == DMA_MAPPING_ERROR)
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 
 | |
| 	dev_addr = xen_phys_to_bus(map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the address returned is DMA'ble
 | |
| 	 */
 | |
| 	if (unlikely(!dma_capable(dev, dev_addr, size))) {
 | |
| 		swiotlb_tbl_unmap_single(dev, map, size, dir,
 | |
| 				attrs | DMA_ATTR_SKIP_CPU_SYNC);
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	page = pfn_to_page(map >> PAGE_SHIFT);
 | |
| 	offset = map & ~PAGE_MASK;
 | |
| done:
 | |
| 	/*
 | |
| 	 * we are not interested in the dma_addr returned by xen_dma_map_page,
 | |
| 	 * only in the potential cache flushes executed by the function.
 | |
| 	 */
 | |
| 	xen_dma_map_page(dev, page, dev_addr, offset, size, dir, attrs);
 | |
| 	return dev_addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 | |
|  * match what was provided for in a previous xen_swiotlb_map_page call.  All
 | |
|  * other usages are undefined.
 | |
|  *
 | |
|  * After this call, reads by the cpu to the buffer are guaranteed to see
 | |
|  * whatever the device wrote there.
 | |
|  */
 | |
| static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			     size_t size, enum dma_data_direction dir,
 | |
| 			     unsigned long attrs)
 | |
| {
 | |
| 	phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	xen_dma_unmap_page(hwdev, dev_addr, size, dir, attrs);
 | |
| 
 | |
| 	/* NOTE: We use dev_addr here, not paddr! */
 | |
| 	if (is_xen_swiotlb_buffer(dev_addr))
 | |
| 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
 | |
| }
 | |
| 
 | |
| static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 | |
| 			    size_t size, enum dma_data_direction dir,
 | |
| 			    unsigned long attrs)
 | |
| {
 | |
| 	xen_unmap_single(hwdev, dev_addr, size, dir, attrs);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
 | |
| 		size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
 | |
| 
 | |
| 	xen_dma_sync_single_for_cpu(dev, dma_addr, size, dir);
 | |
| 
 | |
| 	if (is_xen_swiotlb_buffer(dma_addr))
 | |
| 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
 | |
| }
 | |
| 
 | |
| static void
 | |
| xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
 | |
| 		size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	phys_addr_t paddr = xen_bus_to_phys(dma_addr);
 | |
| 
 | |
| 	if (is_xen_swiotlb_buffer(dma_addr))
 | |
| 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
 | |
| 
 | |
| 	xen_dma_sync_single_for_device(dev, dma_addr, size, dir);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 | |
|  * concerning calls here are the same as for swiotlb_unmap_page() above.
 | |
|  */
 | |
| static void
 | |
| xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 | |
| 		enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i)
 | |
| 		xen_unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, attrs);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int
 | |
| xen_swiotlb_map_sg(struct device *dev, struct scatterlist *sgl, int nelems,
 | |
| 		enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(dir == DMA_NONE);
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i) {
 | |
| 		sg->dma_address = xen_swiotlb_map_page(dev, sg_page(sg),
 | |
| 				sg->offset, sg->length, dir, attrs);
 | |
| 		if (sg->dma_address == DMA_MAPPING_ERROR)
 | |
| 			goto out_unmap;
 | |
| 		sg_dma_len(sg) = sg->length;
 | |
| 	}
 | |
| 
 | |
| 	return nelems;
 | |
| out_unmap:
 | |
| 	xen_swiotlb_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
 | |
| 	sg_dma_len(sgl) = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xen_swiotlb_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
 | |
| 			    int nelems, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i) {
 | |
| 		xen_swiotlb_sync_single_for_cpu(dev, sg->dma_address,
 | |
| 				sg->length, dir);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
 | |
| 			       int nelems, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sgl, sg, nelems, i) {
 | |
| 		xen_swiotlb_sync_single_for_device(dev, sg->dma_address,
 | |
| 				sg->length, dir);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return whether the given device DMA address mask can be supported
 | |
|  * properly.  For example, if your device can only drive the low 24-bits
 | |
|  * during bus mastering, then you would pass 0x00ffffff as the mask to
 | |
|  * this function.
 | |
|  */
 | |
| static int
 | |
| xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
 | |
| {
 | |
| 	return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create userspace mapping for the DMA-coherent memory.
 | |
|  * This function should be called with the pages from the current domain only,
 | |
|  * passing pages mapped from other domains would lead to memory corruption.
 | |
|  */
 | |
| static int
 | |
| xen_swiotlb_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 | |
| 		     void *cpu_addr, dma_addr_t dma_addr, size_t size,
 | |
| 		     unsigned long attrs)
 | |
| {
 | |
| #ifdef CONFIG_ARM
 | |
| 	if (xen_get_dma_ops(dev)->mmap)
 | |
| 		return xen_get_dma_ops(dev)->mmap(dev, vma, cpu_addr,
 | |
| 						    dma_addr, size, attrs);
 | |
| #endif
 | |
| 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function should be called with the pages from the current domain only,
 | |
|  * passing pages mapped from other domains would lead to memory corruption.
 | |
|  */
 | |
| static int
 | |
| xen_swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
 | |
| 			void *cpu_addr, dma_addr_t handle, size_t size,
 | |
| 			unsigned long attrs)
 | |
| {
 | |
| #ifdef CONFIG_ARM
 | |
| 	if (xen_get_dma_ops(dev)->get_sgtable) {
 | |
| #if 0
 | |
| 	/*
 | |
| 	 * This check verifies that the page belongs to the current domain and
 | |
| 	 * is not one mapped from another domain.
 | |
| 	 * This check is for debug only, and should not go to production build
 | |
| 	 */
 | |
| 		unsigned long bfn = PHYS_PFN(dma_to_phys(dev, handle));
 | |
| 		BUG_ON (!page_is_ram(bfn));
 | |
| #endif
 | |
| 		return xen_get_dma_ops(dev)->get_sgtable(dev, sgt, cpu_addr,
 | |
| 							   handle, size, attrs);
 | |
| 	}
 | |
| #endif
 | |
| 	return dma_common_get_sgtable(dev, sgt, cpu_addr, handle, size, attrs);
 | |
| }
 | |
| 
 | |
| const struct dma_map_ops xen_swiotlb_dma_ops = {
 | |
| 	.alloc = xen_swiotlb_alloc_coherent,
 | |
| 	.free = xen_swiotlb_free_coherent,
 | |
| 	.sync_single_for_cpu = xen_swiotlb_sync_single_for_cpu,
 | |
| 	.sync_single_for_device = xen_swiotlb_sync_single_for_device,
 | |
| 	.sync_sg_for_cpu = xen_swiotlb_sync_sg_for_cpu,
 | |
| 	.sync_sg_for_device = xen_swiotlb_sync_sg_for_device,
 | |
| 	.map_sg = xen_swiotlb_map_sg,
 | |
| 	.unmap_sg = xen_swiotlb_unmap_sg,
 | |
| 	.map_page = xen_swiotlb_map_page,
 | |
| 	.unmap_page = xen_swiotlb_unmap_page,
 | |
| 	.dma_supported = xen_swiotlb_dma_supported,
 | |
| 	.mmap = xen_swiotlb_dma_mmap,
 | |
| 	.get_sgtable = xen_swiotlb_get_sgtable,
 | |
| };
 |